Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways
To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report...
Saved in:
Published in | Nature (London) Vol. 504; no. 7480; pp. 394 - 400 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.12.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/nature12776 |
Cover
Abstract | To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.
This study describes comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner; this elimination process involves the MEGF10 and MERTK phagocytic pathways and persists into adulthood, with mutant mice that lack these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development.
Astrocytes involved in synapse elimination
Synapse elimination is an important aspect of brain development in which the number of synaptic contacts is reduced in an activity-dependent manner. Glial cells — non-neural cells that perform a variety of roles in the brain — were recently shown to have a role in synapse remodelling, with the phagocytic microglia responsible for a certain proportion of connection refinement, with little else known regarding the mechanisms underlying this. Here, Won-Suk Chung
et al
. describe comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner. This elimination process involved the MEGF10 and MERTK phagocytic pathways, with transgenic animals lacking these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. These mechanisms also extend into adulthood. This work has implications for our understanding of learning and memory as well as neurological disease processes. |
---|---|
AbstractList | To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes. To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes. This study describes comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner; this elimination process involves the MEGF10 and MERTK phagocytic pathways and persists into adulthood, with mutant mice that lack these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. Astrocytes involved in synapse elimination Synapse elimination is an important aspect of brain development in which the number of synaptic contacts is reduced in an activity-dependent manner. Glial cells -- non-neural cells that perform a variety of roles in the brain -- were recently shown to have a role in synapse remodelling, with the phagocytic microglia responsible for a certain proportion of connection refinement, with little else known regarding the mechanisms underlying this. Here, Won-Suk Chung et al. describe comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner. This elimination process involved the MEGF10 and MERTK phagocytic pathways, with transgenic animals lacking these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. These mechanisms also extend into adulthood. This work has implications for our understanding of learning and memory as well as neurological disease processes. To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes. [PUBLICATION ABSTRACT] To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes. This study describes comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner; this elimination process involves the MEGF10 and MERTK phagocytic pathways and persists into adulthood, with mutant mice that lack these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. Astrocytes involved in synapse elimination Synapse elimination is an important aspect of brain development in which the number of synaptic contacts is reduced in an activity-dependent manner. Glial cells — non-neural cells that perform a variety of roles in the brain — were recently shown to have a role in synapse remodelling, with the phagocytic microglia responsible for a certain proportion of connection refinement, with little else known regarding the mechanisms underlying this. Here, Won-Suk Chung et al . describe comprehensive synaptic engulfment by astrocytes, mediating synapse elimination in an activity-dependent manner. This elimination process involved the MEGF10 and MERTK phagocytic pathways, with transgenic animals lacking these pathways in astrocytes exhibiting a failure to refine retinogeniculate connections during development. These mechanisms also extend into adulthood. This work has implications for our understanding of learning and memory as well as neurological disease processes. To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes. To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodeling. Recently microglial cells have been shown to be responsible for a portion of synaptic remodeling, but the remaining mechanisms remain mysterious. Here we report a new role for astrocytes in actively engulfing CNS synapses. This process helps to mediate synapse elimination, requires the Megf10 and Mertk phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to normally refine their retinogeniculate connections and retain excess functional synapses. Lastly, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify Megf10 and Mertk as critical players in the synapse remodeling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes. |
Audience | Academic |
Author | Chakraborty, Chandrani Wang, Gordon X. Chen, Chinfei Foo, Lynette C. Smith, Stephen J. Clarke, Laura E. Joung, Julia Stafford, Benjamin K. Chung, Won-Suk Barres, Ben A. Sher, Alexander Thompson, Andrew |
AuthorAffiliation | 2 Department of Molecular and Cellular Physiology, Stanford University, School of Medicine, Stanford, CA 94305, USA 3 Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA 5 Institute of Molecular and Cell Biology, AStar, 61 Biopolis Drive, Proteos Building, Singapore 138673 4 Santa Cruz Institute of Particle Physic and Department of Physics, University of California, Santa Cruz, CA 95064 6 Children's Hospital, Harvard Medical School, 300 Longwood Ave., CLS12250, Boston, MA 02115 1 Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA |
AuthorAffiliation_xml | – name: 3 Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA – name: 5 Institute of Molecular and Cell Biology, AStar, 61 Biopolis Drive, Proteos Building, Singapore 138673 – name: 1 Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA – name: 4 Santa Cruz Institute of Particle Physic and Department of Physics, University of California, Santa Cruz, CA 95064 – name: 6 Children's Hospital, Harvard Medical School, 300 Longwood Ave., CLS12250, Boston, MA 02115 – name: 2 Department of Molecular and Cellular Physiology, Stanford University, School of Medicine, Stanford, CA 94305, USA |
Author_xml | – sequence: 1 givenname: Won-Suk surname: Chung fullname: Chung, Won-Suk email: wschung@stanford.edu organization: Department of Neurobiology, Stanford University, School of Medicine – sequence: 2 givenname: Laura E. surname: Clarke fullname: Clarke, Laura E. organization: Department of Neurobiology, Stanford University, School of Medicine – sequence: 3 givenname: Gordon X. surname: Wang fullname: Wang, Gordon X. organization: Department of Molecular and Cellular Physiology, Stanford University, School of Medicine – sequence: 4 givenname: Benjamin K. surname: Stafford fullname: Stafford, Benjamin K. organization: Department of Ophthalmology and Visual Sciences, University of Michigan – sequence: 5 givenname: Alexander surname: Sher fullname: Sher, Alexander organization: Santa Cruz Institute of Particle Physic and Department of Physics, University of California – sequence: 6 givenname: Chandrani surname: Chakraborty fullname: Chakraborty, Chandrani organization: Department of Neurobiology, Stanford University, School of Medicine – sequence: 7 givenname: Julia surname: Joung fullname: Joung, Julia organization: Department of Neurobiology, Stanford University, School of Medicine – sequence: 8 givenname: Lynette C. surname: Foo fullname: Foo, Lynette C. organization: Institute of Molecular and Cell Biology, A Star, 61 Biopolis Drive, Proteos Building, 138673 Singapore – sequence: 9 givenname: Andrew surname: Thompson fullname: Thompson, Andrew organization: Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, CLS12250, Boston, Massachusetts 02115, USA – sequence: 10 givenname: Chinfei surname: Chen fullname: Chen, Chinfei organization: Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, CLS12250, Boston, Massachusetts 02115, USA – sequence: 11 givenname: Stephen J. surname: Smith fullname: Smith, Stephen J. organization: Department of Molecular and Cellular Physiology, Stanford University, School of Medicine – sequence: 12 givenname: Ben A. surname: Barres fullname: Barres, Ben A. organization: Department of Neurobiology, Stanford University, School of Medicine |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28051841$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24270812$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1v0zAUhi00xLrCFfcoYkICQYbtuI5zg1RN-xJDSGNcW65zknpK7c52gP57XNqxdopy4Sh-zuOT4_cIHVhnAaHXBJ8QXIjPVsXeA6FlyZ-hEWElzxkX5QEaYUxFjkXBD9FRCHcY4wkp2Qt0SBktsSB0hC6nIXqnVxFCtoDaqAhZWFm1DJBBZxYm2Y2zWZx717fz7NvZxTnBmbJ1er25_ZotVZz_VqvwEj1vVBfg1XYdo5_nZ7enl_n194ur0-l1rjmjMa-JmpDJDCsloBY1ZnXVzGpOJ7qAiuNmBpUWvGyKuuE6takLAqqaqKbCBScEijH6svEu-1lqWIONXnVy6c1C-ZV0ysj9HWvmsnW_ZFHxClOWBO-3Au_uewhRLkzQ0HXKguuDJKzCZcFIOnCMjp-gd673Nv1eotIARfLRR6pVHUhjG5fO1WupnPKCsopTQRKVD1AtWEhNpgttTPq8x78d4PXS3Mtd6GQASk8NC6MHrR_2ChIT4U9sVR-CvPpxs8--2Z30_xE_hCcB77aAClp1jVdWm_DIiRQ3wdYisuG0dyF4aKQ28V-sUremkwTLdZDlTpBTzccnNQ_aYfrThg6Jsi34nYsawP8CE2H_6A |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1096_fj_202001018R crossref_primary_10_1038_s41467_024_54376_x crossref_primary_10_1038_nature17630 crossref_primary_10_1038_s42003_023_04410_3 crossref_primary_10_1111_ejn_16160 crossref_primary_10_15252_embj_2020107121 crossref_primary_10_3389_fnana_2022_995369 crossref_primary_10_1038_s41380_023_02043_w crossref_primary_10_1021_acs_chemrestox_9b00368 crossref_primary_10_5607_en_2018_27_2_77 crossref_primary_10_19185_matters_201708000003 crossref_primary_10_1002_glia_23664 crossref_primary_10_3389_fopht_2023_1310226 crossref_primary_10_1002_dneu_22904 crossref_primary_10_3389_fncel_2020_585833 crossref_primary_10_1016_j_expneurol_2017_01_001 crossref_primary_10_1126_sciadv_ado8366 crossref_primary_10_1016_j_neuron_2015_01_014 crossref_primary_10_1126_sciadv_aba3239 crossref_primary_10_3390_ijms222413186 crossref_primary_10_1080_23262133_2016_1224453 crossref_primary_10_1038_s41467_018_03940_3 crossref_primary_10_1016_j_tins_2020_01_003 crossref_primary_10_1016_j_neuron_2014_07_034 crossref_primary_10_3389_fncel_2023_1188306 crossref_primary_10_1186_s12974_021_02373_y crossref_primary_10_1016_j_neuron_2014_07_040 crossref_primary_10_1038_s41593_022_01170_x crossref_primary_10_1016_j_neulet_2017_05_029 crossref_primary_10_1016_j_conb_2016_09_016 crossref_primary_10_1134_S0022093022030048 crossref_primary_10_1016_j_mad_2016_03_011 crossref_primary_10_1016_j_neuron_2014_07_005 crossref_primary_10_1177_1759091416630220 crossref_primary_10_2139_ssrn_3212831 crossref_primary_10_1016_j_bbi_2020_03_004 crossref_primary_10_3389_fnins_2015_00274 crossref_primary_10_1002_jnr_24954 crossref_primary_10_1016_j_tibs_2017_06_004 crossref_primary_10_1152_physrev_00020_2015 crossref_primary_10_1073_pnas_1604977113 crossref_primary_10_1111_joa_12948 crossref_primary_10_1371_journal_pgen_1006603 crossref_primary_10_1038_s41591_019_0383_9 crossref_primary_10_1038_s41593_024_01580_z crossref_primary_10_18632_oncotarget_1793 crossref_primary_10_1016_j_neurot_2025_e00540 crossref_primary_10_1523_ENEURO_0196_16_2016 crossref_primary_10_2174_0118715273269881231012062255 crossref_primary_10_1016_j_conb_2020_12_001 crossref_primary_10_3389_fnhum_2018_00209 crossref_primary_10_1186_s12974_020_01994_z crossref_primary_10_1016_j_pneurobio_2022_102338 crossref_primary_10_1016_j_tins_2019_05_011 crossref_primary_10_3389_fnmol_2017_00396 crossref_primary_10_3389_fnagi_2022_844534 crossref_primary_10_3389_fimmu_2020_01416 crossref_primary_10_3389_fimmu_2021_644294 crossref_primary_10_1016_j_immuni_2019_04_018 crossref_primary_10_1002_glia_23638 crossref_primary_10_1016_j_arr_2020_101128 crossref_primary_10_31083_j_fbl2904142 crossref_primary_10_1038_s41598_017_02348_1 crossref_primary_10_1111_jns_70014 crossref_primary_10_1038_s42003_024_07095_4 crossref_primary_10_1038_ncomms7768 crossref_primary_10_1002_glia_23630 crossref_primary_10_3389_fncel_2015_00437 crossref_primary_10_3389_fnmol_2017_00381 crossref_primary_10_1016_j_celrep_2017_12_039 crossref_primary_10_1016_j_neuroscience_2023_01_028 crossref_primary_10_1016_j_neures_2017_08_009 crossref_primary_10_1016_j_celrep_2022_110328 crossref_primary_10_3389_fimmu_2021_640937 crossref_primary_10_1038_s41467_017_01283_z crossref_primary_10_1080_01677063_2020_1726915 crossref_primary_10_1007_s12035_024_04064_0 crossref_primary_10_4199_C00123ED1V01Y201501NGL004 crossref_primary_10_1007_s12264_022_00981_z crossref_primary_10_1002_glia_23625 crossref_primary_10_1002_glia_23867 crossref_primary_10_3389_fneur_2020_572850 crossref_primary_10_7554_eLife_58499 crossref_primary_10_1371_journal_pbio_3001444 crossref_primary_10_3389_fmed_2019_00267 crossref_primary_10_3389_fncel_2024_1512985 crossref_primary_10_3390_ijms22041692 crossref_primary_10_1055_s_0043_1770352 crossref_primary_10_1038_nrn3898 crossref_primary_10_1016_j_jsbmb_2014_02_018 crossref_primary_10_2147_JIR_S410562 crossref_primary_10_1038_nm_4106 crossref_primary_10_1186_s12974_018_1134_4 crossref_primary_10_1186_s12974_019_1553_x crossref_primary_10_1016_j_neuron_2023_11_008 crossref_primary_10_1084_jem_20212476 crossref_primary_10_1146_annurev_neuro_110920_022431 crossref_primary_10_1101_gad_305888_117 crossref_primary_10_3389_fncel_2015_00414 crossref_primary_10_3389_fnmol_2020_00151 crossref_primary_10_1021_acschemneuro_4c00183 crossref_primary_10_1021_acs_jafc_4c05425 crossref_primary_10_1038_srep20685 crossref_primary_10_3389_fpsyt_2019_00573 crossref_primary_10_1016_j_immuni_2022_03_018 crossref_primary_10_1002_1873_3468_13348 crossref_primary_10_1016_j_brainresbull_2016_08_017 crossref_primary_10_1002_cne_24462 crossref_primary_10_4199_C00156ED1V01Y201708NGL010 crossref_primary_10_3390_brainsci12111435 crossref_primary_10_1371_journal_pone_0289169 crossref_primary_10_1038_s41598_020_66321_1 crossref_primary_10_1016_j_brainresbull_2016_08_012 crossref_primary_10_1002_mnfr_202101170 crossref_primary_10_1016_j_conb_2017_10_008 crossref_primary_10_1038_s41467_024_44704_6 crossref_primary_10_1038_s41577_020_00487_7 crossref_primary_10_1001_jamaneurol_2023_3530 crossref_primary_10_3389_fncel_2021_718324 crossref_primary_10_3390_ijms23010149 crossref_primary_10_1016_j_cell_2019_11_016 crossref_primary_10_1016_j_neuroscience_2025_02_029 crossref_primary_10_1007_s12035_024_04345_8 crossref_primary_10_4103_1673_5374_266904 crossref_primary_10_1016_j_neuron_2023_05_031 crossref_primary_10_1016_j_freeradbiomed_2022_02_020 crossref_primary_10_1042_BSR20210593 crossref_primary_10_1192_bja_2017_27 crossref_primary_10_3390_cells13060498 crossref_primary_10_1002_glia_23270 crossref_primary_10_1161_STROKEAHA_124_049079 crossref_primary_10_3390_cells10051025 crossref_primary_10_1093_braincomms_fcac286 crossref_primary_10_4103_1673_5374_320999 crossref_primary_10_1002_glia_24358 crossref_primary_10_1016_j_stemcr_2023_01_012 crossref_primary_10_1002_jat_4037 crossref_primary_10_1038_s41380_024_02534_4 crossref_primary_10_1016_j_nbd_2019_104517 crossref_primary_10_1002_glia_24114 crossref_primary_10_3389_fnagi_2020_00096 crossref_primary_10_14336_AD_2024_0373 crossref_primary_10_1113_JP284197 crossref_primary_10_1212_NXG_0000000000200142 crossref_primary_10_1007_s10571_020_00876_5 crossref_primary_10_1515_nf_2016_1105 crossref_primary_10_1124_jpet_117_241653 crossref_primary_10_1016_j_conb_2017_10_022 crossref_primary_10_1002_glia_23252 crossref_primary_10_1002_glia_24582 crossref_primary_10_1042_BST20140171 crossref_primary_10_1002_glia_24101 crossref_primary_10_1002_glia_24343 crossref_primary_10_1016_j_neurobiolaging_2017_03_002 crossref_primary_10_1101_cshperspect_a029009 crossref_primary_10_3389_fnana_2017_00075 crossref_primary_10_3389_fimmu_2018_02576 crossref_primary_10_1016_j_neuron_2017_04_043 crossref_primary_10_1146_annurev_physiol_021317_121125 crossref_primary_10_3390_biom13040692 crossref_primary_10_1007_s11064_022_03820_9 crossref_primary_10_1111_jnc_16006 crossref_primary_10_1111_nyas_12711 crossref_primary_10_1007_s10974_024_09686_4 crossref_primary_10_1016_j_neuropharm_2019_03_022 crossref_primary_10_1101_cshperspect_a041352 crossref_primary_10_1016_j_expneurol_2020_113481 crossref_primary_10_1074_jbc_M115_699058 crossref_primary_10_1111_jnc_16252 crossref_primary_10_7554_eLife_34241 crossref_primary_10_1016_j_pneurobio_2019_101644 crossref_primary_10_1016_j_celrep_2019_05_088 crossref_primary_10_1016_j_jconrel_2023_08_060 crossref_primary_10_1038_s42003_025_07729_1 crossref_primary_10_1016_j_jconrel_2023_07_028 crossref_primary_10_1007_s12035_024_04449_1 crossref_primary_10_1111_jnc_16258 crossref_primary_10_1016_j_bbi_2023_03_028 crossref_primary_10_1073_pnas_1710566114 crossref_primary_10_1172_JCI90608 crossref_primary_10_1002_adbi_202200122 crossref_primary_10_1007_s13311_018_0631_6 crossref_primary_10_3389_fncel_2022_899251 crossref_primary_10_1002_glia_24323 crossref_primary_10_3389_fcell_2023_1170551 crossref_primary_10_1016_j_coph_2015_10_002 crossref_primary_10_14336_AD_2023_0907 crossref_primary_10_1016_j_lfs_2018_07_033 crossref_primary_10_15252_embj_2020105380 crossref_primary_10_1002_advs_202301574 crossref_primary_10_1523_JNEUROSCI_2479_17_2018 crossref_primary_10_1016_j_neuroscience_2025_03_033 crossref_primary_10_1016_j_celrep_2016_07_022 crossref_primary_10_1016_j_celrep_2018_09_015 crossref_primary_10_1038_s41467_018_03566_5 crossref_primary_10_1371_journal_pone_0279736 crossref_primary_10_1016_j_nbd_2023_106231 crossref_primary_10_3390_ijms21093219 crossref_primary_10_3390_ijms25105299 crossref_primary_10_1016_j_neuron_2017_03_042 crossref_primary_10_1038_s41398_023_02372_y crossref_primary_10_3390_neurolint17030041 crossref_primary_10_1007_s10286_022_00907_9 crossref_primary_10_1111_imr_12376 crossref_primary_10_1523_JNEUROSCI_1376_23_2023 crossref_primary_10_1182_blood_2016_05_718999 crossref_primary_10_1371_journal_pgen_1005723 crossref_primary_10_1016_j_immuni_2019_12_004 crossref_primary_10_1038_s43587_022_00281_1 crossref_primary_10_1016_j_cellsig_2024_111113 crossref_primary_10_3389_fncel_2016_00021 crossref_primary_10_1111_bpa_12537 crossref_primary_10_3389_fcell_2021_687732 crossref_primary_10_1111_bpa_12536 crossref_primary_10_1002_cne_24852 crossref_primary_10_1097_MIB_0000000000000050 crossref_primary_10_1038_s41583_021_00507_y crossref_primary_10_1242_dmm_049843 crossref_primary_10_3389_fcell_2021_660259 crossref_primary_10_15252_embj_2019104136 crossref_primary_10_3389_fnsyn_2023_1129036 crossref_primary_10_1016_j_neuron_2020_12_008 crossref_primary_10_1159_000541379 crossref_primary_10_1111_boc_202300057 crossref_primary_10_1002_alz_13682 crossref_primary_10_1002_glia_23687 crossref_primary_10_1002_glia_23688 crossref_primary_10_1016_j_bbi_2023_03_015 crossref_primary_10_1016_j_xcrm_2023_101175 crossref_primary_10_1038_nn_4142 crossref_primary_10_3233_RNN_160708 crossref_primary_10_1002_jnr_24922 crossref_primary_10_4049_jimmunol_1800249 crossref_primary_10_1096_fj_202100637R crossref_primary_10_1093_neuonc_nox111 crossref_primary_10_3389_fnagi_2018_00114 crossref_primary_10_1126_scitranslmed_abi8593 crossref_primary_10_1007_s13365_014_0287_x crossref_primary_10_1016_j_cell_2024_08_019 crossref_primary_10_1002_glia_22901 crossref_primary_10_1111_febs_16816 crossref_primary_10_1016_j_celrep_2018_10_075 crossref_primary_10_1523_JNEUROSCI_0357_23_2023 crossref_primary_10_1523_JNEUROSCI_1135_17_2017 crossref_primary_10_3389_fimmu_2021_790201 crossref_primary_10_1016_j_yfrne_2020_100897 crossref_primary_10_1523_JNEUROSCI_0407_21_2021 crossref_primary_10_1017_S0952523817000104 crossref_primary_10_1016_j_tins_2023_11_010 crossref_primary_10_1016_j_nbd_2020_105008 crossref_primary_10_1073_pnas_1506486112 crossref_primary_10_1186_s13024_016_0089_0 crossref_primary_10_3233_BPL_210125 crossref_primary_10_7554_eLife_45545 crossref_primary_10_1073_pnas_2107427118 crossref_primary_10_1089_rej_2017_1999 crossref_primary_10_1186_s12974_021_02201_3 crossref_primary_10_1038_nm_3974 crossref_primary_10_1002_dneu_22351 crossref_primary_10_1016_j_brainres_2014_09_008 crossref_primary_10_1016_j_conb_2017_08_017 crossref_primary_10_1152_physrev_00042_2016 crossref_primary_10_3390_neuroglia1020023 crossref_primary_10_1016_j_phrs_2024_107114 crossref_primary_10_3238_PersNeuro_2016_04_15_05 crossref_primary_10_3389_fncel_2023_1166199 crossref_primary_10_1016_j_nbd_2020_105224 crossref_primary_10_1038_s41593_024_01818_w crossref_primary_10_1016_j_cub_2016_05_025 crossref_primary_10_1111_jnc_70009 crossref_primary_10_1038_srep43859 crossref_primary_10_3390_ijms25021160 crossref_primary_10_1016_j_ajpath_2014_06_018 crossref_primary_10_1038_nrc3847 crossref_primary_10_1038_s41401_019_0300_2 crossref_primary_10_3390_ijms21197299 crossref_primary_10_1038_s41598_021_81933_x crossref_primary_10_1016_j_bbi_2020_08_017 crossref_primary_10_1038_s41467_025_57577_0 crossref_primary_10_1111_jnc_15689 crossref_primary_10_1007_s11302_025_10066_x crossref_primary_10_1177_07487304231178950 crossref_primary_10_1042_BST20140155 crossref_primary_10_1186_s12974_022_02516_9 crossref_primary_10_3389_fneur_2018_01161 crossref_primary_10_1007_s12035_023_03797_8 crossref_primary_10_3233_RNN_160676 crossref_primary_10_1016_j_bbrc_2014_07_061 crossref_primary_10_1152_ajpcell_00333_2018 crossref_primary_10_14336_AD_2022_0212 crossref_primary_10_1007_s12035_022_03100_1 crossref_primary_10_1038_s41467_018_07291_x crossref_primary_10_1074_mcp_R115_053744 crossref_primary_10_3389_fneur_2021_672455 crossref_primary_10_1002_advs_202400480 crossref_primary_10_1016_j_devcel_2015_01_018 crossref_primary_10_1073_pnas_2115539118 crossref_primary_10_1016_j_tcb_2019_11_004 crossref_primary_10_1016_j_nlm_2016_10_013 crossref_primary_10_1016_j_gpb_2016_04_003 crossref_primary_10_1111_bpa_13253 crossref_primary_10_1186_s12974_024_03122_7 crossref_primary_10_1002_wsbm_1557 crossref_primary_10_12688_f1000research_18903_1 crossref_primary_10_1016_j_neuron_2015_12_024 crossref_primary_10_1124_jpet_124_002254 crossref_primary_10_1016_j_immuni_2022_07_014 crossref_primary_10_1016_j_preteyeres_2015_06_003 crossref_primary_10_3390_ijms232214104 crossref_primary_10_1016_j_cell_2025_02_022 crossref_primary_10_1016_j_jgr_2024_12_008 crossref_primary_10_1007_s12035_020_01879_5 crossref_primary_10_1126_scitranslmed_aaa5645 crossref_primary_10_1007_s11051_020_04856_0 crossref_primary_10_3389_fcell_2020_573487 crossref_primary_10_1002_wsbm_1545 crossref_primary_10_1007_s00401_023_02604_x crossref_primary_10_1080_15622975_2021_1961503 crossref_primary_10_3389_fncel_2017_00190 crossref_primary_10_1371_journal_pone_0094549 crossref_primary_10_1038_s43587_022_00257_1 crossref_primary_10_7554_eLife_42455 crossref_primary_10_1523_JNEUROSCI_3613_14_2015 crossref_primary_10_3390_cells11233768 crossref_primary_10_1002_ana_26150 crossref_primary_10_1371_journal_pcbi_1009531 crossref_primary_10_1016_j_bbadis_2015_10_013 crossref_primary_10_1186_s12974_017_1018_z crossref_primary_10_3389_fnagi_2019_00059 crossref_primary_10_3233_BPL_200102 crossref_primary_10_1016_j_neurot_2024_e00425 crossref_primary_10_1038_s41588_018_0254_1 crossref_primary_10_1016_j_celrep_2023_113137 crossref_primary_10_1002_glia_23169 crossref_primary_10_1007_s00795_018_0193_z crossref_primary_10_1039_D1SC03486C crossref_primary_10_3390_cells10071728 crossref_primary_10_1002_glia_24494 crossref_primary_10_1007_s12035_022_03133_6 crossref_primary_10_1038_s41419_018_0381_8 crossref_primary_10_1016_j_devcel_2018_12_019 crossref_primary_10_1038_s41423_020_00585_5 crossref_primary_10_15252_embj_2020104464 crossref_primary_10_1038_srep12258 crossref_primary_10_1146_annurev_neuro_070918_050306 crossref_primary_10_1186_s13041_019_0478_8 crossref_primary_10_1016_j_tcb_2016_02_006 crossref_primary_10_1002_jnr_23483 crossref_primary_10_1007_s11357_023_01014_x crossref_primary_10_3390_ijms241311112 crossref_primary_10_1186_s13024_016_0098_z crossref_primary_10_1016_j_neuron_2015_11_013 crossref_primary_10_1186_s40478_019_0754_y crossref_primary_10_1371_journal_pbio_1001985 crossref_primary_10_1016_j_neubiorev_2024_105559 crossref_primary_10_1016_j_neures_2020_11_005 crossref_primary_10_3390_cells13242037 crossref_primary_10_1186_s12868_022_00710_2 crossref_primary_10_1093_schizbullopen_sgab003 crossref_primary_10_1523_JNEUROSCI_1295_17_2017 crossref_primary_10_7554_eLife_62273 crossref_primary_10_7554_eLife_15043 crossref_primary_10_1073_pnas_1519156113 crossref_primary_10_1093_braincomms_fcaf092 crossref_primary_10_1073_pnas_1525528113 crossref_primary_10_1038_s41467_022_31773_8 crossref_primary_10_3390_ijms24032601 crossref_primary_10_1016_j_neuron_2018_09_017 crossref_primary_10_1016_j_physbeh_2023_114286 crossref_primary_10_1016_j_molmed_2015_09_003 crossref_primary_10_3390_ijms25010665 crossref_primary_10_3390_ijms21239188 crossref_primary_10_1002_bies_201900185 crossref_primary_10_1096_fj_201802592 crossref_primary_10_15252_embj_2022111790 crossref_primary_10_1038_srep20762 crossref_primary_10_1016_j_jbc_2021_100411 crossref_primary_10_3389_fnmol_2014_00073 crossref_primary_10_1080_01677063_2018_1464568 crossref_primary_10_3390_ijms19092834 crossref_primary_10_1038_s41582_022_00749_z crossref_primary_10_1073_pnas_1717871115 crossref_primary_10_1038_s41583_022_00641_1 crossref_primary_10_1016_j_msard_2020_102319 crossref_primary_10_1097_j_pain_0000000000001248 crossref_primary_10_1101_gad_229518_113 crossref_primary_10_1007_s12264_021_00690_z crossref_primary_10_1098_rstb_2015_0428 crossref_primary_10_1089_neu_2019_6938 crossref_primary_10_1016_j_expneurol_2015_03_020 crossref_primary_10_1146_annurev_immunol_032414_112103 crossref_primary_10_1002_dneu_22777 crossref_primary_10_1038_s41467_017_00037_1 crossref_primary_10_1161_CIRCRESAHA_121_319812 crossref_primary_10_1371_journal_pbio_3002822 crossref_primary_10_1146_annurev_cellbio_100913_012953 crossref_primary_10_3390_ani14192900 crossref_primary_10_1016_j_pnpbp_2017_11_020 crossref_primary_10_1007_s12264_024_01199_x crossref_primary_10_1016_j_stem_2019_03_023 crossref_primary_10_1038_npp_2016_199 crossref_primary_10_1016_j_celrep_2022_110600 crossref_primary_10_1002_hbm_26315 crossref_primary_10_1073_pnas_2211326119 crossref_primary_10_14336_AD_2022_0621 crossref_primary_10_1016_j_neuroscience_2024_04_003 crossref_primary_10_1016_j_ijdevneu_2016_06_005 crossref_primary_10_3390_genes12020259 crossref_primary_10_3390_ijms241813880 crossref_primary_10_1016_j_stemcr_2017_06_018 crossref_primary_10_3389_fphar_2022_881195 crossref_primary_10_3390_biom14080964 crossref_primary_10_3390_ijms221910553 crossref_primary_10_1038_s41419_017_0153_x crossref_primary_10_15252_embj_201695861 crossref_primary_10_3389_fimmu_2023_1130172 crossref_primary_10_7554_eLife_62232 crossref_primary_10_1038_s41380_021_01080_7 crossref_primary_10_1016_j_pharmthera_2020_107577 crossref_primary_10_1016_j_nbd_2020_105015 crossref_primary_10_1186_s13041_023_01059_1 crossref_primary_10_1371_journal_pone_0110482 crossref_primary_10_1083_jcb_201605046 crossref_primary_10_1101_gad_328633_119 crossref_primary_10_1155_2016_1681590 crossref_primary_10_1016_j_isci_2021_102806 crossref_primary_10_1111_cns_14223 crossref_primary_10_3390_biomedicines10112982 crossref_primary_10_1093_jnen_nly033 crossref_primary_10_1016_j_tem_2016_12_001 crossref_primary_10_1155_2022_4754935 crossref_primary_10_1097_CM9_0000000000003363 crossref_primary_10_4103_1673_5374_385854 crossref_primary_10_3389_fped_2021_794544 crossref_primary_10_1111_jnc_14548 crossref_primary_10_1093_cercor_bhaf029 crossref_primary_10_1016_j_jare_2024_01_006 crossref_primary_10_1038_srep07989 crossref_primary_10_1016_j_conb_2017_09_007 crossref_primary_10_1016_j_neubiorev_2021_09_020 crossref_primary_10_1186_s12974_020_1729_4 crossref_primary_10_1038_s41380_022_01486_x crossref_primary_10_1038_s41467_021_24232_3 crossref_primary_10_1038_s41582_023_00822_1 crossref_primary_10_1016_j_jphs_2020_12_007 crossref_primary_10_1038_s41398_025_03228_3 crossref_primary_10_1016_j_tins_2022_06_009 crossref_primary_10_1084_jem_20180199 crossref_primary_10_1155_2019_2387614 crossref_primary_10_1007_s00429_015_1070_3 crossref_primary_10_1016_j_brainres_2020_146818 crossref_primary_10_1002_cne_25485 crossref_primary_10_1016_j_neuropharm_2025_110383 crossref_primary_10_3390_ijms22020814 crossref_primary_10_1002_glia_23791 crossref_primary_10_1177_0271678X221137762 crossref_primary_10_1002_jnr_24611 crossref_primary_10_1007_s12035_020_02008_y crossref_primary_10_3390_ijms222212531 crossref_primary_10_7554_eLife_63532 crossref_primary_10_3389_fopht_2023_1217137 crossref_primary_10_3389_fimmu_2021_750665 crossref_primary_10_1016_j_neulet_2018_07_021 crossref_primary_10_1523_ENEURO_0288_18_2019 crossref_primary_10_3390_ijms23031134 crossref_primary_10_1016_j_it_2015_04_007 crossref_primary_10_1186_s12974_025_03410_w crossref_primary_10_3389_fncel_2018_00239 crossref_primary_10_3389_fphar_2021_707859 crossref_primary_10_1002_glia_24637 crossref_primary_10_3390_cells10061348 crossref_primary_10_1146_annurev_cellbio_100913_013038 crossref_primary_10_3390_ijms25031899 crossref_primary_10_1016_j_euroneuro_2020_09_550 crossref_primary_10_3390_cells12010063 crossref_primary_10_1161_STROKEAHA_117_020461 crossref_primary_10_3390_ijms21186867 crossref_primary_10_3389_fncel_2022_949079 crossref_primary_10_1016_j_molcel_2021_02_025 crossref_primary_10_1186_s40478_014_0135_5 crossref_primary_10_1093_schbul_sby088 crossref_primary_10_1002_cne_25261 crossref_primary_10_3389_fncel_2020_573944 crossref_primary_10_1002_glia_24623 crossref_primary_10_1016_j_preteyeres_2020_100846 crossref_primary_10_1038_s41419_018_1155_z crossref_primary_10_1016_j_it_2020_07_006 crossref_primary_10_1016_j_it_2020_07_007 crossref_primary_10_1038_s41467_022_34184_x crossref_primary_10_1073_pnas_1403450111 crossref_primary_10_1172_JCI95769 crossref_primary_10_1016_j_neuroscience_2024_11_059 crossref_primary_10_1038_s41583_023_00760_3 crossref_primary_10_1016_j_neuint_2020_104901 crossref_primary_10_1073_pnas_1800165115 crossref_primary_10_1016_j_bbr_2019_111950 crossref_primary_10_1016_j_celrep_2024_114385 crossref_primary_10_1523_JNEUROSCI_2449_14_2014 crossref_primary_10_1038_s41598_021_86133_1 crossref_primary_10_3390_cells12232761 crossref_primary_10_1016_j_neuron_2016_12_021 crossref_primary_10_1042_EBC20220079 crossref_primary_10_1002_dneu_22804 crossref_primary_10_1016_j_micron_2019_102732 crossref_primary_10_56082_annalsarscibio_2020_1_65 crossref_primary_10_1007_s12264_018_0262_2 crossref_primary_10_1016_j_neuint_2018_01_007 crossref_primary_10_1038_nri_2017_125 crossref_primary_10_1038_s41593_024_01833_x crossref_primary_10_1016_j_ejphar_2023_176048 crossref_primary_10_1038_nrn_2017_110 crossref_primary_10_4137_JEN_S39916 crossref_primary_10_2174_1570159X22666240128102039 crossref_primary_10_3389_fncel_2018_00261 crossref_primary_10_1002_wdev_241 crossref_primary_10_1016_j_ynstr_2015_01_001 crossref_primary_10_1073_pnas_2117557118 crossref_primary_10_1016_j_cub_2014_06_025 crossref_primary_10_1002_glia_23994 crossref_primary_10_1002_glia_24602 crossref_primary_10_1002_glia_23759 crossref_primary_10_1111_ejn_14900 crossref_primary_10_1117_1_NPh_1_1_011014 crossref_primary_10_1523_JNEUROSCI_3850_15_2016 crossref_primary_10_1016_j_neures_2022_04_008 crossref_primary_10_1212_WNL_0000000000003019 crossref_primary_10_1038_s41593_023_01311_w crossref_primary_10_1016_j_neuron_2022_10_032 crossref_primary_10_1038_nn_4087 crossref_primary_10_1016_j_brainres_2021_147464 crossref_primary_10_1038_s41467_022_28777_9 crossref_primary_10_3389_fphys_2022_814889 crossref_primary_10_1038_s41586_020_03060_3 crossref_primary_10_1007_s12015_022_10497_8 crossref_primary_10_1073_pnas_1520639112 crossref_primary_10_1152_physrev_00041_2013 crossref_primary_10_1007_s13205_023_03743_4 crossref_primary_10_1016_j_expneurol_2022_114228 crossref_primary_10_1073_pnas_1404651111 crossref_primary_10_1016_j_pneurobio_2020_101899 crossref_primary_10_1111_cei_13334 crossref_primary_10_1016_j_tins_2023_05_007 crossref_primary_10_1111_cns_14744 crossref_primary_10_3389_fncel_2019_00063 crossref_primary_10_3389_fimmu_2021_661974 crossref_primary_10_3389_fnins_2022_946822 crossref_primary_10_1016_j_neuron_2021_06_010 crossref_primary_10_1007_s12035_024_04208_2 crossref_primary_10_3389_fneur_2022_844497 crossref_primary_10_1093_jleuko_qiae098 crossref_primary_10_3389_fncel_2021_709917 crossref_primary_10_1002_glia_22873 crossref_primary_10_1016_j_neuint_2014_07_008 crossref_primary_10_1002_dneu_22848 crossref_primary_10_1088_1741_2552_acec13 crossref_primary_10_1146_annurev_cellbio_100913_013053 crossref_primary_10_3390_genes13010021 crossref_primary_10_1134_S0006297922090012 crossref_primary_10_3389_fnins_2015_00344 crossref_primary_10_1086_710389 crossref_primary_10_1016_j_neuint_2020_104715 crossref_primary_10_1186_s12974_019_1489_1 crossref_primary_10_3389_fncir_2025_1541926 crossref_primary_10_1038_ncomms14355 crossref_primary_10_1038_s42003_024_05833_2 crossref_primary_10_3390_ijms21249441 crossref_primary_10_1016_j_nbd_2019_104647 crossref_primary_10_1002_glia_24002 crossref_primary_10_1002_glia_24244 crossref_primary_10_3389_fncel_2019_00042 crossref_primary_10_1016_j_cell_2018_10_049 crossref_primary_10_1002_dvdy_24565 crossref_primary_10_1523_ENEURO_0323_23_2023 crossref_primary_10_1111_cen3_12476 crossref_primary_10_1016_j_cell_2015_12_056 crossref_primary_10_1007_s00281_022_00931_x crossref_primary_10_1084_jem_20180200 crossref_primary_10_1002_stem_1864 crossref_primary_10_1038_s41413_022_00199_9 crossref_primary_10_1038_s41583_018_0080_6 crossref_primary_10_1002_glia_23143 crossref_primary_10_1038_s41380_023_02386_4 crossref_primary_10_3389_fnmol_2023_1169320 crossref_primary_10_1038_s41593_024_01726_z crossref_primary_10_1073_pnas_1512202112 crossref_primary_10_1016_j_immuni_2021_01_013 crossref_primary_10_1111_jne_12726 crossref_primary_10_1080_1061186X_2024_2443144 crossref_primary_10_1093_cercor_bhab263 crossref_primary_10_1080_19336896_2021_1930852 crossref_primary_10_3389_fcell_2023_1193130 crossref_primary_10_3390_cells9102173 crossref_primary_10_1016_j_exer_2020_108017 crossref_primary_10_1111_acer_12913 crossref_primary_10_1016_j_conb_2023_102692 crossref_primary_10_1523_JNEUROSCI_4274_14_2015 crossref_primary_10_1371_journal_pone_0086178 crossref_primary_10_3389_fnmol_2021_729273 crossref_primary_10_1016_j_pneurobio_2015_10_001 crossref_primary_10_1002_jcsm_12599 crossref_primary_10_1007_s00018_019_03314_y crossref_primary_10_3389_fncel_2020_00187 crossref_primary_10_1016_j_semcdb_2014_08_008 crossref_primary_10_3389_fncel_2023_1257347 crossref_primary_10_1007_s12035_024_04181_w crossref_primary_10_1016_j_tins_2014_08_011 crossref_primary_10_1002_alz_12442 crossref_primary_10_1016_j_neuropharm_2025_110304 crossref_primary_10_1093_braincomms_fcz028 crossref_primary_10_1254_fpj_23004 crossref_primary_10_1038_s41598_017_11410_x crossref_primary_10_1007_s12264_024_01258_3 crossref_primary_10_1073_pnas_1617782114 crossref_primary_10_1016_j_neuron_2019_12_014 crossref_primary_10_1002_glia_24449 crossref_primary_10_4103_1673_5374_239449 crossref_primary_10_1038_cddis_2017_40 crossref_primary_10_3389_fimmu_2019_00790 crossref_primary_10_1523_JNEUROSCI_0740_19_2019 crossref_primary_10_1016_j_tcb_2018_01_004 crossref_primary_10_1186_s13041_017_0321_z crossref_primary_10_3344_kjp_23284 crossref_primary_10_1177_10738584231170167 crossref_primary_10_3389_fimmu_2018_00698 crossref_primary_10_1007_s44192_023_00050_5 crossref_primary_10_1007_s00406_022_01532_3 crossref_primary_10_3389_fnins_2024_1434945 crossref_primary_10_1371_journal_pone_0128431 crossref_primary_10_1038_ni_3253 crossref_primary_10_1093_g3journal_jkad114 crossref_primary_10_1007_s11064_024_04241_6 crossref_primary_10_1186_s13229_017_0181_5 crossref_primary_10_3390_ijms24020912 crossref_primary_10_3390_biomedicines9070823 crossref_primary_10_1038_s41583_023_00744_3 crossref_primary_10_1016_j_neuropharm_2021_108806 crossref_primary_10_1038_s41467_021_27248_x crossref_primary_10_1002_glia_24433 crossref_primary_10_1186_s13024_024_00703_1 crossref_primary_10_3389_fnagi_2020_00172 crossref_primary_10_1093_brain_aww298 crossref_primary_10_1038_s41582_025_01073_y crossref_primary_10_1038_mp_2016_220 crossref_primary_10_1002_glia_23334 crossref_primary_10_1016_j_celrep_2022_111398 crossref_primary_10_3389_fbioe_2020_00912 crossref_primary_10_1038_s41467_017_00384_z crossref_primary_10_3389_fimmu_2020_566892 crossref_primary_10_1016_j_nbd_2020_104963 crossref_primary_10_2217_epi_14_53 crossref_primary_10_1186_s10194_024_01791_6 crossref_primary_10_1016_j_cellsig_2024_111224 crossref_primary_10_3390_jcm10061214 crossref_primary_10_1038_s41398_022_02265_6 crossref_primary_10_1523_JNEUROSCI_3981_16_2017 crossref_primary_10_1016_j_celrep_2022_111161 crossref_primary_10_3389_fcell_2024_1418100 crossref_primary_10_1002_glia_24650 crossref_primary_10_1146_annurev_neuro_071714_033842 crossref_primary_10_1038_s41380_021_01174_2 crossref_primary_10_1016_j_stem_2024_12_011 crossref_primary_10_3233_JAD_240042 crossref_primary_10_1111_acel_13981 crossref_primary_10_1523_JNEUROSCI_0862_17_2017 crossref_primary_10_1111_cts_70111 crossref_primary_10_3389_fncel_2020_00213 crossref_primary_10_1194_jlr_M056580 crossref_primary_10_1113_JP286400 crossref_primary_10_1016_j_conb_2018_10_001 crossref_primary_10_1017_S1092852919001603 crossref_primary_10_1007_s12035_024_04049_z crossref_primary_10_1073_pnas_2202580119 crossref_primary_10_1177_23982128211009148 crossref_primary_10_4049_jimmunol_1502532 crossref_primary_10_1146_annurev_genet_112618_043515 crossref_primary_10_7554_eLife_70514 crossref_primary_10_1186_s13024_019_0314_8 crossref_primary_10_2174_1567205016666190830110152 crossref_primary_10_3389_fcell_2022_1036123 crossref_primary_10_1016_j_celrep_2016_04_011 crossref_primary_10_1016_j_visres_2024_108461 crossref_primary_10_1111_ene_14058 crossref_primary_10_1038_nature18283 crossref_primary_10_17650_2222_1468_2023_13_2_57_64 crossref_primary_10_1038_s41573_023_00823_1 crossref_primary_10_1126_scitranslmed_adi7828 crossref_primary_10_1371_journal_pone_0100196 crossref_primary_10_1007_s00401_015_1513_1 crossref_primary_10_1093_brain_awab011 crossref_primary_10_3390_ijms24021639 crossref_primary_10_1523_JNEUROSCI_0983_17_2017 crossref_primary_10_1038_s41598_021_84210_z crossref_primary_10_1093_brain_awab250 crossref_primary_10_1038_s12276_019_0326_z crossref_primary_10_1016_j_conb_2023_102732 crossref_primary_10_1016_j_neuron_2017_09_056 crossref_primary_10_1021_acs_analchem_4c04893 crossref_primary_10_1016_j_nbd_2023_106264 crossref_primary_10_1016_j_neures_2022_09_007 crossref_primary_10_1523_JNEUROSCI_0829_15_2015 crossref_primary_10_3390_cells10071812 crossref_primary_10_3389_fncir_2016_00026 crossref_primary_10_1177_24705470211029254 crossref_primary_10_3389_fncel_2023_1352130 crossref_primary_10_1016_j_celrep_2023_112117 crossref_primary_10_3389_fcell_2016_00107 crossref_primary_10_1007_s00018_020_03673_x crossref_primary_10_1016_j_nbd_2025_106857 crossref_primary_10_3390_cells11121943 crossref_primary_10_1523_JNEUROSCI_0789_18_2018 crossref_primary_10_3389_fncir_2022_826664 crossref_primary_10_3390_biom12050666 crossref_primary_10_1038_s41392_024_01738_y crossref_primary_10_1007_s00018_020_03586_9 crossref_primary_10_1002_glia_24179 crossref_primary_10_7554_eLife_100989_3 crossref_primary_10_1016_j_neures_2022_09_015 crossref_primary_10_1155_2018_2530414 crossref_primary_10_1016_j_exer_2018_07_011 crossref_primary_10_1042_NS20180203 crossref_primary_10_3390_ijms25137393 crossref_primary_10_1016_j_bbi_2024_08_010 crossref_primary_10_1186_s13287_023_03614_y crossref_primary_10_1016_S2215_0366_18_30049_X crossref_primary_10_1101_cshperspect_a041347 crossref_primary_10_1016_j_neuroscience_2014_09_031 crossref_primary_10_1186_s12964_019_0461_0 crossref_primary_10_1002_advs_202300876 crossref_primary_10_1002_glia_24163 crossref_primary_10_1213_ANE_0000000000007330 crossref_primary_10_3389_fendo_2018_00205 crossref_primary_10_1101_cshperspect_a041346 crossref_primary_10_1515_hsz_2019_0199 crossref_primary_10_1021_acsanm_3c02719 crossref_primary_10_1038_s41577_018_0051_1 crossref_primary_10_1111_jnc_14486 crossref_primary_10_1515_mr_2022_0006 crossref_primary_10_1016_j_pharmthera_2018_03_002 crossref_primary_10_1038_s41598_024_59942_3 crossref_primary_10_1038_s41591_023_02566_3 crossref_primary_10_3389_fnins_2021_674563 crossref_primary_10_1007_s00018_019_03111_7 crossref_primary_10_1038_s41380_022_01506_w crossref_primary_10_1007_s11064_021_03256_7 crossref_primary_10_1016_j_neuron_2018_12_006 crossref_primary_10_3233_JAD_230658 crossref_primary_10_1177_1073858418769644 crossref_primary_10_1186_s13024_022_00584_2 crossref_primary_10_1016_j_neures_2022_10_002 crossref_primary_10_7554_eLife_23611 crossref_primary_10_1016_j_neuroscience_2017_05_033 crossref_primary_10_3390_ijms252011245 crossref_primary_10_1177_10738584231163460 crossref_primary_10_3233_JAD_161123 crossref_primary_10_3389_fgene_2022_877278 crossref_primary_10_1002_glia_24148 crossref_primary_10_1016_j_biopsych_2015_03_012 crossref_primary_10_1016_j_cub_2021_01_056 crossref_primary_10_1186_s13395_024_00342_6 crossref_primary_10_1002_jnr_25167 crossref_primary_10_1523_JNEUROSCI_1912_15_2016 crossref_primary_10_1002_glia_24145 crossref_primary_10_1523_JNEUROSCI_1660_20_2020 crossref_primary_10_1007_s11481_018_9793_6 crossref_primary_10_1016_j_arr_2024_102638 crossref_primary_10_1016_j_neures_2021_01_003 crossref_primary_10_1002_JLB_6MR0118_041R crossref_primary_10_1515_revneuro_2016_0077 crossref_primary_10_3390_jdb12040027 crossref_primary_10_1002_glia_23050 crossref_primary_10_1159_000450726 crossref_primary_10_1038_s41398_022_02092_9 crossref_primary_10_1016_j_brainres_2015_12_038 crossref_primary_10_1016_j_celrep_2024_113776 crossref_primary_10_1007_s12035_020_01976_5 crossref_primary_10_1016_j_cmet_2017_04_002 crossref_primary_10_1016_j_brainres_2015_11_013 crossref_primary_10_1016_j_conb_2024_102840 crossref_primary_10_1038_s42003_018_0070_2 crossref_primary_10_1186_s40478_021_01190_x crossref_primary_10_3390_ijms221910254 crossref_primary_10_1002_glia_24375 crossref_primary_10_1016_j_exer_2016_03_027 crossref_primary_10_1523_JNEUROSCI_1630_17_2017 crossref_primary_10_3390_antiox8050121 crossref_primary_10_1016_j_bbi_2019_04_037 crossref_primary_10_1080_01677063_2018_1506781 crossref_primary_10_3389_fphar_2023_1122527 crossref_primary_10_1038_s41583_018_0113_1 crossref_primary_10_1096_fj_202100936R crossref_primary_10_1016_j_cell_2023_05_040 crossref_primary_10_3390_ijms23137117 crossref_primary_10_1038_cr_2017_37 crossref_primary_10_1111_jmi_12377 crossref_primary_10_1186_s12915_020_00854_9 crossref_primary_10_1007_s12264_023_01024_x crossref_primary_10_1073_pnas_1609896113 crossref_primary_10_1038_s41467_024_44742_0 crossref_primary_10_1186_s13064_020_00151_9 crossref_primary_10_1016_j_immuni_2023_08_013 crossref_primary_10_3390_cells11213414 crossref_primary_10_1002_glia_70019 crossref_primary_10_1016_j_neubiorev_2020_07_039 crossref_primary_10_1016_j_yfrne_2023_101064 crossref_primary_10_1002_glia_23940 crossref_primary_10_3389_fnmol_2022_965756 crossref_primary_10_1523_JNEUROSCI_1256_23_2024 crossref_primary_10_1002_glia_23943 crossref_primary_10_1515_nf_2016_A105 crossref_primary_10_3390_ijms23158281 crossref_primary_10_1016_j_expneurol_2016_02_022 crossref_primary_10_3390_ijms20235995 crossref_primary_10_3389_fimmu_2018_00803 crossref_primary_10_1371_journal_pone_0125633 crossref_primary_10_1038_ncomms12871 crossref_primary_10_3389_fcell_2020_611269 crossref_primary_10_1038_s41598_017_09103_6 crossref_primary_10_1002_dneu_22633 crossref_primary_10_1002_jnr_24430 crossref_primary_10_4062_biomolther_2019_151 crossref_primary_10_1007_s11571_024_10185_y crossref_primary_10_1016_j_neuropharm_2020_108157 crossref_primary_10_1186_s13024_023_00655_y crossref_primary_10_1186_s12974_020_1719_6 crossref_primary_10_1002_jcp_30405 crossref_primary_10_1016_j_bbagen_2018_12_008 crossref_primary_10_1111_ejn_15373 crossref_primary_10_1208_s12249_021_01975_2 crossref_primary_10_1016_j_pneurobio_2017_01_002 crossref_primary_10_1038_s41593_022_01184_5 crossref_primary_10_1186_s13287_021_02369_8 crossref_primary_10_1016_j_bbi_2023_12_003 crossref_primary_10_2147_ITT_S305420 crossref_primary_10_1038_s41593_020_00763_8 crossref_primary_10_1083_jcb_202312043 crossref_primary_10_1177_1073858418809941 crossref_primary_10_1016_j_visres_2025_108583 crossref_primary_10_7554_eLife_100989 crossref_primary_10_1002_jnr_24203 crossref_primary_10_1242_dev_170910 crossref_primary_10_2147_JIR_S392599 crossref_primary_10_3390_cells7100166 crossref_primary_10_1038_nature21029 crossref_primary_10_1111_febs_14323 crossref_primary_10_1016_j_neuint_2020_104878 crossref_primary_10_1016_j_jneumeth_2019_108545 crossref_primary_10_17116_jnevro20171171224_10 crossref_primary_10_1073_pnas_2203965119 crossref_primary_10_1016_j_celrep_2022_110310 crossref_primary_10_1016_j_patol_2024_100795 crossref_primary_10_3389_fimmu_2021_629979 crossref_primary_10_1016_j_immuni_2023_07_005 crossref_primary_10_3389_fcell_2025_1540052 crossref_primary_10_3389_fncel_2021_725693 crossref_primary_10_1016_j_conb_2022_102674 crossref_primary_10_1007_s00018_014_1729_6 crossref_primary_10_1016_j_conb_2014_03_005 crossref_primary_10_1016_j_conb_2022_102669 crossref_primary_10_1186_s12974_024_03165_w crossref_primary_10_1002_mus_27684 crossref_primary_10_1186_s12964_021_00812_0 crossref_primary_10_1016_j_brainresbull_2024_111181 crossref_primary_10_1038_s41467_024_51581_6 crossref_primary_10_1038_s41467_018_06118_z crossref_primary_10_1007_s10439_020_02507_y crossref_primary_10_1371_journal_pone_0218643 crossref_primary_10_1038_s41593_018_0334_7 crossref_primary_10_1038_nm_4071 crossref_primary_10_1016_j_isci_2024_111494 crossref_primary_10_3389_fnhum_2016_00566 crossref_primary_10_1093_hmg_ddx189 crossref_primary_10_1093_pnasnexus_pgad334 crossref_primary_10_1152_ajpcell_00466_2024 crossref_primary_10_3389_fimmu_2023_1125948 crossref_primary_10_1084_jem_20172244 crossref_primary_10_3390_biom10060863 crossref_primary_10_1111_febs_16326 crossref_primary_10_1093_braincomms_fcaa119 crossref_primary_10_14336_AD_2021_1029 crossref_primary_10_1016_j_neuroscience_2018_12_044 crossref_primary_10_1016_j_ceb_2015_02_004 crossref_primary_10_7554_eLife_73202 crossref_primary_10_1016_j_tice_2023_102100 crossref_primary_10_3389_fcvm_2021_649630 crossref_primary_10_2490_jjrmc_58_1229 crossref_primary_10_1155_2018_5975216 crossref_primary_10_7554_eLife_19510 crossref_primary_10_1016_j_immuni_2017_06_006 crossref_primary_10_1111_epi_18361 crossref_primary_10_1038_s12276_023_01070_5 crossref_primary_10_1016_j_mcn_2020_103565 crossref_primary_10_1186_s12951_024_02955_x crossref_primary_10_3389_fnsyn_2020_00010 crossref_primary_10_1084_jem_20202715 crossref_primary_10_1111_jnc_15994 crossref_primary_10_1038_s41598_018_34763_3 crossref_primary_10_1177_1073858414530512 crossref_primary_10_3389_fimmu_2023_1283331 crossref_primary_10_1523_JNEUROSCI_3787_15_2016 crossref_primary_10_1016_j_neuron_2017_07_035 crossref_primary_10_4062_biomolther_2017_133 crossref_primary_10_1016_j_neuropharm_2019_107914 crossref_primary_10_17816_ACEN_1152 crossref_primary_10_2174_1570159X17666190603170511 crossref_primary_10_1093_brain_awad298 crossref_primary_10_1038_s44319_024_00130_9 |
Cites_doi | 10.1016/j.neuron.2011.07.022 10.1126/science.273.5274.501 10.1093/jb/mvt014 10.1016/j.mcn.2006.06.011 10.1038/nature08759 10.1038/19554 10.1016/S0092-8674(01)00190-8 10.1038/nature08389 10.1038/nn.2446 10.1146/annurev.ne.09.030186.001131 10.1016/j.neuron.2006.04.028 10.1371/journal.pone.0000120 10.1371/journal.pcbi.1002671 10.1016/j.neuron.2009.10.015 10.1016/j.neuron.2006.07.007 10.1167/iovs.02-0438 10.1038/nature06901 10.1093/emboj/cdg416 10.1523/JNEUROSCI.4178-07.2008 10.1016/j.neuron.2008.10.013 10.1126/science.1202529 10.1016/j.neuron.2010.09.024 10.1038/nature08577 10.1016/j.cell.2007.10.036 10.2144/000112001 10.1038/nature03263 10.1016/S0896-6273(02)00577-9 10.1126/science.3175636 10.1016/S0896-6273(00)00166-5 10.1523/JNEUROSCI.22-21-09419.2002 10.1016/j.neuron.2012.03.026 10.1017/S0952523805225154 10.1038/nprot.2008.171 10.1016/j.neuron.2009.09.021 10.1126/science.279.5359.2108 10.1242/jcs.01632 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2013 2015 INIST-CNRS COPYRIGHT 2013 Nature Publishing Group Copyright Nature Publishing Group Dec 19-Dec 26, 2013 |
Copyright_xml | – notice: Springer Nature Limited 2013 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Copyright Nature Publishing Group Dec 19-Dec 26, 2013 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature12776 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary Curriculum ProQuest Central Technology collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database (via ProQuest SciTech Premium Collection) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) ProQuest Nursing and Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 400 |
ExternalDocumentID | PMC3969024 3166256841 A632496281 24270812 28051841 10_1038_nature12776 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: P30 HD018655 – fundername: NINDS NIH HHS grantid: NS069375 – fundername: NINDS NIH HHS grantid: P30 NS069375 – fundername: NIMH NIH HHS grantid: T32 MH020016 – fundername: NINDS NIH HHS grantid: 5 R21NS072556 – fundername: NINDS NIH HHS grantid: R21 NS072556 – fundername: NINDS NIH HHS grantid: R01 NS075252 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AEZWR AFANA AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 08P 1CY 1VW 354 3EH 3O- 41~ 42X 4R4 663 79B 9M8 AAJYS AAVBQ AAYOK ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ADNMO ADRHT AFBBN AFFDN AFHKK AGCDD AGGDT AGOIJ AIYXT AJUXI BCR BES BKOMP DB5 FA8 FAC HG6 IQODW J5H L-9 LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON OHT PEA PV9 QS- R4F RHI SKT TUD UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKG ZY4 ~G0 CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c642t-d1a515b0aa8ed8d04d9fbd625c3e960fbe9c867f3df6c242c31ea95af903611e3 |
IEDL.DBID | BENPR |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 14:23:06 EDT 2025 Sat Sep 27 20:53:01 EDT 2025 Sat Aug 23 12:23:04 EDT 2025 Tue Jun 17 22:04:47 EDT 2025 Fri Jun 13 00:02:51 EDT 2025 Tue Jun 10 15:35:20 EDT 2025 Tue Jun 10 21:00:53 EDT 2025 Fri Jun 27 05:46:20 EDT 2025 Mon Jul 21 06:04:01 EDT 2025 Wed Apr 02 07:27:33 EDT 2025 Tue Jul 01 02:57:05 EDT 2025 Thu Apr 24 22:50:21 EDT 2025 Fri Feb 21 02:37:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7480 |
Keywords | Neuroglia Memory Rodentia Central nervous system Nervous system Astrocyte Protein Encephalon Microglia Learning Vertebrata Synapse Acquisition process Mammalia Mouse Animal Development |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c642t-d1a515b0aa8ed8d04d9fbd625c3e960fbe9c867f3df6c242c31ea95af903611e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-News-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3969024 |
PMID | 24270812 |
PQID | 1470880242 |
PQPubID | 40569 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3969024 proquest_miscellaneous_1490734190 proquest_journals_1470880242 gale_infotracmisc_A632496281 gale_infotracgeneralonefile_A632496281 gale_infotraccpiq_632496281 gale_infotracacademiconefile_A632496281 gale_incontextgauss_ISR_A632496281 pubmed_primary_24270812 pascalfrancis_primary_28051841 crossref_citationtrail_10_1038_nature12776 crossref_primary_10_1038_nature12776 springer_journals_10_1038_nature12776 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-19 |
PublicationDateYYYYMMDD | 2013-12-19 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Cuervo, Dice (CR19) 1996; 273 Chen, Regehr (CR23) 2000; 28 Micheva, Busse, Weiler, O’Rourke, Smith (CR38) 2010; 68 Shatz, Sretavan (CR16) 1986; 9 Roberts, Tschida, Klein, Mooney (CR29) 2010; 463 Beletskii (CR35) 2005; 39 Stevens (CR31) 2007; 131 Ziegenfuss (CR3) 2008; 453 Wu (CR7) 2009; 12 CR14 Hamon (CR6) 2006; 1 Tung (CR13) 2013; 153 CR32 Xu (CR27) 2009; 462 Duncan (CR10) 2003; 44 Foo (CR15) 2011; 71 Dunkley, Jarvie, Robinson (CR34) 2008; 3 Finnemann (CR11) 2003; 22 Jaubert-Miazza (CR37) 2005; 22 Huberman, Stellwagen, Chapman (CR26) 2002; 22 Datwani (CR36) 2009; 64 MacDonald (CR4) 2006; 50 Zhou, Hartwieg, Horvitz (CR5) 2001; 104 Peters, Palay, Webster, d (CR21) 1976 Stafford, Sher, Litke, Feldheim (CR39) 2009; 64 Cahoy (CR2) 2008; 28 Wang, Smith (CR20) 2012; 8 Yang, Pan, Gan (CR28) 2009; 462 Hooks, Chen (CR18) 2006; 52 Stellwagen, Shatz (CR25) 2002; 33 Wu, Singh, Georgescu, Birge (CR12) 2005; 118 Paolicelli (CR30) 2011; 333 Shatz, Stryker (CR24) 1988; 242 Lu (CR33) 1999; 398 Schafer (CR22) 2012; 74 Barres (CR1) 2008; 60 Prasad (CR9) 2006; 33 Kinchen (CR8) 2005; 434 Penn, Riquelme, Feller, Shatz (CR17) 1998; 279 G Yang (BFnature12776_CR28) 2009; 462 JM Kinchen (BFnature12776_CR8) 2005; 434 D Stellwagen (BFnature12776_CR25) 2002; 33 AM Cuervo (BFnature12776_CR19) 1996; 273 A Peters (BFnature12776_CR21) 1976 DP Schafer (BFnature12776_CR22) 2012; 74 A Datwani (BFnature12776_CR36) 2009; 64 A Beletskii (BFnature12776_CR35) 2005; 39 G Wang (BFnature12776_CR20) 2012; 8 JD Cahoy (BFnature12776_CR2) 2008; 28 SC Finnemann (BFnature12776_CR11) 2003; 22 TF Roberts (BFnature12776_CR29) 2010; 463 HH Wu (BFnature12776_CR7) 2009; 12 Q Lu (BFnature12776_CR33) 1999; 398 T Xu (BFnature12776_CR27) 2009; 462 RC Paolicelli (BFnature12776_CR30) 2011; 333 AD Huberman (BFnature12776_CR26) 2002; 22 D Prasad (BFnature12776_CR9) 2006; 33 KD Micheva (BFnature12776_CR38) 2010; 68 TT Tung (BFnature12776_CR13) 2013; 153 JS Ziegenfuss (BFnature12776_CR3) 2008; 453 BM Hooks (BFnature12776_CR18) 2006; 52 Y Hamon (BFnature12776_CR6) 2006; 1 JL Duncan (BFnature12776_CR10) 2003; 44 LC Foo (BFnature12776_CR15) 2011; 71 BK Stafford (BFnature12776_CR39) 2009; 64 BA Barres (BFnature12776_CR1) 2008; 60 CJ Shatz (BFnature12776_CR16) 1986; 9 JM MacDonald (BFnature12776_CR4) 2006; 50 L Jaubert-Miazza (BFnature12776_CR37) 2005; 22 C Chen (BFnature12776_CR23) 2000; 28 B Stevens (BFnature12776_CR31) 2007; 131 PR Dunkley (BFnature12776_CR34) 2008; 3 AA Penn (BFnature12776_CR17) 1998; 279 CJ Shatz (BFnature12776_CR24) 1988; 242 Y Wu (BFnature12776_CR12) 2005; 118 BFnature12776_CR32 BFnature12776_CR14 Z Zhou (BFnature12776_CR5) 2001; 104 2423004 - Annu Rev Neurosci. 1986;9:171-207 18995817 - Neuron. 2008 Nov 6;60(3):430-40 21903074 - Neuron. 2011 Sep 8;71(5):799-811 12556419 - Invest Ophthalmol Vis Sci. 2003 Feb;44(2):826-38 22632727 - Neuron. 2012 May 24;74(4):691-705 15744306 - Nature. 2005 Mar 3;434(7029):93-9 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78 11163279 - Neuron. 2000 Dec;28(3):955-66 19946267 - Nature. 2009 Dec 17;462(7275):915-9 3175636 - Science. 1988 Oct 7;242(4875):87-9 16901715 - Mol Cell Neurosci. 2006 Sep;33(1):96-108 21778362 - Science. 2011 Sep 9;333(6048):1456-8 23284042 - Cold Spring Harb Perspect Biol. 2013 Jan;5(1):a008748 12912913 - EMBO J. 2003 Aug 15;22(16):4143-54 17205124 - PLoS One. 2006;1:e120 9516112 - Science. 1998 Mar 27;279(5359):2108-12 20164928 - Nature. 2010 Feb 18;463(7283):948-52 21092855 - Neuron. 2010 Nov 18;68(4):639-53 10227296 - Nature. 1999 Apr 22;398(6729):723-8 11832224 - Neuron. 2002 Jan 31;33(3):357-67 15673687 - J Cell Sci. 2005 Feb 1;118(Pt 3):539-53 19945389 - Neuron. 2009 Nov 25;64(4):463-70 23420848 - J Biochem. 2013 May;153(5):483-91 16382909 - Biotechniques. 2005 Dec;39(6):894-7 16332277 - Vis Neurosci. 2005 Sep-Oct;22(5):661-76 18083105 - Cell. 2007 Dec 14;131(6):1164-78 19915564 - Nat Neurosci. 2009 Dec;12(12):1534-41 18432193 - Nature. 2008 Jun 12;453(7197):935-9 17046691 - Neuron. 2006 Oct 19;52(2):281-91 11163239 - Cell. 2001 Jan 12;104(1):43-56 22956902 - PLoS Comput Biol. 2012;8(8):e1002671 8662539 - Science. 1996 Jul 26;273(5274):501-3 17610815 - Neuron. 2007 Jul 5;55(1):25-36 12417667 - J Neurosci. 2002 Nov 1;22(21):9419-29 16772169 - Neuron. 2006 Jun 15;50(6):869-81 19946265 - Nature. 2009 Dec 17;462(7275):920-4 18927557 - Nat Protoc. 2008;3(11):1718-28 |
References_xml | – volume: 71 start-page: 799 year: 2011 end-page: 811 ident: CR15 article-title: Development of a method for the purification and culture of rodent astrocytes publication-title: Neuron doi: 10.1016/j.neuron.2011.07.022 – volume: 273 start-page: 501 year: 1996 end-page: 503 ident: CR19 article-title: A receptor for the selective uptake and degradation of proteins by lysosomes publication-title: Science doi: 10.1126/science.273.5274.501 – volume: 153 start-page: 483 year: 2013 end-page: 491 ident: CR13 article-title: Phosphatidylserine recognition and induction of apoptotic cell clearance by engulfment receptor Draper publication-title: J. Biochem. doi: 10.1093/jb/mvt014 – volume: 33 start-page: 96 year: 2006 end-page: 108 ident: CR9 article-title: TAM receptor function in the retinal pigment epithelium publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2006.06.011 – volume: 463 start-page: 948 year: 2010 end-page: 952 ident: CR29 article-title: Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning publication-title: Nature doi: 10.1038/nature08759 – volume: 398 start-page: 723 year: 1999 end-page: 728 ident: CR33 article-title: Tyro-3 family receptors are essential regulators of mammalian spermatogenesis publication-title: Nature doi: 10.1038/19554 – volume: 104 start-page: 43 year: 2001 end-page: 56 ident: CR5 article-title: CED-1 is a transmembrane receptor that mediates cell corpse engulfment in publication-title: Cell doi: 10.1016/S0092-8674(01)00190-8 – volume: 462 start-page: 915 year: 2009 end-page: 919 ident: CR27 article-title: Rapid formation and selective stabilization of synapses for enduring motor memories publication-title: Nature doi: 10.1038/nature08389 – volume: 12 start-page: 1534 year: 2009 end-page: 1541 ident: CR7 article-title: Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor publication-title: Nature Neurosci. doi: 10.1038/nn.2446 – volume: 9 start-page: 171 year: 1986 end-page: 207 ident: CR16 article-title: Interactions between retinal ganglion cells during the development of the mammalian visual system publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.09.030186.001131 – volume: 50 start-page: 869 year: 2006 end-page: 881 ident: CR4 article-title: The cell corpse engulfment receptor Draper mediates glial clearance of severed axons publication-title: Neuron doi: 10.1016/j.neuron.2006.04.028 – volume: 1 start-page: e120 year: 2006 ident: CR6 article-title: Cooperation between engulfment receptors: the case of ABCA1 and MEGF10 publication-title: PLoS ONE doi: 10.1371/journal.pone.0000120 – ident: CR14 – year: 1976 ident: CR21 publication-title: The Fine Structure of the Nervous System: the Neurons and Supporting Cells – volume: 8 start-page: e1002671 year: 2012 ident: CR20 article-title: Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1002671 – volume: 64 start-page: 463 year: 2009 end-page: 470 ident: CR36 article-title: Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity publication-title: Neuron doi: 10.1016/j.neuron.2009.10.015 – volume: 52 start-page: 281 year: 2006 end-page: 291 ident: CR18 article-title: Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse publication-title: Neuron doi: 10.1016/j.neuron.2006.07.007 – volume: 44 start-page: 826 year: 2003 end-page: 838 ident: CR10 article-title: An RCS-like retinal dystrophy phenotype in mer knockout mice publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.02-0438 – volume: 453 start-page: 935 year: 2008 end-page: 939 ident: CR3 article-title: Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling publication-title: Nature doi: 10.1038/nature06901 – volume: 22 start-page: 4143 year: 2003 end-page: 4154 ident: CR11 article-title: Focal adhesion kinase signaling promotes phagocytosis of integrin-bound photoreceptors publication-title: EMBO J. doi: 10.1093/emboj/cdg416 – volume: 28 start-page: 264 year: 2008 end-page: 278 ident: CR2 article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4178-07.2008 – volume: 60 start-page: 430 year: 2008 end-page: 440 ident: CR1 article-title: The mystery and magic of glia: a perspective on their roles in health and disease publication-title: Neuron doi: 10.1016/j.neuron.2008.10.013 – volume: 333 start-page: 1456 year: 2011 end-page: 1458 ident: CR30 article-title: Synaptic pruning by microglia is necessary for normal brain development publication-title: Science doi: 10.1126/science.1202529 – volume: 68 start-page: 639 year: 2010 end-page: 653 ident: CR38 article-title: Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers publication-title: Neuron doi: 10.1016/j.neuron.2010.09.024 – volume: 462 start-page: 920 year: 2009 end-page: 924 ident: CR28 article-title: Stably maintained dendritic spines are associated with lifelong memories publication-title: Nature doi: 10.1038/nature08577 – volume: 131 start-page: 1164 year: 2007 end-page: 1178 ident: CR31 article-title: The classical complement cascade mediates CNS synapse elimination publication-title: Cell doi: 10.1016/j.cell.2007.10.036 – volume: 39 start-page: 894 year: 2005 end-page: 897 ident: CR35 article-title: High-throughput phagocytosis assay utilizing a pH-sensitive fluorescent dye publication-title: Biotechniques doi: 10.2144/000112001 – volume: 434 start-page: 93 year: 2005 end-page: 99 ident: CR8 article-title: Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in publication-title: Nature doi: 10.1038/nature03263 – volume: 33 start-page: 357 year: 2002 end-page: 367 ident: CR25 article-title: An instructive role for retinal waves in the development of retinogeniculate connectivity publication-title: Neuron doi: 10.1016/S0896-6273(02)00577-9 – volume: 242 start-page: 87 year: 1988 end-page: 89 ident: CR24 article-title: Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents publication-title: Science doi: 10.1126/science.3175636 – volume: 28 start-page: 955 year: 2000 end-page: 966 ident: CR23 article-title: Developmental remodeling of the retinogeniculate synapse publication-title: Neuron doi: 10.1016/S0896-6273(00)00166-5 – ident: CR32 – volume: 22 start-page: 9419 year: 2002 end-page: 9429 ident: CR26 article-title: Decoupling eye-specific segregation from lamination in the lateral geniculate nucleus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-21-09419.2002 – volume: 74 start-page: 691 year: 2012 end-page: 705 ident: CR22 article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner publication-title: Neuron doi: 10.1016/j.neuron.2012.03.026 – volume: 22 start-page: 661 year: 2005 end-page: 676 ident: CR37 article-title: Structural and functional composition of the developing retinogeniculate pathway in the mouse publication-title: Vis. Neurosci. doi: 10.1017/S0952523805225154 – volume: 3 start-page: 1718 year: 2008 end-page: 1728 ident: CR34 article-title: A rapid Percoll gradient procedure for preparation of synaptosomes publication-title: Nature Protocols doi: 10.1038/nprot.2008.171 – volume: 64 start-page: 200 year: 2009 end-page: 212 ident: CR39 article-title: Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections publication-title: Neuron doi: 10.1016/j.neuron.2009.09.021 – volume: 279 start-page: 2108 year: 1998 end-page: 2112 ident: CR17 article-title: Competition in retinogeniculate patterning driven by spontaneous activity publication-title: Science doi: 10.1126/science.279.5359.2108 – volume: 118 start-page: 539 year: 2005 end-page: 553 ident: CR12 article-title: A role for Mer tyrosine kinase in αvβ5 integrin-mediated phagocytosis of apoptotic cells publication-title: J. Cell Sci. doi: 10.1242/jcs.01632 – volume: 463 start-page: 948 year: 2010 ident: BFnature12776_CR29 publication-title: Nature doi: 10.1038/nature08759 – volume: 434 start-page: 93 year: 2005 ident: BFnature12776_CR8 publication-title: Nature doi: 10.1038/nature03263 – volume: 9 start-page: 171 year: 1986 ident: BFnature12776_CR16 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.09.030186.001131 – volume: 279 start-page: 2108 year: 1998 ident: BFnature12776_CR17 publication-title: Science doi: 10.1126/science.279.5359.2108 – volume: 74 start-page: 691 year: 2012 ident: BFnature12776_CR22 publication-title: Neuron doi: 10.1016/j.neuron.2012.03.026 – volume: 1 start-page: e120 year: 2006 ident: BFnature12776_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0000120 – volume: 39 start-page: 894 year: 2005 ident: BFnature12776_CR35 publication-title: Biotechniques doi: 10.2144/000112001 – volume: 104 start-page: 43 year: 2001 ident: BFnature12776_CR5 publication-title: Cell doi: 10.1016/S0092-8674(01)00190-8 – volume: 50 start-page: 869 year: 2006 ident: BFnature12776_CR4 publication-title: Neuron doi: 10.1016/j.neuron.2006.04.028 – ident: BFnature12776_CR14 – volume: 131 start-page: 1164 year: 2007 ident: BFnature12776_CR31 publication-title: Cell doi: 10.1016/j.cell.2007.10.036 – volume: 71 start-page: 799 year: 2011 ident: BFnature12776_CR15 publication-title: Neuron doi: 10.1016/j.neuron.2011.07.022 – volume: 333 start-page: 1456 year: 2011 ident: BFnature12776_CR30 publication-title: Science doi: 10.1126/science.1202529 – volume: 68 start-page: 639 year: 2010 ident: BFnature12776_CR38 publication-title: Neuron doi: 10.1016/j.neuron.2010.09.024 – volume: 242 start-page: 87 year: 1988 ident: BFnature12776_CR24 publication-title: Science doi: 10.1126/science.3175636 – volume: 64 start-page: 463 year: 2009 ident: BFnature12776_CR36 publication-title: Neuron doi: 10.1016/j.neuron.2009.10.015 – volume: 462 start-page: 915 year: 2009 ident: BFnature12776_CR27 publication-title: Nature doi: 10.1038/nature08389 – volume: 28 start-page: 264 year: 2008 ident: BFnature12776_CR2 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4178-07.2008 – volume: 153 start-page: 483 year: 2013 ident: BFnature12776_CR13 publication-title: J. Biochem. doi: 10.1093/jb/mvt014 – volume: 462 start-page: 920 year: 2009 ident: BFnature12776_CR28 publication-title: Nature doi: 10.1038/nature08577 – volume-title: The Fine Structure of the Nervous System: the Neurons and Supporting Cells year: 1976 ident: BFnature12776_CR21 – volume: 12 start-page: 1534 year: 2009 ident: BFnature12776_CR7 publication-title: Nature Neurosci. doi: 10.1038/nn.2446 – volume: 60 start-page: 430 year: 2008 ident: BFnature12776_CR1 publication-title: Neuron doi: 10.1016/j.neuron.2008.10.013 – volume: 33 start-page: 96 year: 2006 ident: BFnature12776_CR9 publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2006.06.011 – volume: 118 start-page: 539 year: 2005 ident: BFnature12776_CR12 publication-title: J. Cell Sci. doi: 10.1242/jcs.01632 – volume: 398 start-page: 723 year: 1999 ident: BFnature12776_CR33 publication-title: Nature doi: 10.1038/19554 – ident: BFnature12776_CR32 – volume: 273 start-page: 501 year: 1996 ident: BFnature12776_CR19 publication-title: Science doi: 10.1126/science.273.5274.501 – volume: 22 start-page: 9419 year: 2002 ident: BFnature12776_CR26 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-21-09419.2002 – volume: 453 start-page: 935 year: 2008 ident: BFnature12776_CR3 publication-title: Nature doi: 10.1038/nature06901 – volume: 3 start-page: 1718 year: 2008 ident: BFnature12776_CR34 publication-title: Nature Protocols doi: 10.1038/nprot.2008.171 – volume: 22 start-page: 661 year: 2005 ident: BFnature12776_CR37 publication-title: Vis. Neurosci. doi: 10.1017/S0952523805225154 – volume: 44 start-page: 826 year: 2003 ident: BFnature12776_CR10 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.02-0438 – volume: 22 start-page: 4143 year: 2003 ident: BFnature12776_CR11 publication-title: EMBO J. doi: 10.1093/emboj/cdg416 – volume: 8 start-page: e1002671 year: 2012 ident: BFnature12776_CR20 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1002671 – volume: 33 start-page: 357 year: 2002 ident: BFnature12776_CR25 publication-title: Neuron doi: 10.1016/S0896-6273(02)00577-9 – volume: 64 start-page: 200 year: 2009 ident: BFnature12776_CR39 publication-title: Neuron doi: 10.1016/j.neuron.2009.09.021 – volume: 52 start-page: 281 year: 2006 ident: BFnature12776_CR18 publication-title: Neuron doi: 10.1016/j.neuron.2006.07.007 – volume: 28 start-page: 955 year: 2000 ident: BFnature12776_CR23 publication-title: Neuron doi: 10.1016/S0896-6273(00)00166-5 – reference: 16382909 - Biotechniques. 2005 Dec;39(6):894-7 – reference: 18432193 - Nature. 2008 Jun 12;453(7197):935-9 – reference: 12556419 - Invest Ophthalmol Vis Sci. 2003 Feb;44(2):826-38 – reference: 11163279 - Neuron. 2000 Dec;28(3):955-66 – reference: 19945389 - Neuron. 2009 Nov 25;64(4):463-70 – reference: 12912913 - EMBO J. 2003 Aug 15;22(16):4143-54 – reference: 21778362 - Science. 2011 Sep 9;333(6048):1456-8 – reference: 11163239 - Cell. 2001 Jan 12;104(1):43-56 – reference: 22956902 - PLoS Comput Biol. 2012;8(8):e1002671 – reference: 2423004 - Annu Rev Neurosci. 1986;9:171-207 – reference: 21903074 - Neuron. 2011 Sep 8;71(5):799-811 – reference: 19915564 - Nat Neurosci. 2009 Dec;12(12):1534-41 – reference: 9516112 - Science. 1998 Mar 27;279(5359):2108-12 – reference: 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78 – reference: 17610815 - Neuron. 2007 Jul 5;55(1):25-36 – reference: 16332277 - Vis Neurosci. 2005 Sep-Oct;22(5):661-76 – reference: 8662539 - Science. 1996 Jul 26;273(5274):501-3 – reference: 18995817 - Neuron. 2008 Nov 6;60(3):430-40 – reference: 10227296 - Nature. 1999 Apr 22;398(6729):723-8 – reference: 12417667 - J Neurosci. 2002 Nov 1;22(21):9419-29 – reference: 17046691 - Neuron. 2006 Oct 19;52(2):281-91 – reference: 17205124 - PLoS One. 2006;1:e120 – reference: 3175636 - Science. 1988 Oct 7;242(4875):87-9 – reference: 21092855 - Neuron. 2010 Nov 18;68(4):639-53 – reference: 18083105 - Cell. 2007 Dec 14;131(6):1164-78 – reference: 15744306 - Nature. 2005 Mar 3;434(7029):93-9 – reference: 19946265 - Nature. 2009 Dec 17;462(7275):920-4 – reference: 15673687 - J Cell Sci. 2005 Feb 1;118(Pt 3):539-53 – reference: 16901715 - Mol Cell Neurosci. 2006 Sep;33(1):96-108 – reference: 19946267 - Nature. 2009 Dec 17;462(7275):915-9 – reference: 23284042 - Cold Spring Harb Perspect Biol. 2013 Jan;5(1):a008748 – reference: 23420848 - J Biochem. 2013 May;153(5):483-91 – reference: 18927557 - Nat Protoc. 2008;3(11):1718-28 – reference: 16772169 - Neuron. 2006 Jun 15;50(6):869-81 – reference: 20164928 - Nature. 2010 Feb 18;463(7283):948-52 – reference: 11832224 - Neuron. 2002 Jan 31;33(3):357-67 – reference: 22632727 - Neuron. 2012 May 24;74(4):691-705 |
SSID | ssj0005174 |
Score | 2.6371045 |
Snippet | To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently,... To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodeling. Recently... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 394 |
SubjectTerms | 13/1 13/106 13/31 13/51 14/19 14/28 631/378/2596/1308 64/110 9/74 Animals Astrocytes Astrocytes - cytology Astrocytes - metabolism Biological and medical sciences Brain - cytology c-Mer Tyrosine Kinase Cellular signal transduction Central nervous system Fundamental and applied biological sciences. Psychology Gene expression Health aspects Humanities and Social Sciences In Vitro Techniques Insects Kinases Laboratory animals Lateral Thalamic Nuclei - cytology Lateral Thalamic Nuclei - metabolism Learning - physiology Membrane Proteins - deficiency Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Transgenic Microscopy multidisciplinary Neural circuitry Neural Pathways - cytology Neural Pathways - metabolism Phagocytosis Physiological aspects Protein expression Proteins Proto-Oncogene Proteins - deficiency Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism Receptor Protein-Tyrosine Kinases - deficiency Receptor Protein-Tyrosine Kinases - genetics Receptor Protein-Tyrosine Kinases - metabolism Retina - physiology Science Synapses Synapses - metabolism Vertebrates: nervous system and sense organs |
Title | Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways |
URI | https://link.springer.com/article/10.1038/nature12776 https://www.ncbi.nlm.nih.gov/pubmed/24270812 https://www.proquest.com/docview/1470880242 https://www.proquest.com/docview/1490734190 https://pubmed.ncbi.nlm.nih.gov/PMC3969024 |
Volume | 504 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swED_ahMFgjLV7ee2CN7pHB6aW7cjyhzGSLmm20TCyFvLNKHp0heKkc8LIf7-TLSdxG_bFBHSWFd_bOv0O4IgEhFIeCi-ZUOpFMUeVYjz2AqpDLgV6YGUOJ58P6eAy-j5uj3dgWJ2FMWWVlU0sDLWcCvON_IREMSqE8ShfZree6RpldlerFhrctlaQnwuIsV1ooklu-w1odnvDn6N10ccdXGZ7Ys8P2UkJpEmC2MCPbPgoa6kfzXiOb02X7S62xaP3yyrv7K0WLqv_BB7bWNPtlMKxBzsq24cHRc2nyPdhz-p17n604NPHT2HQyefo05YYgbrFqZK5cvNlxme5ctVN0QLMsNK1_X3c894Z5uQuzyT-HF38cE2L4798mT-Dy37v4nTg2W4LHnIkmHuScIxtJj7nTEkm_UgmeiIxPRKhwjRHT1QiGI11KDUVyAYREsWTNtcJOkFCVPgcGtk0Uy_B9XlCuc9iFmrM7rjALJtpX6NtlSqgSjjwqXq_qbBQ5KYjxk1abImHLN1ghgNHK-JZicCxneytYVRqMC0yUzRzxRd5nn77NUo7BpI-oQEjDnywRHqKDxTcnkHAZRsYrBrlQY1SzK5v043R97XRq5JL26Y5rBGi7oracKsmVqs_GDAUVRaZ-ys5S61xydO1KjjwZjVspjYFc5maLgxNgsY7wnDPgRelWK4njwKcgODdcU1gVwQGcrw-kl3_LqDHw4Qm-GAH3lWivbGs-0x59f_lH8DDwHQXIYFHkkNozP8s1GuM8eaTFuzG4xiv7JSYa_-sBc1O92u337Iq_Q8gM1R7 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTggkhNj4ChsjoI2PSdFiJ3OchwkVaGnpWqHSSXvLXMcZk6a0I62m_nP8bZwTp222ire9VbqL7ebOd-f47ncAu4QSxoQnnXDImOMHArcUF4FDWeKJWKIHVro4udtjrRP_x-nh6Rr8LWthdFplaRNzQx2PpP5GfkD8ADeE9iifx1eO7hqlb1fLFhrCtFaIj3KIMVPY0VGzazzCZUftbyjvPUqbjcHXlmO6DDi4EjpxYiLQpw9dIbiKeez6cZgMYzwWSE9heJ8MVSg5CxIvTpjE6aVHlAgPRRKi8SdEeTjuPVj39QeUGqx_afR-9hdJJjdwoE2FoOvxgwK4k9BAw50s-UTjGR6NRYZSSor2Gqvi39tpnDfucnMX2XwCj01sa9cLZdyANZVuwv08x1Rmm7Bh7EhmfzRg15-eQqueTdCHzjDitfMqlomys1kqxpmy1WXeckyrjm36CdndxvcmcW2RxvizP-jYuqXytZhlz-DkTt77c6ilo1S9BNsVIRMuD7iX4GlSSDzV88RN0JbHijIlLdgv328kDfS57sBxGeVX8B6PloRhwe6ceVwgfqxme6cFFWkMjVQn6ZyLaZZF7V_9qK4h8ENGObHgg2FKRjihFKbmAZetYbcqnFsVTjm-uIqWqO8r1PNCSquG2a4woq2QFfJORa3mf5ByVFXu6-dLPYuMMcuixdaz4O2crIfWCXqpGk01T4jOwsfw0oIXhVouBvcpDkDw6aCisHMGDXFepaQXv3Oocy9kIU5swV6p2kvLui2UV_9f_ht40Bp0j6Pjdq-zBQ-p7mxCqEPCbahN_kzVa4wvJ8Mds4ltOLtru_EPScGOmg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJhASQmx8hY0R0MYAKWrsZI7zMKHCWlrKqqls0t6C49hj0pR2uNXUf5G_inPitM1W8ba3SL44Tu58H_Hd7xDawQRTygPhxSmlXhhx2FKMRx6hKuCZAAssTXHyUZ92TsPvZ_tnK-hvVQtj0iornVgo6mwozD_yBg4j2BDGojSUTYs4Pmx_Hl15poOUOWmt2mlw22YhOyjgxmyRR09OryGc0wfdQ-D9LiHt1snXjmc7DniwKjL2MszBvqc-50xmLPPDLFZpBiGCCCS4-iqVsWA0UkGmqICliABLHu9zFYMhwFgGMO89tBaB1YdAcO1Lq388mCec3MCEttWCfsAaJYgnJpGBPlmwj9ZKPBpxDRxTZauNZb7w7ZTOG-e6hblsP0GPrZ_rNkvBXEcrMt9A94t8U6E30LrVKdr9YIGvPz5FnaYegz2dgvfrFhUtY-nqac5HWrrysmg_ZsTItb2F3KPWtzb2XZ5ncDk46bmmvfI1n-pn6PROvvtztJoPc_kSuT6PKfdZxAIFkSUXEOEz5SvQ65kkVAoHfaq-byIsDLrpxnGZFMfxAUsWmOGgnRnxqET_WE72zjAqMXgauZHMcz7ROun-HCRNA4cfU8Kwg_YskRrCAwW39Q-wbAPBVaPcrFGK0cVVsjD6vjZ6XnJp2TRbNULQG6I2vF0Tq9kLEgaiykJzfyVniVVsOplvQwe9nQ2bqU2yXi6HE0MTg-EIwdV00ItSLOeThwQmwHB3VBPYGYGBO6-P5Be_C9jzIKYxPNhBu5VoLyzrNlNe_X_5b9AD0B_Jj26_t4keEtPkBBMPx1todfxnIl-DqzlOt-0edtGvu1Yb_wA1dZLe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Astrocytes+mediate+synapse+elimination+through+MEGF10+and+MERTK+pathways&rft.jtitle=Nature+%28London%29&rft.au=Chung%2C+Won-Suk&rft.au=Clarke%2C+Laura+E&rft.au=Wang%2C+Gordon+X&rft.au=Stafford%2C+Benjamin+K&rft.date=2013-12-19&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=504&rft.issue=7480&rft.spage=394&rft_id=info:doi/10.1038%2Fnature12776&rft.externalDocID=A632496281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |