Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 504; no. 7480; pp. 394 - 400
Main Authors Chung, Won-Suk, Clarke, Laura E., Wang, Gordon X., Stafford, Benjamin K., Sher, Alexander, Chakraborty, Chandrani, Joung, Julia, Foo, Lynette C., Thompson, Andrew, Chen, Chinfei, Smith, Stephen J., Barres, Ben A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.12.2013
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/nature12776

Cover

Abstract To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes. This study describes comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner; this elimination process involves the MEGF10 and MERTK phagocytic pathways and persists into adulthood, with mutant mice that lack these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. Astrocytes involved in synapse elimination Synapse elimination is an important aspect of brain development in which the number of synaptic contacts is reduced in an activity-dependent manner. Glial cells — non-neural cells that perform a variety of roles in the brain — were recently shown to have a role in synapse remodelling, with the phagocytic microglia responsible for a certain proportion of connection refinement, with little else known regarding the mechanisms underlying this. Here, Won-Suk Chung et al . describe comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner. This elimination process involved the MEGF10 and MERTK phagocytic pathways, with transgenic animals lacking these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. These mechanisms also extend into adulthood. This work has implications for our understanding of learning and memory as well as neurological disease processes.
AbstractList To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.
To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes. This study describes comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner; this elimination process involves the MEGF10 and MERTK phagocytic pathways and persists into adulthood, with mutant mice that lack these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. Astrocytes involved in synapse elimination Synapse elimination is an important aspect of brain development in which the number of synaptic contacts is reduced in an activity-dependent manner. Glial cells -- non-neural cells that perform a variety of roles in the brain -- were recently shown to have a role in synapse remodelling, with the phagocytic microglia responsible for a certain proportion of connection refinement, with little else known regarding the mechanisms underlying this. Here, Won-Suk Chung et al. describe comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner. This elimination process involved the MEGF10 and MERTK phagocytic pathways, with transgenic animals lacking these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. These mechanisms also extend into adulthood. This work has implications for our understanding of learning and memory as well as neurological disease processes.
To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes. [PUBLICATION ABSTRACT]
To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes. This study describes comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner; this elimination process involves the MEGF10 and MERTK phagocytic pathways and persists into adulthood, with mutant mice that lack these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. Astrocytes involved in synapse elimination Synapse elimination is an important aspect of brain development in which the number of synaptic contacts is reduced in an activity-dependent manner. Glial cells — non-neural cells that perform a variety of roles in the brain — were recently shown to have a role in synapse remodelling, with the phagocytic microglia responsible for a certain proportion of connection refinement, with little else known regarding the mechanisms underlying this. Here, Won-Suk Chung et al . describe comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner. This elimination process involved the MEGF10 and MERTK phagocytic pathways, with transgenic animals lacking these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. These mechanisms also extend into adulthood. This work has implications for our understanding of learning and memory as well as neurological disease processes.
To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.
To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodeling. Recently microglial cells have been shown to be responsible for a portion of synaptic remodeling, but the remaining mechanisms remain mysterious. Here we report a new role for astrocytes in actively engulfing CNS synapses. This process helps to mediate synapse elimination, requires the Megf10 and Mertk phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to normally refine their retinogeniculate connections and retain excess functional synapses. Lastly, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify Megf10 and Mertk as critical players in the synapse remodeling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.
Audience Academic
Author Chakraborty, Chandrani
Wang, Gordon X.
Chen, Chinfei
Foo, Lynette C.
Smith, Stephen J.
Clarke, Laura E.
Joung, Julia
Stafford, Benjamin K.
Chung, Won-Suk
Barres, Ben A.
Sher, Alexander
Thompson, Andrew
AuthorAffiliation 2 Department of Molecular and Cellular Physiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
3 Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
5 Institute of Molecular and Cell Biology, AStar, 61 Biopolis Drive, Proteos Building, Singapore 138673
4 Santa Cruz Institute of Particle Physic and Department of Physics, University of California, Santa Cruz, CA 95064
6 Children's Hospital, Harvard Medical School, 300 Longwood Ave., CLS12250, Boston, MA 02115
1 Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
AuthorAffiliation_xml – name: 3 Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
– name: 5 Institute of Molecular and Cell Biology, AStar, 61 Biopolis Drive, Proteos Building, Singapore 138673
– name: 1 Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
– name: 4 Santa Cruz Institute of Particle Physic and Department of Physics, University of California, Santa Cruz, CA 95064
– name: 6 Children's Hospital, Harvard Medical School, 300 Longwood Ave., CLS12250, Boston, MA 02115
– name: 2 Department of Molecular and Cellular Physiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
Author_xml – sequence: 1
  givenname: Won-Suk
  surname: Chung
  fullname: Chung, Won-Suk
  email: wschung@stanford.edu
  organization: Department of Neurobiology, Stanford University, School of Medicine
– sequence: 2
  givenname: Laura E.
  surname: Clarke
  fullname: Clarke, Laura E.
  organization: Department of Neurobiology, Stanford University, School of Medicine
– sequence: 3
  givenname: Gordon X.
  surname: Wang
  fullname: Wang, Gordon X.
  organization: Department of Molecular and Cellular Physiology, Stanford University, School of Medicine
– sequence: 4
  givenname: Benjamin K.
  surname: Stafford
  fullname: Stafford, Benjamin K.
  organization: Department of Ophthalmology and Visual Sciences, University of Michigan
– sequence: 5
  givenname: Alexander
  surname: Sher
  fullname: Sher, Alexander
  organization: Santa Cruz Institute of Particle Physic and Department of Physics, University of California
– sequence: 6
  givenname: Chandrani
  surname: Chakraborty
  fullname: Chakraborty, Chandrani
  organization: Department of Neurobiology, Stanford University, School of Medicine
– sequence: 7
  givenname: Julia
  surname: Joung
  fullname: Joung, Julia
  organization: Department of Neurobiology, Stanford University, School of Medicine
– sequence: 8
  givenname: Lynette C.
  surname: Foo
  fullname: Foo, Lynette C.
  organization: Institute of Molecular and Cell Biology, A Star, 61 Biopolis Drive, Proteos Building, 138673 Singapore
– sequence: 9
  givenname: Andrew
  surname: Thompson
  fullname: Thompson, Andrew
  organization: Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, CLS12250, Boston, Massachusetts 02115, USA
– sequence: 10
  givenname: Chinfei
  surname: Chen
  fullname: Chen, Chinfei
  organization: Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, CLS12250, Boston, Massachusetts 02115, USA
– sequence: 11
  givenname: Stephen J.
  surname: Smith
  fullname: Smith, Stephen J.
  organization: Department of Molecular and Cellular Physiology, Stanford University, School of Medicine
– sequence: 12
  givenname: Ben A.
  surname: Barres
  fullname: Barres, Ben A.
  organization: Department of Neurobiology, Stanford University, School of Medicine
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28051841$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24270812$$D View this record in MEDLINE/PubMed
BookMark eNptkl1v0zAUhi00xLrCFfcoYkICQYbtuI5zg1RN-xJDSGNcW65zknpK7c52gP57XNqxdopy4Sh-zuOT4_cIHVhnAaHXBJ8QXIjPVsXeA6FlyZ-hEWElzxkX5QEaYUxFjkXBD9FRCHcY4wkp2Qt0SBktsSB0hC6nIXqnVxFCtoDaqAhZWFm1DJBBZxYm2Y2zWZx717fz7NvZxTnBmbJ1er25_ZotVZz_VqvwEj1vVBfg1XYdo5_nZ7enl_n194ur0-l1rjmjMa-JmpDJDCsloBY1ZnXVzGpOJ7qAiuNmBpUWvGyKuuE6takLAqqaqKbCBScEijH6svEu-1lqWIONXnVy6c1C-ZV0ysj9HWvmsnW_ZFHxClOWBO-3Au_uewhRLkzQ0HXKguuDJKzCZcFIOnCMjp-gd673Nv1eotIARfLRR6pVHUhjG5fO1WupnPKCsopTQRKVD1AtWEhNpgttTPq8x78d4PXS3Mtd6GQASk8NC6MHrR_2ChIT4U9sVR-CvPpxs8--2Z30_xE_hCcB77aAClp1jVdWm_DIiRQ3wdYisuG0dyF4aKQ28V-sUremkwTLdZDlTpBTzccnNQ_aYfrThg6Jsi34nYsawP8CE2H_6A
CODEN NATUAS
CitedBy_id crossref_primary_10_1096_fj_202001018R
crossref_primary_10_1038_s41467_024_54376_x
crossref_primary_10_1038_nature17630
crossref_primary_10_1038_s42003_023_04410_3
crossref_primary_10_1111_ejn_16160
crossref_primary_10_15252_embj_2020107121
crossref_primary_10_3389_fnana_2022_995369
crossref_primary_10_1038_s41380_023_02043_w
crossref_primary_10_1021_acs_chemrestox_9b00368
crossref_primary_10_5607_en_2018_27_2_77
crossref_primary_10_19185_matters_201708000003
crossref_primary_10_1002_glia_23664
crossref_primary_10_3389_fopht_2023_1310226
crossref_primary_10_1002_dneu_22904
crossref_primary_10_3389_fncel_2020_585833
crossref_primary_10_1016_j_expneurol_2017_01_001
crossref_primary_10_1126_sciadv_ado8366
crossref_primary_10_1016_j_neuron_2015_01_014
crossref_primary_10_1126_sciadv_aba3239
crossref_primary_10_3390_ijms222413186
crossref_primary_10_1080_23262133_2016_1224453
crossref_primary_10_1038_s41467_018_03940_3
crossref_primary_10_1016_j_tins_2020_01_003
crossref_primary_10_1016_j_neuron_2014_07_034
crossref_primary_10_3389_fncel_2023_1188306
crossref_primary_10_1186_s12974_021_02373_y
crossref_primary_10_1016_j_neuron_2014_07_040
crossref_primary_10_1038_s41593_022_01170_x
crossref_primary_10_1016_j_neulet_2017_05_029
crossref_primary_10_1016_j_conb_2016_09_016
crossref_primary_10_1134_S0022093022030048
crossref_primary_10_1016_j_mad_2016_03_011
crossref_primary_10_1016_j_neuron_2014_07_005
crossref_primary_10_1177_1759091416630220
crossref_primary_10_2139_ssrn_3212831
crossref_primary_10_1016_j_bbi_2020_03_004
crossref_primary_10_3389_fnins_2015_00274
crossref_primary_10_1002_jnr_24954
crossref_primary_10_1016_j_tibs_2017_06_004
crossref_primary_10_1152_physrev_00020_2015
crossref_primary_10_1073_pnas_1604977113
crossref_primary_10_1111_joa_12948
crossref_primary_10_1371_journal_pgen_1006603
crossref_primary_10_1038_s41591_019_0383_9
crossref_primary_10_1038_s41593_024_01580_z
crossref_primary_10_18632_oncotarget_1793
crossref_primary_10_1016_j_neurot_2025_e00540
crossref_primary_10_1523_ENEURO_0196_16_2016
crossref_primary_10_2174_0118715273269881231012062255
crossref_primary_10_1016_j_conb_2020_12_001
crossref_primary_10_3389_fnhum_2018_00209
crossref_primary_10_1186_s12974_020_01994_z
crossref_primary_10_1016_j_pneurobio_2022_102338
crossref_primary_10_1016_j_tins_2019_05_011
crossref_primary_10_3389_fnmol_2017_00396
crossref_primary_10_3389_fnagi_2022_844534
crossref_primary_10_3389_fimmu_2020_01416
crossref_primary_10_3389_fimmu_2021_644294
crossref_primary_10_1016_j_immuni_2019_04_018
crossref_primary_10_1002_glia_23638
crossref_primary_10_1016_j_arr_2020_101128
crossref_primary_10_31083_j_fbl2904142
crossref_primary_10_1038_s41598_017_02348_1
crossref_primary_10_1111_jns_70014
crossref_primary_10_1038_s42003_024_07095_4
crossref_primary_10_1038_ncomms7768
crossref_primary_10_1002_glia_23630
crossref_primary_10_3389_fncel_2015_00437
crossref_primary_10_3389_fnmol_2017_00381
crossref_primary_10_1016_j_celrep_2017_12_039
crossref_primary_10_1016_j_neuroscience_2023_01_028
crossref_primary_10_1016_j_neures_2017_08_009
crossref_primary_10_1016_j_celrep_2022_110328
crossref_primary_10_3389_fimmu_2021_640937
crossref_primary_10_1038_s41467_017_01283_z
crossref_primary_10_1080_01677063_2020_1726915
crossref_primary_10_1007_s12035_024_04064_0
crossref_primary_10_4199_C00123ED1V01Y201501NGL004
crossref_primary_10_1007_s12264_022_00981_z
crossref_primary_10_1002_glia_23625
crossref_primary_10_1002_glia_23867
crossref_primary_10_3389_fneur_2020_572850
crossref_primary_10_7554_eLife_58499
crossref_primary_10_1371_journal_pbio_3001444
crossref_primary_10_3389_fmed_2019_00267
crossref_primary_10_3389_fncel_2024_1512985
crossref_primary_10_3390_ijms22041692
crossref_primary_10_1055_s_0043_1770352
crossref_primary_10_1038_nrn3898
crossref_primary_10_1016_j_jsbmb_2014_02_018
crossref_primary_10_2147_JIR_S410562
crossref_primary_10_1038_nm_4106
crossref_primary_10_1186_s12974_018_1134_4
crossref_primary_10_1186_s12974_019_1553_x
crossref_primary_10_1016_j_neuron_2023_11_008
crossref_primary_10_1084_jem_20212476
crossref_primary_10_1146_annurev_neuro_110920_022431
crossref_primary_10_1101_gad_305888_117
crossref_primary_10_3389_fncel_2015_00414
crossref_primary_10_3389_fnmol_2020_00151
crossref_primary_10_1021_acschemneuro_4c00183
crossref_primary_10_1021_acs_jafc_4c05425
crossref_primary_10_1038_srep20685
crossref_primary_10_3389_fpsyt_2019_00573
crossref_primary_10_1016_j_immuni_2022_03_018
crossref_primary_10_1002_1873_3468_13348
crossref_primary_10_1016_j_brainresbull_2016_08_017
crossref_primary_10_1002_cne_24462
crossref_primary_10_4199_C00156ED1V01Y201708NGL010
crossref_primary_10_3390_brainsci12111435
crossref_primary_10_1371_journal_pone_0289169
crossref_primary_10_1038_s41598_020_66321_1
crossref_primary_10_1016_j_brainresbull_2016_08_012
crossref_primary_10_1002_mnfr_202101170
crossref_primary_10_1016_j_conb_2017_10_008
crossref_primary_10_1038_s41467_024_44704_6
crossref_primary_10_1038_s41577_020_00487_7
crossref_primary_10_1001_jamaneurol_2023_3530
crossref_primary_10_3389_fncel_2021_718324
crossref_primary_10_3390_ijms23010149
crossref_primary_10_1016_j_cell_2019_11_016
crossref_primary_10_1016_j_neuroscience_2025_02_029
crossref_primary_10_1007_s12035_024_04345_8
crossref_primary_10_4103_1673_5374_266904
crossref_primary_10_1016_j_neuron_2023_05_031
crossref_primary_10_1016_j_freeradbiomed_2022_02_020
crossref_primary_10_1042_BSR20210593
crossref_primary_10_1192_bja_2017_27
crossref_primary_10_3390_cells13060498
crossref_primary_10_1002_glia_23270
crossref_primary_10_1161_STROKEAHA_124_049079
crossref_primary_10_3390_cells10051025
crossref_primary_10_1093_braincomms_fcac286
crossref_primary_10_4103_1673_5374_320999
crossref_primary_10_1002_glia_24358
crossref_primary_10_1016_j_stemcr_2023_01_012
crossref_primary_10_1002_jat_4037
crossref_primary_10_1038_s41380_024_02534_4
crossref_primary_10_1016_j_nbd_2019_104517
crossref_primary_10_1002_glia_24114
crossref_primary_10_3389_fnagi_2020_00096
crossref_primary_10_14336_AD_2024_0373
crossref_primary_10_1113_JP284197
crossref_primary_10_1212_NXG_0000000000200142
crossref_primary_10_1007_s10571_020_00876_5
crossref_primary_10_1515_nf_2016_1105
crossref_primary_10_1124_jpet_117_241653
crossref_primary_10_1016_j_conb_2017_10_022
crossref_primary_10_1002_glia_23252
crossref_primary_10_1002_glia_24582
crossref_primary_10_1042_BST20140171
crossref_primary_10_1002_glia_24101
crossref_primary_10_1002_glia_24343
crossref_primary_10_1016_j_neurobiolaging_2017_03_002
crossref_primary_10_1101_cshperspect_a029009
crossref_primary_10_3389_fnana_2017_00075
crossref_primary_10_3389_fimmu_2018_02576
crossref_primary_10_1016_j_neuron_2017_04_043
crossref_primary_10_1146_annurev_physiol_021317_121125
crossref_primary_10_3390_biom13040692
crossref_primary_10_1007_s11064_022_03820_9
crossref_primary_10_1111_jnc_16006
crossref_primary_10_1111_nyas_12711
crossref_primary_10_1007_s10974_024_09686_4
crossref_primary_10_1016_j_neuropharm_2019_03_022
crossref_primary_10_1101_cshperspect_a041352
crossref_primary_10_1016_j_expneurol_2020_113481
crossref_primary_10_1074_jbc_M115_699058
crossref_primary_10_1111_jnc_16252
crossref_primary_10_7554_eLife_34241
crossref_primary_10_1016_j_pneurobio_2019_101644
crossref_primary_10_1016_j_celrep_2019_05_088
crossref_primary_10_1016_j_jconrel_2023_08_060
crossref_primary_10_1038_s42003_025_07729_1
crossref_primary_10_1016_j_jconrel_2023_07_028
crossref_primary_10_1007_s12035_024_04449_1
crossref_primary_10_1111_jnc_16258
crossref_primary_10_1016_j_bbi_2023_03_028
crossref_primary_10_1073_pnas_1710566114
crossref_primary_10_1172_JCI90608
crossref_primary_10_1002_adbi_202200122
crossref_primary_10_1007_s13311_018_0631_6
crossref_primary_10_3389_fncel_2022_899251
crossref_primary_10_1002_glia_24323
crossref_primary_10_3389_fcell_2023_1170551
crossref_primary_10_1016_j_coph_2015_10_002
crossref_primary_10_14336_AD_2023_0907
crossref_primary_10_1016_j_lfs_2018_07_033
crossref_primary_10_15252_embj_2020105380
crossref_primary_10_1002_advs_202301574
crossref_primary_10_1523_JNEUROSCI_2479_17_2018
crossref_primary_10_1016_j_neuroscience_2025_03_033
crossref_primary_10_1016_j_celrep_2016_07_022
crossref_primary_10_1016_j_celrep_2018_09_015
crossref_primary_10_1038_s41467_018_03566_5
crossref_primary_10_1371_journal_pone_0279736
crossref_primary_10_1016_j_nbd_2023_106231
crossref_primary_10_3390_ijms21093219
crossref_primary_10_3390_ijms25105299
crossref_primary_10_1016_j_neuron_2017_03_042
crossref_primary_10_1038_s41398_023_02372_y
crossref_primary_10_3390_neurolint17030041
crossref_primary_10_1007_s10286_022_00907_9
crossref_primary_10_1111_imr_12376
crossref_primary_10_1523_JNEUROSCI_1376_23_2023
crossref_primary_10_1182_blood_2016_05_718999
crossref_primary_10_1371_journal_pgen_1005723
crossref_primary_10_1016_j_immuni_2019_12_004
crossref_primary_10_1038_s43587_022_00281_1
crossref_primary_10_1016_j_cellsig_2024_111113
crossref_primary_10_3389_fncel_2016_00021
crossref_primary_10_1111_bpa_12537
crossref_primary_10_3389_fcell_2021_687732
crossref_primary_10_1111_bpa_12536
crossref_primary_10_1002_cne_24852
crossref_primary_10_1097_MIB_0000000000000050
crossref_primary_10_1038_s41583_021_00507_y
crossref_primary_10_1242_dmm_049843
crossref_primary_10_3389_fcell_2021_660259
crossref_primary_10_15252_embj_2019104136
crossref_primary_10_3389_fnsyn_2023_1129036
crossref_primary_10_1016_j_neuron_2020_12_008
crossref_primary_10_1159_000541379
crossref_primary_10_1111_boc_202300057
crossref_primary_10_1002_alz_13682
crossref_primary_10_1002_glia_23687
crossref_primary_10_1002_glia_23688
crossref_primary_10_1016_j_bbi_2023_03_015
crossref_primary_10_1016_j_xcrm_2023_101175
crossref_primary_10_1038_nn_4142
crossref_primary_10_3233_RNN_160708
crossref_primary_10_1002_jnr_24922
crossref_primary_10_4049_jimmunol_1800249
crossref_primary_10_1096_fj_202100637R
crossref_primary_10_1093_neuonc_nox111
crossref_primary_10_3389_fnagi_2018_00114
crossref_primary_10_1126_scitranslmed_abi8593
crossref_primary_10_1007_s13365_014_0287_x
crossref_primary_10_1016_j_cell_2024_08_019
crossref_primary_10_1002_glia_22901
crossref_primary_10_1111_febs_16816
crossref_primary_10_1016_j_celrep_2018_10_075
crossref_primary_10_1523_JNEUROSCI_0357_23_2023
crossref_primary_10_1523_JNEUROSCI_1135_17_2017
crossref_primary_10_3389_fimmu_2021_790201
crossref_primary_10_1016_j_yfrne_2020_100897
crossref_primary_10_1523_JNEUROSCI_0407_21_2021
crossref_primary_10_1017_S0952523817000104
crossref_primary_10_1016_j_tins_2023_11_010
crossref_primary_10_1016_j_nbd_2020_105008
crossref_primary_10_1073_pnas_1506486112
crossref_primary_10_1186_s13024_016_0089_0
crossref_primary_10_3233_BPL_210125
crossref_primary_10_7554_eLife_45545
crossref_primary_10_1073_pnas_2107427118
crossref_primary_10_1089_rej_2017_1999
crossref_primary_10_1186_s12974_021_02201_3
crossref_primary_10_1038_nm_3974
crossref_primary_10_1002_dneu_22351
crossref_primary_10_1016_j_brainres_2014_09_008
crossref_primary_10_1016_j_conb_2017_08_017
crossref_primary_10_1152_physrev_00042_2016
crossref_primary_10_3390_neuroglia1020023
crossref_primary_10_1016_j_phrs_2024_107114
crossref_primary_10_3238_PersNeuro_2016_04_15_05
crossref_primary_10_3389_fncel_2023_1166199
crossref_primary_10_1016_j_nbd_2020_105224
crossref_primary_10_1038_s41593_024_01818_w
crossref_primary_10_1016_j_cub_2016_05_025
crossref_primary_10_1111_jnc_70009
crossref_primary_10_1038_srep43859
crossref_primary_10_3390_ijms25021160
crossref_primary_10_1016_j_ajpath_2014_06_018
crossref_primary_10_1038_nrc3847
crossref_primary_10_1038_s41401_019_0300_2
crossref_primary_10_3390_ijms21197299
crossref_primary_10_1038_s41598_021_81933_x
crossref_primary_10_1016_j_bbi_2020_08_017
crossref_primary_10_1038_s41467_025_57577_0
crossref_primary_10_1111_jnc_15689
crossref_primary_10_1007_s11302_025_10066_x
crossref_primary_10_1177_07487304231178950
crossref_primary_10_1042_BST20140155
crossref_primary_10_1186_s12974_022_02516_9
crossref_primary_10_3389_fneur_2018_01161
crossref_primary_10_1007_s12035_023_03797_8
crossref_primary_10_3233_RNN_160676
crossref_primary_10_1016_j_bbrc_2014_07_061
crossref_primary_10_1152_ajpcell_00333_2018
crossref_primary_10_14336_AD_2022_0212
crossref_primary_10_1007_s12035_022_03100_1
crossref_primary_10_1038_s41467_018_07291_x
crossref_primary_10_1074_mcp_R115_053744
crossref_primary_10_3389_fneur_2021_672455
crossref_primary_10_1002_advs_202400480
crossref_primary_10_1016_j_devcel_2015_01_018
crossref_primary_10_1073_pnas_2115539118
crossref_primary_10_1016_j_tcb_2019_11_004
crossref_primary_10_1016_j_nlm_2016_10_013
crossref_primary_10_1016_j_gpb_2016_04_003
crossref_primary_10_1111_bpa_13253
crossref_primary_10_1186_s12974_024_03122_7
crossref_primary_10_1002_wsbm_1557
crossref_primary_10_12688_f1000research_18903_1
crossref_primary_10_1016_j_neuron_2015_12_024
crossref_primary_10_1124_jpet_124_002254
crossref_primary_10_1016_j_immuni_2022_07_014
crossref_primary_10_1016_j_preteyeres_2015_06_003
crossref_primary_10_3390_ijms232214104
crossref_primary_10_1016_j_cell_2025_02_022
crossref_primary_10_1016_j_jgr_2024_12_008
crossref_primary_10_1007_s12035_020_01879_5
crossref_primary_10_1126_scitranslmed_aaa5645
crossref_primary_10_1007_s11051_020_04856_0
crossref_primary_10_3389_fcell_2020_573487
crossref_primary_10_1002_wsbm_1545
crossref_primary_10_1007_s00401_023_02604_x
crossref_primary_10_1080_15622975_2021_1961503
crossref_primary_10_3389_fncel_2017_00190
crossref_primary_10_1371_journal_pone_0094549
crossref_primary_10_1038_s43587_022_00257_1
crossref_primary_10_7554_eLife_42455
crossref_primary_10_1523_JNEUROSCI_3613_14_2015
crossref_primary_10_3390_cells11233768
crossref_primary_10_1002_ana_26150
crossref_primary_10_1371_journal_pcbi_1009531
crossref_primary_10_1016_j_bbadis_2015_10_013
crossref_primary_10_1186_s12974_017_1018_z
crossref_primary_10_3389_fnagi_2019_00059
crossref_primary_10_3233_BPL_200102
crossref_primary_10_1016_j_neurot_2024_e00425
crossref_primary_10_1038_s41588_018_0254_1
crossref_primary_10_1016_j_celrep_2023_113137
crossref_primary_10_1002_glia_23169
crossref_primary_10_1007_s00795_018_0193_z
crossref_primary_10_1039_D1SC03486C
crossref_primary_10_3390_cells10071728
crossref_primary_10_1002_glia_24494
crossref_primary_10_1007_s12035_022_03133_6
crossref_primary_10_1038_s41419_018_0381_8
crossref_primary_10_1016_j_devcel_2018_12_019
crossref_primary_10_1038_s41423_020_00585_5
crossref_primary_10_15252_embj_2020104464
crossref_primary_10_1038_srep12258
crossref_primary_10_1146_annurev_neuro_070918_050306
crossref_primary_10_1186_s13041_019_0478_8
crossref_primary_10_1016_j_tcb_2016_02_006
crossref_primary_10_1002_jnr_23483
crossref_primary_10_1007_s11357_023_01014_x
crossref_primary_10_3390_ijms241311112
crossref_primary_10_1186_s13024_016_0098_z
crossref_primary_10_1016_j_neuron_2015_11_013
crossref_primary_10_1186_s40478_019_0754_y
crossref_primary_10_1371_journal_pbio_1001985
crossref_primary_10_1016_j_neubiorev_2024_105559
crossref_primary_10_1016_j_neures_2020_11_005
crossref_primary_10_3390_cells13242037
crossref_primary_10_1186_s12868_022_00710_2
crossref_primary_10_1093_schizbullopen_sgab003
crossref_primary_10_1523_JNEUROSCI_1295_17_2017
crossref_primary_10_7554_eLife_62273
crossref_primary_10_7554_eLife_15043
crossref_primary_10_1073_pnas_1519156113
crossref_primary_10_1093_braincomms_fcaf092
crossref_primary_10_1073_pnas_1525528113
crossref_primary_10_1038_s41467_022_31773_8
crossref_primary_10_3390_ijms24032601
crossref_primary_10_1016_j_neuron_2018_09_017
crossref_primary_10_1016_j_physbeh_2023_114286
crossref_primary_10_1016_j_molmed_2015_09_003
crossref_primary_10_3390_ijms25010665
crossref_primary_10_3390_ijms21239188
crossref_primary_10_1002_bies_201900185
crossref_primary_10_1096_fj_201802592
crossref_primary_10_15252_embj_2022111790
crossref_primary_10_1038_srep20762
crossref_primary_10_1016_j_jbc_2021_100411
crossref_primary_10_3389_fnmol_2014_00073
crossref_primary_10_1080_01677063_2018_1464568
crossref_primary_10_3390_ijms19092834
crossref_primary_10_1038_s41582_022_00749_z
crossref_primary_10_1073_pnas_1717871115
crossref_primary_10_1038_s41583_022_00641_1
crossref_primary_10_1016_j_msard_2020_102319
crossref_primary_10_1097_j_pain_0000000000001248
crossref_primary_10_1101_gad_229518_113
crossref_primary_10_1007_s12264_021_00690_z
crossref_primary_10_1098_rstb_2015_0428
crossref_primary_10_1089_neu_2019_6938
crossref_primary_10_1016_j_expneurol_2015_03_020
crossref_primary_10_1146_annurev_immunol_032414_112103
crossref_primary_10_1002_dneu_22777
crossref_primary_10_1038_s41467_017_00037_1
crossref_primary_10_1161_CIRCRESAHA_121_319812
crossref_primary_10_1371_journal_pbio_3002822
crossref_primary_10_1146_annurev_cellbio_100913_012953
crossref_primary_10_3390_ani14192900
crossref_primary_10_1016_j_pnpbp_2017_11_020
crossref_primary_10_1007_s12264_024_01199_x
crossref_primary_10_1016_j_stem_2019_03_023
crossref_primary_10_1038_npp_2016_199
crossref_primary_10_1016_j_celrep_2022_110600
crossref_primary_10_1002_hbm_26315
crossref_primary_10_1073_pnas_2211326119
crossref_primary_10_14336_AD_2022_0621
crossref_primary_10_1016_j_neuroscience_2024_04_003
crossref_primary_10_1016_j_ijdevneu_2016_06_005
crossref_primary_10_3390_genes12020259
crossref_primary_10_3390_ijms241813880
crossref_primary_10_1016_j_stemcr_2017_06_018
crossref_primary_10_3389_fphar_2022_881195
crossref_primary_10_3390_biom14080964
crossref_primary_10_3390_ijms221910553
crossref_primary_10_1038_s41419_017_0153_x
crossref_primary_10_15252_embj_201695861
crossref_primary_10_3389_fimmu_2023_1130172
crossref_primary_10_7554_eLife_62232
crossref_primary_10_1038_s41380_021_01080_7
crossref_primary_10_1016_j_pharmthera_2020_107577
crossref_primary_10_1016_j_nbd_2020_105015
crossref_primary_10_1186_s13041_023_01059_1
crossref_primary_10_1371_journal_pone_0110482
crossref_primary_10_1083_jcb_201605046
crossref_primary_10_1101_gad_328633_119
crossref_primary_10_1155_2016_1681590
crossref_primary_10_1016_j_isci_2021_102806
crossref_primary_10_1111_cns_14223
crossref_primary_10_3390_biomedicines10112982
crossref_primary_10_1093_jnen_nly033
crossref_primary_10_1016_j_tem_2016_12_001
crossref_primary_10_1155_2022_4754935
crossref_primary_10_1097_CM9_0000000000003363
crossref_primary_10_4103_1673_5374_385854
crossref_primary_10_3389_fped_2021_794544
crossref_primary_10_1111_jnc_14548
crossref_primary_10_1093_cercor_bhaf029
crossref_primary_10_1016_j_jare_2024_01_006
crossref_primary_10_1038_srep07989
crossref_primary_10_1016_j_conb_2017_09_007
crossref_primary_10_1016_j_neubiorev_2021_09_020
crossref_primary_10_1186_s12974_020_1729_4
crossref_primary_10_1038_s41380_022_01486_x
crossref_primary_10_1038_s41467_021_24232_3
crossref_primary_10_1038_s41582_023_00822_1
crossref_primary_10_1016_j_jphs_2020_12_007
crossref_primary_10_1038_s41398_025_03228_3
crossref_primary_10_1016_j_tins_2022_06_009
crossref_primary_10_1084_jem_20180199
crossref_primary_10_1155_2019_2387614
crossref_primary_10_1007_s00429_015_1070_3
crossref_primary_10_1016_j_brainres_2020_146818
crossref_primary_10_1002_cne_25485
crossref_primary_10_1016_j_neuropharm_2025_110383
crossref_primary_10_3390_ijms22020814
crossref_primary_10_1002_glia_23791
crossref_primary_10_1177_0271678X221137762
crossref_primary_10_1002_jnr_24611
crossref_primary_10_1007_s12035_020_02008_y
crossref_primary_10_3390_ijms222212531
crossref_primary_10_7554_eLife_63532
crossref_primary_10_3389_fopht_2023_1217137
crossref_primary_10_3389_fimmu_2021_750665
crossref_primary_10_1016_j_neulet_2018_07_021
crossref_primary_10_1523_ENEURO_0288_18_2019
crossref_primary_10_3390_ijms23031134
crossref_primary_10_1016_j_it_2015_04_007
crossref_primary_10_1186_s12974_025_03410_w
crossref_primary_10_3389_fncel_2018_00239
crossref_primary_10_3389_fphar_2021_707859
crossref_primary_10_1002_glia_24637
crossref_primary_10_3390_cells10061348
crossref_primary_10_1146_annurev_cellbio_100913_013038
crossref_primary_10_3390_ijms25031899
crossref_primary_10_1016_j_euroneuro_2020_09_550
crossref_primary_10_3390_cells12010063
crossref_primary_10_1161_STROKEAHA_117_020461
crossref_primary_10_3390_ijms21186867
crossref_primary_10_3389_fncel_2022_949079
crossref_primary_10_1016_j_molcel_2021_02_025
crossref_primary_10_1186_s40478_014_0135_5
crossref_primary_10_1093_schbul_sby088
crossref_primary_10_1002_cne_25261
crossref_primary_10_3389_fncel_2020_573944
crossref_primary_10_1002_glia_24623
crossref_primary_10_1016_j_preteyeres_2020_100846
crossref_primary_10_1038_s41419_018_1155_z
crossref_primary_10_1016_j_it_2020_07_006
crossref_primary_10_1016_j_it_2020_07_007
crossref_primary_10_1038_s41467_022_34184_x
crossref_primary_10_1073_pnas_1403450111
crossref_primary_10_1172_JCI95769
crossref_primary_10_1016_j_neuroscience_2024_11_059
crossref_primary_10_1038_s41583_023_00760_3
crossref_primary_10_1016_j_neuint_2020_104901
crossref_primary_10_1073_pnas_1800165115
crossref_primary_10_1016_j_bbr_2019_111950
crossref_primary_10_1016_j_celrep_2024_114385
crossref_primary_10_1523_JNEUROSCI_2449_14_2014
crossref_primary_10_1038_s41598_021_86133_1
crossref_primary_10_3390_cells12232761
crossref_primary_10_1016_j_neuron_2016_12_021
crossref_primary_10_1042_EBC20220079
crossref_primary_10_1002_dneu_22804
crossref_primary_10_1016_j_micron_2019_102732
crossref_primary_10_56082_annalsarscibio_2020_1_65
crossref_primary_10_1007_s12264_018_0262_2
crossref_primary_10_1016_j_neuint_2018_01_007
crossref_primary_10_1038_nri_2017_125
crossref_primary_10_1038_s41593_024_01833_x
crossref_primary_10_1016_j_ejphar_2023_176048
crossref_primary_10_1038_nrn_2017_110
crossref_primary_10_4137_JEN_S39916
crossref_primary_10_2174_1570159X22666240128102039
crossref_primary_10_3389_fncel_2018_00261
crossref_primary_10_1002_wdev_241
crossref_primary_10_1016_j_ynstr_2015_01_001
crossref_primary_10_1073_pnas_2117557118
crossref_primary_10_1016_j_cub_2014_06_025
crossref_primary_10_1002_glia_23994
crossref_primary_10_1002_glia_24602
crossref_primary_10_1002_glia_23759
crossref_primary_10_1111_ejn_14900
crossref_primary_10_1117_1_NPh_1_1_011014
crossref_primary_10_1523_JNEUROSCI_3850_15_2016
crossref_primary_10_1016_j_neures_2022_04_008
crossref_primary_10_1212_WNL_0000000000003019
crossref_primary_10_1038_s41593_023_01311_w
crossref_primary_10_1016_j_neuron_2022_10_032
crossref_primary_10_1038_nn_4087
crossref_primary_10_1016_j_brainres_2021_147464
crossref_primary_10_1038_s41467_022_28777_9
crossref_primary_10_3389_fphys_2022_814889
crossref_primary_10_1038_s41586_020_03060_3
crossref_primary_10_1007_s12015_022_10497_8
crossref_primary_10_1073_pnas_1520639112
crossref_primary_10_1152_physrev_00041_2013
crossref_primary_10_1007_s13205_023_03743_4
crossref_primary_10_1016_j_expneurol_2022_114228
crossref_primary_10_1073_pnas_1404651111
crossref_primary_10_1016_j_pneurobio_2020_101899
crossref_primary_10_1111_cei_13334
crossref_primary_10_1016_j_tins_2023_05_007
crossref_primary_10_1111_cns_14744
crossref_primary_10_3389_fncel_2019_00063
crossref_primary_10_3389_fimmu_2021_661974
crossref_primary_10_3389_fnins_2022_946822
crossref_primary_10_1016_j_neuron_2021_06_010
crossref_primary_10_1007_s12035_024_04208_2
crossref_primary_10_3389_fneur_2022_844497
crossref_primary_10_1093_jleuko_qiae098
crossref_primary_10_3389_fncel_2021_709917
crossref_primary_10_1002_glia_22873
crossref_primary_10_1016_j_neuint_2014_07_008
crossref_primary_10_1002_dneu_22848
crossref_primary_10_1088_1741_2552_acec13
crossref_primary_10_1146_annurev_cellbio_100913_013053
crossref_primary_10_3390_genes13010021
crossref_primary_10_1134_S0006297922090012
crossref_primary_10_3389_fnins_2015_00344
crossref_primary_10_1086_710389
crossref_primary_10_1016_j_neuint_2020_104715
crossref_primary_10_1186_s12974_019_1489_1
crossref_primary_10_3389_fncir_2025_1541926
crossref_primary_10_1038_ncomms14355
crossref_primary_10_1038_s42003_024_05833_2
crossref_primary_10_3390_ijms21249441
crossref_primary_10_1016_j_nbd_2019_104647
crossref_primary_10_1002_glia_24002
crossref_primary_10_1002_glia_24244
crossref_primary_10_3389_fncel_2019_00042
crossref_primary_10_1016_j_cell_2018_10_049
crossref_primary_10_1002_dvdy_24565
crossref_primary_10_1523_ENEURO_0323_23_2023
crossref_primary_10_1111_cen3_12476
crossref_primary_10_1016_j_cell_2015_12_056
crossref_primary_10_1007_s00281_022_00931_x
crossref_primary_10_1084_jem_20180200
crossref_primary_10_1002_stem_1864
crossref_primary_10_1038_s41413_022_00199_9
crossref_primary_10_1038_s41583_018_0080_6
crossref_primary_10_1002_glia_23143
crossref_primary_10_1038_s41380_023_02386_4
crossref_primary_10_3389_fnmol_2023_1169320
crossref_primary_10_1038_s41593_024_01726_z
crossref_primary_10_1073_pnas_1512202112
crossref_primary_10_1016_j_immuni_2021_01_013
crossref_primary_10_1111_jne_12726
crossref_primary_10_1080_1061186X_2024_2443144
crossref_primary_10_1093_cercor_bhab263
crossref_primary_10_1080_19336896_2021_1930852
crossref_primary_10_3389_fcell_2023_1193130
crossref_primary_10_3390_cells9102173
crossref_primary_10_1016_j_exer_2020_108017
crossref_primary_10_1111_acer_12913
crossref_primary_10_1016_j_conb_2023_102692
crossref_primary_10_1523_JNEUROSCI_4274_14_2015
crossref_primary_10_1371_journal_pone_0086178
crossref_primary_10_3389_fnmol_2021_729273
crossref_primary_10_1016_j_pneurobio_2015_10_001
crossref_primary_10_1002_jcsm_12599
crossref_primary_10_1007_s00018_019_03314_y
crossref_primary_10_3389_fncel_2020_00187
crossref_primary_10_1016_j_semcdb_2014_08_008
crossref_primary_10_3389_fncel_2023_1257347
crossref_primary_10_1007_s12035_024_04181_w
crossref_primary_10_1016_j_tins_2014_08_011
crossref_primary_10_1002_alz_12442
crossref_primary_10_1016_j_neuropharm_2025_110304
crossref_primary_10_1093_braincomms_fcz028
crossref_primary_10_1254_fpj_23004
crossref_primary_10_1038_s41598_017_11410_x
crossref_primary_10_1007_s12264_024_01258_3
crossref_primary_10_1073_pnas_1617782114
crossref_primary_10_1016_j_neuron_2019_12_014
crossref_primary_10_1002_glia_24449
crossref_primary_10_4103_1673_5374_239449
crossref_primary_10_1038_cddis_2017_40
crossref_primary_10_3389_fimmu_2019_00790
crossref_primary_10_1523_JNEUROSCI_0740_19_2019
crossref_primary_10_1016_j_tcb_2018_01_004
crossref_primary_10_1186_s13041_017_0321_z
crossref_primary_10_3344_kjp_23284
crossref_primary_10_1177_10738584231170167
crossref_primary_10_3389_fimmu_2018_00698
crossref_primary_10_1007_s44192_023_00050_5
crossref_primary_10_1007_s00406_022_01532_3
crossref_primary_10_3389_fnins_2024_1434945
crossref_primary_10_1371_journal_pone_0128431
crossref_primary_10_1038_ni_3253
crossref_primary_10_1093_g3journal_jkad114
crossref_primary_10_1007_s11064_024_04241_6
crossref_primary_10_1186_s13229_017_0181_5
crossref_primary_10_3390_ijms24020912
crossref_primary_10_3390_biomedicines9070823
crossref_primary_10_1038_s41583_023_00744_3
crossref_primary_10_1016_j_neuropharm_2021_108806
crossref_primary_10_1038_s41467_021_27248_x
crossref_primary_10_1002_glia_24433
crossref_primary_10_1186_s13024_024_00703_1
crossref_primary_10_3389_fnagi_2020_00172
crossref_primary_10_1093_brain_aww298
crossref_primary_10_1038_s41582_025_01073_y
crossref_primary_10_1038_mp_2016_220
crossref_primary_10_1002_glia_23334
crossref_primary_10_1016_j_celrep_2022_111398
crossref_primary_10_3389_fbioe_2020_00912
crossref_primary_10_1038_s41467_017_00384_z
crossref_primary_10_3389_fimmu_2020_566892
crossref_primary_10_1016_j_nbd_2020_104963
crossref_primary_10_2217_epi_14_53
crossref_primary_10_1186_s10194_024_01791_6
crossref_primary_10_1016_j_cellsig_2024_111224
crossref_primary_10_3390_jcm10061214
crossref_primary_10_1038_s41398_022_02265_6
crossref_primary_10_1523_JNEUROSCI_3981_16_2017
crossref_primary_10_1016_j_celrep_2022_111161
crossref_primary_10_3389_fcell_2024_1418100
crossref_primary_10_1002_glia_24650
crossref_primary_10_1146_annurev_neuro_071714_033842
crossref_primary_10_1038_s41380_021_01174_2
crossref_primary_10_1016_j_stem_2024_12_011
crossref_primary_10_3233_JAD_240042
crossref_primary_10_1111_acel_13981
crossref_primary_10_1523_JNEUROSCI_0862_17_2017
crossref_primary_10_1111_cts_70111
crossref_primary_10_3389_fncel_2020_00213
crossref_primary_10_1194_jlr_M056580
crossref_primary_10_1113_JP286400
crossref_primary_10_1016_j_conb_2018_10_001
crossref_primary_10_1017_S1092852919001603
crossref_primary_10_1007_s12035_024_04049_z
crossref_primary_10_1073_pnas_2202580119
crossref_primary_10_1177_23982128211009148
crossref_primary_10_4049_jimmunol_1502532
crossref_primary_10_1146_annurev_genet_112618_043515
crossref_primary_10_7554_eLife_70514
crossref_primary_10_1186_s13024_019_0314_8
crossref_primary_10_2174_1567205016666190830110152
crossref_primary_10_3389_fcell_2022_1036123
crossref_primary_10_1016_j_celrep_2016_04_011
crossref_primary_10_1016_j_visres_2024_108461
crossref_primary_10_1111_ene_14058
crossref_primary_10_1038_nature18283
crossref_primary_10_17650_2222_1468_2023_13_2_57_64
crossref_primary_10_1038_s41573_023_00823_1
crossref_primary_10_1126_scitranslmed_adi7828
crossref_primary_10_1371_journal_pone_0100196
crossref_primary_10_1007_s00401_015_1513_1
crossref_primary_10_1093_brain_awab011
crossref_primary_10_3390_ijms24021639
crossref_primary_10_1523_JNEUROSCI_0983_17_2017
crossref_primary_10_1038_s41598_021_84210_z
crossref_primary_10_1093_brain_awab250
crossref_primary_10_1038_s12276_019_0326_z
crossref_primary_10_1016_j_conb_2023_102732
crossref_primary_10_1016_j_neuron_2017_09_056
crossref_primary_10_1021_acs_analchem_4c04893
crossref_primary_10_1016_j_nbd_2023_106264
crossref_primary_10_1016_j_neures_2022_09_007
crossref_primary_10_1523_JNEUROSCI_0829_15_2015
crossref_primary_10_3390_cells10071812
crossref_primary_10_3389_fncir_2016_00026
crossref_primary_10_1177_24705470211029254
crossref_primary_10_3389_fncel_2023_1352130
crossref_primary_10_1016_j_celrep_2023_112117
crossref_primary_10_3389_fcell_2016_00107
crossref_primary_10_1007_s00018_020_03673_x
crossref_primary_10_1016_j_nbd_2025_106857
crossref_primary_10_3390_cells11121943
crossref_primary_10_1523_JNEUROSCI_0789_18_2018
crossref_primary_10_3389_fncir_2022_826664
crossref_primary_10_3390_biom12050666
crossref_primary_10_1038_s41392_024_01738_y
crossref_primary_10_1007_s00018_020_03586_9
crossref_primary_10_1002_glia_24179
crossref_primary_10_7554_eLife_100989_3
crossref_primary_10_1016_j_neures_2022_09_015
crossref_primary_10_1155_2018_2530414
crossref_primary_10_1016_j_exer_2018_07_011
crossref_primary_10_1042_NS20180203
crossref_primary_10_3390_ijms25137393
crossref_primary_10_1016_j_bbi_2024_08_010
crossref_primary_10_1186_s13287_023_03614_y
crossref_primary_10_1016_S2215_0366_18_30049_X
crossref_primary_10_1101_cshperspect_a041347
crossref_primary_10_1016_j_neuroscience_2014_09_031
crossref_primary_10_1186_s12964_019_0461_0
crossref_primary_10_1002_advs_202300876
crossref_primary_10_1002_glia_24163
crossref_primary_10_1213_ANE_0000000000007330
crossref_primary_10_3389_fendo_2018_00205
crossref_primary_10_1101_cshperspect_a041346
crossref_primary_10_1515_hsz_2019_0199
crossref_primary_10_1021_acsanm_3c02719
crossref_primary_10_1038_s41577_018_0051_1
crossref_primary_10_1111_jnc_14486
crossref_primary_10_1515_mr_2022_0006
crossref_primary_10_1016_j_pharmthera_2018_03_002
crossref_primary_10_1038_s41598_024_59942_3
crossref_primary_10_1038_s41591_023_02566_3
crossref_primary_10_3389_fnins_2021_674563
crossref_primary_10_1007_s00018_019_03111_7
crossref_primary_10_1038_s41380_022_01506_w
crossref_primary_10_1007_s11064_021_03256_7
crossref_primary_10_1016_j_neuron_2018_12_006
crossref_primary_10_3233_JAD_230658
crossref_primary_10_1177_1073858418769644
crossref_primary_10_1186_s13024_022_00584_2
crossref_primary_10_1016_j_neures_2022_10_002
crossref_primary_10_7554_eLife_23611
crossref_primary_10_1016_j_neuroscience_2017_05_033
crossref_primary_10_3390_ijms252011245
crossref_primary_10_1177_10738584231163460
crossref_primary_10_3233_JAD_161123
crossref_primary_10_3389_fgene_2022_877278
crossref_primary_10_1002_glia_24148
crossref_primary_10_1016_j_biopsych_2015_03_012
crossref_primary_10_1016_j_cub_2021_01_056
crossref_primary_10_1186_s13395_024_00342_6
crossref_primary_10_1002_jnr_25167
crossref_primary_10_1523_JNEUROSCI_1912_15_2016
crossref_primary_10_1002_glia_24145
crossref_primary_10_1523_JNEUROSCI_1660_20_2020
crossref_primary_10_1007_s11481_018_9793_6
crossref_primary_10_1016_j_arr_2024_102638
crossref_primary_10_1016_j_neures_2021_01_003
crossref_primary_10_1002_JLB_6MR0118_041R
crossref_primary_10_1515_revneuro_2016_0077
crossref_primary_10_3390_jdb12040027
crossref_primary_10_1002_glia_23050
crossref_primary_10_1159_000450726
crossref_primary_10_1038_s41398_022_02092_9
crossref_primary_10_1016_j_brainres_2015_12_038
crossref_primary_10_1016_j_celrep_2024_113776
crossref_primary_10_1007_s12035_020_01976_5
crossref_primary_10_1016_j_cmet_2017_04_002
crossref_primary_10_1016_j_brainres_2015_11_013
crossref_primary_10_1016_j_conb_2024_102840
crossref_primary_10_1038_s42003_018_0070_2
crossref_primary_10_1186_s40478_021_01190_x
crossref_primary_10_3390_ijms221910254
crossref_primary_10_1002_glia_24375
crossref_primary_10_1016_j_exer_2016_03_027
crossref_primary_10_1523_JNEUROSCI_1630_17_2017
crossref_primary_10_3390_antiox8050121
crossref_primary_10_1016_j_bbi_2019_04_037
crossref_primary_10_1080_01677063_2018_1506781
crossref_primary_10_3389_fphar_2023_1122527
crossref_primary_10_1038_s41583_018_0113_1
crossref_primary_10_1096_fj_202100936R
crossref_primary_10_1016_j_cell_2023_05_040
crossref_primary_10_3390_ijms23137117
crossref_primary_10_1038_cr_2017_37
crossref_primary_10_1111_jmi_12377
crossref_primary_10_1186_s12915_020_00854_9
crossref_primary_10_1007_s12264_023_01024_x
crossref_primary_10_1073_pnas_1609896113
crossref_primary_10_1038_s41467_024_44742_0
crossref_primary_10_1186_s13064_020_00151_9
crossref_primary_10_1016_j_immuni_2023_08_013
crossref_primary_10_3390_cells11213414
crossref_primary_10_1002_glia_70019
crossref_primary_10_1016_j_neubiorev_2020_07_039
crossref_primary_10_1016_j_yfrne_2023_101064
crossref_primary_10_1002_glia_23940
crossref_primary_10_3389_fnmol_2022_965756
crossref_primary_10_1523_JNEUROSCI_1256_23_2024
crossref_primary_10_1002_glia_23943
crossref_primary_10_1515_nf_2016_A105
crossref_primary_10_3390_ijms23158281
crossref_primary_10_1016_j_expneurol_2016_02_022
crossref_primary_10_3390_ijms20235995
crossref_primary_10_3389_fimmu_2018_00803
crossref_primary_10_1371_journal_pone_0125633
crossref_primary_10_1038_ncomms12871
crossref_primary_10_3389_fcell_2020_611269
crossref_primary_10_1038_s41598_017_09103_6
crossref_primary_10_1002_dneu_22633
crossref_primary_10_1002_jnr_24430
crossref_primary_10_4062_biomolther_2019_151
crossref_primary_10_1007_s11571_024_10185_y
crossref_primary_10_1016_j_neuropharm_2020_108157
crossref_primary_10_1186_s13024_023_00655_y
crossref_primary_10_1186_s12974_020_1719_6
crossref_primary_10_1002_jcp_30405
crossref_primary_10_1016_j_bbagen_2018_12_008
crossref_primary_10_1111_ejn_15373
crossref_primary_10_1208_s12249_021_01975_2
crossref_primary_10_1016_j_pneurobio_2017_01_002
crossref_primary_10_1038_s41593_022_01184_5
crossref_primary_10_1186_s13287_021_02369_8
crossref_primary_10_1016_j_bbi_2023_12_003
crossref_primary_10_2147_ITT_S305420
crossref_primary_10_1038_s41593_020_00763_8
crossref_primary_10_1083_jcb_202312043
crossref_primary_10_1177_1073858418809941
crossref_primary_10_1016_j_visres_2025_108583
crossref_primary_10_7554_eLife_100989
crossref_primary_10_1002_jnr_24203
crossref_primary_10_1242_dev_170910
crossref_primary_10_2147_JIR_S392599
crossref_primary_10_3390_cells7100166
crossref_primary_10_1038_nature21029
crossref_primary_10_1111_febs_14323
crossref_primary_10_1016_j_neuint_2020_104878
crossref_primary_10_1016_j_jneumeth_2019_108545
crossref_primary_10_17116_jnevro20171171224_10
crossref_primary_10_1073_pnas_2203965119
crossref_primary_10_1016_j_celrep_2022_110310
crossref_primary_10_1016_j_patol_2024_100795
crossref_primary_10_3389_fimmu_2021_629979
crossref_primary_10_1016_j_immuni_2023_07_005
crossref_primary_10_3389_fcell_2025_1540052
crossref_primary_10_3389_fncel_2021_725693
crossref_primary_10_1016_j_conb_2022_102674
crossref_primary_10_1007_s00018_014_1729_6
crossref_primary_10_1016_j_conb_2014_03_005
crossref_primary_10_1016_j_conb_2022_102669
crossref_primary_10_1186_s12974_024_03165_w
crossref_primary_10_1002_mus_27684
crossref_primary_10_1186_s12964_021_00812_0
crossref_primary_10_1016_j_brainresbull_2024_111181
crossref_primary_10_1038_s41467_024_51581_6
crossref_primary_10_1038_s41467_018_06118_z
crossref_primary_10_1007_s10439_020_02507_y
crossref_primary_10_1371_journal_pone_0218643
crossref_primary_10_1038_s41593_018_0334_7
crossref_primary_10_1038_nm_4071
crossref_primary_10_1016_j_isci_2024_111494
crossref_primary_10_3389_fnhum_2016_00566
crossref_primary_10_1093_hmg_ddx189
crossref_primary_10_1093_pnasnexus_pgad334
crossref_primary_10_1152_ajpcell_00466_2024
crossref_primary_10_3389_fimmu_2023_1125948
crossref_primary_10_1084_jem_20172244
crossref_primary_10_3390_biom10060863
crossref_primary_10_1111_febs_16326
crossref_primary_10_1093_braincomms_fcaa119
crossref_primary_10_14336_AD_2021_1029
crossref_primary_10_1016_j_neuroscience_2018_12_044
crossref_primary_10_1016_j_ceb_2015_02_004
crossref_primary_10_7554_eLife_73202
crossref_primary_10_1016_j_tice_2023_102100
crossref_primary_10_3389_fcvm_2021_649630
crossref_primary_10_2490_jjrmc_58_1229
crossref_primary_10_1155_2018_5975216
crossref_primary_10_7554_eLife_19510
crossref_primary_10_1016_j_immuni_2017_06_006
crossref_primary_10_1111_epi_18361
crossref_primary_10_1038_s12276_023_01070_5
crossref_primary_10_1016_j_mcn_2020_103565
crossref_primary_10_1186_s12951_024_02955_x
crossref_primary_10_3389_fnsyn_2020_00010
crossref_primary_10_1084_jem_20202715
crossref_primary_10_1111_jnc_15994
crossref_primary_10_1038_s41598_018_34763_3
crossref_primary_10_1177_1073858414530512
crossref_primary_10_3389_fimmu_2023_1283331
crossref_primary_10_1523_JNEUROSCI_3787_15_2016
crossref_primary_10_1016_j_neuron_2017_07_035
crossref_primary_10_4062_biomolther_2017_133
crossref_primary_10_1016_j_neuropharm_2019_107914
crossref_primary_10_17816_ACEN_1152
crossref_primary_10_2174_1570159X17666190603170511
crossref_primary_10_1093_brain_awad298
crossref_primary_10_1038_s44319_024_00130_9
Cites_doi 10.1016/j.neuron.2011.07.022
10.1126/science.273.5274.501
10.1093/jb/mvt014
10.1016/j.mcn.2006.06.011
10.1038/nature08759
10.1038/19554
10.1016/S0092-8674(01)00190-8
10.1038/nature08389
10.1038/nn.2446
10.1146/annurev.ne.09.030186.001131
10.1016/j.neuron.2006.04.028
10.1371/journal.pone.0000120
10.1371/journal.pcbi.1002671
10.1016/j.neuron.2009.10.015
10.1016/j.neuron.2006.07.007
10.1167/iovs.02-0438
10.1038/nature06901
10.1093/emboj/cdg416
10.1523/JNEUROSCI.4178-07.2008
10.1016/j.neuron.2008.10.013
10.1126/science.1202529
10.1016/j.neuron.2010.09.024
10.1038/nature08577
10.1016/j.cell.2007.10.036
10.2144/000112001
10.1038/nature03263
10.1016/S0896-6273(02)00577-9
10.1126/science.3175636
10.1016/S0896-6273(00)00166-5
10.1523/JNEUROSCI.22-21-09419.2002
10.1016/j.neuron.2012.03.026
10.1017/S0952523805225154
10.1038/nprot.2008.171
10.1016/j.neuron.2009.09.021
10.1126/science.279.5359.2108
10.1242/jcs.01632
ContentType Journal Article
Copyright Springer Nature Limited 2013
2015 INIST-CNRS
COPYRIGHT 2013 Nature Publishing Group
Copyright Nature Publishing Group Dec 19-Dec 26, 2013
Copyright_xml – notice: Springer Nature Limited 2013
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2013 Nature Publishing Group
– notice: Copyright Nature Publishing Group Dec 19-Dec 26, 2013
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature12776
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary Curriculum
ProQuest Central
Technology collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database (via ProQuest SciTech Premium Collection)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



Agricultural Science Database
MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 400
ExternalDocumentID PMC3969024
3166256841
A632496281
24270812
28051841
10_1038_nature12776
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: P30 HD018655
– fundername: NINDS NIH HHS
  grantid: NS069375
– fundername: NINDS NIH HHS
  grantid: P30 NS069375
– fundername: NIMH NIH HHS
  grantid: T32 MH020016
– fundername: NINDS NIH HHS
  grantid: 5 R21NS072556
– fundername: NINDS NIH HHS
  grantid: R21 NS072556
– fundername: NINDS NIH HHS
  grantid: R01 NS075252
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AEZWR
AFANA
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
08P
1CY
1VW
354
3EH
3O-
41~
42X
4R4
663
79B
9M8
AAJYS
AAVBQ
AAYOK
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ADNMO
ADRHT
AFBBN
AFFDN
AFHKK
AGCDD
AGGDT
AGOIJ
AIYXT
AJUXI
BCR
BES
BKOMP
DB5
FA8
FAC
HG6
IQODW
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
OHT
PEA
PV9
QS-
R4F
RHI
SKT
TUD
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKG
ZY4
~G0
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c642t-d1a515b0aa8ed8d04d9fbd625c3e960fbe9c867f3df6c242c31ea95af903611e3
IEDL.DBID BENPR
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 14:23:06 EDT 2025
Sat Sep 27 20:53:01 EDT 2025
Sat Aug 23 12:23:04 EDT 2025
Tue Jun 17 22:04:47 EDT 2025
Fri Jun 13 00:02:51 EDT 2025
Tue Jun 10 15:35:20 EDT 2025
Tue Jun 10 21:00:53 EDT 2025
Fri Jun 27 05:46:20 EDT 2025
Mon Jul 21 06:04:01 EDT 2025
Wed Apr 02 07:27:33 EDT 2025
Tue Jul 01 02:57:05 EDT 2025
Thu Apr 24 22:50:21 EDT 2025
Fri Feb 21 02:37:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7480
Keywords Neuroglia
Memory
Rodentia
Central nervous system
Nervous system
Astrocyte
Protein
Encephalon
Microglia
Learning
Vertebrata
Synapse
Acquisition process
Mammalia
Mouse
Animal
Development
Language English
License http://www.springer.com/tdm
CC BY 4.0
Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-d1a515b0aa8ed8d04d9fbd625c3e960fbe9c867f3df6c242c31ea95af903611e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-News-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3969024
PMID 24270812
PQID 1470880242
PQPubID 40569
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3969024
proquest_miscellaneous_1490734190
proquest_journals_1470880242
gale_infotracmisc_A632496281
gale_infotracgeneralonefile_A632496281
gale_infotraccpiq_632496281
gale_infotracacademiconefile_A632496281
gale_incontextgauss_ISR_A632496281
pubmed_primary_24270812
pascalfrancis_primary_28051841
crossref_citationtrail_10_1038_nature12776
crossref_primary_10_1038_nature12776
springer_journals_10_1038_nature12776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-19
PublicationDateYYYYMMDD 2013-12-19
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-19
  day: 19
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Cuervo, Dice (CR19) 1996; 273
Chen, Regehr (CR23) 2000; 28
Micheva, Busse, Weiler, O’Rourke, Smith (CR38) 2010; 68
Shatz, Sretavan (CR16) 1986; 9
Roberts, Tschida, Klein, Mooney (CR29) 2010; 463
Beletskii (CR35) 2005; 39
Stevens (CR31) 2007; 131
Ziegenfuss (CR3) 2008; 453
Wu (CR7) 2009; 12
CR14
Hamon (CR6) 2006; 1
Tung (CR13) 2013; 153
CR32
Xu (CR27) 2009; 462
Duncan (CR10) 2003; 44
Foo (CR15) 2011; 71
Dunkley, Jarvie, Robinson (CR34) 2008; 3
Finnemann (CR11) 2003; 22
Jaubert-Miazza (CR37) 2005; 22
Huberman, Stellwagen, Chapman (CR26) 2002; 22
Datwani (CR36) 2009; 64
MacDonald (CR4) 2006; 50
Zhou, Hartwieg, Horvitz (CR5) 2001; 104
Peters, Palay, Webster, d (CR21) 1976
Stafford, Sher, Litke, Feldheim (CR39) 2009; 64
Cahoy (CR2) 2008; 28
Wang, Smith (CR20) 2012; 8
Yang, Pan, Gan (CR28) 2009; 462
Hooks, Chen (CR18) 2006; 52
Stellwagen, Shatz (CR25) 2002; 33
Wu, Singh, Georgescu, Birge (CR12) 2005; 118
Paolicelli (CR30) 2011; 333
Shatz, Stryker (CR24) 1988; 242
Lu (CR33) 1999; 398
Schafer (CR22) 2012; 74
Barres (CR1) 2008; 60
Prasad (CR9) 2006; 33
Kinchen (CR8) 2005; 434
Penn, Riquelme, Feller, Shatz (CR17) 1998; 279
G Yang (BFnature12776_CR28) 2009; 462
JM Kinchen (BFnature12776_CR8) 2005; 434
D Stellwagen (BFnature12776_CR25) 2002; 33
AM Cuervo (BFnature12776_CR19) 1996; 273
A Peters (BFnature12776_CR21) 1976
DP Schafer (BFnature12776_CR22) 2012; 74
A Datwani (BFnature12776_CR36) 2009; 64
A Beletskii (BFnature12776_CR35) 2005; 39
G Wang (BFnature12776_CR20) 2012; 8
JD Cahoy (BFnature12776_CR2) 2008; 28
SC Finnemann (BFnature12776_CR11) 2003; 22
TF Roberts (BFnature12776_CR29) 2010; 463
HH Wu (BFnature12776_CR7) 2009; 12
Q Lu (BFnature12776_CR33) 1999; 398
T Xu (BFnature12776_CR27) 2009; 462
RC Paolicelli (BFnature12776_CR30) 2011; 333
AD Huberman (BFnature12776_CR26) 2002; 22
D Prasad (BFnature12776_CR9) 2006; 33
KD Micheva (BFnature12776_CR38) 2010; 68
TT Tung (BFnature12776_CR13) 2013; 153
JS Ziegenfuss (BFnature12776_CR3) 2008; 453
BM Hooks (BFnature12776_CR18) 2006; 52
Y Hamon (BFnature12776_CR6) 2006; 1
JL Duncan (BFnature12776_CR10) 2003; 44
LC Foo (BFnature12776_CR15) 2011; 71
BK Stafford (BFnature12776_CR39) 2009; 64
BA Barres (BFnature12776_CR1) 2008; 60
CJ Shatz (BFnature12776_CR16) 1986; 9
JM MacDonald (BFnature12776_CR4) 2006; 50
L Jaubert-Miazza (BFnature12776_CR37) 2005; 22
C Chen (BFnature12776_CR23) 2000; 28
B Stevens (BFnature12776_CR31) 2007; 131
PR Dunkley (BFnature12776_CR34) 2008; 3
AA Penn (BFnature12776_CR17) 1998; 279
CJ Shatz (BFnature12776_CR24) 1988; 242
Y Wu (BFnature12776_CR12) 2005; 118
BFnature12776_CR32
BFnature12776_CR14
Z Zhou (BFnature12776_CR5) 2001; 104
2423004 - Annu Rev Neurosci. 1986;9:171-207
18995817 - Neuron. 2008 Nov 6;60(3):430-40
21903074 - Neuron. 2011 Sep 8;71(5):799-811
12556419 - Invest Ophthalmol Vis Sci. 2003 Feb;44(2):826-38
22632727 - Neuron. 2012 May 24;74(4):691-705
15744306 - Nature. 2005 Mar 3;434(7029):93-9
18171944 - J Neurosci. 2008 Jan 2;28(1):264-78
11163279 - Neuron. 2000 Dec;28(3):955-66
19946267 - Nature. 2009 Dec 17;462(7275):915-9
3175636 - Science. 1988 Oct 7;242(4875):87-9
16901715 - Mol Cell Neurosci. 2006 Sep;33(1):96-108
21778362 - Science. 2011 Sep 9;333(6048):1456-8
23284042 - Cold Spring Harb Perspect Biol. 2013 Jan;5(1):a008748
12912913 - EMBO J. 2003 Aug 15;22(16):4143-54
17205124 - PLoS One. 2006;1:e120
9516112 - Science. 1998 Mar 27;279(5359):2108-12
20164928 - Nature. 2010 Feb 18;463(7283):948-52
21092855 - Neuron. 2010 Nov 18;68(4):639-53
10227296 - Nature. 1999 Apr 22;398(6729):723-8
11832224 - Neuron. 2002 Jan 31;33(3):357-67
15673687 - J Cell Sci. 2005 Feb 1;118(Pt 3):539-53
19945389 - Neuron. 2009 Nov 25;64(4):463-70
23420848 - J Biochem. 2013 May;153(5):483-91
16382909 - Biotechniques. 2005 Dec;39(6):894-7
16332277 - Vis Neurosci. 2005 Sep-Oct;22(5):661-76
18083105 - Cell. 2007 Dec 14;131(6):1164-78
19915564 - Nat Neurosci. 2009 Dec;12(12):1534-41
18432193 - Nature. 2008 Jun 12;453(7197):935-9
17046691 - Neuron. 2006 Oct 19;52(2):281-91
11163239 - Cell. 2001 Jan 12;104(1):43-56
22956902 - PLoS Comput Biol. 2012;8(8):e1002671
8662539 - Science. 1996 Jul 26;273(5274):501-3
17610815 - Neuron. 2007 Jul 5;55(1):25-36
12417667 - J Neurosci. 2002 Nov 1;22(21):9419-29
16772169 - Neuron. 2006 Jun 15;50(6):869-81
19946265 - Nature. 2009 Dec 17;462(7275):920-4
18927557 - Nat Protoc. 2008;3(11):1718-28
References_xml – volume: 71
  start-page: 799
  year: 2011
  end-page: 811
  ident: CR15
  article-title: Development of a method for the purification and culture of rodent astrocytes
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.07.022
– volume: 273
  start-page: 501
  year: 1996
  end-page: 503
  ident: CR19
  article-title: A receptor for the selective uptake and degradation of proteins by lysosomes
  publication-title: Science
  doi: 10.1126/science.273.5274.501
– volume: 153
  start-page: 483
  year: 2013
  end-page: 491
  ident: CR13
  article-title: Phosphatidylserine recognition and induction of apoptotic cell clearance by engulfment receptor Draper
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvt014
– volume: 33
  start-page: 96
  year: 2006
  end-page: 108
  ident: CR9
  article-title: TAM receptor function in the retinal pigment epithelium
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2006.06.011
– volume: 463
  start-page: 948
  year: 2010
  end-page: 952
  ident: CR29
  article-title: Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning
  publication-title: Nature
  doi: 10.1038/nature08759
– volume: 398
  start-page: 723
  year: 1999
  end-page: 728
  ident: CR33
  article-title: Tyro-3 family receptors are essential regulators of mammalian spermatogenesis
  publication-title: Nature
  doi: 10.1038/19554
– volume: 104
  start-page: 43
  year: 2001
  end-page: 56
  ident: CR5
  article-title: CED-1 is a transmembrane receptor that mediates cell corpse engulfment in
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00190-8
– volume: 462
  start-page: 915
  year: 2009
  end-page: 919
  ident: CR27
  article-title: Rapid formation and selective stabilization of synapses for enduring motor memories
  publication-title: Nature
  doi: 10.1038/nature08389
– volume: 12
  start-page: 1534
  year: 2009
  end-page: 1541
  ident: CR7
  article-title: Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2446
– volume: 9
  start-page: 171
  year: 1986
  end-page: 207
  ident: CR16
  article-title: Interactions between retinal ganglion cells during the development of the mammalian visual system
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.09.030186.001131
– volume: 50
  start-page: 869
  year: 2006
  end-page: 881
  ident: CR4
  article-title: The cell corpse engulfment receptor Draper mediates glial clearance of severed axons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.04.028
– volume: 1
  start-page: e120
  year: 2006
  ident: CR6
  article-title: Cooperation between engulfment receptors: the case of ABCA1 and MEGF10
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000120
– ident: CR14
– year: 1976
  ident: CR21
  publication-title: The Fine Structure of the Nervous System: the Neurons and Supporting Cells
– volume: 8
  start-page: e1002671
  year: 2012
  ident: CR20
  article-title: Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002671
– volume: 64
  start-page: 463
  year: 2009
  end-page: 470
  ident: CR36
  article-title: Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.10.015
– volume: 52
  start-page: 281
  year: 2006
  end-page: 291
  ident: CR18
  article-title: Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.07.007
– volume: 44
  start-page: 826
  year: 2003
  end-page: 838
  ident: CR10
  article-title: An RCS-like retinal dystrophy phenotype in mer knockout mice
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.02-0438
– volume: 453
  start-page: 935
  year: 2008
  end-page: 939
  ident: CR3
  article-title: Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling
  publication-title: Nature
  doi: 10.1038/nature06901
– volume: 22
  start-page: 4143
  year: 2003
  end-page: 4154
  ident: CR11
  article-title: Focal adhesion kinase signaling promotes phagocytosis of integrin-bound photoreceptors
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg416
– volume: 28
  start-page: 264
  year: 2008
  end-page: 278
  ident: CR2
  article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4178-07.2008
– volume: 60
  start-page: 430
  year: 2008
  end-page: 440
  ident: CR1
  article-title: The mystery and magic of glia: a perspective on their roles in health and disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.10.013
– volume: 333
  start-page: 1456
  year: 2011
  end-page: 1458
  ident: CR30
  article-title: Synaptic pruning by microglia is necessary for normal brain development
  publication-title: Science
  doi: 10.1126/science.1202529
– volume: 68
  start-page: 639
  year: 2010
  end-page: 653
  ident: CR38
  article-title: Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.09.024
– volume: 462
  start-page: 920
  year: 2009
  end-page: 924
  ident: CR28
  article-title: Stably maintained dendritic spines are associated with lifelong memories
  publication-title: Nature
  doi: 10.1038/nature08577
– volume: 131
  start-page: 1164
  year: 2007
  end-page: 1178
  ident: CR31
  article-title: The classical complement cascade mediates CNS synapse elimination
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.036
– volume: 39
  start-page: 894
  year: 2005
  end-page: 897
  ident: CR35
  article-title: High-throughput phagocytosis assay utilizing a pH-sensitive fluorescent dye
  publication-title: Biotechniques
  doi: 10.2144/000112001
– volume: 434
  start-page: 93
  year: 2005
  end-page: 99
  ident: CR8
  article-title: Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in
  publication-title: Nature
  doi: 10.1038/nature03263
– volume: 33
  start-page: 357
  year: 2002
  end-page: 367
  ident: CR25
  article-title: An instructive role for retinal waves in the development of retinogeniculate connectivity
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00577-9
– volume: 242
  start-page: 87
  year: 1988
  end-page: 89
  ident: CR24
  article-title: Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents
  publication-title: Science
  doi: 10.1126/science.3175636
– volume: 28
  start-page: 955
  year: 2000
  end-page: 966
  ident: CR23
  article-title: Developmental remodeling of the retinogeniculate synapse
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00166-5
– ident: CR32
– volume: 22
  start-page: 9419
  year: 2002
  end-page: 9429
  ident: CR26
  article-title: Decoupling eye-specific segregation from lamination in the lateral geniculate nucleus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-21-09419.2002
– volume: 74
  start-page: 691
  year: 2012
  end-page: 705
  ident: CR22
  article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.026
– volume: 22
  start-page: 661
  year: 2005
  end-page: 676
  ident: CR37
  article-title: Structural and functional composition of the developing retinogeniculate pathway in the mouse
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523805225154
– volume: 3
  start-page: 1718
  year: 2008
  end-page: 1728
  ident: CR34
  article-title: A rapid Percoll gradient procedure for preparation of synaptosomes
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2008.171
– volume: 64
  start-page: 200
  year: 2009
  end-page: 212
  ident: CR39
  article-title: Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.021
– volume: 279
  start-page: 2108
  year: 1998
  end-page: 2112
  ident: CR17
  article-title: Competition in retinogeniculate patterning driven by spontaneous activity
  publication-title: Science
  doi: 10.1126/science.279.5359.2108
– volume: 118
  start-page: 539
  year: 2005
  end-page: 553
  ident: CR12
  article-title: A role for Mer tyrosine kinase in αvβ5 integrin-mediated phagocytosis of apoptotic cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01632
– volume: 463
  start-page: 948
  year: 2010
  ident: BFnature12776_CR29
  publication-title: Nature
  doi: 10.1038/nature08759
– volume: 434
  start-page: 93
  year: 2005
  ident: BFnature12776_CR8
  publication-title: Nature
  doi: 10.1038/nature03263
– volume: 9
  start-page: 171
  year: 1986
  ident: BFnature12776_CR16
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.09.030186.001131
– volume: 279
  start-page: 2108
  year: 1998
  ident: BFnature12776_CR17
  publication-title: Science
  doi: 10.1126/science.279.5359.2108
– volume: 74
  start-page: 691
  year: 2012
  ident: BFnature12776_CR22
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.026
– volume: 1
  start-page: e120
  year: 2006
  ident: BFnature12776_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000120
– volume: 39
  start-page: 894
  year: 2005
  ident: BFnature12776_CR35
  publication-title: Biotechniques
  doi: 10.2144/000112001
– volume: 104
  start-page: 43
  year: 2001
  ident: BFnature12776_CR5
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00190-8
– volume: 50
  start-page: 869
  year: 2006
  ident: BFnature12776_CR4
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.04.028
– ident: BFnature12776_CR14
– volume: 131
  start-page: 1164
  year: 2007
  ident: BFnature12776_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.036
– volume: 71
  start-page: 799
  year: 2011
  ident: BFnature12776_CR15
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.07.022
– volume: 333
  start-page: 1456
  year: 2011
  ident: BFnature12776_CR30
  publication-title: Science
  doi: 10.1126/science.1202529
– volume: 68
  start-page: 639
  year: 2010
  ident: BFnature12776_CR38
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.09.024
– volume: 242
  start-page: 87
  year: 1988
  ident: BFnature12776_CR24
  publication-title: Science
  doi: 10.1126/science.3175636
– volume: 64
  start-page: 463
  year: 2009
  ident: BFnature12776_CR36
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.10.015
– volume: 462
  start-page: 915
  year: 2009
  ident: BFnature12776_CR27
  publication-title: Nature
  doi: 10.1038/nature08389
– volume: 28
  start-page: 264
  year: 2008
  ident: BFnature12776_CR2
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4178-07.2008
– volume: 153
  start-page: 483
  year: 2013
  ident: BFnature12776_CR13
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvt014
– volume: 462
  start-page: 920
  year: 2009
  ident: BFnature12776_CR28
  publication-title: Nature
  doi: 10.1038/nature08577
– volume-title: The Fine Structure of the Nervous System: the Neurons and Supporting Cells
  year: 1976
  ident: BFnature12776_CR21
– volume: 12
  start-page: 1534
  year: 2009
  ident: BFnature12776_CR7
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2446
– volume: 60
  start-page: 430
  year: 2008
  ident: BFnature12776_CR1
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.10.013
– volume: 33
  start-page: 96
  year: 2006
  ident: BFnature12776_CR9
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2006.06.011
– volume: 118
  start-page: 539
  year: 2005
  ident: BFnature12776_CR12
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01632
– volume: 398
  start-page: 723
  year: 1999
  ident: BFnature12776_CR33
  publication-title: Nature
  doi: 10.1038/19554
– ident: BFnature12776_CR32
– volume: 273
  start-page: 501
  year: 1996
  ident: BFnature12776_CR19
  publication-title: Science
  doi: 10.1126/science.273.5274.501
– volume: 22
  start-page: 9419
  year: 2002
  ident: BFnature12776_CR26
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-21-09419.2002
– volume: 453
  start-page: 935
  year: 2008
  ident: BFnature12776_CR3
  publication-title: Nature
  doi: 10.1038/nature06901
– volume: 3
  start-page: 1718
  year: 2008
  ident: BFnature12776_CR34
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2008.171
– volume: 22
  start-page: 661
  year: 2005
  ident: BFnature12776_CR37
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523805225154
– volume: 44
  start-page: 826
  year: 2003
  ident: BFnature12776_CR10
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.02-0438
– volume: 22
  start-page: 4143
  year: 2003
  ident: BFnature12776_CR11
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg416
– volume: 8
  start-page: e1002671
  year: 2012
  ident: BFnature12776_CR20
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002671
– volume: 33
  start-page: 357
  year: 2002
  ident: BFnature12776_CR25
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00577-9
– volume: 64
  start-page: 200
  year: 2009
  ident: BFnature12776_CR39
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.021
– volume: 52
  start-page: 281
  year: 2006
  ident: BFnature12776_CR18
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.07.007
– volume: 28
  start-page: 955
  year: 2000
  ident: BFnature12776_CR23
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00166-5
– reference: 16382909 - Biotechniques. 2005 Dec;39(6):894-7
– reference: 18432193 - Nature. 2008 Jun 12;453(7197):935-9
– reference: 12556419 - Invest Ophthalmol Vis Sci. 2003 Feb;44(2):826-38
– reference: 11163279 - Neuron. 2000 Dec;28(3):955-66
– reference: 19945389 - Neuron. 2009 Nov 25;64(4):463-70
– reference: 12912913 - EMBO J. 2003 Aug 15;22(16):4143-54
– reference: 21778362 - Science. 2011 Sep 9;333(6048):1456-8
– reference: 11163239 - Cell. 2001 Jan 12;104(1):43-56
– reference: 22956902 - PLoS Comput Biol. 2012;8(8):e1002671
– reference: 2423004 - Annu Rev Neurosci. 1986;9:171-207
– reference: 21903074 - Neuron. 2011 Sep 8;71(5):799-811
– reference: 19915564 - Nat Neurosci. 2009 Dec;12(12):1534-41
– reference: 9516112 - Science. 1998 Mar 27;279(5359):2108-12
– reference: 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78
– reference: 17610815 - Neuron. 2007 Jul 5;55(1):25-36
– reference: 16332277 - Vis Neurosci. 2005 Sep-Oct;22(5):661-76
– reference: 8662539 - Science. 1996 Jul 26;273(5274):501-3
– reference: 18995817 - Neuron. 2008 Nov 6;60(3):430-40
– reference: 10227296 - Nature. 1999 Apr 22;398(6729):723-8
– reference: 12417667 - J Neurosci. 2002 Nov 1;22(21):9419-29
– reference: 17046691 - Neuron. 2006 Oct 19;52(2):281-91
– reference: 17205124 - PLoS One. 2006;1:e120
– reference: 3175636 - Science. 1988 Oct 7;242(4875):87-9
– reference: 21092855 - Neuron. 2010 Nov 18;68(4):639-53
– reference: 18083105 - Cell. 2007 Dec 14;131(6):1164-78
– reference: 15744306 - Nature. 2005 Mar 3;434(7029):93-9
– reference: 19946265 - Nature. 2009 Dec 17;462(7275):920-4
– reference: 15673687 - J Cell Sci. 2005 Feb 1;118(Pt 3):539-53
– reference: 16901715 - Mol Cell Neurosci. 2006 Sep;33(1):96-108
– reference: 19946267 - Nature. 2009 Dec 17;462(7275):915-9
– reference: 23284042 - Cold Spring Harb Perspect Biol. 2013 Jan;5(1):a008748
– reference: 23420848 - J Biochem. 2013 May;153(5):483-91
– reference: 18927557 - Nat Protoc. 2008;3(11):1718-28
– reference: 16772169 - Neuron. 2006 Jun 15;50(6):869-81
– reference: 20164928 - Nature. 2010 Feb 18;463(7283):948-52
– reference: 11832224 - Neuron. 2002 Jan 31;33(3):357-67
– reference: 22632727 - Neuron. 2012 May 24;74(4):691-705
SSID ssj0005174
Score 2.6371045
Snippet To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently,...
To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodeling. Recently...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 394
SubjectTerms 13/1
13/106
13/31
13/51
14/19
14/28
631/378/2596/1308
64/110
9/74
Animals
Astrocytes
Astrocytes - cytology
Astrocytes - metabolism
Biological and medical sciences
Brain - cytology
c-Mer Tyrosine Kinase
Cellular signal transduction
Central nervous system
Fundamental and applied biological sciences. Psychology
Gene expression
Health aspects
Humanities and Social Sciences
In Vitro Techniques
Insects
Kinases
Laboratory animals
Lateral Thalamic Nuclei - cytology
Lateral Thalamic Nuclei - metabolism
Learning - physiology
Membrane Proteins - deficiency
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, Transgenic
Microscopy
multidisciplinary
Neural circuitry
Neural Pathways - cytology
Neural Pathways - metabolism
Phagocytosis
Physiological aspects
Protein expression
Proteins
Proto-Oncogene Proteins - deficiency
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Receptor Protein-Tyrosine Kinases - deficiency
Receptor Protein-Tyrosine Kinases - genetics
Receptor Protein-Tyrosine Kinases - metabolism
Retina - physiology
Science
Synapses
Synapses - metabolism
Vertebrates: nervous system and sense organs
Title Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways
URI https://link.springer.com/article/10.1038/nature12776
https://www.ncbi.nlm.nih.gov/pubmed/24270812
https://www.proquest.com/docview/1470880242
https://www.proquest.com/docview/1490734190
https://pubmed.ncbi.nlm.nih.gov/PMC3969024
Volume 504
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swED_ahMFgjLV7ee2CN7pHB6aW7cjyhzGSLmm20TCyFvLNKHp0heKkc8LIf7-TLSdxG_bFBHSWFd_bOv0O4IgEhFIeCi-ZUOpFMUeVYjz2AqpDLgV6YGUOJ58P6eAy-j5uj3dgWJ2FMWWVlU0sDLWcCvON_IREMSqE8ShfZree6RpldlerFhrctlaQnwuIsV1ooklu-w1odnvDn6N10ccdXGZ7Ys8P2UkJpEmC2MCPbPgoa6kfzXiOb02X7S62xaP3yyrv7K0WLqv_BB7bWNPtlMKxBzsq24cHRc2nyPdhz-p17n604NPHT2HQyefo05YYgbrFqZK5cvNlxme5ctVN0QLMsNK1_X3c894Z5uQuzyT-HF38cE2L4798mT-Dy37v4nTg2W4LHnIkmHuScIxtJj7nTEkm_UgmeiIxPRKhwjRHT1QiGI11KDUVyAYREsWTNtcJOkFCVPgcGtk0Uy_B9XlCuc9iFmrM7rjALJtpX6NtlSqgSjjwqXq_qbBQ5KYjxk1abImHLN1ghgNHK-JZicCxneytYVRqMC0yUzRzxRd5nn77NUo7BpI-oQEjDnywRHqKDxTcnkHAZRsYrBrlQY1SzK5v043R97XRq5JL26Y5rBGi7oracKsmVqs_GDAUVRaZ-ys5S61xydO1KjjwZjVspjYFc5maLgxNgsY7wnDPgRelWK4njwKcgODdcU1gVwQGcrw-kl3_LqDHw4Qm-GAH3lWivbGs-0x59f_lH8DDwHQXIYFHkkNozP8s1GuM8eaTFuzG4xiv7JSYa_-sBc1O92u337Iq_Q8gM1R7
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTggkhNj4ChsjoI2PSdFiJ3OchwkVaGnpWqHSSXvLXMcZk6a0I62m_nP8bZwTp222ire9VbqL7ebOd-f47ncAu4QSxoQnnXDImOMHArcUF4FDWeKJWKIHVro4udtjrRP_x-nh6Rr8LWthdFplaRNzQx2PpP5GfkD8ADeE9iifx1eO7hqlb1fLFhrCtFaIj3KIMVPY0VGzazzCZUftbyjvPUqbjcHXlmO6DDi4EjpxYiLQpw9dIbiKeez6cZgMYzwWSE9heJ8MVSg5CxIvTpjE6aVHlAgPRRKi8SdEeTjuPVj39QeUGqx_afR-9hdJJjdwoE2FoOvxgwK4k9BAw50s-UTjGR6NRYZSSor2Gqvi39tpnDfucnMX2XwCj01sa9cLZdyANZVuwv08x1Rmm7Bh7EhmfzRg15-eQqueTdCHzjDitfMqlomys1kqxpmy1WXeckyrjm36CdndxvcmcW2RxvizP-jYuqXytZhlz-DkTt77c6ilo1S9BNsVIRMuD7iX4GlSSDzV88RN0JbHijIlLdgv328kDfS57sBxGeVX8B6PloRhwe6ceVwgfqxme6cFFWkMjVQn6ZyLaZZF7V_9qK4h8ENGObHgg2FKRjihFKbmAZetYbcqnFsVTjm-uIqWqO8r1PNCSquG2a4woq2QFfJORa3mf5ByVFXu6-dLPYuMMcuixdaz4O2crIfWCXqpGk01T4jOwsfw0oIXhVouBvcpDkDw6aCisHMGDXFepaQXv3Oocy9kIU5swV6p2kvLui2UV_9f_ht40Bp0j6Pjdq-zBQ-p7mxCqEPCbahN_kzVa4wvJ8Mds4ltOLtru_EPScGOmg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJhASQmx8hY0R0MYAKWrsZI7zMKHCWlrKqqls0t6C49hj0pR2uNXUf5G_inPitM1W8ba3SL44Tu58H_Hd7xDawQRTygPhxSmlXhhx2FKMRx6hKuCZAAssTXHyUZ92TsPvZ_tnK-hvVQtj0iornVgo6mwozD_yBg4j2BDGojSUTYs4Pmx_Hl15poOUOWmt2mlw22YhOyjgxmyRR09OryGc0wfdQ-D9LiHt1snXjmc7DniwKjL2MszBvqc-50xmLPPDLFZpBiGCCCS4-iqVsWA0UkGmqICliABLHu9zFYMhwFgGMO89tBaB1YdAcO1Lq388mCec3MCEttWCfsAaJYgnJpGBPlmwj9ZKPBpxDRxTZauNZb7w7ZTOG-e6hblsP0GPrZ_rNkvBXEcrMt9A94t8U6E30LrVKdr9YIGvPz5FnaYegz2dgvfrFhUtY-nqac5HWrrysmg_ZsTItb2F3KPWtzb2XZ5ncDk46bmmvfI1n-pn6PROvvtztJoPc_kSuT6PKfdZxAIFkSUXEOEz5SvQ65kkVAoHfaq-byIsDLrpxnGZFMfxAUsWmOGgnRnxqET_WE72zjAqMXgauZHMcz7ROun-HCRNA4cfU8Kwg_YskRrCAwW39Q-wbAPBVaPcrFGK0cVVsjD6vjZ6XnJp2TRbNULQG6I2vF0Tq9kLEgaiykJzfyVniVVsOplvQwe9nQ2bqU2yXi6HE0MTg-EIwdV00ItSLOeThwQmwHB3VBPYGYGBO6-P5Be_C9jzIKYxPNhBu5VoLyzrNlNe_X_5b9AD0B_Jj26_t4keEtPkBBMPx1todfxnIl-DqzlOt-0edtGvu1Yb_wA1dZLe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Astrocytes+mediate+synapse+elimination+through+MEGF10+and+MERTK+pathways&rft.jtitle=Nature+%28London%29&rft.au=Chung%2C+Won-Suk&rft.au=Clarke%2C+Laura+E&rft.au=Wang%2C+Gordon+X&rft.au=Stafford%2C+Benjamin+K&rft.date=2013-12-19&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=504&rft.issue=7480&rft.spage=394&rft_id=info:doi/10.1038%2Fnature12776&rft.externalDocID=A632496281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon