A novel machine learning-based prediction method for patients at risk of developing depressive symptoms using a small data
The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention and can lead to higher success rates in treatment. Self-reported feelings by patients represent a valuable biomarker for predicting depressio...
Saved in:
| Published in | PloS one Vol. 19; no. 5; p. e0303889 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
22.05.2024
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0303889 |
Cover
| Abstract | The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention and can lead to higher success rates in treatment. Self-reported feelings by patients represent a valuable biomarker for predicting depression as they can be expressed in a lower-dimensional network form, offering an advantage in visualizing the interactive characteristics of depression-related feelings. Furthermore, the network form of data expresses high-dimensional data in a compact form, making the data easy to use as input for the machine learning processes. In this study, we applied the graph convolutional network (GCN) algorithm, an effective machine learning tool for handling network data, to predict depression-prone patients using the network form of self-reported log data as the input. We took a data augmentation step to expand the initially small dataset and fed the resulting data into the GCN algorithm, which achieved a high level of accuracy from 86–97% and an F1 (harmonic mean of precision and recall) score of 0.83–0.94 through three experimental cases. In these cases, the ratio of depressive cases varied, and high accuracy and F1 scores were observed in all three cases. This study not only demonstrates the potential for predicting depression-prone patients using self-reported logs as a biomarker in advance, but also shows promise in handling small data sets in the prediction, which is critical given the challenge of obtaining large datasets for biomarker research. The combination of self-reported logs and the GCN algorithm is a promising approach for predicting depression and warrants further investigation. |
|---|---|
| AbstractList | The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention and can lead to higher success rates in treatment. Self-reported feelings by patients represent a valuable biomarker for predicting depression as they can be expressed in a lower-dimensional network form, offering an advantage in visualizing the interactive characteristics of depression-related feelings. Furthermore, the network form of data expresses high-dimensional data in a compact form, making the data easy to use as input for the machine learning processes. In this study, we applied the graph convolutional network (GCN) algorithm, an effective machine learning tool for handling network data, to predict depression-prone patients using the network form of self-reported log data as the input. We took a data augmentation step to expand the initially small dataset and fed the resulting data into the GCN algorithm, which achieved a high level of accuracy from 86–97% and an F1 (harmonic mean of precision and recall) score of 0.83–0.94 through three experimental cases. In these cases, the ratio of depressive cases varied, and high accuracy and F1 scores were observed in all three cases. This study not only demonstrates the potential for predicting depression-prone patients using self-reported logs as a biomarker in advance, but also shows promise in handling small data sets in the prediction, which is critical given the challenge of obtaining large datasets for biomarker research. The combination of self-reported logs and the GCN algorithm is a promising approach for predicting depression and warrants further investigation. The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention and can lead to higher success rates in treatment. Self-reported feelings by patients represent a valuable biomarker for predicting depression as they can be expressed in a lower-dimensional network form, offering an advantage in visualizing the interactive characteristics of depression-related feelings. Furthermore, the network form of data expresses high-dimensional data in a compact form, making the data easy to use as input for the machine learning processes. In this study, we applied the graph convolutional network (GCN) algorithm, an effective machine learning tool for handling network data, to predict depression-prone patients using the network form of self-reported log data as the input. We took a data augmentation step to expand the initially small dataset and fed the resulting data into the GCN algorithm, which achieved a high level of accuracy from 86-97% and an F1 (harmonic mean of precision and recall) score of 0.83-0.94 through three experimental cases. In these cases, the ratio of depressive cases varied, and high accuracy and F1 scores were observed in all three cases. This study not only demonstrates the potential for predicting depression-prone patients using self-reported logs as a biomarker in advance, but also shows promise in handling small data sets in the prediction, which is critical given the challenge of obtaining large datasets for biomarker research. The combination of self-reported logs and the GCN algorithm is a promising approach for predicting depression and warrants further investigation.The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention and can lead to higher success rates in treatment. Self-reported feelings by patients represent a valuable biomarker for predicting depression as they can be expressed in a lower-dimensional network form, offering an advantage in visualizing the interactive characteristics of depression-related feelings. Furthermore, the network form of data expresses high-dimensional data in a compact form, making the data easy to use as input for the machine learning processes. In this study, we applied the graph convolutional network (GCN) algorithm, an effective machine learning tool for handling network data, to predict depression-prone patients using the network form of self-reported log data as the input. We took a data augmentation step to expand the initially small dataset and fed the resulting data into the GCN algorithm, which achieved a high level of accuracy from 86-97% and an F1 (harmonic mean of precision and recall) score of 0.83-0.94 through three experimental cases. In these cases, the ratio of depressive cases varied, and high accuracy and F1 scores were observed in all three cases. This study not only demonstrates the potential for predicting depression-prone patients using self-reported logs as a biomarker in advance, but also shows promise in handling small data sets in the prediction, which is critical given the challenge of obtaining large datasets for biomarker research. The combination of self-reported logs and the GCN algorithm is a promising approach for predicting depression and warrants further investigation. |
| Audience | Academic |
| Author | Jeon, Minjeong Yang, Heyoung Yun, Minyoung |
| AuthorAffiliation | 3 School of Education & Information Studies, University of California, Los Angeles, Los Angeles, LA, United States of America 2 École nationale supérieure d’Arts et Métiers, Paris, France 4 Center for Future Technology Analysis, Korea Institute of Science and Technology Information, Seoul, Korea 1 Center for R&D Investment and Strategy Research, Korea Institute of Science and Technology Information, Seoul, Korea BRAC Business School, BRAC University, BANGLADESH |
| AuthorAffiliation_xml | – name: 1 Center for R&D Investment and Strategy Research, Korea Institute of Science and Technology Information, Seoul, Korea – name: 4 Center for Future Technology Analysis, Korea Institute of Science and Technology Information, Seoul, Korea – name: BRAC Business School, BRAC University, BANGLADESH – name: 2 École nationale supérieure d’Arts et Métiers, Paris, France – name: 3 School of Education & Information Studies, University of California, Los Angeles, Los Angeles, LA, United States of America |
| Author_xml | – sequence: 1 givenname: Minyoung surname: Yun fullname: Yun, Minyoung – sequence: 2 givenname: Minjeong surname: Jeon fullname: Jeon, Minjeong – sequence: 3 givenname: Heyoung orcidid: 0000-0002-7960-4389 surname: Yang fullname: Yang, Heyoung |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38776333$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk0lv1DAYhiNURBf4BwgsISE4zOAtjn1CVcVSqVIltqvliZ0ZF8dObWeg_HocZlrNoB4aH2J9ft433-IcVwc-eFNVzxGcI9Kgd1dhjF65-VDCc0gg4Vw8qo6QIHjGMCQHO_vD6jilKwhrwhl7Uh0S3jSMEHJU_TkFPqyNA71qV9Yb4IyK3vrlbKGS0WCIRts22-BBb_IqaNCFCAaVrfE5AZVBtOknCB3QptiEoUjLtshSsmsD0k0_5NAnMKbpRIHUK-eAVlk9rR53yiXzbPs-qb5__PDt7PPs4vLT-dnpxaxlFOeZ7li3QDXiuiGYYIXrGrKGCk5aBDEUyoimxbCGolOGLRjCjeiYRjUjEDUCkZPq5cZ3cCHJbduSJJAJzAWlpBDnG0IHdSWHaHsVb2RQVv4LhLiUKmbbOiNrwTVteIMXpKNM6QWnLeSU1xQ13EBdvOqN1-gHdfOrFHtniKCcJnebgpwmJ7eTK7r32yzHRW90W9obldtLZv_E25VchrVE01M8isObrUMM16NJWfY2tcY55U0Yp4JrgWtBGS3oq__Q-9uypZaqVG59F8qH28lUnjai1ExojQs1v4cqS5vetqXEzpb4nuDtnqAw2fzOSzWmJM-_fnk4e_ljn329w66McnmVghuny5v2wRe7rb7r8e1fUQC6AdoYUoqme9gI_wIYkx-P |
| Cites_doi | 10.1371/journal.pone.0060188 10.1016/j.jrp.2014.07.003 10.1016/S2215-0366(15)00471-X 10.1109/TNNLS.2020.2978386 10.1159/000442001 10.1609/icwsm.v7i1.14432 10.1186/s40537-019-0197-0 10.1016/j.neunet.2020.06.006 10.1111/cns.13048 10.1016/j.jad.2022.04.093 10.1002/jclp.20503 10.1037/a0024595 10.1038/s41380-019-0585-z 10.1186/s40537-021-00492-0 10.1146/annurev-clinpsy-050212-185608 10.1002/da.23123 10.1016/j.aiopen.2021.01.001 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Yun et al 2024 Yun et al 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Yun et al 2024 Yun et al – notice: 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0303889 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | A novel machine learning-based prediction method for depressive patients using a small data |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3069289443 oai_doaj_org_article_598d47872b3f46adb84c084854178e0d oai:escholarship.org:ark:/13030/qt4hz1n15w PMC11111038 A794853452 38776333 10_1371_journal_pone_0303889 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: ; grantid: K‐23-L05-C02-S16 and No. K-23-L03-C02 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c642t-df6fb1518d73232a2550674983c10209ae97c20509fae6b61279f6d1563017913 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Thu Nov 28 02:59:41 EST 2024 Fri Oct 03 12:52:27 EDT 2025 Sun Oct 26 02:22:37 EDT 2025 Tue Sep 30 17:09:08 EDT 2025 Tue Sep 09 07:40:39 EDT 2025 Tue Oct 07 09:09:51 EDT 2025 Mon Oct 20 22:55:09 EDT 2025 Mon Oct 20 17:01:41 EDT 2025 Thu Oct 16 15:58:17 EDT 2025 Thu Oct 16 16:14:29 EDT 2025 Thu May 22 21:24:10 EDT 2025 Wed Feb 19 02:07:08 EST 2025 Wed Oct 01 04:40:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright: © 2024 Yun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-df6fb1518d73232a2550674983c10209ae97c20509fae6b61279f6d1563017913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-7960-4389 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0303889 |
| PMID | 38776333 |
| PQID | 3069289443 |
| PQPubID | 1436336 |
| PageCount | e0303889 |
| ParticipantIDs | plos_journals_3069289443 doaj_primary_oai_doaj_org_article_598d47872b3f46adb84c084854178e0d unpaywall_primary_10_1371_journal_pone_0303889 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11111038 proquest_miscellaneous_3059259464 proquest_journals_3069289443 gale_infotracmisc_A794853452 gale_infotracacademiconefile_A794853452 gale_incontextgauss_ISR_A794853452 gale_incontextgauss_IOV_A794853452 gale_healthsolutions_A794853452 pubmed_primary_38776333 crossref_primary_10_1371_journal_pone_0303889 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-22 |
| PublicationDateYYYYMMDD | 2024-05-22 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | S Ryu (pone.0303889.ref001) 2022; 17 SG Kang (pone.0303889.ref014) 2020; 21 M Kennis (pone.0303889.ref015) 2020; 25 M De Choudhury (pone.0303889.ref007) 2013; 7 Z Wu (pone.0303889.ref018) 2021; 32 TN Kipf (pone.0303889.ref022) 2017 P Cellini (pone.0303889.ref017) 2022; 309 D Borsboom (pone.0303889.ref010) 2021; 1 E Hochman (pone.0303889.ref016) 2021; 38 L Boschloo (pone.0303889.ref027) 2016; 85 G Costantini (pone.0303889.ref011) 2015; 54 R Strawbridge (pone.0303889.ref013) S Gao (pone.0303889.ref003) 2018; 24 LF Bringmann (pone.0303889.ref009) 2013; 8 J Min (pone.0303889.ref002) 2022; 12 AM Chekroud (pone.0303889.ref004) 2016; 3 D. Borsboom (pone.0303889.ref012) 2008; 64 N Geschwind (pone.0303889.ref028) 2011; 79 D Bacciu (pone.0303889.ref020) 2020; 129 J Zhou (pone.0303889.ref019) 2020; 1 T Zhao (pone.0303889.ref021) 2021; 12B C Shorten (pone.0303889.ref026) 2019; 6 I Moshe (pone.0303889.ref005) 2021; 12 D Borsboom (pone.0303889.ref008) 2013; 9 J Wang (pone.0303889.ref024) 2017 Q Li (pone.0303889.ref023) 2018 C Shorten (pone.0303889.ref025) 2021; 8 SC Guntuku (pone.0303889.ref006) 2017; 18 |
| References_xml | – volume: 8 issue: 4 year: 2013 ident: pone.0303889.ref009 article-title: A Network Approach to Psychopathology: New Insights into Clinical Longitudinal Data. publication-title: PLoS One. doi: 10.1371/journal.pone.0060188 – volume: 54 start-page: 13 year: 2015 ident: pone.0303889.ref011 article-title: State of the aRt personality research: A tutorial on network analysis of personality data in R. publication-title: J Res Pers doi: 10.1016/j.jrp.2014.07.003 – volume: 3 start-page: 243 issue: 3 year: 2016 ident: pone.0303889.ref004 article-title: Cross-trial prediction of treatment outcome in depression: A machine learning approach publication-title: The Lancet Psychiatry doi: 10.1016/S2215-0366(15)00471-X – volume: 32 start-page: 4 issue: 1 year: 2021 ident: pone.0303889.ref018 article-title: A Comprehensive Survey on Graph Neural Networks publication-title: IEEE Trans Neural Networks Learn Syst doi: 10.1109/TNNLS.2020.2978386 – volume: 85 start-page: 183 issue: 3 year: 2016 ident: pone.0303889.ref027 article-title: A Prospective Study on How Symptoms in a Network Predict the Onset of Depression. publication-title: Psychother Psychosom. doi: 10.1159/000442001 – volume: 7 start-page: 128 issue: 1 year: 2013 ident: pone.0303889.ref007 article-title: Predicting Depression via Social Media. publication-title: Proc Int AAAI Conf Web Soc Media doi: 10.1609/icwsm.v7i1.14432 – start-page: 3538 year: 2018 ident: pone.0303889.ref023 article-title: Deeper insights into graph convolutional networks for semi-supervised learning. publication-title: In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018. – volume: 6 issue: 1 year: 2019 ident: pone.0303889.ref026 article-title: A survey on Image Data Augmentation for Deep Learning. publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – volume: 129 start-page: 203 year: 2020 ident: pone.0303889.ref020 article-title: A gentle introduction to deep learning for graphs. publication-title: Neural Networks doi: 10.1016/j.neunet.2020.06.006 – volume: 24 start-page: 1037 issue: 11 year: 2018 ident: pone.0303889.ref003 article-title: Machine learning in major depression: From classification to treatment outcome prediction. publication-title: CNS Neurosci Ther doi: 10.1111/cns.13048 – volume: 1 issue: 1 year: 2021 ident: pone.0303889.ref010 article-title: Network analysis of multivariate data in psychological science publication-title: Nat Rev Methods Prim – year: 2017 ident: pone.0303889.ref024 article-title: The effectiveness of data augmentation in image classification using deep learning. publication-title: arXiv – volume: 309 start-page: 350 issue: March year: 2022 ident: pone.0303889.ref017 article-title: Machine learning in the prediction of postpartum depression: A review publication-title: J Affect Disord doi: 10.1016/j.jad.2022.04.093 – ident: pone.0303889.ref013 article-title: Biomarkers for depression: recent insights, current challenges and future prospects Biomarkers for depression: recent insights, current challenges and future prospects. – volume: 17 start-page: 1 issue: 9 September year: 2022 ident: pone.0303889.ref001 article-title: Trends in suicide deaths before and after the COVID-19 outbreak in Korea. publication-title: PLoS One – volume: 64 start-page: 1089 issue: 9 year: 2008 ident: pone.0303889.ref012 article-title: Psychometric perspectives on diagnostic systems. publication-title: J Clin Psychol doi: 10.1002/jclp.20503 – volume: 21 issue: 6 year: 2020 ident: pone.0303889.ref014 article-title: Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder. publication-title: Int J Mol Sci. – volume: 79 start-page: 618 issue: 5 year: 2011 ident: pone.0303889.ref028 article-title: Mindfulness training increases momentary positive emotions and reward experience in adults vulnerable to depression: A randomized controlled trial. publication-title: J Consult Clin Psychol doi: 10.1037/a0024595 – volume: 25 start-page: 321 issue: 2 year: 2020 ident: pone.0303889.ref015 article-title: Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis publication-title: Mol Psychiatry doi: 10.1038/s41380-019-0585-z – start-page: 1 year: 2017 ident: pone.0303889.ref022 article-title: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017—Conference Track Proceedings. – volume: 8 issue: 1 year: 2021 ident: pone.0303889.ref025 article-title: Text Data Augmentation for Deep Learning. publication-title: J Big Data doi: 10.1186/s40537-021-00492-0 – volume: 9 start-page: 91 year: 2013 ident: pone.0303889.ref008 article-title: Network analysis: An integrative approach to the structure of psychopathology. publication-title: Annual Review of Clinical Psychology doi: 10.1146/annurev-clinpsy-050212-185608 – volume: 38 start-page: 400 issue: 4 year: 2021 ident: pone.0303889.ref016 article-title: Development and validation of a machine learning-based postpartum depression prediction model: A nationwide cohort study publication-title: Depress Anxiety doi: 10.1002/da.23123 – volume: 12 start-page: 1 issue: January year: 2021 ident: pone.0303889.ref005 article-title: Predicting Symptoms of Depression and Anxiety Using Smartphone and Wearable Data. publication-title: Front Psychiatry. – volume: 1 start-page: 57 issue: April year: 2020 ident: pone.0303889.ref019 article-title: Graph neural networks: A review of methods and applications. publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – volume: 18 start-page: 43 year: 2017 ident: pone.0303889.ref006 article-title: Detecting depression and mental illness on social media: an integrative review. Curr Opin Behav Sci – volume: 12B start-page: 11015 year: 2021 ident: pone.0303889.ref021 article-title: Data Augmentation for Graph Neural Networks. publication-title: 35th AAAI Conf Artif Intell AAAI 2021. – volume: 12 start-page: 1 issue: 1 year: 2022 ident: pone.0303889.ref002 article-title: Excess suicide attributable to the COVID-19 pandemic and social disparities in South Korea. publication-title: Sci Rep |
| SSID | ssj0053866 |
| Score | 2.4575787 |
| Snippet | The prediction of depression is a crucial area of research which makes it one of the top priorities in mental health research as it enables early intervention... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0303889 |
| SubjectTerms | Accuracy Adult Algorithms Anxiety disorders Artificial neural networks Biology and Life Sciences Biomarkers Comorbidity Computer and Information Sciences Data augmentation Datasets Depression - diagnosis Female Humans Learning algorithms Likert scale Machine Learning Male Medical research Medicine and Health Sciences Medicine, Experimental Mental depression Mental health Methods Neural Networks, Computer Patients Physical Sciences Predictions Research and Analysis Methods Self Report Unemployment benefits |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByy3cSO7RwXRFWQAAko6i2yY2dB2k2iJltUfj0ziRM2ohI9IO0pnkSbeXhmlM_fEPI8ThCYmNowFtKEPE8WoXIsDY1IGDcyN7yja_rwURyf8PenyenOqC_EhPX0wL3iDpNUWSSQiQ0ruNDWKJ4jB3zCI6ncwuLuu1Dp0Ez1ezBEsRD-oByT0aG3y7yuSjcHt2YKx7rvJKKOr3_clWf1umouKzn_Rk5e35a1vvip1-udtHR0i9z09SRd9u-xR6658jbZ8xHb0JeeVvrVHfJrScvq3K3ppsNPOuoHRqxCzGSW1mf4zQbtRPux0hTqWep5VxuqW4owdFoV9M9BKzoAac8dbS42dVttGopQ-hXVtNnA_6UIQb1LTo7efn1zHPrJC2EO_Ugb2kIUBmoBZSWDkktD3wFZjaeK5VCQLJDQW-YxUscU2gkDVZJMC2EjJBtDvlN2j8xK0PU-odYUwihpcNYVZ7FUJlJaGwk_VzgbBSQczJDVPcFG1n1lk9CY9DrM0GyZN1tAXqOtRlmkx-4ugNNk3mmyfzlNQJ6gpbP-rOkY5NlSIlkO40kckGedBFJklIjBWelt02TvPn27gtCXzxOhF16oqMBncu3PPcA7IfXWRPJgIgmBnk-W99EvB600GXR7KfTLnDO4c_DVy5efjsv4UMTVla7aokySQgPMBQ_I_d61R80yJSH5MLhbTZx-ovrpSvnje8dQjnkYmfcDMh_j40rWffA_rPuQ3IjB2RDjEccHZNaebd0jKB1b87jbJX4Dh1Fq4g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGd4ALYnwtMIZBSMAhXRs7sXNAU4c2DSQKGgztFtmxU5DaJDTt0PjreS9xskVMaFJP8UvU-H06_vn3CHkVhAhMjI0fREL7PA1HvrQs9nUUMq5FqnlN1_RpGh2f8o9n4dkGmbZnYRBW2cbEOlCbIsVv5HtQ2sawOOCc7Ze_fOwahburbQsN5VormHc1xdgtshkgM9aAbB4cTr-ctLEZvDuK3AE6JsZ7Tl_DssjtEMydSWz3fiVB1Tz-XbQelPOiuq4U_RdReXudl-rit5rPr6Sro3vkrqsz6aQxjC2yYfP7ZMt5ckXfOLrptw_InwnNi3M7p4saV2mpayQx8zHDGVoucS8H9UebdtMU6lzq-FgrqlYU4em0yOjlASzaAmzPLa0uFuWqWFQUIfYzqmi1gP9LEZr6kJweHX57f-y7jgx-CuuUlW-yKNNQI0gjGJRiCtYjkO14LFkKhcoIib5FGiClTKZspKF6EnEWmTGSkCEPKntEBjnM9TahRmeRlkJjDyzOAiH1WCqlBfxsZs3YI36rhqRsiDeSevdNwIKlmcME1ZY4tXnkAHXVySJtdn2hWM4S54VJGEuDbESBZhmPlNGSp9hQIORjIe3IeOQ5ajppzqB2zp9MBJLoMB4GHnlZSyB1Ro7YnJlaV1Xy4fP3Gwh9PekJvXZCWQE2kyp3HgLeCSm5epI7PUkIAGlveBvtsp2VKrl0FbiztdXrh190w_hQxNvltlijTBjDwphH3COPG9PuZpZJAUmJwd2yZ_S9qe-P5D9_1MzlmJ-Rkd8jw84_bqTdJ_9_kafkTgBmhKiOINghg9VybZ9BsbjSuy4C_AUJQmnN priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELage4AXYPxaYIBBSMBDuiZ2YuexIKaBxEBA0XiK7MRpJ9okWpJN61_PXeKGBfYwpD7F50r2nX138nffEfLSDxCYGKWuHwrt8iSYuNKwyNVhwLgWieYtXdOnw_Bgxj8eBUeWLBprYcwmp1scl-1DftP1JNvji7WXe8HZdbIVBhB2j8jW7PDL9Gf3auy7oT9htjSOCW_PamJcFrkZgyEziY3cL7ielqG_v4dH5bKoLgsy_8VK3mjyUp2fqeXygiPav91BuKqWvxDxJ7_GTa3HyfovdscrrfEOuWXDUTrt7GebXDP5XbJtD3xFX1tW6jf3yHpK8-LULOmqhV8aavtNzF10hCktT_DJB9VMu67UFMJhamlbK6pqiih2WmT0T50W3eBwTw2tzldlXawqikj8OVW0WsHiKSJY75PZ_vvv7w5c27jBTSCdqd00CzMNoYRMBYOITUHaAk6RR5IlEM9MkA9cJD4yz2TKhBqCLBFlYeohVxnSpbIHZJSD4nYITXUWaik0tsrizBdSe1IpLeBnMpN6DnE3Oo3Ljp8jbh_pBOQ13R7GaAOxtQGHvEXF97LIrt1-AD3E9rDGQSRTJC3yNct4qFIteYJ9BwLuCWkmqUOeodnEXalqf0fEU4FcO4wHvkNetBLIsJEjhGeumqqKP3z-cQWhb18HQq-sUFaAASbKlk3AmpC5ayC5O5CEeyIZDO-gkW92pYohWYwg3eacwcyN4V8-_Lwfxj9FWF5uigZlggjyZx5yhzzszkm_s0wK8F0MZsvBCRps_XAkP160BOfoxpG43yHj_rBdSbuP_nfCY3LTB8NCOIjv75JRfdKYJxBl1vqpvV9-Axu7fsA priority: 102 providerName: Unpaywall |
| Title | A novel machine learning-based prediction method for patients at risk of developing depressive symptoms using a small data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38776333 https://www.proquest.com/docview/3069289443 https://www.proquest.com/docview/3059259464 https://pubmed.ncbi.nlm.nih.gov/PMC11111038 https://escholarship.org/uc/item/4hz1n15w https://doaj.org/article/598d47872b3f46adb84c084854178e0d http://dx.doi.org/10.1371/journal.pone.0303889 |
| UnpaywallVersion | submittedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrgVEMQnw8pGpiJ3YeEOqmlYG0Mg2KuqcoTpyC1CZZ0w7KX89d6gQiBppU5SE-R8nd2XfXO_-OkOeuh4WJQWK7vlA2j72-LTULbOV7jCsRK17BNZ2M_OMx_zDxJlukTrQbBpZXhnbYT2q8mPV-XKzfwoJ_U3VtEE49qVfkme6B0jIpgxfFhY2tpTAFa_psbJMdeK8A-zuc8CbVAAve982Zun89rGWzKmj_ZgPvFLO8vMo7_bvI8sYqK6L192g2-8OCDW-TW8b1pIONruySLZ3dIbtmcZf0lUGgfn2X_BzQLL_UMzqvSi01Nb0lpjYavYQWC0zvoEjppgM1BdeXGojWkkZLihXrNE_p7zNZtK65vdS0XM-LZT4vKVbdT2lEyzm8L8Vq1XtkPDz6fHhsmyYNdgyhy9JOUj9V4DbIRDDwziIIUcAA8kCyGHyXPmJ_i9hFlJk00r4Ch0oEqZ84iEuG0KjsPulkwOs9QhOV-koKhW2xOHOFVI6MIiXgp1OdOBaxazGExQaLI6wScgJimA0PQxRbaMRmkQOUVUOLSNrVjXwxDc3CDL1AJghQ5CqWcj9KlOQx9hjwuCOk7icWeYKSDjfHUpv9IBwIxNVh3HMt8qyiQDSNDMt1ptGqLMP3H79cg-jTWYvopSFKc9CZODJHJOCbEKWrRbnfooQ9IW4N76Fe1lwpQwgMAwitOWcws9bVq4efNsP4UCzBy3S-QhovgFiZ-9wiDzaq3XCWSQF2isFs2VL6FuvbI9m3rxWYOZpsBOm3SK9ZH9eS7sP_f8gjctMFNcJCD9fdJ53lYqUfg_-4VF2yLSYCrvLQwevwXZfsHByNTs-61T8y3Wp_gHvj0eng_BeLy3d6 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeRgviHFbYDCDQMBDujZ2YucBoXKZWnZBgm3qW4gTpyC1SWjaTeVH8Rs5J3GyRUxoL5P6VJ9Etc_xudSfv0PIC8dFYKIf244nlM0jt2dLzXxbeS7jSkSKl3RNB4fe8Jh_HrvjNfKnvguDsMraJ5aOOs4i_I98B1JbH4oDztm7_JeNXaPwdLVuoVGZxZ5enUHJVrwdfQT9vnSc3U9HH4a26SpgR5BrL-w48RIFcU7GgkE6EUJODR6b-5JFEGx7SFYtIgdpUZJQewoyAOEnXtxHIi3k8mTw3hvkJsyhhx0TxLgp8MB3eJ65nsdEf8dYQzfPUt2FzcQkNpO_EP7KLgFNLOjk06y4LNH9F6-5vkzzcHUWTqcXguHuHXLbZLF0UJndBlnT6V2yYfxEQV8bMus398jvAU2zUz2lsxK1qalpUzGxMX7GNJ_jSRFaB62aWVPIoqlhey1ouKAIfqdZQs-vd9EavnuqabGa5YtsVlAE8E9oSIsZ_F6KwNf75PhaNPOAdFJY601CY5V4SgqFHbY4c4RUfRmGSsBHJzruW8Su1RDkFa1HUJ7tCSiHqjUMUG2BUZtF3qOuGlkk5S6_yOaTwOzxwPVljFxHjmIJ98JYSR5huwKX94XUvdgi26jpoLrh2riWYCCQoodx17HI81ICiTlSRP5MwmVRBKMvJ1cQ-va1JfTKCCUZ2EwUmtsWMCck_GpJbrUkwb1EreFNtMt6VYrgfCPCk7WtXj78rBnGlyKaL9XZEmVcH8pu7nGLPKxMu1lZJgWEPAZPy5bRt5a-PZL-_FHyomP0R75_i3Sb_XEl7T76_0S2yfrw6GA_2B8d7j0mtxwwKcSPOM4W6SzmS_0E0tKFelr6Akq-X7fz-QvP8pzg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGkYAXxPi1wGAGgYCH9EfsxM4DQoVRrQwGAob6FuLEKUhtEpp2U_nT-Ou4S5xsERPay6Q-1Zeo8X2-OzefvyPkieMiMdGPbccTyuaR27elZr6tPJdxJSLFS7mmDwfe3iF_N3EnG-RPfRYGaZV1TCwDdZxF-B95D0pbHzYHnLNeYmgRn3ZHr_JfNnaQwjetdTuNCiL7en0M27fi5XgXfP3UcUZvv77Zs02HATuCuntpx4mXKMh5MhYMSosQ6muI3tyXLILE20fhahE5KJGShNpTUA0IP_HiAYpqoa4ng_teIpcFYz7SCcWk2exBHPE8c1SPiUHPIKObZ6nuwsJiEhvLn0qFZceAJi908llWnFX0_svdvLpK83B9HM5mpxLj6Aa5bipaOqwguEk2dHqTbJqYUdDnRtj6xS3ye0jT7EjP6LxkcGpqWlZMbcylMc0X-NYIkUKrxtYUKmpqlF8LGi4pEuFpltCTo160pvIeaVqs5_kymxcUyfxTGtJiDr-XIgn2Njm8EM_cIZ0U5nqL0FglnpJCYbctzhwh1UCGoRLw0YmOBxaxazcEeSXxEZTv-QRsjao5DNBtgXGbRV6jrxpbFOguv8gW08Cs98D1ZYy6R45iCffCWEkeYesClw-E1P3YIjvo6aA67dqEmWAoUK6HcdexyOPSAkU6UoT7NFwVRTD--O0cRl8-t4yeGaMkA8xEoTl5Ac-E4l8ty-2WJYSaqDW8hbisZ6UIThYlXFlj9ezhR80w3hSZfanOVmjj-rAF5x63yN0K2s3MMikg_TG4WrZA35r69kj680epkY6VAGr_W6TbrI9zeffe_x9kh1yBsBO8Hx_s3yfXHEAUUkkcZ5t0louVfgAV6lI9LEMBJd8vOvb8BZVUoSM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELage4AXYPxaYIBBSMBDuiZ2YuexIKaBxEBA0XiK7MRpJ9okWpJN61_PXeKGBfYwpD7F50r2nX138nffEfLSDxCYGKWuHwrt8iSYuNKwyNVhwLgWieYtXdOnw_Bgxj8eBUeWLBprYcwmp1scl-1DftP1JNvji7WXe8HZdbIVBhB2j8jW7PDL9Gf3auy7oT9htjSOCW_PamJcFrkZgyEziY3cL7ielqG_v4dH5bKoLgsy_8VK3mjyUp2fqeXygiPav91BuKqWvxDxJ7_GTa3HyfovdscrrfEOuWXDUTrt7GebXDP5XbJtD3xFX1tW6jf3yHpK8-LULOmqhV8aavtNzF10hCktT_DJB9VMu67UFMJhamlbK6pqiih2WmT0T50W3eBwTw2tzldlXawqikj8OVW0WsHiKSJY75PZ_vvv7w5c27jBTSCdqd00CzMNoYRMBYOITUHaAk6RR5IlEM9MkA9cJD4yz2TKhBqCLBFlYeohVxnSpbIHZJSD4nYITXUWaik0tsrizBdSe1IpLeBnMpN6DnE3Oo3Ljp8jbh_pBOQ13R7GaAOxtQGHvEXF97LIrt1-AD3E9rDGQSRTJC3yNct4qFIteYJ9BwLuCWkmqUOeodnEXalqf0fEU4FcO4wHvkNetBLIsJEjhGeumqqKP3z-cQWhb18HQq-sUFaAASbKlk3AmpC5ayC5O5CEeyIZDO-gkW92pYohWYwg3eacwcyN4V8-_Lwfxj9FWF5uigZlggjyZx5yhzzszkm_s0wK8F0MZsvBCRps_XAkP160BOfoxpG43yHj_rBdSbuP_nfCY3LTB8NCOIjv75JRfdKYJxBl1vqpvV9-Axu7fsA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+machine+learning-based+prediction+method+for+patients+at+risk+of+developing+depressive+symptoms+using+a+small+data&rft.jtitle=PloS+one&rft.au=Yun%2C+Minyoung&rft.au=Jeon%2C+Minjeong&rft.au=Yang%2C+Heyoung&rft.date=2024-05-22&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=5&rft.spage=e0303889&rft_id=info:doi/10.1371%2Fjournal.pone.0303889&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |