Using k-NN to analyse images of diverse germination phenotypes and detect single seed germination in Miscanthus sinensis
Background Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore,...
Saved in:
| Published in | Plant methods Vol. 14; no. 1; p. 5 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
17.01.2018
BioMed Central Ltd BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-4811 1746-4811 |
| DOI | 10.1186/s13007-018-0272-0 |
Cover
| Abstract | Background
Miscanthus
is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination.
Miscanthus
seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould.
Results
Machine learning using
k
-NN improved the scoring of different phenotypes encountered in
Miscanthus
seed. The
k
-NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the
k
-NN result was 0.69–0.7, as measured using the area under a ROC curve. When the
k
-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique.
Conclusions
With non-ideal seed images that included mould and broken seed the
k
-NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the
k
-NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score. |
|---|---|
| AbstractList | Background
Miscanthus
is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination.
Miscanthus
seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould.
Results
Machine learning using
k
-NN improved the scoring of different phenotypes encountered in
Miscanthus
seed. The
k
-NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the
k
-NN result was 0.69–0.7, as measured using the area under a ROC curve. When the
k
-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique.
Conclusions
With non-ideal seed images that included mould and broken seed the
k
-NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the
k
-NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score. BACKGROUND: Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould. RESULTS: Machine learning using k-NN improved the scoring of different phenotypes encountered in Miscanthus seed. The k-NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the k-NN result was 0.69–0.7, as measured using the area under a ROC curve. When the k-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique. CONCLUSIONS: With non-ideal seed images that included mould and broken seed the k-NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the k-NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score. is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould. Machine learning using -NN improved the scoring of different phenotypes encountered in seed. The -NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the -NN result was 0.69-0.7, as measured using the area under a ROC curve. When the -NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique. With non-ideal seed images that included mould and broken seed the -NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the -NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score. Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould.BACKGROUNDMiscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould.Machine learning using k-NN improved the scoring of different phenotypes encountered in Miscanthus seed. The k-NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the k-NN result was 0.69-0.7, as measured using the area under a ROC curve. When the k-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique.RESULTSMachine learning using k-NN improved the scoring of different phenotypes encountered in Miscanthus seed. The k-NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the k-NN result was 0.69-0.7, as measured using the area under a ROC curve. When the k-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique.With non-ideal seed images that included mould and broken seed the k-NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the k-NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score.CONCLUSIONSWith non-ideal seed images that included mould and broken seed the k-NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the k-NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score. Abstract Background Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to investigate germination. Miscanthus seed are small, germination is often poor and carried out without sterilisation; therefore, automated methods applied to germination detection must be able to cope with, for example, thresholding of small objects, low germination frequency and the presence or absence of mould. Results Machine learning using k-NN improved the scoring of different phenotypes encountered in Miscanthus seed. The k-NN-based algorithm was effective in scoring the germination of seed images when compared with human scores of the same images. The trueness of the k-NN result was 0.69–0.7, as measured using the area under a ROC curve. When the k-NN classifier was tested on an optimised image subset of seed an area under the ROC curve of 0.89 was achieved. The method compared favourably to an established technique. Conclusions With non-ideal seed images that included mould and broken seed the k-NN classifier was less consistent with human assessments. The most accurate assessment of germination with which to train classifiers is difficult to determine but the k-NN classifier provided an impartial consistent measurement of this important trait. It was more reproducible than the existing human scoring methods and was demonstrated to give a high degree of trueness to the human score. |
| ArticleNumber | 5 |
| Audience | Academic |
| Author | Robson, Paul Clifton-Brown, John Awty-Carroll, Danny |
| Author_xml | – sequence: 1 givenname: Danny orcidid: 0000-0001-5855-0775 surname: Awty-Carroll fullname: Awty-Carroll, Danny email: dga1@aber.ac.uk organization: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University – sequence: 2 givenname: John surname: Clifton-Brown fullname: Clifton-Brown, John organization: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University – sequence: 3 givenname: Paul surname: Robson fullname: Robson, Paul organization: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29371877$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk0tv1DAUhSNURB_wA9igSGxgkeLXxPYGqap4jFSKBHRteeybjIeMPcRO6fx7nGaoOggVlEWi6-8c2_fcHBcHPngoiucYnWIs6jcRU4R4hbCoEOGkQo-KI8xZXTGB8cG978PiOMYVQgwTWj8pDomkHAvOj4qbq-h8W36vLi_LFErtdbeNULq1biGWoSmtu4Y-V1ro187r5IIvN0vwIW03mdDelhYSmFSORh2UEcDu0c6Xn1w02qflEEcKfHTxafG40V2EZ7v3SXH1_t2384_VxecP8_Ozi8rUjKTK8NoIzpC2Eje1ZAtuG2MZUEoZs5jwvG51LakUjPNGQC14wxnDgjBDsaAnxXzytUGv1KbPN-u3Kminbguhb5XukzMdKINxjYTBlsgFQzWVvBYEDKHSksZKyF5k8hr8Rm9_6q67M8RIjZGoKRKVI1FjJApl0dtJtBkWa7AGfOp1t3eS_RXvlqoN12rGOc6RZYNXO4M-_BggJrXO7YSu0x7CEBVBMypztBT_E8VSEoQErcdjvZzQVuerO9-EvLkZcXU2I3QmGeIyU6d_ofJjYe1MnsbG5fqe4PWeIDMJblKrhxjV_OuXffbF_c7cteT3dGaAT4DpQ4w9NMq4dDtU-RSue7Dp-A_l_wS1Szdm1ucJVqsw9PmHiA-IfgHgVBXm |
| CitedBy_id | crossref_primary_10_1155_2022_4678316 crossref_primary_10_1186_s13007_020_00620_6 crossref_primary_10_1186_s13007_020_00699_x crossref_primary_10_32604_iasc_2023_029446 crossref_primary_10_3390_agronomy13082134 crossref_primary_10_1002_jsfa_12318 crossref_primary_10_3390_agriculture15060582 crossref_primary_10_1186_s13007_019_0411_2 crossref_primary_10_3389_fpls_2022_1074360 crossref_primary_10_3390_agronomy15010128 crossref_primary_10_3390_genes13122256 crossref_primary_10_1109_JSEN_2019_2935812 |
| Cites_doi | 10.1016/S1360-1385(97)01147-3 10.1111/gcbb.12294 10.1139/g11-021 10.1111/j.1757-1707.2011.01094.x 10.1051/agro:2008039 10.2135/cropsci2013.03.0187 10.1017/CBO9781107298019 10.1104/pp.108.134072 10.1007/s10722-015-0220-z 10.15258/sst.2005.33.2.06 10.1016/j.compag.2004.04.005 10.1104/pp.109.140558 10.17605/OSF.IO/AUD9N.osf.io/aud9n 10.1007/978-0-387-21706-2 10.1016/S0961-9534(00)00032-5 10.1111/gcbb.12357 10.1002/9781118350553.ch7 10.1117/1.3589100 10.1016/j.protcy.2014.09.007.1102.0183 10.1016/j.patrec.2005.10.010 10.1111/j.1365-313X.2009.04116.x 10.1016/j.agsy.2004.07.015 10.2135/cropsci2001.4151546x 10.1016/j.fcr.2012.04.003 10.1590/S0100-84042006000100002 10.1105/tpc.110.074153 10.1007/s00606-008-0075-2 10.1038/nmeth.2019 10.3318/BIOE.2015.05 10.3389/fpls.2017.01058 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 COPYRIGHT 2018 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s) 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION NPM ISR 7X8 7S9 L.6 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s13007-018-0272-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1746-4811 |
| EndPage | 5 |
| ExternalDocumentID | oai_doaj_org_article_c11608c1d29b406397682ec239d2fd9e 10.1186/s13007-018-0272-0 PMC5771004 A523594079 29371877 10_1186_s13007_018_0272_0 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: 1593557; BBS/E/W/10963A01; BB/CSP1730/1 funderid: http://dx.doi.org/10.13039/501100000268 – fundername: ; grantid: 1593557; BBS/E/W/10963A01; BB/CSP1730/1 |
| GroupedDBID | 0R~ 123 29O 2WC 2XV 5VS 7X2 7X7 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ATCPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS ECGQY EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAG IAO IGH IGS ISR ITC KQ8 LK8 M0K M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ XSB ~8M AAYXX CITATION -A0 2VQ 3V. 4.4 ACRMQ ADINQ AHSBF ALIPV C1A C24 IHR IPNFZ NPM RIG 7X8 7S9 L.6 5PM ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c642t-c76c8740ad91f694b7dfcd4e33344d12776cda69398477f8e687f7441824c3183 |
| IEDL.DBID | M48 |
| ISSN | 1746-4811 |
| IngestDate | Fri Oct 03 12:30:51 EDT 2025 Wed Oct 29 11:46:49 EDT 2025 Tue Sep 30 17:18:21 EDT 2025 Thu Sep 04 17:41:00 EDT 2025 Thu Sep 04 20:28:09 EDT 2025 Mon Oct 20 22:32:54 EDT 2025 Mon Oct 20 16:05:49 EDT 2025 Thu Oct 16 15:03:54 EDT 2025 Thu Jan 02 22:55:08 EST 2025 Thu Apr 24 22:53:42 EDT 2025 Wed Oct 01 03:18:34 EDT 2025 Sat Sep 06 07:29:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | NN Image analysis Seed Germination Machine learning Classification Robust classification Seed imaging Bio-energy k-NN Miscanthus |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-c76c8740ad91f694b7dfcd4e33344d12776cda69398477f8e687f7441824c3183 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5855-0775 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13007-018-0272-0 |
| PMID | 29371877 |
| PQID | 1992008360 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c11608c1d29b406397682ec239d2fd9e unpaywall_primary_10_1186_s13007_018_0272_0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5771004 proquest_miscellaneous_2053904131 proquest_miscellaneous_1992008360 gale_infotracmisc_A523594079 gale_infotracacademiconefile_A523594079 gale_incontextgauss_ISR_A523594079 pubmed_primary_29371877 crossref_citationtrail_10_1186_s13007_018_0272_0 crossref_primary_10_1186_s13007_018_0272_0 springer_journals_10_1186_s13007_018_0272_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-17 |
| PublicationDateYYYYMMDD | 2018-01-17 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Plant methods |
| PublicationTitleAbbrev | Plant Methods |
| PublicationTitleAlternate | Plant Methods |
| PublicationYear | 2018 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | S Ducournau (272_CR21) 2004; 44 RH Ellis (272_CR14) 1985 J Tzilivakis (272_CR6) 2005; 85 VC Gegas (272_CR19) 2010; 22 JW White (272_CR4) 2012; 133 CM Bishop (272_CR26) 2006 H Zhang (272_CR27) 2006; 2 RVL Joosen (272_CR20) 2010; 62 MA Ranal (272_CR15) 2006; 29 CA Glasbey (272_CR1) 1995 M-H Wagner (272_CR35) 2011; 142 Aquila A Dell (272_CR32) 2009; 29 JD Bewley (272_CR13) 1997; 2 272_CR38 JC Clifton-Brown (272_CR11) 2015; 115B L Wang (272_CR2) 2009; 149 272_CR10 JC Clifton-Brown (272_CR12) 2011; 3 272_CR33 J Schindelin (272_CR22) 2012; 9 272_CR31 JP McCalmont (272_CR5) 2009 JC Clifton-Brown (272_CR8) 2000; 9 AFSJ Hastings (272_CR9) 1058; 2017 TM Cover (272_CR23) 1967; 13 I Lewandowski (272_CR7) 2000; 19 Z-X Shen (272_CR29) 2001; 41 AN French (272_CR3) 2009; 150 S Benor (272_CR18) 2011; 54 A Krizhevsky (272_CR37) 2011 T Fawcett (272_CR34) 2006; 27 EG Achigan-Dako (272_CR17) 2008; 276 MD Abràmoff (272_CR30) 2004; 11 EJ Christian (272_CR28) 2014; 54 272_CR25 A Dell’Aquila (272_CR39) 2004; 8 272_CR24 EG Achigan-Dako (272_CR16) 2015; 62 S Ducournau (272_CR36) 2005; 33 |
| References_xml | – volume: 2 start-page: 464 issue: 12 year: 1997 ident: 272_CR13 publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(97)01147-3 – year: 2009 ident: 272_CR5 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12294 – volume: 54 start-page: 575 issue: 7 year: 2011 ident: 272_CR18 publication-title: Genome. doi: 10.1139/g11-021 – volume: 8 start-page: 51 issue: 1 year: 2004 ident: 272_CR39 publication-title: Ital J Agron. – volume: 3 start-page: 375 issue: 5 year: 2011 ident: 272_CR12 publication-title: GCB Bioenergy. doi: 10.1111/j.1757-1707.2011.01094.x – start-page: 1 volume-title: Image analysis for the biological sciences year: 1995 ident: 272_CR1 – volume: 29 start-page: 213 issue: 1 year: 2009 ident: 272_CR32 publication-title: Agron Sustain Dev. doi: 10.1051/agro:2008039 – volume: 54 start-page: 1 year: 2014 ident: 272_CR28 publication-title: Crop Sci. doi: 10.2135/cropsci2013.03.0187 – volume: 142 start-page: 49 year: 2011 ident: 272_CR35 publication-title: Seed Test Int. – ident: 272_CR24 doi: 10.1017/CBO9781107298019 – volume: 149 start-page: 1632 issue: 4 year: 2009 ident: 272_CR2 publication-title: Plant Physiol doi: 10.1104/pp.108.134072 – volume: 62 start-page: 1159 issue: 8 year: 2015 ident: 272_CR16 publication-title: Genet Resour Crop Evol. doi: 10.1007/s10722-015-0220-z – volume: 33 start-page: 329 issue: 2 year: 2005 ident: 272_CR36 publication-title: Seed Sci Technol. doi: 10.15258/sst.2005.33.2.06 – volume: 44 start-page: 189 issue: 3 year: 2004 ident: 272_CR21 publication-title: Comput Electron Agric. doi: 10.1016/j.compag.2004.04.005 – volume: 150 start-page: 1784 issue: August year: 2009 ident: 272_CR3 publication-title: Plant Physiol doi: 10.1104/pp.109.140558 – ident: 272_CR31 doi: 10.17605/OSF.IO/AUD9N.osf.io/aud9n – ident: 272_CR25 doi: 10.1007/978-0-387-21706-2 – volume: 19 start-page: 209 year: 2000 ident: 272_CR7 publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(00)00032-5 – volume: 9 start-page: 6 year: 2000 ident: 272_CR8 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12357 – ident: 272_CR10 doi: 10.1002/9781118350553.ch7 – volume-title: Handbook of seed technology for genebanks. Volume I. Principles and methodology year: 1985 ident: 272_CR14 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 272_CR23 publication-title: IEEE. – volume: 11 start-page: 36 issue: 7 year: 2004 ident: 272_CR30 publication-title: Biophotonics Int. doi: 10.1117/1.3589100 – year: 2011 ident: 272_CR37 publication-title: Adv Neural Inf Process Syst. doi: 10.1016/j.protcy.2014.09.007.1102.0183 – ident: 272_CR38 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 272_CR34 publication-title: Pattern Recognit Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 62 start-page: 148 issue: 1 year: 2010 ident: 272_CR20 publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04116.x – volume: 85 start-page: 101 issue: 2 year: 2005 ident: 272_CR6 publication-title: Agric Syst doi: 10.1016/j.agsy.2004.07.015 – volume: 41 start-page: 1546 issue: 5 year: 2001 ident: 272_CR29 publication-title: Crop Sci. doi: 10.2135/cropsci2001.4151546x – volume: 133 start-page: 101 year: 2012 ident: 272_CR4 publication-title: Field Crops Res doi: 10.1016/j.fcr.2012.04.003 – ident: 272_CR33 – volume: 29 start-page: 1 issue: 1 year: 2006 ident: 272_CR15 publication-title: Braz J Bot. doi: 10.1590/S0100-84042006000100002 – volume: 22 start-page: 1046 issue: 4 year: 2010 ident: 272_CR19 publication-title: Plant Cell. doi: 10.1105/tpc.110.074153 – volume: 276 start-page: 9 issue: 1–2 year: 2008 ident: 272_CR17 publication-title: Plant Syst Evol. doi: 10.1007/s00606-008-0075-2 – volume: 2 start-page: 2126 year: 2006 ident: 272_CR27 publication-title: IEEE Comput Vis Pattern Recognit (CVPR). – volume: 9 start-page: 676 issue: 7 year: 2012 ident: 272_CR22 publication-title: Nat Methods. doi: 10.1038/nmeth.2019 – start-page: 67 volume-title: Pattern recognition and machine learning year: 2006 ident: 272_CR26 – volume: 115B start-page: 1 issue: 1 year: 2015 ident: 272_CR11 publication-title: Biol. Environ. doi: 10.3318/BIOE.2015.05 – volume: 2017 start-page: 1 issue: 8 year: 1058 ident: 272_CR9 publication-title: Front Plant Sci. doi: 10.3389/fpls.2017.01058 |
| SSID | ssj0041236 |
| Score | 2.239283 |
| Snippet | Background
Miscanthus
is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a... is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need to... Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a greater need... BACKGROUND: Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is resulting in a... Abstract Background Miscanthus is a leading second generation bio-energy crop. It is mostly rhizome propagated; however, the increasing use of seed is... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5 |
| SubjectTerms | algorithms artificial intelligence Biological Techniques Biomedical and Life Sciences Classification Comparative analysis energy crops Genetic aspects Germination humans k-NN Life Sciences Machine learning Methodology Miscanthus Miscanthus sinensis phenotype Physiological aspects Plant Sciences Plants in Computer Vision rhizomes Seed seed germination |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQcEG8CBRmEhEQVNXYcP44toipI7QGo1Jvl2E67Ykkqsivov2fGya42INoL1_VktZ4Zz2Pny2dC3pQ-mOCigd5E-lw0lc-djjKProBaTpRNkV4KOzqWhyfi02l1unHVF2LCBnrgQXG7njFZaM8CN7VIYyipefS8NIE3wUSMvoU2q2ZqiMECOUXGGSbTcrfHoQ1CLDXOLHleTLJQIuv_OyRv5KQ_8ZLroekdcmvZXrjLn24-38hLB_fI3bGgpHvDRu6TG7F9QG7ud1D0XT4kvxIkgH7Lj4_poqMuUZBEOvsOYaSnXUNDwmVEejaAYtBMFGFfHf4328MDgYaIgwaKXzSPtId0N5GetfRo1qOFzpc9SiEkvn9ETg4-fH1_mI-XLeQeWpBF7pX0eD2fC4Y10ohahcYHEcuyFCIwrmA9OGlKA_lMNWBPrRoFxZTmwmNgeEy22q6NTwmNymgXZMPKyguv69rVjhXw60IQsq54RoqV8q0fmcjxQoy5TR2JlnawlwV7WbSXLTLybv3IxUDDcZXwPlp0LYgM2ukD8Cs7-pW9zq8y8hr9wSJHRosgnDO37Hv78ctnuwfNe2WgEzYZeTsKNR3swLvxnQbQA9JqTSS3J5JwiP1k-dXK7SwuIfKtjd2ytwgPxjpZFv-W4RBJDTh9yTLyZHDV9eY5Eh5qpTKiJk480c50pZ2dJ57xSiH1k8jIzsrd7Rjg-quUv7M-Edeb6tn_MNVzcpuno81yprbJ1uLHMr6AUnFRv0xR4TelN2I- priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQQQIOiDeBggxCQqKKGjuOH8e2oipI3QNQqTfLsZ12xZJUZFfQf8-MN7va8Cjiuh5HG894HpnPnwl5XfpggosGahPpc9FUPnc6yjy6AnI5UTZFOhR2PJFHJ-LDaXU6kEXjWZjN_j3TcrfHdguCIzV2G3kO1fl1iFEy9WXlwcrpCiQRGZqWf5w2CjuJnf93H7wRhH4FSK67pLfJzUV74S6_u9lsIxAd3iV3hgyS7i1Vfo9ci-19cmO_gyzv8gH5kTAA9Es-mdB5R13iHIl0-hX8Rk-7hoYExIj0bImCQb1QxHl1-DG2hwmBhoidBYoPmkXaQ3wbSU9bejztUSXnix6lEAPfPyQnh-8-Hxzlw-0KuYeaY557JT3ex-eCYY00olah8UHEsiyFCIwrGA9OmtJAAFMNKFCrRkH2pLnw6Akeka22a-MTQqMy2gXZsLLywuu6drVjBfy7EISsK56RYrX41g_U43gDxsymEkRLu9SXBX1Z1JctMvJ2PeViybtxlfA-anQtiJTZ6QewJDvsQOsZk4X2LHBTi9TPlJpHz0sTeBNMzMgrtAeLpBgtom7O3KLv7ftPH-0eVOuVgdLXZOTNINR08AbeDYcYYB2QR2skuT2ShF3rR8MvV2ZncQihbm3sFr1FPDAmxrL4uwwH12nA6EuWkcdLU12_PEeGQ61URtTIiEerMx5pp-eJWLxSyPUkMrKzMnc7eLT-qsXfWe-If6vq6X89-xm5xdMeZjlT22Rr_m0Rn0MSOK9fpO3_E0ADUqs priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQhwQ88P0RGMggJCSmdInjOPFjh5gG0ioEVBpPlmM7XdWSVHMrGH89PieNmgFDSLxF9TlKLnfnu97PPyP0MlGaa2m4q02YCmmZqlDmhoVGRi6Xo0kZ-U1hx2N2NKHvT9KTFv9kPa7I3bA5PNkOt3egL3zYdhdqvr_UZePtOdu30I8B9GQO7UgSuvJ9h6UuLx-gncn4w-hLsyOShTSP47at-dt5vYXJ8_f_GqW3lqmLEMquj3oDXVtXS3n-TS4WW0vV4S00717SI1Tmw_WqGKofF_gf_48WbqObbUaLR40J3kFXTHUXXT2oXdZ5fg9995gEPA_HY7yqsfQcKAbPvro4ZnFdYu2BIQZPG1QO2AkG3FkNfw5bN0FjbaDTgeFGC4OtW2970rMKH88smMjp2oIUYPLtfTQ5fPv5zVHYnvYQKlcDrUKVMQXnA0rN45JxWmS6VJqaJEko1THJ3LiWjCfcLahZ6Qwqz8rMZXM5oQoi0wM0qOrKPELYZDyXmpVxkiqq8qKQhYwj93RaU1akJEDR5lML1VKhw4kcC-FLopyJRp_C6VOAPkUUoNfdlGXDA3KZ8AHYTycIFN7-h_psKtqIIFQcsyhXsSa8oL6_ynJiFEm4JqXmJkAvwPoEkHRUgAKayrW14t2nj2KUkiTlrhTnAXrVCpU1WIVsN1U4PQCvV09ytyfpoojqDT_fGLmAIYDeVaZeWwH4ZEjUWfRnGeJCOY9cPhQH6GHjGN3LE2BczLMsQFnPZXra6Y9Us1NPdJ5mwD1FA7S3cS7RRlh7mfL3Ov_7-6d6_E_ST9B14n0sDuNsFw1WZ2vz1CWlq-JZG21-AoTIhSQ priority: 102 providerName: Unpaywall |
| Title | Using k-NN to analyse images of diverse germination phenotypes and detect single seed germination in Miscanthus sinensis |
| URI | https://link.springer.com/article/10.1186/s13007-018-0272-0 https://www.ncbi.nlm.nih.gov/pubmed/29371877 https://www.proquest.com/docview/1992008360 https://www.proquest.com/docview/2053904131 https://pubmed.ncbi.nlm.nih.gov/PMC5771004 https://plantmethods.biomedcentral.com/track/pdf/10.1186/s13007-018-0272-0 https://doaj.org/article/c11608c1d29b406397682ec239d2fd9e |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: RBZ dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: ABDBF dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: M~E dateStart: 20050101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1746-4811 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: M48 dateStart: 20051101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: AAJSJ dateStart: 20051201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1746-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041236 issn: 1746-4811 databaseCode: C6C dateStart: 20050112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGhgQ8IL4JjMogJCSmQD5cO35AqK02DaRW06DS4MVybGerKMloWrH999y5abXAGOKlUnvnqPHd-e5yl98R8jI1VlrtJOQm3ISs6JpQZ46HTkcQy7G0iPxLYcMR3x-zj0fdow2yGm_VbGB9aWqH86TGs-mbsx_n78Hg33mDz_jbGksy2ECZYUUyCSGD3wJHJXGSw5CtiwoMgUaawualy1quySP4_3lOX3BUvzdRriupt8iNRXmqz3_q6fSCs9q7Q243USbtLdXiLtlw5T1yvV9BJHh-n5z5PgH6LRyN6Lyi2uOSODr5DmdLTauCWt-s4ejxslMGZUexF6zCB7Y1LLDUOqw-ULzQ1NEafGCLe1LS4aRGsZ0sauTCPvn6ARnv7X4e7IfNBIbQQF4yD43gBmf2aSvjgkuWC1sYy1yapozZOBFAt5rLVIKTEwUIOROFgAgrS5jB0-Ih2Syr0j0m1AmZacuLOO0aZrI817mOI_h31jKed5OARKvNV6aBJ8cpGVPl05SMq6W8FMhLobxUFJDX6yWnS2yOq5j7KNE1I8Jq-x-q2bFqrFSZOOZRZmKbyJz5mifPEmeSVNqksNIF5AXqg0LgjBI7c471oq7Vh0-HqgcZfVdCeiwD8qphKiq4A6ObFx1gHxBrq8W53eIEyzYt8vOV2ikkYTtc6apFrbBnGINnHv2dJ4HjVYLSp3FAHi1VdX3zCaIgZkIERLSUuLU7bUo5OfHg412BeFAsIDsrdVcro71q83fWFvFvUT35r2s_JTcTb8NxGIttsjmfLdwzCBTneYdcE0eiQ7b6u6ODQ_g24IOOf-jS8QcDfB72vwJ9PDroffkFGEtoSA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQhjR4QNwJDDAICYkpWi6OHT92iGkrax_YJu3NcmynqyjJNLeC_XvOcdNq4TLEa30cNT4Xn5Pz-TMh73JjpdVOQm3CTczqwsS6dDx2OoFcjuV1Eg6Fjcb84JQNz4qz7hy3X6HdVy3JEKmDW5d812PjBWGSJfYdsxjq9E3EWIE3bg4Gw-PhKgAzJBTpGph_nNjbggJT_-_x-NqG9CtYct0xvUu2Fs2FvvquZ7Nrm9L-fXKvyybpYKn-B-SWax6S23stZHxXj8iPgAegX-PxmM5bqgP_iKPTbxBDPG1ragMow9HJEhGDOqKI-Wrxw6yHCZZah10Gig-aOephr-tJTxs6mnpUz_nCoxTi4f1jcrr_6eTjQdzdtBAbqD_msRHc4N182sq05pJVwtbGMpfnOWM2zQSMW81lLmEzEzUosxS1gEyqzJjBqPCEbDRt454R6oQsteV1mheGmbKqdKXTBP6dtYxXRRaRZLX4ynQ05HgbxkyFcqTkaqkvBfpSqC-VROTDesrFkoPjJuE91OhaEOmzww_t5UR13qhMmvKkNKnNZMVCb5OXmTNZLm1WW-ki8hbtQSFBRoMInIleeK8Oj7-oAVTuhYQyWEbkfSdUt_AGRncHGmAdkFOrJ7ndkwQPNr3hNyuzUziEsLfGtQuvEBuMSTJP_i6TQRiVYPR5GpGnS1Ndv3yGbIelEBERPSPurU5_pJmeB5LxQiDvE4vIzsrcVRfd_E2Lv7P2iH-r6vl_Pfs12To4GR2po8Px5xfkThb8OY1TsU025pcL9xKSw3n1qgsGPwHbMVsE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZQQRwPiLuBAgYhIVFFzeHY8WO7sGqBrhBQqW-WYzvbFdtkVe8K-u-ZybFqOIp4XY-jjWc8R-bzZ0JepcZKq52E2oSbkJWZCXXueOh0BLkcS8uoORR2OOH7R-z9cXbc3XPqe7R735JszzQgS1O13FnYst3iOd_x2IRByGSOPcgkhJr9KoPghlcYjPiod8UMqUW6VuYfpw2CUcPZ_7tnvhCafoVNrnunt8iNVbXQ59_1fH4hPI3vkNtdXkl3W0O4S6646h65tldD7nd-n_xokAH0WziZ0GVNdcNE4ujsFLyJp3VJbQPPcHTaYmNQWxTRXzV-ovUwwVLrsN9A8UFzRz1EvYH0rKKHM4-KOll5lEJkvH9Ajsbvvo72w-7OhdBAJbIMjeAGb-nTVsYll6wQtjSWuTRNGbNxImDcai5TCWFNlKDWXJQCcqo8YQb9w0OyUdWV2yTUCZlry8s4zQwzeVHoQscR_DtrGS-yJCBRv_jKdITkeC_GXDWFSc5Vqy8F-lKoLxUF5M16yqJl47hMeA81uhZEIu3mh_psqrp9qUwc8yg3sU1kwZouJ88TZ5JU2qS00gXkJdqDQqqMCrE4U73yXh18-ax2oYbPJBTEMiCvO6GyhjcwujvaAOuA7FoDya2BJOxlMxh-0ZudwiEEwFWuXnmFKGFMl3n0d5kEHKoEo0_jgDxqTXX98gnyHuZCBEQMjHiwOsORanbS0I1nAhmgWEC2e3NXnZ_zly3-9npH_FtVj__r2c_J9U9vx-rjweTDE3IzabZzHMZii2wsz1buKWSJy-JZ4wl-AjUqXeE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQhwQ88P0RGMggJCSmdInjOPFjh5gG0ioEVBpPlmM7XdWSVHMrGH89PieNmgFDSLxF9TlKLnfnu97PPyP0MlGaa2m4q02YCmmZqlDmhoVGRi6Xo0kZ-U1hx2N2NKHvT9KTFv9kPa7I3bA5PNkOt3egL3zYdhdqvr_UZePtOdu30I8B9GQO7UgSuvJ9h6UuLx-gncn4w-hLsyOShTSP47at-dt5vYXJ8_f_GqW3lqmLEMquj3oDXVtXS3n-TS4WW0vV4S00717SI1Tmw_WqGKofF_gf_48WbqObbUaLR40J3kFXTHUXXT2oXdZ5fg9995gEPA_HY7yqsfQcKAbPvro4ZnFdYu2BIQZPG1QO2AkG3FkNfw5bN0FjbaDTgeFGC4OtW2970rMKH88smMjp2oIUYPLtfTQ5fPv5zVHYnvYQKlcDrUKVMQXnA0rN45JxWmS6VJqaJEko1THJ3LiWjCfcLahZ6Qwqz8rMZXM5oQoi0wM0qOrKPELYZDyXmpVxkiqq8qKQhYwj93RaU1akJEDR5lML1VKhw4kcC-FLopyJRp_C6VOAPkUUoNfdlGXDA3KZ8AHYTycIFN7-h_psKtqIIFQcsyhXsSa8oL6_ynJiFEm4JqXmJkAvwPoEkHRUgAKayrW14t2nj2KUkiTlrhTnAXrVCpU1WIVsN1U4PQCvV09ytyfpoojqDT_fGLmAIYDeVaZeWwH4ZEjUWfRnGeJCOY9cPhQH6GHjGN3LE2BczLMsQFnPZXra6Y9Us1NPdJ5mwD1FA7S3cS7RRlh7mfL3Ov_7-6d6_E_ST9B14n0sDuNsFw1WZ2vz1CWlq-JZG21-AoTIhSQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+k-NN+to+analyse+images+of+diverse+germination+phenotypes+and+detect+single+seed+germination+in+Miscanthus+sinensis&rft.jtitle=Plant+methods&rft.au=Awty-Carroll%2C+Danny&rft.au=Clifton-Brown%2C+John&rft.au=Robson%2C+Paul&rft.date=2018-01-17&rft.pub=BioMed+Central&rft.eissn=1746-4811&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1186%2Fs13007-018-0272-0&rft.externalDocID=10_1186_s13007_018_0272_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-4811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-4811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-4811&client=summon |