A novel machine learning-based prediction method for patients at risk of developing depressive symptoms using a small data

The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention and can lead to higher success rates in treatment. Self-reported feelings by patients represent a valuable biomarker for predicting depressio...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 5; p. e0303889
Main Authors Yun, Minyoung, Jeon, Minjeong, Yang, Heyoung
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 22.05.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0303889

Cover

Abstract The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention and can lead to higher success rates in treatment. Self-reported feelings by patients represent a valuable biomarker for predicting depression as they can be expressed in a lower-dimensional network form, offering an advantage in visualizing the interactive characteristics of depression-related feelings. Furthermore, the network form of data expresses high-dimensional data in a compact form, making the data easy to use as input for the machine learning processes. In this study, we applied the graph convolutional network (GCN) algorithm, an effective machine learning tool for handling network data, to predict depression-prone patients using the network form of self-reported log data as the input. We took a data augmentation step to expand the initially small dataset and fed the resulting data into the GCN algorithm, which achieved a high level of accuracy from 86–97% and an F1 (harmonic mean of precision and recall) score of 0.83–0.94 through three experimental cases. In these cases, the ratio of depressive cases varied, and high accuracy and F1 scores were observed in all three cases. This study not only demonstrates the potential for predicting depression-prone patients using self-reported logs as a biomarker in advance, but also shows promise in handling small data sets in the prediction, which is critical given the challenge of obtaining large datasets for biomarker research. The combination of self-reported logs and the GCN algorithm is a promising approach for predicting depression and warrants further investigation.
AbstractList The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention and can lead to higher success rates in treatment. Self-reported feelings by patients represent a valuable biomarker for predicting depression as they can be expressed in a lower-dimensional network form, offering an advantage in visualizing the interactive characteristics of depression-related feelings. Furthermore, the network form of data expresses high-dimensional data in a compact form, making the data easy to use as input for the machine learning processes. In this study, we applied the graph convolutional network (GCN) algorithm, an effective machine learning tool for handling network data, to predict depression-prone patients using the network form of self-reported log data as the input. We took a data augmentation step to expand the initially small dataset and fed the resulting data into the GCN algorithm, which achieved a high level of accuracy from 86–97% and an F1 (harmonic mean of precision and recall) score of 0.83–0.94 through three experimental cases. In these cases, the ratio of depressive cases varied, and high accuracy and F1 scores were observed in all three cases. This study not only demonstrates the potential for predicting depression-prone patients using self-reported logs as a biomarker in advance, but also shows promise in handling small data sets in the prediction, which is critical given the challenge of obtaining large datasets for biomarker research. The combination of self-reported logs and the GCN algorithm is a promising approach for predicting depression and warrants further investigation.
The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention and can lead to higher success rates in treatment. Self-reported feelings by patients represent a valuable biomarker for predicting depression as they can be expressed in a lower-dimensional network form, offering an advantage in visualizing the interactive characteristics of depression-related feelings. Furthermore, the network form of data expresses high-dimensional data in a compact form, making the data easy to use as input for the machine learning processes. In this study, we applied the graph convolutional network (GCN) algorithm, an effective machine learning tool for handling network data, to predict depression-prone patients using the network form of self-reported log data as the input. We took a data augmentation step to expand the initially small dataset and fed the resulting data into the GCN algorithm, which achieved a high level of accuracy from 86-97% and an F1 (harmonic mean of precision and recall) score of 0.83-0.94 through three experimental cases. In these cases, the ratio of depressive cases varied, and high accuracy and F1 scores were observed in all three cases. This study not only demonstrates the potential for predicting depression-prone patients using self-reported logs as a biomarker in advance, but also shows promise in handling small data sets in the prediction, which is critical given the challenge of obtaining large datasets for biomarker research. The combination of self-reported logs and the GCN algorithm is a promising approach for predicting depression and warrants further investigation.The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention and can lead to higher success rates in treatment. Self-reported feelings by patients represent a valuable biomarker for predicting depression as they can be expressed in a lower-dimensional network form, offering an advantage in visualizing the interactive characteristics of depression-related feelings. Furthermore, the network form of data expresses high-dimensional data in a compact form, making the data easy to use as input for the machine learning processes. In this study, we applied the graph convolutional network (GCN) algorithm, an effective machine learning tool for handling network data, to predict depression-prone patients using the network form of self-reported log data as the input. We took a data augmentation step to expand the initially small dataset and fed the resulting data into the GCN algorithm, which achieved a high level of accuracy from 86-97% and an F1 (harmonic mean of precision and recall) score of 0.83-0.94 through three experimental cases. In these cases, the ratio of depressive cases varied, and high accuracy and F1 scores were observed in all three cases. This study not only demonstrates the potential for predicting depression-prone patients using self-reported logs as a biomarker in advance, but also shows promise in handling small data sets in the prediction, which is critical given the challenge of obtaining large datasets for biomarker research. The combination of self-reported logs and the GCN algorithm is a promising approach for predicting depression and warrants further investigation.
Audience Academic
Author Jeon, Minjeong
Yang, Heyoung
Yun, Minyoung
AuthorAffiliation 3 School of Education & Information Studies, University of California, Los Angeles, Los Angeles, LA, United States of America
2 École nationale supérieure d’Arts et Métiers, Paris, France
4 Center for Future Technology Analysis, Korea Institute of Science and Technology Information, Seoul, Korea
1 Center for R&D Investment and Strategy Research, Korea Institute of Science and Technology Information, Seoul, Korea
BRAC Business School, BRAC University, BANGLADESH
AuthorAffiliation_xml – name: 1 Center for R&D Investment and Strategy Research, Korea Institute of Science and Technology Information, Seoul, Korea
– name: 4 Center for Future Technology Analysis, Korea Institute of Science and Technology Information, Seoul, Korea
– name: BRAC Business School, BRAC University, BANGLADESH
– name: 2 École nationale supérieure d’Arts et Métiers, Paris, France
– name: 3 School of Education & Information Studies, University of California, Los Angeles, Los Angeles, LA, United States of America
Author_xml – sequence: 1
  givenname: Minyoung
  surname: Yun
  fullname: Yun, Minyoung
– sequence: 2
  givenname: Minjeong
  surname: Jeon
  fullname: Jeon, Minjeong
– sequence: 3
  givenname: Heyoung
  orcidid: 0000-0002-7960-4389
  surname: Yang
  fullname: Yang, Heyoung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38776333$$D View this record in MEDLINE/PubMed
BookMark eNqNk0lv1DAYhiNURBf4BwgsISE4zOAtjn1CVcVSqVIltqvliZ0ZF8dObWeg_HocZlrNoB4aH2J9ft433-IcVwc-eFNVzxGcI9Kgd1dhjF65-VDCc0gg4Vw8qo6QIHjGMCQHO_vD6jilKwhrwhl7Uh0S3jSMEHJU_TkFPqyNA71qV9Yb4IyK3vrlbKGS0WCIRts22-BBb_IqaNCFCAaVrfE5AZVBtOknCB3QptiEoUjLtshSsmsD0k0_5NAnMKbpRIHUK-eAVlk9rR53yiXzbPs-qb5__PDt7PPs4vLT-dnpxaxlFOeZ7li3QDXiuiGYYIXrGrKGCk5aBDEUyoimxbCGolOGLRjCjeiYRjUjEDUCkZPq5cZ3cCHJbduSJJAJzAWlpBDnG0IHdSWHaHsVb2RQVv4LhLiUKmbbOiNrwTVteIMXpKNM6QWnLeSU1xQ13EBdvOqN1-gHdfOrFHtniKCcJnebgpwmJ7eTK7r32yzHRW90W9obldtLZv_E25VchrVE01M8isObrUMM16NJWfY2tcY55U0Yp4JrgWtBGS3oq__Q-9uypZaqVG59F8qH28lUnjai1ExojQs1v4cqS5vetqXEzpb4nuDtnqAw2fzOSzWmJM-_fnk4e_ljn329w66McnmVghuny5v2wRe7rb7r8e1fUQC6AdoYUoqme9gI_wIYkx-P
Cites_doi 10.1371/journal.pone.0060188
10.1016/j.jrp.2014.07.003
10.1016/S2215-0366(15)00471-X
10.1109/TNNLS.2020.2978386
10.1159/000442001
10.1609/icwsm.v7i1.14432
10.1186/s40537-019-0197-0
10.1016/j.neunet.2020.06.006
10.1111/cns.13048
10.1016/j.jad.2022.04.093
10.1002/jclp.20503
10.1037/a0024595
10.1038/s41380-019-0585-z
10.1186/s40537-021-00492-0
10.1146/annurev-clinpsy-050212-185608
10.1002/da.23123
10.1016/j.aiopen.2021.01.001
ContentType Journal Article
Copyright Copyright: © 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Yun et al 2024 Yun et al
2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Yun et al 2024 Yun et al
– notice: 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0303889
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database

CrossRef

MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A novel machine learning-based prediction method for depressive patients using a small data
EISSN 1932-6203
ExternalDocumentID 3069289443
oai_doaj_org_article_598d47872b3f46adb84c084854178e0d
oai:escholarship.org:ark:/13030/qt4hz1n15w
PMC11111038
A794853452
38776333
10_1371_journal_pone_0303889
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: K‐23-L05-C02-S16 and No. K-23-L03-C02
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c642t-df6fb1518d73232a2550674983c10209ae97c20509fae6b61279f6d1563017913
IEDL.DBID M48
ISSN 1932-6203
IngestDate Thu Nov 28 02:59:41 EST 2024
Fri Oct 03 12:52:27 EDT 2025
Sun Oct 26 02:22:37 EDT 2025
Tue Sep 30 17:09:08 EDT 2025
Tue Sep 09 07:40:39 EDT 2025
Tue Oct 07 09:09:51 EDT 2025
Mon Oct 20 22:55:09 EDT 2025
Mon Oct 20 17:01:41 EDT 2025
Thu Oct 16 15:58:17 EDT 2025
Thu Oct 16 16:14:29 EDT 2025
Thu May 22 21:24:10 EDT 2025
Wed Feb 19 02:07:08 EST 2025
Wed Oct 01 04:40:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-df6fb1518d73232a2550674983c10209ae97c20509fae6b61279f6d1563017913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-7960-4389
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0303889
PMID 38776333
PQID 3069289443
PQPubID 1436336
PageCount e0303889
ParticipantIDs plos_journals_3069289443
doaj_primary_oai_doaj_org_article_598d47872b3f46adb84c084854178e0d
unpaywall_primary_10_1371_journal_pone_0303889
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11111038
proquest_miscellaneous_3059259464
proquest_journals_3069289443
gale_infotracmisc_A794853452
gale_infotracacademiconefile_A794853452
gale_incontextgauss_ISR_A794853452
gale_incontextgauss_IOV_A794853452
gale_healthsolutions_A794853452
pubmed_primary_38776333
crossref_primary_10_1371_journal_pone_0303889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-22
PublicationDateYYYYMMDD 2024-05-22
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S Ryu (pone.0303889.ref001) 2022; 17
SG Kang (pone.0303889.ref014) 2020; 21
M Kennis (pone.0303889.ref015) 2020; 25
M De Choudhury (pone.0303889.ref007) 2013; 7
Z Wu (pone.0303889.ref018) 2021; 32
TN Kipf (pone.0303889.ref022) 2017
P Cellini (pone.0303889.ref017) 2022; 309
D Borsboom (pone.0303889.ref010) 2021; 1
E Hochman (pone.0303889.ref016) 2021; 38
L Boschloo (pone.0303889.ref027) 2016; 85
G Costantini (pone.0303889.ref011) 2015; 54
R Strawbridge (pone.0303889.ref013)
S Gao (pone.0303889.ref003) 2018; 24
LF Bringmann (pone.0303889.ref009) 2013; 8
J Min (pone.0303889.ref002) 2022; 12
AM Chekroud (pone.0303889.ref004) 2016; 3
D. Borsboom (pone.0303889.ref012) 2008; 64
N Geschwind (pone.0303889.ref028) 2011; 79
D Bacciu (pone.0303889.ref020) 2020; 129
J Zhou (pone.0303889.ref019) 2020; 1
T Zhao (pone.0303889.ref021) 2021; 12B
C Shorten (pone.0303889.ref026) 2019; 6
I Moshe (pone.0303889.ref005) 2021; 12
D Borsboom (pone.0303889.ref008) 2013; 9
J Wang (pone.0303889.ref024) 2017
Q Li (pone.0303889.ref023) 2018
C Shorten (pone.0303889.ref025) 2021; 8
SC Guntuku (pone.0303889.ref006) 2017; 18
References_xml – volume: 8
  issue: 4
  year: 2013
  ident: pone.0303889.ref009
  article-title: A Network Approach to Psychopathology: New Insights into Clinical Longitudinal Data.
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0060188
– volume: 54
  start-page: 13
  year: 2015
  ident: pone.0303889.ref011
  article-title: State of the aRt personality research: A tutorial on network analysis of personality data in R.
  publication-title: J Res Pers
  doi: 10.1016/j.jrp.2014.07.003
– volume: 3
  start-page: 243
  issue: 3
  year: 2016
  ident: pone.0303889.ref004
  article-title: Cross-trial prediction of treatment outcome in depression: A machine learning approach
  publication-title: The Lancet Psychiatry
  doi: 10.1016/S2215-0366(15)00471-X
– volume: 32
  start-page: 4
  issue: 1
  year: 2021
  ident: pone.0303889.ref018
  article-title: A Comprehensive Survey on Graph Neural Networks
  publication-title: IEEE Trans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2020.2978386
– volume: 85
  start-page: 183
  issue: 3
  year: 2016
  ident: pone.0303889.ref027
  article-title: A Prospective Study on How Symptoms in a Network Predict the Onset of Depression.
  publication-title: Psychother Psychosom.
  doi: 10.1159/000442001
– volume: 7
  start-page: 128
  issue: 1
  year: 2013
  ident: pone.0303889.ref007
  article-title: Predicting Depression via Social Media.
  publication-title: Proc Int AAAI Conf Web Soc Media
  doi: 10.1609/icwsm.v7i1.14432
– start-page: 3538
  year: 2018
  ident: pone.0303889.ref023
  article-title: Deeper insights into graph convolutional networks for semi-supervised learning.
  publication-title: In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018.
– volume: 6
  issue: 1
  year: 2019
  ident: pone.0303889.ref026
  article-title: A survey on Image Data Augmentation for Deep Learning.
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 129
  start-page: 203
  year: 2020
  ident: pone.0303889.ref020
  article-title: A gentle introduction to deep learning for graphs.
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.06.006
– volume: 24
  start-page: 1037
  issue: 11
  year: 2018
  ident: pone.0303889.ref003
  article-title: Machine learning in major depression: From classification to treatment outcome prediction.
  publication-title: CNS Neurosci Ther
  doi: 10.1111/cns.13048
– volume: 1
  issue: 1
  year: 2021
  ident: pone.0303889.ref010
  article-title: Network analysis of multivariate data in psychological science
  publication-title: Nat Rev Methods Prim
– year: 2017
  ident: pone.0303889.ref024
  article-title: The effectiveness of data augmentation in image classification using deep learning.
  publication-title: arXiv
– volume: 309
  start-page: 350
  issue: March
  year: 2022
  ident: pone.0303889.ref017
  article-title: Machine learning in the prediction of postpartum depression: A review
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2022.04.093
– ident: pone.0303889.ref013
  article-title: Biomarkers for depression: recent insights, current challenges and future prospects Biomarkers for depression: recent insights, current challenges and future prospects.
– volume: 17
  start-page: 1
  issue: 9 September
  year: 2022
  ident: pone.0303889.ref001
  article-title: Trends in suicide deaths before and after the COVID-19 outbreak in Korea.
  publication-title: PLoS One
– volume: 64
  start-page: 1089
  issue: 9
  year: 2008
  ident: pone.0303889.ref012
  article-title: Psychometric perspectives on diagnostic systems.
  publication-title: J Clin Psychol
  doi: 10.1002/jclp.20503
– volume: 21
  issue: 6
  year: 2020
  ident: pone.0303889.ref014
  article-title: Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder.
  publication-title: Int J Mol Sci.
– volume: 79
  start-page: 618
  issue: 5
  year: 2011
  ident: pone.0303889.ref028
  article-title: Mindfulness training increases momentary positive emotions and reward experience in adults vulnerable to depression: A randomized controlled trial.
  publication-title: J Consult Clin Psychol
  doi: 10.1037/a0024595
– volume: 25
  start-page: 321
  issue: 2
  year: 2020
  ident: pone.0303889.ref015
  article-title: Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-019-0585-z
– start-page: 1
  year: 2017
  ident: pone.0303889.ref022
  article-title: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017—Conference Track Proceedings.
– volume: 8
  issue: 1
  year: 2021
  ident: pone.0303889.ref025
  article-title: Text Data Augmentation for Deep Learning.
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00492-0
– volume: 9
  start-page: 91
  year: 2013
  ident: pone.0303889.ref008
  article-title: Network analysis: An integrative approach to the structure of psychopathology.
  publication-title: Annual Review of Clinical Psychology
  doi: 10.1146/annurev-clinpsy-050212-185608
– volume: 38
  start-page: 400
  issue: 4
  year: 2021
  ident: pone.0303889.ref016
  article-title: Development and validation of a machine learning-based postpartum depression prediction model: A nationwide cohort study
  publication-title: Depress Anxiety
  doi: 10.1002/da.23123
– volume: 12
  start-page: 1
  issue: January
  year: 2021
  ident: pone.0303889.ref005
  article-title: Predicting Symptoms of Depression and Anxiety Using Smartphone and Wearable Data.
  publication-title: Front Psychiatry.
– volume: 1
  start-page: 57
  issue: April
  year: 2020
  ident: pone.0303889.ref019
  article-title: Graph neural networks: A review of methods and applications.
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 18
  start-page: 43
  year: 2017
  ident: pone.0303889.ref006
  article-title: Detecting depression and mental illness on social media: an integrative review. Curr Opin Behav Sci
– volume: 12B
  start-page: 11015
  year: 2021
  ident: pone.0303889.ref021
  article-title: Data Augmentation for Graph Neural Networks.
  publication-title: 35th AAAI Conf Artif Intell AAAI 2021.
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: pone.0303889.ref002
  article-title: Excess suicide attributable to the COVID-19 pandemic and social disparities in South Korea.
  publication-title: Sci Rep
SSID ssj0053866
Score 2.4575787
Snippet The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0303889
SubjectTerms Accuracy
Adult
Algorithms
Anxiety disorders
Artificial neural networks
Biology and Life Sciences
Biomarkers
Comorbidity
Computer and Information Sciences
Data augmentation
Datasets
Depression - diagnosis
Female
Humans
Learning algorithms
Likert scale
Machine Learning
Male
Medical research
Medicine and Health Sciences
Medicine, Experimental
Mental depression
Mental health
Methods
Neural Networks, Computer
Patients
Physical Sciences
Predictions
Research and Analysis Methods
Self Report
Unemployment benefits
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByy3cSO7RwXRFWQAAko6i2yY2dB2k2iJltUfj0ziRM2ohI9IO0pnkSbeXhmlM_fEPI8ThCYmNowFtKEPE8WoXIsDY1IGDcyN7yja_rwURyf8PenyenOqC_EhPX0wL3iDpNUWSSQiQ0ruNDWKJ4jB3zCI6ncwuLuu1Dp0Ez1ezBEsRD-oByT0aG3y7yuSjcHt2YKx7rvJKKOr3_clWf1umouKzn_Rk5e35a1vvip1-udtHR0i9z09SRd9u-xR6658jbZ8xHb0JeeVvrVHfJrScvq3K3ppsNPOuoHRqxCzGSW1mf4zQbtRPux0hTqWep5VxuqW4owdFoV9M9BKzoAac8dbS42dVttGopQ-hXVtNnA_6UIQb1LTo7efn1zHPrJC2EO_Ugb2kIUBmoBZSWDkktD3wFZjaeK5VCQLJDQW-YxUscU2gkDVZJMC2EjJBtDvlN2j8xK0PU-odYUwihpcNYVZ7FUJlJaGwk_VzgbBSQczJDVPcFG1n1lk9CY9DrM0GyZN1tAXqOtRlmkx-4ugNNk3mmyfzlNQJ6gpbP-rOkY5NlSIlkO40kckGedBFJklIjBWelt02TvPn27gtCXzxOhF16oqMBncu3PPcA7IfXWRPJgIgmBnk-W99EvB600GXR7KfTLnDO4c_DVy5efjsv4UMTVla7aokySQgPMBQ_I_d61R80yJSH5MLhbTZx-ovrpSvnje8dQjnkYmfcDMh_j40rWffA_rPuQ3IjB2RDjEccHZNaebd0jKB1b87jbJX4Dh1Fq4g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd4ALYnwtMIZBSMAhXRs7sXNAU4c2DSQKGgztFtmxU5DaJDTt0PjreS9xskVMaFJP8UvU-H06_vn3CHkVhAhMjI0fREL7PA1HvrQs9nUUMq5FqnlN1_RpGh2f8o9n4dkGmbZnYRBW2cbEOlCbIsVv5HtQ2sawOOCc7Ze_fOwahburbQsN5VormHc1xdgtshkgM9aAbB4cTr-ctLEZvDuK3AE6JsZ7Tl_DssjtEMydSWz3fiVB1Tz-XbQelPOiuq4U_RdReXudl-rit5rPr6Sro3vkrqsz6aQxjC2yYfP7ZMt5ckXfOLrptw_InwnNi3M7p4saV2mpayQx8zHDGVoucS8H9UebdtMU6lzq-FgrqlYU4em0yOjlASzaAmzPLa0uFuWqWFQUIfYzqmi1gP9LEZr6kJweHX57f-y7jgx-CuuUlW-yKNNQI0gjGJRiCtYjkO14LFkKhcoIib5FGiClTKZspKF6EnEWmTGSkCEPKntEBjnM9TahRmeRlkJjDyzOAiH1WCqlBfxsZs3YI36rhqRsiDeSevdNwIKlmcME1ZY4tXnkAHXVySJtdn2hWM4S54VJGEuDbESBZhmPlNGSp9hQIORjIe3IeOQ5ajppzqB2zp9MBJLoMB4GHnlZSyB1Ro7YnJlaV1Xy4fP3Gwh9PekJvXZCWQE2kyp3HgLeCSm5epI7PUkIAGlveBvtsp2VKrl0FbiztdXrh190w_hQxNvltlijTBjDwphH3COPG9PuZpZJAUmJwd2yZ_S9qe-P5D9_1MzlmJ-Rkd8jw84_bqTdJ_9_kafkTgBmhKiOINghg9VybZ9BsbjSuy4C_AUJQmnN
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELage4AXYPxaYIBBSMBDuiZ2YuexIKaBxEBA0XiK7MRpJ9okWpJN61_PXeKGBfYwpD7F50r2nX138nffEfLSDxCYGKWuHwrt8iSYuNKwyNVhwLgWieYtXdOnw_Bgxj8eBUeWLBprYcwmp1scl-1DftP1JNvji7WXe8HZdbIVBhB2j8jW7PDL9Gf3auy7oT9htjSOCW_PamJcFrkZgyEziY3cL7ielqG_v4dH5bKoLgsy_8VK3mjyUp2fqeXygiPav91BuKqWvxDxJ7_GTa3HyfovdscrrfEOuWXDUTrt7GebXDP5XbJtD3xFX1tW6jf3yHpK8-LULOmqhV8aavtNzF10hCktT_DJB9VMu67UFMJhamlbK6pqiih2WmT0T50W3eBwTw2tzldlXawqikj8OVW0WsHiKSJY75PZ_vvv7w5c27jBTSCdqd00CzMNoYRMBYOITUHaAk6RR5IlEM9MkA9cJD4yz2TKhBqCLBFlYeohVxnSpbIHZJSD4nYITXUWaik0tsrizBdSe1IpLeBnMpN6DnE3Oo3Ljp8jbh_pBOQ13R7GaAOxtQGHvEXF97LIrt1-AD3E9rDGQSRTJC3yNct4qFIteYJ9BwLuCWkmqUOeodnEXalqf0fEU4FcO4wHvkNetBLIsJEjhGeumqqKP3z-cQWhb18HQq-sUFaAASbKlk3AmpC5ayC5O5CEeyIZDO-gkW92pYohWYwg3eacwcyN4V8-_Lwfxj9FWF5uigZlggjyZx5yhzzszkm_s0wK8F0MZsvBCRps_XAkP160BOfoxpG43yHj_rBdSbuP_nfCY3LTB8NCOIjv75JRfdKYJxBl1vqpvV9-Axu7fsA
  priority: 102
  providerName: Unpaywall
Title A novel machine learning-based prediction method for patients at risk of developing depressive symptoms using a small data
URI https://www.ncbi.nlm.nih.gov/pubmed/38776333
https://www.proquest.com/docview/3069289443
https://www.proquest.com/docview/3059259464
https://pubmed.ncbi.nlm.nih.gov/PMC11111038
https://escholarship.org/uc/item/4hz1n15w
https://doaj.org/article/598d47872b3f46adb84c084854178e0d
http://dx.doi.org/10.1371/journal.pone.0303889
UnpaywallVersion submittedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVEMQnw8pGpiJ3YeEOqmlYG0Mg2KuqcoTpyC1CZZ0w7KX89d6gQiBppU5SE-R8nd2XfXO_-OkOeuh4WJQWK7vlA2j72-LTULbOV7jCsRK17BNZ2M_OMx_zDxJlukTrQbBpZXhnbYT2q8mPV-XKzfwoJ_U3VtEE49qVfkme6B0jIpgxfFhY2tpTAFa_psbJMdeK8A-zuc8CbVAAve982Zun89rGWzKmj_ZgPvFLO8vMo7_bvI8sYqK6L192g2-8OCDW-TW8b1pIONruySLZ3dIbtmcZf0lUGgfn2X_BzQLL_UMzqvSi01Nb0lpjYavYQWC0zvoEjppgM1BdeXGojWkkZLihXrNE_p7zNZtK65vdS0XM-LZT4vKVbdT2lEyzm8L8Vq1XtkPDz6fHhsmyYNdgyhy9JOUj9V4DbIRDDwziIIUcAA8kCyGHyXPmJ_i9hFlJk00r4Ch0oEqZ84iEuG0KjsPulkwOs9QhOV-koKhW2xOHOFVI6MIiXgp1OdOBaxazGExQaLI6wScgJimA0PQxRbaMRmkQOUVUOLSNrVjXwxDc3CDL1AJghQ5CqWcj9KlOQx9hjwuCOk7icWeYKSDjfHUpv9IBwIxNVh3HMt8qyiQDSNDMt1ptGqLMP3H79cg-jTWYvopSFKc9CZODJHJOCbEKWrRbnfooQ9IW4N76Fe1lwpQwgMAwitOWcws9bVq4efNsP4UCzBy3S-QhovgFiZ-9wiDzaq3XCWSQF2isFs2VL6FuvbI9m3rxWYOZpsBOm3SK9ZH9eS7sP_f8gjctMFNcJCD9fdJ53lYqUfg_-4VF2yLSYCrvLQwevwXZfsHByNTs-61T8y3Wp_gHvj0eng_BeLy3d6
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeRgviHFbYDCDQMBDujZ2YucBoXKZWnZBgm3qW4gTpyC1SWjaTeVH8Rs5J3GyRUxoL5P6VJ9Etc_xudSfv0PIC8dFYKIf244nlM0jt2dLzXxbeS7jSkSKl3RNB4fe8Jh_HrvjNfKnvguDsMraJ5aOOs4i_I98B1JbH4oDztm7_JeNXaPwdLVuoVGZxZ5enUHJVrwdfQT9vnSc3U9HH4a26SpgR5BrL-w48RIFcU7GgkE6EUJODR6b-5JFEGx7SFYtIgdpUZJQewoyAOEnXtxHIi3k8mTw3hvkJsyhhx0TxLgp8MB3eJ65nsdEf8dYQzfPUt2FzcQkNpO_EP7KLgFNLOjk06y4LNH9F6-5vkzzcHUWTqcXguHuHXLbZLF0UJndBlnT6V2yYfxEQV8bMus398jvAU2zUz2lsxK1qalpUzGxMX7GNJ_jSRFaB62aWVPIoqlhey1ouKAIfqdZQs-vd9EavnuqabGa5YtsVlAE8E9oSIsZ_F6KwNf75PhaNPOAdFJY601CY5V4SgqFHbY4c4RUfRmGSsBHJzruW8Su1RDkFa1HUJ7tCSiHqjUMUG2BUZtF3qOuGlkk5S6_yOaTwOzxwPVljFxHjmIJ98JYSR5huwKX94XUvdgi26jpoLrh2riWYCCQoodx17HI81ICiTlSRP5MwmVRBKMvJ1cQ-va1JfTKCCUZ2EwUmtsWMCck_GpJbrUkwb1EreFNtMt6VYrgfCPCk7WtXj78rBnGlyKaL9XZEmVcH8pu7nGLPKxMu1lZJgWEPAZPy5bRt5a-PZL-_FHyomP0R75_i3Sb_XEl7T76_0S2yfrw6GA_2B8d7j0mtxwwKcSPOM4W6SzmS_0E0tKFelr6Akq-X7fz-QvP8pzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkYAXxPi1wGAGgYCH9EfsxM4DQoVRrQwGAob6FuLEKUhtEpp2U_nT-Ou4S5xsERPay6Q-1Zeo8X2-OzefvyPkieMiMdGPbccTyuaR27elZr6tPJdxJSLFS7mmDwfe3iF_N3EnG-RPfRYGaZV1TCwDdZxF-B95D0pbHzYHnLNeYmgRn3ZHr_JfNnaQwjetdTuNCiL7en0M27fi5XgXfP3UcUZvv77Zs02HATuCuntpx4mXKMh5MhYMSosQ6muI3tyXLILE20fhahE5KJGShNpTUA0IP_HiAYpqoa4ng_teIpcFYz7SCcWk2exBHPE8c1SPiUHPIKObZ6nuwsJiEhvLn0qFZceAJi908llWnFX0_svdvLpK83B9HM5mpxLj6Aa5bipaOqwguEk2dHqTbJqYUdDnRtj6xS3ye0jT7EjP6LxkcGpqWlZMbcylMc0X-NYIkUKrxtYUKmpqlF8LGi4pEuFpltCTo160pvIeaVqs5_kymxcUyfxTGtJiDr-XIgn2Njm8EM_cIZ0U5nqL0FglnpJCYbctzhwh1UCGoRLw0YmOBxaxazcEeSXxEZTv-QRsjao5DNBtgXGbRV6jrxpbFOguv8gW08Cs98D1ZYy6R45iCffCWEkeYesClw-E1P3YIjvo6aA67dqEmWAoUK6HcdexyOPSAkU6UoT7NFwVRTD--O0cRl8-t4yeGaMkA8xEoTl5Ac-E4l8ty-2WJYSaqDW8hbisZ6UIThYlXFlj9ezhR80w3hSZfanOVmjj-rAF5x63yN0K2s3MMikg_TG4WrZA35r69kj680epkY6VAGr_W6TbrI9zeffe_x9kh1yBsBO8Hx_s3yfXHEAUUkkcZ5t0louVfgAV6lI9LEMBJd8vOvb8BZVUoSM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELage4AXYPxaYIBBSMBDuiZ2YuexIKaBxEBA0XiK7MRpJ9okWpJN61_PXeKGBfYwpD7F50r2nX138nffEfLSDxCYGKWuHwrt8iSYuNKwyNVhwLgWieYtXdOnw_Bgxj8eBUeWLBprYcwmp1scl-1DftP1JNvji7WXe8HZdbIVBhB2j8jW7PDL9Gf3auy7oT9htjSOCW_PamJcFrkZgyEziY3cL7ielqG_v4dH5bKoLgsy_8VK3mjyUp2fqeXygiPav91BuKqWvxDxJ7_GTa3HyfovdscrrfEOuWXDUTrt7GebXDP5XbJtD3xFX1tW6jf3yHpK8-LULOmqhV8aavtNzF10hCktT_DJB9VMu67UFMJhamlbK6pqiih2WmT0T50W3eBwTw2tzldlXawqikj8OVW0WsHiKSJY75PZ_vvv7w5c27jBTSCdqd00CzMNoYRMBYOITUHaAk6RR5IlEM9MkA9cJD4yz2TKhBqCLBFlYeohVxnSpbIHZJSD4nYITXUWaik0tsrizBdSe1IpLeBnMpN6DnE3Oo3Ljp8jbh_pBOQ13R7GaAOxtQGHvEXF97LIrt1-AD3E9rDGQSRTJC3yNct4qFIteYJ9BwLuCWkmqUOeodnEXalqf0fEU4FcO4wHvkNetBLIsJEjhGeumqqKP3z-cQWhb18HQq-sUFaAASbKlk3AmpC5ayC5O5CEeyIZDO-gkW92pYohWYwg3eacwcyN4V8-_Lwfxj9FWF5uigZlggjyZx5yhzzszkm_s0wK8F0MZsvBCRps_XAkP160BOfoxpG43yHj_rBdSbuP_nfCY3LTB8NCOIjv75JRfdKYJxBl1vqpvV9-Axu7fsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+machine+learning-based+prediction+method+for+patients+at+risk+of+developing+depressive+symptoms+using+a+small+data&rft.jtitle=PloS+one&rft.au=Yun%2C+Minyoung&rft.au=Jeon%2C+Minjeong&rft.au=Yang%2C+Heyoung&rft.date=2024-05-22&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=5&rft.spage=e0303889&rft_id=info:doi/10.1371%2Fjournal.pone.0303889&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon