Using k-NN to analyse images of diverse germination phenotypes and detect single seed germination in Miscanthus sinensis

Background Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore,...

Full description

Saved in:
Bibliographic Details
Published inPlant methods Vol. 14; no. 1; p. 5
Main Authors Awty-Carroll, Danny, Clifton-Brown, John, Robson, Paul
Format Journal Article
LanguageEnglish
Published London BioMed Central 17.01.2018
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1746-4811
1746-4811
DOI10.1186/s13007-018-0272-0

Cover

Abstract Background Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould. Results Machine learning using k -NN improved the scoring of different phenotypes encountered in Miscanthus seed. The k -NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the k -NN result was 0.69–0.7, as measured using the area under a ROC curve. When the k -NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique. Conclusions With non-ideal seed images that included mould and broken seed the k -NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the k -NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score.
AbstractList Background Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould. Results Machine learning using k -NN improved the scoring of different phenotypes encountered in Miscanthus seed. The k -NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the k -NN result was 0.69–0.7, as measured using the area under a ROC curve. When the k -NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique. Conclusions With non-ideal seed images that included mould and broken seed the k -NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the k -NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score.
BACKGROUND: Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould. RESULTS: Machine learning using k-NN improved the scoring of different phenotypes encountered in Miscanthus seed. The k-NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the k-NN result was 0.69–0.7, as measured using the area under a ROC curve. When the k-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique. CONCLUSIONS: With non-ideal seed images that included mould and broken seed the k-NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the k-NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score.
is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould. Machine learning using -NN improved the scoring of different phenotypes encountered in seed. The -NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the -NN result was 0.69-0.7, as measured using the area under a ROC curve. When the -NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique. With non-ideal seed images that included mould and broken seed the -NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the -NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score.
Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould.BACKGROUNDMiscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould.Machine learning using k-NN improved the scoring of different phenotypes encountered in Miscanthus seed. The k-NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the k-NN result was 0.69-0.7, as measured using the area under a ROC curve. When the k-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique.RESULTSMachine learning using k-NN improved the scoring of different phenotypes encountered in Miscanthus seed. The k-NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the k-NN result was 0.69-0.7, as measured using the area under a ROC curve. When the k-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique.With non-ideal seed images that included mould and broken seed the k-NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the k-NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score.CONCLUSIONSWith non-ideal seed images that included mould and broken seed the k-NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the k-NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score.
Abstract Background Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould. Results Machine learning using k-NN improved the scoring of different phenotypes encountered in Miscanthus seed. The k-NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the k-NN result was 0.69–0.7, as measured using the area under a ROC curve. When the k-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique. Conclusions With non-ideal seed images that included mould and broken seed the k-NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the k-NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score.
ArticleNumber 5
Audience Academic
Author Robson, Paul
Clifton-Brown, John
Awty-Carroll, Danny
Author_xml – sequence: 1
  givenname: Danny
  orcidid: 0000-0001-5855-0775
  surname: Awty-Carroll
  fullname: Awty-Carroll, Danny
  email: dga1@aber.ac.uk
  organization: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University
– sequence: 2
  givenname: John
  surname: Clifton-Brown
  fullname: Clifton-Brown, John
  organization: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University
– sequence: 3
  givenname: Paul
  surname: Robson
  fullname: Robson, Paul
  organization: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29371877$$D View this record in MEDLINE/PubMed
BookMark eNqNk0tv1DAUhSNURB_wA9igSGxgkeLXxPYGqap4jFSKBHRteeybjIeMPcRO6fx7nGaoOggVlEWi6-8c2_fcHBcHPngoiucYnWIs6jcRU4R4hbCoEOGkQo-KI8xZXTGB8cG978PiOMYVQgwTWj8pDomkHAvOj4qbq-h8W36vLi_LFErtdbeNULq1biGWoSmtu4Y-V1ro187r5IIvN0vwIW03mdDelhYSmFSORh2UEcDu0c6Xn1w02qflEEcKfHTxafG40V2EZ7v3SXH1_t2384_VxecP8_Ozi8rUjKTK8NoIzpC2Eje1ZAtuG2MZUEoZs5jwvG51LakUjPNGQC14wxnDgjBDsaAnxXzytUGv1KbPN-u3Kminbguhb5XukzMdKINxjYTBlsgFQzWVvBYEDKHSksZKyF5k8hr8Rm9_6q67M8RIjZGoKRKVI1FjJApl0dtJtBkWa7AGfOp1t3eS_RXvlqoN12rGOc6RZYNXO4M-_BggJrXO7YSu0x7CEBVBMypztBT_E8VSEoQErcdjvZzQVuerO9-EvLkZcXU2I3QmGeIyU6d_ofJjYe1MnsbG5fqe4PWeIDMJblKrhxjV_OuXffbF_c7cteT3dGaAT4DpQ4w9NMq4dDtU-RSue7Dp-A_l_wS1Szdm1ucJVqsw9PmHiA-IfgHgVBXm
CitedBy_id crossref_primary_10_1155_2022_4678316
crossref_primary_10_1186_s13007_020_00620_6
crossref_primary_10_1186_s13007_020_00699_x
crossref_primary_10_32604_iasc_2023_029446
crossref_primary_10_3390_agronomy13082134
crossref_primary_10_1002_jsfa_12318
crossref_primary_10_3390_agriculture15060582
crossref_primary_10_1186_s13007_019_0411_2
crossref_primary_10_3389_fpls_2022_1074360
crossref_primary_10_3390_agronomy15010128
crossref_primary_10_3390_genes13122256
crossref_primary_10_1109_JSEN_2019_2935812
Cites_doi 10.1016/S1360-1385(97)01147-3
10.1111/gcbb.12294
10.1139/g11-021
10.1111/j.1757-1707.2011.01094.x
10.1051/agro:2008039
10.2135/cropsci2013.03.0187
10.1017/CBO9781107298019
10.1104/pp.108.134072
10.1007/s10722-015-0220-z
10.15258/sst.2005.33.2.06
10.1016/j.compag.2004.04.005
10.1104/pp.109.140558
10.17605/OSF.IO/AUD9N.osf.io/aud9n
10.1007/978-0-387-21706-2
10.1016/S0961-9534(00)00032-5
10.1111/gcbb.12357
10.1002/9781118350553.ch7
10.1117/1.3589100
10.1016/j.protcy.2014.09.007.1102.0183
10.1016/j.patrec.2005.10.010
10.1111/j.1365-313X.2009.04116.x
10.1016/j.agsy.2004.07.015
10.2135/cropsci2001.4151546x
10.1016/j.fcr.2012.04.003
10.1590/S0100-84042006000100002
10.1105/tpc.110.074153
10.1007/s00606-008-0075-2
10.1038/nmeth.2019
10.3318/BIOE.2015.05
10.3389/fpls.2017.01058
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
ISR
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s13007-018-0272-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1746-4811
EndPage 5
ExternalDocumentID oai_doaj_org_article_c11608c1d29b406397682ec239d2fd9e
10.1186/s13007-018-0272-0
PMC5771004
A523594079
29371877
10_1186_s13007_018_0272_0
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: 1593557; BBS/E/W/10963A01; BB/CSP1730/1
  funderid: http://dx.doi.org/10.13039/501100000268
– fundername: ;
  grantid: 1593557; BBS/E/W/10963A01; BB/CSP1730/1
GroupedDBID 0R~
123
29O
2WC
2XV
5VS
7X2
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ECGQY
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAG
IAO
IGH
IGS
ISR
ITC
KQ8
LK8
M0K
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
XSB
~8M
AAYXX
CITATION
-A0
2VQ
3V.
4.4
ACRMQ
ADINQ
AHSBF
ALIPV
C1A
C24
IHR
IPNFZ
NPM
RIG
7X8
7S9
L.6
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c642t-c76c8740ad91f694b7dfcd4e33344d12776cda69398477f8e687f7441824c3183
IEDL.DBID M48
ISSN 1746-4811
IngestDate Fri Oct 03 12:30:51 EDT 2025
Wed Oct 29 11:46:49 EDT 2025
Tue Sep 30 17:18:21 EDT 2025
Thu Sep 04 17:41:00 EDT 2025
Thu Sep 04 20:28:09 EDT 2025
Mon Oct 20 22:32:54 EDT 2025
Mon Oct 20 16:05:49 EDT 2025
Thu Oct 16 15:03:54 EDT 2025
Thu Jan 02 22:55:08 EST 2025
Thu Apr 24 22:53:42 EDT 2025
Wed Oct 01 03:18:34 EDT 2025
Sat Sep 06 07:29:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NN
Image analysis
Seed
Germination
Machine learning
Classification
Robust classification
Seed imaging
Bio-energy
k-NN
Miscanthus
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-c76c8740ad91f694b7dfcd4e33344d12776cda69398477f8e687f7441824c3183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5855-0775
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13007-018-0272-0
PMID 29371877
PQID 1992008360
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c11608c1d29b406397682ec239d2fd9e
unpaywall_primary_10_1186_s13007_018_0272_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5771004
proquest_miscellaneous_2053904131
proquest_miscellaneous_1992008360
gale_infotracmisc_A523594079
gale_infotracacademiconefile_A523594079
gale_incontextgauss_ISR_A523594079
pubmed_primary_29371877
crossref_citationtrail_10_1186_s13007_018_0272_0
crossref_primary_10_1186_s13007_018_0272_0
springer_journals_10_1186_s13007_018_0272_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-17
PublicationDateYYYYMMDD 2018-01-17
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-17
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Plant methods
PublicationTitleAbbrev Plant Methods
PublicationTitleAlternate Plant Methods
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References S Ducournau (272_CR21) 2004; 44
RH Ellis (272_CR14) 1985
J Tzilivakis (272_CR6) 2005; 85
VC Gegas (272_CR19) 2010; 22
JW White (272_CR4) 2012; 133
CM Bishop (272_CR26) 2006
H Zhang (272_CR27) 2006; 2
RVL Joosen (272_CR20) 2010; 62
MA Ranal (272_CR15) 2006; 29
CA Glasbey (272_CR1) 1995
M-H Wagner (272_CR35) 2011; 142
Aquila A Dell (272_CR32) 2009; 29
JD Bewley (272_CR13) 1997; 2
272_CR38
JC Clifton-Brown (272_CR11) 2015; 115B
L Wang (272_CR2) 2009; 149
272_CR10
JC Clifton-Brown (272_CR12) 2011; 3
272_CR33
J Schindelin (272_CR22) 2012; 9
272_CR31
JP McCalmont (272_CR5) 2009
JC Clifton-Brown (272_CR8) 2000; 9
AFSJ Hastings (272_CR9) 1058; 2017
TM Cover (272_CR23) 1967; 13
I Lewandowski (272_CR7) 2000; 19
Z-X Shen (272_CR29) 2001; 41
AN French (272_CR3) 2009; 150
S Benor (272_CR18) 2011; 54
A Krizhevsky (272_CR37) 2011
T Fawcett (272_CR34) 2006; 27
EG Achigan-Dako (272_CR17) 2008; 276
MD Abràmoff (272_CR30) 2004; 11
EJ Christian (272_CR28) 2014; 54
272_CR25
A Dell’Aquila (272_CR39) 2004; 8
272_CR24
EG Achigan-Dako (272_CR16) 2015; 62
S Ducournau (272_CR36) 2005; 33
References_xml – volume: 2
  start-page: 464
  issue: 12
  year: 1997
  ident: 272_CR13
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(97)01147-3
– year: 2009
  ident: 272_CR5
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12294
– volume: 54
  start-page: 575
  issue: 7
  year: 2011
  ident: 272_CR18
  publication-title: Genome.
  doi: 10.1139/g11-021
– volume: 8
  start-page: 51
  issue: 1
  year: 2004
  ident: 272_CR39
  publication-title: Ital J Agron.
– volume: 3
  start-page: 375
  issue: 5
  year: 2011
  ident: 272_CR12
  publication-title: GCB Bioenergy.
  doi: 10.1111/j.1757-1707.2011.01094.x
– start-page: 1
  volume-title: Image analysis for the biological sciences
  year: 1995
  ident: 272_CR1
– volume: 29
  start-page: 213
  issue: 1
  year: 2009
  ident: 272_CR32
  publication-title: Agron Sustain Dev.
  doi: 10.1051/agro:2008039
– volume: 54
  start-page: 1
  year: 2014
  ident: 272_CR28
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2013.03.0187
– volume: 142
  start-page: 49
  year: 2011
  ident: 272_CR35
  publication-title: Seed Test Int.
– ident: 272_CR24
  doi: 10.1017/CBO9781107298019
– volume: 149
  start-page: 1632
  issue: 4
  year: 2009
  ident: 272_CR2
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.134072
– volume: 62
  start-page: 1159
  issue: 8
  year: 2015
  ident: 272_CR16
  publication-title: Genet Resour Crop Evol.
  doi: 10.1007/s10722-015-0220-z
– volume: 33
  start-page: 329
  issue: 2
  year: 2005
  ident: 272_CR36
  publication-title: Seed Sci Technol.
  doi: 10.15258/sst.2005.33.2.06
– volume: 44
  start-page: 189
  issue: 3
  year: 2004
  ident: 272_CR21
  publication-title: Comput Electron Agric.
  doi: 10.1016/j.compag.2004.04.005
– volume: 150
  start-page: 1784
  issue: August
  year: 2009
  ident: 272_CR3
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.140558
– ident: 272_CR31
  doi: 10.17605/OSF.IO/AUD9N.osf.io/aud9n
– ident: 272_CR25
  doi: 10.1007/978-0-387-21706-2
– volume: 19
  start-page: 209
  year: 2000
  ident: 272_CR7
  publication-title: Biomass Bioenergy
  doi: 10.1016/S0961-9534(00)00032-5
– volume: 9
  start-page: 6
  year: 2000
  ident: 272_CR8
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12357
– ident: 272_CR10
  doi: 10.1002/9781118350553.ch7
– volume-title: Handbook of seed technology for genebanks. Volume I. Principles and methodology
  year: 1985
  ident: 272_CR14
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 272_CR23
  publication-title: IEEE.
– volume: 11
  start-page: 36
  issue: 7
  year: 2004
  ident: 272_CR30
  publication-title: Biophotonics Int.
  doi: 10.1117/1.3589100
– year: 2011
  ident: 272_CR37
  publication-title: Adv Neural Inf Process Syst.
  doi: 10.1016/j.protcy.2014.09.007.1102.0183
– ident: 272_CR38
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 272_CR34
  publication-title: Pattern Recognit Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 62
  start-page: 148
  issue: 1
  year: 2010
  ident: 272_CR20
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.04116.x
– volume: 85
  start-page: 101
  issue: 2
  year: 2005
  ident: 272_CR6
  publication-title: Agric Syst
  doi: 10.1016/j.agsy.2004.07.015
– volume: 41
  start-page: 1546
  issue: 5
  year: 2001
  ident: 272_CR29
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2001.4151546x
– volume: 133
  start-page: 101
  year: 2012
  ident: 272_CR4
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2012.04.003
– ident: 272_CR33
– volume: 29
  start-page: 1
  issue: 1
  year: 2006
  ident: 272_CR15
  publication-title: Braz J Bot.
  doi: 10.1590/S0100-84042006000100002
– volume: 22
  start-page: 1046
  issue: 4
  year: 2010
  ident: 272_CR19
  publication-title: Plant Cell.
  doi: 10.1105/tpc.110.074153
– volume: 276
  start-page: 9
  issue: 1–2
  year: 2008
  ident: 272_CR17
  publication-title: Plant Syst Evol.
  doi: 10.1007/s00606-008-0075-2
– volume: 2
  start-page: 2126
  year: 2006
  ident: 272_CR27
  publication-title: IEEE Comput Vis Pattern Recognit (CVPR).
– volume: 9
  start-page: 676
  issue: 7
  year: 2012
  ident: 272_CR22
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.2019
– start-page: 67
  volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 272_CR26
– volume: 115B
  start-page: 1
  issue: 1
  year: 2015
  ident: 272_CR11
  publication-title: Biol. Environ.
  doi: 10.3318/BIOE.2015.05
– volume: 2017
  start-page: 1
  issue: 8
  year: 1058
  ident: 272_CR9
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2017.01058
SSID ssj0041236
Score 2.239283
Snippet Background Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a...
is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to...
Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need...
BACKGROUND: Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a...
Abstract Background Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5
SubjectTerms algorithms
artificial intelligence
Biological Techniques
Biomedical and Life Sciences
Classification
Comparative analysis
energy crops
Genetic aspects
Germination
humans
k-NN
Life Sciences
Machine learning
Methodology
Miscanthus
Miscanthus sinensis
phenotype
Physiological aspects
Plant Sciences
Plants in Computer Vision
rhizomes
Seed
seed germination
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQcEG8CBRmEhEQVNXYcP44toipI7QGo1Jvl2E67Ykkqsivov2fGya42INoL1_VktZ4Zz2Pny2dC3pQ-mOCigd5E-lw0lc-djjKProBaTpRNkV4KOzqWhyfi02l1unHVF2LCBnrgQXG7njFZaM8CN7VIYyipefS8NIE3wUSMvoU2q2ZqiMECOUXGGSbTcrfHoQ1CLDXOLHleTLJQIuv_OyRv5KQ_8ZLroekdcmvZXrjLn24-38hLB_fI3bGgpHvDRu6TG7F9QG7ud1D0XT4kvxIkgH7Lj4_poqMuUZBEOvsOYaSnXUNDwmVEejaAYtBMFGFfHf4328MDgYaIgwaKXzSPtId0N5GetfRo1qOFzpc9SiEkvn9ETg4-fH1_mI-XLeQeWpBF7pX0eD2fC4Y10ohahcYHEcuyFCIwrmA9OGlKA_lMNWBPrRoFxZTmwmNgeEy22q6NTwmNymgXZMPKyguv69rVjhXw60IQsq54RoqV8q0fmcjxQoy5TR2JlnawlwV7WbSXLTLybv3IxUDDcZXwPlp0LYgM2ukD8Cs7-pW9zq8y8hr9wSJHRosgnDO37Hv78ctnuwfNe2WgEzYZeTsKNR3swLvxnQbQA9JqTSS3J5JwiP1k-dXK7SwuIfKtjd2ytwgPxjpZFv-W4RBJDTh9yTLyZHDV9eY5Eh5qpTKiJk480c50pZ2dJ57xSiH1k8jIzsrd7Rjg-quUv7M-Edeb6tn_MNVzcpuno81yprbJ1uLHMr6AUnFRv0xR4TelN2I-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQQQIOiDeBggxCQqKKGjuOH8e2oipI3QNQqTfLsZ12xZJUZFfQf8-MN7va8Cjiuh5HG894HpnPnwl5XfpggosGahPpc9FUPnc6yjy6AnI5UTZFOhR2PJFHJ-LDaXU6kEXjWZjN_j3TcrfHdguCIzV2G3kO1fl1iFEy9WXlwcrpCiQRGZqWf5w2CjuJnf93H7wRhH4FSK67pLfJzUV74S6_u9lsIxAd3iV3hgyS7i1Vfo9ci-19cmO_gyzv8gH5kTAA9Es-mdB5R13iHIl0-hX8Rk-7hoYExIj0bImCQb1QxHl1-DG2hwmBhoidBYoPmkXaQ3wbSU9bejztUSXnix6lEAPfPyQnh-8-Hxzlw-0KuYeaY557JT3ex-eCYY00olah8UHEsiyFCIwrGA9OmtJAAFMNKFCrRkH2pLnw6Akeka22a-MTQqMy2gXZsLLywuu6drVjBfy7EISsK56RYrX41g_U43gDxsymEkRLu9SXBX1Z1JctMvJ2PeViybtxlfA-anQtiJTZ6QewJDvsQOsZk4X2LHBTi9TPlJpHz0sTeBNMzMgrtAeLpBgtom7O3KLv7ftPH-0eVOuVgdLXZOTNINR08AbeDYcYYB2QR2skuT2ShF3rR8MvV2ZncQihbm3sFr1FPDAmxrL4uwwH12nA6EuWkcdLU12_PEeGQ61URtTIiEerMx5pp-eJWLxSyPUkMrKzMnc7eLT-qsXfWe-If6vq6X89-xm5xdMeZjlT22Rr_m0Rn0MSOK9fpO3_E0ADUqs
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQhwQ88P0RGMggJCSmdInjOPFjh5gG0ioEVBpPlmM7XdWSVHMrGH89PieNmgFDSLxF9TlKLnfnu97PPyP0MlGaa2m4q02YCmmZqlDmhoVGRi6Xo0kZ-U1hx2N2NKHvT9KTFv9kPa7I3bA5PNkOt3egL3zYdhdqvr_UZePtOdu30I8B9GQO7UgSuvJ9h6UuLx-gncn4w-hLsyOShTSP47at-dt5vYXJ8_f_GqW3lqmLEMquj3oDXVtXS3n-TS4WW0vV4S00717SI1Tmw_WqGKofF_gf_48WbqObbUaLR40J3kFXTHUXXT2oXdZ5fg9995gEPA_HY7yqsfQcKAbPvro4ZnFdYu2BIQZPG1QO2AkG3FkNfw5bN0FjbaDTgeFGC4OtW2970rMKH88smMjp2oIUYPLtfTQ5fPv5zVHYnvYQKlcDrUKVMQXnA0rN45JxWmS6VJqaJEko1THJ3LiWjCfcLahZ6Qwqz8rMZXM5oQoi0wM0qOrKPELYZDyXmpVxkiqq8qKQhYwj93RaU1akJEDR5lML1VKhw4kcC-FLopyJRp_C6VOAPkUUoNfdlGXDA3KZ8AHYTycIFN7-h_psKtqIIFQcsyhXsSa8oL6_ynJiFEm4JqXmJkAvwPoEkHRUgAKayrW14t2nj2KUkiTlrhTnAXrVCpU1WIVsN1U4PQCvV09ytyfpoojqDT_fGLmAIYDeVaZeWwH4ZEjUWfRnGeJCOY9cPhQH6GHjGN3LE2BczLMsQFnPZXra6Y9Us1NPdJ5mwD1FA7S3cS7RRlh7mfL3Ov_7-6d6_E_ST9B14n0sDuNsFw1WZ2vz1CWlq-JZG21-AoTIhSQ
  priority: 102
  providerName: Unpaywall
Title Using k-NN to analyse images of diverse germination phenotypes and detect single seed germination in Miscanthus sinensis
URI https://link.springer.com/article/10.1186/s13007-018-0272-0
https://www.ncbi.nlm.nih.gov/pubmed/29371877
https://www.proquest.com/docview/1992008360
https://www.proquest.com/docview/2053904131
https://pubmed.ncbi.nlm.nih.gov/PMC5771004
https://plantmethods.biomedcentral.com/track/pdf/10.1186/s13007-018-0272-0
https://doaj.org/article/c11608c1d29b406397682ec239d2fd9e
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: RBZ
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: ABDBF
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: M~E
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: M48
  dateStart: 20051101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: AAJSJ
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1746-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041236
  issn: 1746-4811
  databaseCode: C6C
  dateStart: 20050112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGhgQ8IL4JjMogJCSmQD5cO35AqK02DaRW06DS4MVybGerKMloWrH999y5abXAGOKlUnvnqPHd-e5yl98R8jI1VlrtJOQm3ISs6JpQZ46HTkcQy7G0iPxLYcMR3x-zj0fdow2yGm_VbGB9aWqH86TGs-mbsx_n78Hg33mDz_jbGksy2ECZYUUyCSGD3wJHJXGSw5CtiwoMgUaawualy1quySP4_3lOX3BUvzdRriupt8iNRXmqz3_q6fSCs9q7Q243USbtLdXiLtlw5T1yvV9BJHh-n5z5PgH6LRyN6Lyi2uOSODr5DmdLTauCWt-s4ejxslMGZUexF6zCB7Y1LLDUOqw-ULzQ1NEafGCLe1LS4aRGsZ0sauTCPvn6ARnv7X4e7IfNBIbQQF4yD43gBmf2aSvjgkuWC1sYy1yapozZOBFAt5rLVIKTEwUIOROFgAgrS5jB0-Ih2Syr0j0m1AmZacuLOO0aZrI817mOI_h31jKed5OARKvNV6aBJ8cpGVPl05SMq6W8FMhLobxUFJDX6yWnS2yOq5j7KNE1I8Jq-x-q2bFqrFSZOOZRZmKbyJz5mifPEmeSVNqksNIF5AXqg0LgjBI7c471oq7Vh0-HqgcZfVdCeiwD8qphKiq4A6ObFx1gHxBrq8W53eIEyzYt8vOV2ikkYTtc6apFrbBnGINnHv2dJ4HjVYLSp3FAHi1VdX3zCaIgZkIERLSUuLU7bUo5OfHg412BeFAsIDsrdVcro71q83fWFvFvUT35r2s_JTcTb8NxGIttsjmfLdwzCBTneYdcE0eiQ7b6u6ODQ_g24IOOf-jS8QcDfB72vwJ9PDroffkFGEtoSA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQhjR4QNwJDDAICYkpWi6OHT92iGkrax_YJu3NcmynqyjJNLeC_XvOcdNq4TLEa30cNT4Xn5Pz-TMh73JjpdVOQm3CTczqwsS6dDx2OoFcjuV1Eg6Fjcb84JQNz4qz7hy3X6HdVy3JEKmDW5d812PjBWGSJfYdsxjq9E3EWIE3bg4Gw-PhKgAzJBTpGph_nNjbggJT_-_x-NqG9CtYct0xvUu2Fs2FvvquZ7Nrm9L-fXKvyybpYKn-B-SWax6S23stZHxXj8iPgAegX-PxmM5bqgP_iKPTbxBDPG1ragMow9HJEhGDOqKI-Wrxw6yHCZZah10Gig-aOephr-tJTxs6mnpUz_nCoxTi4f1jcrr_6eTjQdzdtBAbqD_msRHc4N182sq05pJVwtbGMpfnOWM2zQSMW81lLmEzEzUosxS1gEyqzJjBqPCEbDRt454R6oQsteV1mheGmbKqdKXTBP6dtYxXRRaRZLX4ynQ05HgbxkyFcqTkaqkvBfpSqC-VROTDesrFkoPjJuE91OhaEOmzww_t5UR13qhMmvKkNKnNZMVCb5OXmTNZLm1WW-ki8hbtQSFBRoMInIleeK8Oj7-oAVTuhYQyWEbkfSdUt_AGRncHGmAdkFOrJ7ndkwQPNr3hNyuzUziEsLfGtQuvEBuMSTJP_i6TQRiVYPR5GpGnS1Ndv3yGbIelEBERPSPurU5_pJmeB5LxQiDvE4vIzsrcVRfd_E2Lv7P2iH-r6vl_Pfs12To4GR2po8Px5xfkThb8OY1TsU025pcL9xKSw3n1qgsGPwHbMVsE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZQQRwPiLuBAgYhIVFFzeHY8WO7sGqBrhBQqW-WYzvbFdtkVe8K-u-ZybFqOIp4XY-jjWc8R-bzZ0JepcZKq52E2oSbkJWZCXXueOh0BLkcS8uoORR2OOH7R-z9cXbc3XPqe7R735JszzQgS1O13FnYst3iOd_x2IRByGSOPcgkhJr9KoPghlcYjPiod8UMqUW6VuYfpw2CUcPZ_7tnvhCafoVNrnunt8iNVbXQ59_1fH4hPI3vkNtdXkl3W0O4S6646h65tldD7nd-n_xokAH0WziZ0GVNdcNE4ujsFLyJp3VJbQPPcHTaYmNQWxTRXzV-ovUwwVLrsN9A8UFzRz1EvYH0rKKHM4-KOll5lEJkvH9Ajsbvvo72w-7OhdBAJbIMjeAGb-nTVsYll6wQtjSWuTRNGbNxImDcai5TCWFNlKDWXJQCcqo8YQb9w0OyUdWV2yTUCZlry8s4zQwzeVHoQscR_DtrGS-yJCBRv_jKdITkeC_GXDWFSc5Vqy8F-lKoLxUF5M16yqJl47hMeA81uhZEIu3mh_psqrp9qUwc8yg3sU1kwZouJ88TZ5JU2qS00gXkJdqDQqqMCrE4U73yXh18-ax2oYbPJBTEMiCvO6GyhjcwujvaAOuA7FoDya2BJOxlMxh-0ZudwiEEwFWuXnmFKGFMl3n0d5kEHKoEo0_jgDxqTXX98gnyHuZCBEQMjHiwOsORanbS0I1nAhmgWEC2e3NXnZ_zly3-9npH_FtVj__r2c_J9U9vx-rjweTDE3IzabZzHMZii2wsz1buKWSJy-JZ4wl-AjUqXeE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQhwQ88P0RGMggJCSmdInjOPFjh5gG0ioEVBpPlmM7XdWSVHMrGH89PieNmgFDSLxF9TlKLnfnu97PPyP0MlGaa2m4q02YCmmZqlDmhoVGRi6Xo0kZ-U1hx2N2NKHvT9KTFv9kPa7I3bA5PNkOt3egL3zYdhdqvr_UZePtOdu30I8B9GQO7UgSuvJ9h6UuLx-gncn4w-hLsyOShTSP47at-dt5vYXJ8_f_GqW3lqmLEMquj3oDXVtXS3n-TS4WW0vV4S00717SI1Tmw_WqGKofF_gf_48WbqObbUaLR40J3kFXTHUXXT2oXdZ5fg9995gEPA_HY7yqsfQcKAbPvro4ZnFdYu2BIQZPG1QO2AkG3FkNfw5bN0FjbaDTgeFGC4OtW2970rMKH88smMjp2oIUYPLtfTQ5fPv5zVHYnvYQKlcDrUKVMQXnA0rN45JxWmS6VJqaJEko1THJ3LiWjCfcLahZ6Qwqz8rMZXM5oQoi0wM0qOrKPELYZDyXmpVxkiqq8qKQhYwj93RaU1akJEDR5lML1VKhw4kcC-FLopyJRp_C6VOAPkUUoNfdlGXDA3KZ8AHYTycIFN7-h_psKtqIIFQcsyhXsSa8oL6_ynJiFEm4JqXmJkAvwPoEkHRUgAKayrW14t2nj2KUkiTlrhTnAXrVCpU1WIVsN1U4PQCvV09ytyfpoojqDT_fGLmAIYDeVaZeWwH4ZEjUWfRnGeJCOY9cPhQH6GHjGN3LE2BczLMsQFnPZXra6Y9Us1NPdJ5mwD1FA7S3cS7RRlh7mfL3Ov_7-6d6_E_ST9B14n0sDuNsFw1WZ2vz1CWlq-JZG21-AoTIhSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+k-NN+to+analyse+images+of+diverse+germination+phenotypes+and+detect+single+seed+germination+in+Miscanthus+sinensis&rft.jtitle=Plant+methods&rft.au=Awty-Carroll%2C+Danny&rft.au=Clifton-Brown%2C+John&rft.au=Robson%2C+Paul&rft.date=2018-01-17&rft.pub=BioMed+Central&rft.eissn=1746-4811&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1186%2Fs13007-018-0272-0&rft.externalDocID=10_1186_s13007_018_0272_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-4811&client=summon