Evaluation of stroke sequelae and rehabilitation effect on brain tumor by neuroimaging technique: A comparative study

This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 2; p. e0317193
Main Authors Guo, Xueliang, Sun, Lin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.02.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0317193

Cover

Abstract This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, the SWI-BITR-UNet model. This model, introduced as novel Machine Learning (ML) model, combines the SWIN Transformer’s local receptive field and shift mechanism, and the effective feature fusion strategy in the U-Net architecture, aiming to improve the accuracy of brain lesion region segmentation in multimodal MRI scans. Through the application of a 3-D CNN encoder and decoder, as well as the integration of the CBAM attention module and jump connection, the model can finely capture and refine features, to achieve a level of segmentation accuracy comparable to that of manual segmentation by experts. This study introduces a 3D CNN encoder-decoder architecture specifically designed to enhance the processing capabilities of 3D medical imaging data. The development of the 3D CNN model utilizes the ADAM optimization algorithm to facilitate the training process. The Bra2020 dataset is utilized to assess the accuracy of the proposed deep learning neural network. By employing skip connections, the model effectively integrates the high-resolution features from the encoder with the up-sampling features from the decoder, thereby increasing the model’s sensitivity to 3D spatial characteristics. To assess both the training and testing phases, the SWI-BITR-Unet model is trained using reliable datasets and evaluated through a comprehensive array of statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), and Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Adaptive Boosting (AdaBoost), and K-Nearest Neighbor (KNN), have been employed to analyze tumor progression in the brain, with performance characterized by Hausdorff distance. In From the performance of ML models, the SWI-BITR-Unet model was more accurate than other models. Subsequently, regarding DICE coefficient values, the segmentation maps (annotation maps of brain tumor distributions) generated by the ML models indicated the models’s capability to autonomously delineate areas such as the tumor core (TC) and the enhancing tumor (ET). Moreover, the efficacy of the proposed machine learning models demonstrated superiority over existing research in the field. The computational efficiency and the ability to handle long-distance dependencies of the model make it particularly suitable for applications in clinical Settings. The results showed that the SNA-BITR-UNet model can not only effectively identify and monitor the subtle changes in the stroke injury area, but also provided a new and efficient tool in the rehabilitation process, providing a scientific basis for developing personalized rehabilitation plans.
AbstractList This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, the SWI-BITR-UNet model. This model, introduced as novel Machine Learning (ML) model, combines the SWIN Transformer's local receptive field and shift mechanism, and the effective feature fusion strategy in the U-Net architecture, aiming to improve the accuracy of brain lesion region segmentation in multimodal MRI scans. Through the application of a 3-D CNN encoder and decoder, as well as the integration of the CBAM attention module and jump connection, the model can finely capture and refine features, to achieve a level of segmentation accuracy comparable to that of manual segmentation by experts. This study introduces a 3D CNN encoder-decoder architecture specifically designed to enhance the processing capabilities of 3D medical imaging data. The development of the 3D CNN model utilizes the ADAM optimization algorithm to facilitate the training process. The Bra2020 dataset is utilized to assess the accuracy of the proposed deep learning neural network. By employing skip connections, the model effectively integrates the high-resolution features from the encoder with the up-sampling features from the decoder, thereby increasing the model's sensitivity to 3D spatial characteristics. To assess both the training and testing phases, the SWI-BITR-Unet model is trained using reliable datasets and evaluated through a comprehensive array of statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), and Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Adaptive Boosting (AdaBoost), and K-Nearest Neighbor (KNN), have been employed to analyze tumor progression in the brain, with performance characterized by Hausdorff distance. In From the performance of ML models, the SWI-BITR-Unet model was more accurate than other models. Subsequently, regarding DICE coefficient values, the segmentation maps (annotation maps of brain tumor distributions) generated by the ML models indicated the models's capability to autonomously delineate areas such as the tumor core (TC) and the enhancing tumor (ET). Moreover, the efficacy of the proposed machine learning models demonstrated superiority over existing research in the field. The computational efficiency and the ability to handle long-distance dependencies of the model make it particularly suitable for applications in clinical Settings. The results showed that the SNA-BITR-UNet model can not only effectively identify and monitor the subtle changes in the stroke injury area, but also provided a new and efficient tool in the rehabilitation process, providing a scientific basis for developing personalized rehabilitation plans.
This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, the SWI-BITR-UNet model. This model, introduced as novel Machine Learning (ML) model, combines the SWIN Transformer's local receptive field and shift mechanism, and the effective feature fusion strategy in the U-Net architecture, aiming to improve the accuracy of brain lesion region segmentation in multimodal MRI scans. Through the application of a 3-D CNN encoder and decoder, as well as the integration of the CBAM attention module and jump connection, the model can finely capture and refine features, to achieve a level of segmentation accuracy comparable to that of manual segmentation by experts. This study introduces a 3D CNN encoder-decoder architecture specifically designed to enhance the processing capabilities of 3D medical imaging data. The development of the 3D CNN model utilizes the ADAM optimization algorithm to facilitate the training process. The Bra2020 dataset is utilized to assess the accuracy of the proposed deep learning neural network. By employing skip connections, the model effectively integrates the high-resolution features from the encoder with the up-sampling features from the decoder, thereby increasing the model's sensitivity to 3D spatial characteristics. To assess both the training and testing phases, the SWI-BITR-Unet model is trained using reliable datasets and evaluated through a comprehensive array of statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), and Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Adaptive Boosting (AdaBoost), and K-Nearest Neighbor (KNN), have been employed to analyze tumor progression in the brain, with performance characterized by Hausdorff distance. In From the performance of ML models, the SWI-BITR-Unet model was more accurate than other models. Subsequently, regarding DICE coefficient values, the segmentation maps (annotation maps of brain tumor distributions) generated by the ML models indicated the models's capability to autonomously delineate areas such as the tumor core (TC) and the enhancing tumor (ET). Moreover, the efficacy of the proposed machine learning models demonstrated superiority over existing research in the field. The computational efficiency and the ability to handle long-distance dependencies of the model make it particularly suitable for applications in clinical Settings. The results showed that the SNA-BITR-UNet model can not only effectively identify and monitor the subtle changes in the stroke injury area, but also provided a new and efficient tool in the rehabilitation process, providing a scientific basis for developing personalized rehabilitation plans.This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, the SWI-BITR-UNet model. This model, introduced as novel Machine Learning (ML) model, combines the SWIN Transformer's local receptive field and shift mechanism, and the effective feature fusion strategy in the U-Net architecture, aiming to improve the accuracy of brain lesion region segmentation in multimodal MRI scans. Through the application of a 3-D CNN encoder and decoder, as well as the integration of the CBAM attention module and jump connection, the model can finely capture and refine features, to achieve a level of segmentation accuracy comparable to that of manual segmentation by experts. This study introduces a 3D CNN encoder-decoder architecture specifically designed to enhance the processing capabilities of 3D medical imaging data. The development of the 3D CNN model utilizes the ADAM optimization algorithm to facilitate the training process. The Bra2020 dataset is utilized to assess the accuracy of the proposed deep learning neural network. By employing skip connections, the model effectively integrates the high-resolution features from the encoder with the up-sampling features from the decoder, thereby increasing the model's sensitivity to 3D spatial characteristics. To assess both the training and testing phases, the SWI-BITR-Unet model is trained using reliable datasets and evaluated through a comprehensive array of statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), and Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Adaptive Boosting (AdaBoost), and K-Nearest Neighbor (KNN), have been employed to analyze tumor progression in the brain, with performance characterized by Hausdorff distance. In From the performance of ML models, the SWI-BITR-Unet model was more accurate than other models. Subsequently, regarding DICE coefficient values, the segmentation maps (annotation maps of brain tumor distributions) generated by the ML models indicated the models's capability to autonomously delineate areas such as the tumor core (TC) and the enhancing tumor (ET). Moreover, the efficacy of the proposed machine learning models demonstrated superiority over existing research in the field. The computational efficiency and the ability to handle long-distance dependencies of the model make it particularly suitable for applications in clinical Settings. The results showed that the SNA-BITR-UNet model can not only effectively identify and monitor the subtle changes in the stroke injury area, but also provided a new and efficient tool in the rehabilitation process, providing a scientific basis for developing personalized rehabilitation plans.
Audience Academic
Author Guo, Xueliang
Sun, Lin
AuthorAffiliation 1 Medical Department of Neurology, Shengzhou People’s Hospital, Shengzhou, Zhejiang, China
Faculty of Medicine of Alexandria University: Alexandria University Faculty of Medicine, EGYPT
2 Laboratory Department, Shengzhou People’s Hospital, Shengzhou, Zhejiang, China
AuthorAffiliation_xml – name: 2 Laboratory Department, Shengzhou People’s Hospital, Shengzhou, Zhejiang, China
– name: Faculty of Medicine of Alexandria University: Alexandria University Faculty of Medicine, EGYPT
– name: 1 Medical Department of Neurology, Shengzhou People’s Hospital, Shengzhou, Zhejiang, China
Author_xml – sequence: 1
  givenname: Xueliang
  surname: Guo
  fullname: Guo, Xueliang
– sequence: 2
  givenname: Lin
  surname: Sun
  fullname: Sun, Lin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39992898$$D View this record in MEDLINE/PubMed
BookMark eNqNk29v0zAQxiM0xP7AN0AQCQnBixYnTtKYN6iaBlSaNAkm3loX-9y6uHaxnUK_PS7NphbtxRQpsS6_e3z3nH2enVhnMcteFmRc0EnxYel6b8GM1yk8JrSYFIw-yc7Suxw1JaEnB-vT7DyEJSE1bZvmWXZKGWNly9qzrL_agOkhamdzp_IQvfuJecBfPRrAHKzMPS6g00bHPYVKoYh5WnUetM1jv3I-77a5xd47vYK5tvM8olhYnVQ-5tNcuNUafErfJOnYy-3z7KkCE_DF8L3Ibj9f3V5-HV3ffJldTq9HoqnKOAIQjGFJU-GsaSvREIWqRolSybKssZVU1nLCZFOXDIFOCGVKdaRWQBsp6EX2ei-7Ni7wwbDAk1ekpSwlJWK2J6SDJV_7VL7fcgea_ws4P-fgoxYGedXIolNFDRS6CmvKatYpVmHREEBUTdKq91q9XcP2NxhzL1gQvpvZXQl8NzM-zCzlfRqq7LsVSoE2ejBHxRz_sXrB527Di6KtWNvUSeHdoOBdsjxEvtJBoDFg0fX7htNRKFqS0Df_oQ_bMlBzSJ1rq1zaWOxE-bQt05YVmewaHj9ApUfiSovUotIpfpTw_ighMRH_xDn0IfDZ92-PZ29-HLNvD9gFgomL4Ey_O6_hGHx1aPW9x3f3IQHVHhDeheBRPW6EfwF_NSEM
Cites_doi 10.1109/EAIT.2018.8470438
10.1109/CVPR52688.2022.02007
10.1007/978-3-030-94066-9
10.1007/s00236-022-00436-y
10.1007/978-3-030-72084-1_26
10.1016/j.ejor.2023.04.030
10.1161/STROKEAHA.122.042127
10.1109/ICASSP.2018.8462486
10.3390/s22041407
10.1007/s00216-024-05422-6
10.1023/A:1010933404324
10.1016/j.eswa.2023.122556
10.1016/j.rineng.2023.101704
10.1016/j.bspc.2022.104246
10.23919/EUSIPCO.2019.8902767
10.1109/ICCV48922.2021.00986
10.1109/TKDE.2020.3023589
10.1016/j.bspc.2022.103861
10.1109/TIT.1967.1053964
10.1242/dmm.048785
10.1038/s41579-022-00846-2
10.1055/s-0041-1735323
10.4310/SII.2009.v2.n3.a8
10.1016/j.eswa.2024.123645
10.18653/v1/P19-1441
10.1093/cercor/bhr039
10.1109/CVPR.2017.195
10.1016/S1474-4422(22)00309-X
10.1016/j.media.2016.10.004
10.3389/fenrg.2022.1016754
10.1109/TMI.2018.2845918
10.1109/IJCNN55064.2022.9892850
ContentType Journal Article
Copyright Copyright: © 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Guo, Sun 2025 Guo, Sun
2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Guo, Sun 2025 Guo, Sun
– notice: 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0317193
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Agricultural Science Database
CrossRef
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (Roanoke)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Evaluation of stroke sequelae and rehabilitation effect on brain tumor by neuroimaging technique
EISSN 1932-6203
ExternalDocumentID 3170839652
oai_doaj_org_article_46d1bf15a3ab4e53959bf94e160aeef6
10.1371/journal.pone.0317193
PMC11849865
A828654076
39992898
10_1371_journal_pone_0317193
Genre Journal Article
Comparative Study
GeographicLocations Taiwan
China
GeographicLocations_xml – name: Taiwan
– name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c642t-aac99e230059684c60fef5ededfd225e8d3d5d79d6529ea37039ffb05fa36dc3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:17:37 EDT 2025
Fri Oct 03 12:44:36 EDT 2025
Sun Oct 26 04:15:20 EDT 2025
Tue Sep 30 17:07:20 EDT 2025
Thu Oct 02 12:02:31 EDT 2025
Tue Oct 07 07:37:29 EDT 2025
Mon Oct 20 22:45:11 EDT 2025
Mon Oct 20 16:58:32 EDT 2025
Thu Oct 16 15:36:05 EDT 2025
Thu Oct 16 15:36:18 EDT 2025
Thu May 22 21:23:46 EDT 2025
Sun May 11 01:41:38 EDT 2025
Wed Oct 01 06:52:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright: © 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-aac99e230059684c60fef5ededfd225e8d3d5d79d6529ea37039ffb05fa36dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0317193
PMID 39992898
PQID 3170839652
PQPubID 1436336
PageCount e0317193
ParticipantIDs plos_journals_3170839652
doaj_primary_oai_doaj_org_article_46d1bf15a3ab4e53959bf94e160aeef6
unpaywall_primary_10_1371_journal_pone_0317193
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11849865
proquest_miscellaneous_3170932180
proquest_journals_3170839652
gale_infotracmisc_A828654076
gale_infotracacademiconefile_A828654076
gale_incontextgauss_ISR_A828654076
gale_incontextgauss_IOV_A828654076
gale_healthsolutions_A828654076
pubmed_primary_39992898
crossref_primary_10_1371_journal_pone_0317193
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-24
PublicationDateYYYYMMDD 2025-02-24
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0317193.ref023
X. He (pone.0317193.ref024) 2022; 60
pone.0317193.ref021
M. Najafzadeh (pone.0317193.ref033) 2024; 21
F. Saberi-Movahed (pone.0317193.ref037) 2023
pone.0317193.ref022
M Siciliano A (pone.0317193.ref002) 2024; 416
pone.0317193.ref027
pone.0317193.ref028
M. Najafzadeh (pone.0317193.ref029) 2024; 21
S Tiwari (pone.0317193.ref001) 2021; 12
P. Akbari (pone.0317193.ref011) 2022; 16
pone.0317193.ref025
R. Chen (pone.0317193.ref030) 2023; 10
I. Lodato (pone.0317193.ref015) 2023; 60
A Güven S (pone.0317193.ref004) 2023; 80
M. Eftekhari (pone.0317193.ref039) 2022
H. Hong (pone.0317193.ref019) 2022; 34
E. Shelhamer (pone.0317193.ref012) 2016; 34
R. Raza (pone.0317193.ref026) 2023; 79
F. Saberi-Movahed (pone.0317193.ref035) 2024; 249
M. Samareh-Jahani (pone.0317193.ref038) 2024; 240
Z. Lyu (pone.0317193.ref044) 2023; 311
H.E. Davis (pone.0317193.ref005) 2023; 21
C. Pan (pone.0317193.ref007) 2023; 54
pone.0317193.ref016
pone.0317193.ref017
L. Breiman (pone.0317193.ref045) 2001; 45
pone.0317193.ref014
X. Li (pone.0317193.ref008) 2018; 37
pone.0317193.ref018
D. Yi (pone.0317193.ref043) 2016
Andrew I. R. Maas (pone.0317193.ref006) 2022; 21
T.M. Cover (pone.0317193.ref034) 1967; 13
K. Kamnitsas (pone.0317193.ref042) 2017; 36
P Kakkar (pone.0317193.ref003) 2021; 14
S. Ni (pone.0317193.ref009) 2011; 21
M. Rezaei-Ravari (pone.0317193.ref040) 2020; 27
M. Cheng (pone.0317193.ref010) 2021
P. Tiwari (pone.0317193.ref036) 2024
pone.0317193.ref041
F. Isensee (pone.0317193.ref013) 2019
pone.0317193.ref020
T. Hastie (pone.0317193.ref031) 2009; 2
G. Liu (pone.0317193.ref032) 2022; 22
References_xml – ident: pone.0317193.ref022
  doi: 10.1109/EAIT.2018.8470438
– ident: pone.0317193.ref025
  doi: 10.1109/CVPR52688.2022.02007
– volume-title: How fuzzy concepts contribute to machine learning
  year: 2022
  ident: pone.0317193.ref039
  doi: 10.1007/978-3-030-94066-9
– volume-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021. Lecture Notes in Computer Science
  year: 2021
  ident: pone.0317193.ref010
– volume: 60
  start-page: 179
  year: 2023
  ident: pone.0317193.ref015
  article-title: On partial information retrieval: the unconstrained 100 prisoner problem
  publication-title: Acta Informatica
  doi: 10.1007/s00236-022-00436-y
– ident: pone.0317193.ref027
  doi: 10.1007/978-3-030-72084-1_26
– volume: 311
  start-page: 112
  issue: 1
  year: 2023
  ident: pone.0317193.ref044
  article-title: Cross-docking based factory logistics unitisation process: An approximate dynamic programming approach
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2023.04.030
– volume: 54
  start-page: 1257
  issue: 5
  year: 2023
  ident: pone.0317193.ref007
  article-title: Incremental Value of Stroke-Induced Structural Disconnection in Predicting Global Cognitive Impairment After Stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.122.042127
– ident: pone.0317193.ref020
  doi: 10.1109/ICASSP.2018.8462486
– year: 2016
  ident: pone.0317193.ref043
  article-title: 3-D Convolutional Neural Networks for Glioblastoma Segmentation
  publication-title: arXiv preprint arXiv:1611.04534
– volume: 22
  start-page: 1407
  year: 2022
  ident: pone.0317193.ref032
  article-title: An enhanced intrusion detectionmodel based on improved KNN in WSNS
  publication-title: Sensors
  doi: 10.3390/s22041407
– volume: 416
  start-page: 4941
  issue: 22
  year: 2024
  ident: pone.0317193.ref002
  article-title: Map** small metabolite changes after traumatic brain injury using AP-MALDI MSI
  publication-title: Analytical and Bioanalytical Chemistry
  doi: 10.1007/s00216-024-05422-6
– volume: 45
  start-page: 5
  year: 2001
  ident: pone.0317193.ref045
  article-title: Random Forests
  publication-title: Mach. Learn
  doi: 10.1023/A:1010933404324
– volume: 27
  start-page: 3005
  issue: 6
  year: 2020
  ident: pone.0317193.ref040
  article-title: ML-CK-ELM: An efficient multi-layer extreme learning machine using combined kernels for multi-label classification
  publication-title: Scientia Iranica
– volume: 34
  start-page: 640
  issue: 9
  year: 2016
  ident: pone.0317193.ref012
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2019
  ident: pone.0317193.ref013
  article-title: Abstract: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation
  publication-title: Bildverarbeitung für die Medizin
– volume: 240
  start-page: 122556
  year: 2024
  ident: pone.0317193.ref038
  article-title: Low-redundant unsupervised feature selection based on data structure learning and feature orthogonalization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122556
– volume: 21
  start-page: 101704
  year: 2024
  ident: pone.0317193.ref029
  article-title: Vulnerability of the rip current phenomenon in marine environments using machine learning models
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2023.101704
– volume: 80
  start-page: 104246
  year: 2023
  ident: pone.0317193.ref004
  article-title: Brain MRI high resolution image creation and segmentation with the new GAN method
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.104246
– ident: pone.0317193.ref041
  doi: 10.23919/EUSIPCO.2019.8902767
– ident: pone.0317193.ref017
  doi: 10.1109/ICCV48922.2021.00986
– volume: 34
  start-page: 3211
  issue: 7
  year: 2022
  ident: pone.0317193.ref019
  article-title: Domain-Adversarial Network Alignment
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2020.3023589
– volume: 79
  start-page: 103861
  year: 2023
  ident: pone.0317193.ref026
  article-title: ResUNet: 3D deep residual U-Net based brain tumor segmentation from multimodal MRI
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.103861
– ident: pone.0317193.ref023
  doi: 10.1109/ICCV48922.2021.00986
– year: 2023
  ident: pone.0317193.ref037
  article-title: Deep Metric Learning with Soft Orthogonal Proxies
  publication-title: arXiv preprint arXiv:2306.13055
– start-page: 2835
  year: 2024
  ident: pone.0317193.ref036
  article-title: A Self-Representation Learning Method for Unsupervised Feature Selection Using Feature Space Basis
  publication-title: Transactions on Machine Learning Research
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: pone.0317193.ref034
  article-title: Nearest neighbor pattern classification (PDF) IEEE Trans
  publication-title: Inf. Theor
  doi: 10.1109/TIT.1967.1053964
– volume: 14
  issue: 12
  year: 2021
  ident: pone.0317193.ref003
  article-title: Current approaches and advances in the imaging of stroke
  publication-title: Disease Models & Mechanisms
  doi: 10.1242/dmm.048785
– volume: 21
  start-page: 133
  issue: 3
  year: 2023
  ident: pone.0317193.ref005
  article-title: Long COVID: major findings, mechanisms, and recommendations
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-022-00846-2
– volume: 12
  start-page: 680
  issue: 4
  year: 2021
  ident: pone.0317193.ref001
  article-title: Impact of stroke on quality of life of stroke survivors and their caregivers: a qualitative study from India
  publication-title: Journal of Neurosciences in Rural Practice
  doi: 10.1055/s-0041-1735323
– volume: 2
  start-page: 349
  issue: 3
  year: 2009
  ident: pone.0317193.ref031
  publication-title: Multi-class AdaBoost. Statistics and Its Interface
  doi: 10.4310/SII.2009.v2.n3.a8
– volume: 249
  start-page: 123645
  year: 2024
  ident: pone.0317193.ref035
  article-title: Deep Nonnegative Matrix Factorization with Joint Global and Local Structure Preservation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.123645
– ident: pone.0317193.ref021
  doi: 10.18653/v1/P19-1441
– ident: pone.0317193.ref028
– volume: 21
  start-page: 101704
  year: 2024
  ident: pone.0317193.ref033
  article-title: Residual energy evaluation in vortex structures: on the application of Machine Learning Models
– volume: 21
  start-page: 2565
  issue: 11
  year: 2011
  ident: pone.0317193.ref009
  article-title: Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural Networks in multiple sclerosis
  publication-title: Journal of Cerebral Cortex
  doi: 10.1093/cercor/bhr039
– ident: pone.0317193.ref016
  doi: 10.1109/CVPR.2017.195
– volume: 21
  start-page: 1004
  issue: 11
  year: 2022
  ident: pone.0317193.ref006
  article-title: Traumatic brain injury: progress and challenges in prevention, clinical care, and research
  publication-title: Lancet Neurology
  doi: 10.1016/S1474-4422(22)00309-X
– volume: 36
  start-page: 61
  year: 2017
  ident: pone.0317193.ref042
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2016.10.004
– volume: 10
  start-page: 1016754
  year: 2023
  ident: pone.0317193.ref030
  article-title: Islanding detection method for microgrids based on CatBoost
  publication-title: Front. Energy Res
  doi: 10.3389/fenrg.2022.1016754
– volume: 16
  start-page: 1773
  issue: 4
  year: 2022
  ident: pone.0317193.ref011
  article-title: Deep Active Contours Using Locally Controlled short Vector Flow
  publication-title: Signal Image and Video Processing
– ident: pone.0317193.ref018
– volume: 60
  start-page: 4408715
  year: 2022
  ident: pone.0317193.ref024
  article-title: Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 37
  start-page: 2663
  issue: 12
  year: 2018
  ident: pone.0317193.ref008
  article-title: H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2845918
– ident: pone.0317193.ref014
  doi: 10.1109/IJCNN55064.2022.9892850
SSID ssj0053866
Score 2.479298
Snippet This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0317193
SubjectTerms Accuracy
Algorithms
Annotations
Artificial neural networks
Biology and Life Sciences
Brain
Brain - diagnostic imaging
Brain cancer
Brain damage
Brain injury
Brain mapping
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - rehabilitation
Brain tumors
Care and treatment
Cognitive ability
Comparative studies
Complications
Computer and Information Sciences
Datasets
Deep Learning
Design
Development and progression
Diagnosis
Diagnostic imaging
Effectiveness
Efficiency
Emotional disorders
Encoders-Decoders
Head injuries
Health aspects
Humans
Image processing
Image segmentation
Injuries
Innovations
Learning algorithms
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Marking and tracking techniques
Mathematical optimization
Medical imaging
Medical imaging equipment
Medicine and Health Sciences
Methods
Metric space
Neural networks
Neural Networks, Computer
Neuroimaging
Neuroimaging - methods
Patient outcomes
Patients
People and Places
Quality of life
Receptive field
Rehabilitation
Research and Analysis Methods
Segmentation
Social Sciences
Stroke
Stroke (Disease)
Stroke - complications
Stroke - diagnostic imaging
Stroke Rehabilitation
Support vector machines
Tissues
Traumatic brain injury
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hXOCCKF81bWFBSMDBqZ21115uAbUqSIAEBfVm7XpnoSK1ozgW6r9n9iMmFpXogVuUfY7imTfrGXn2DSHPoWDAsdyJuc5VnKWyjKUqVZwYgxVRImTpuio_fOQnX7P3Z_nZ1qgv2xPm5YG94Q4zrlNl0lwyqTLImciFMiKDlCcSwDix7aQUm2LK78EYxZyHg3KsSA-DX6bLtoEp0rhwL5q3HkROr3_YlSfLRdtdlXL-3Tl5s2-W8vKXXCy2HkvHd8jtkE_Sub-PHXIDmrtkJ0RsR18GWelX90h_NAh709bQbr1qfwJ1rdQLCVQ2mq5Gst3U93pQ_KTsIAm67i_aFVWX1Ilgnl-4AUd0UIF9Tee0_iMmTp1y7X1yenx0-vYkDkMX4hpLkXUsZS0EzJiby1NmNU8MmBw0aKMx9qHUTOe6EJrnMwGS4Y4hjFFJbiTjumYPyKRBK-8SymyxJ5gAqPNMmVJBoUEqU9Saz4RmEYk3DqiWXlqjcu_XCixJvPUq67AqOCwib6yXBqwVxnZfIF2qQJfqX3SJyBPr48qfMh3Cu5rb4_RWjBARzxzCimM0tvvmu-y7rnr36ds1QF8-j0AvAsi0yJZahhMPeE9WdGuE3B8hMcTr0fKuZeTGKl2FBsHUWaAL8MoNS69efjos2x-1HXUNtL3HYO6elklEHnpSD5bFpFVgIV5GpBzRfWT68Upz_sNpk2O9mgn82xGZDpFxLe8--h_e3SO3ZnY-s5UcyPbJZL3q4QCTxrV67PaH3xuubrA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wACDkICHdEmdODESQh3qNJAoaAy0t8iO7THRJSUfQvvvOTtOtogJ7S2qr1V8X76r736H0EuVEEUh3fGpjIUfhTz1uUiFH2gNGVHAeGqrKj8v6cH36NNxfLyBln0vjCmr7H2iddSyzM1_5LtwzkG0wGg8e7_-7ZupUeZ2tR-hwd1oBfnOQozdQJszg4w1QZt7i-XXw943g3VT6hroSBLuOnlN12WhpqDeib2AvnRAWRz_wVtP1quyvioU_bei8mZbrPn5H75aXTqu9u-g2y7OxPNOMbbQhiruoi1nyTV-7eCm39xD7WIA_MalxnVTlb8UtiXWK64wLySuRnDeuKsBwfAkzIAJ3LRnZYXFObbgmKdndvARHtBh3-I5zi9AxrFFtL2PjvYXRx8OfDeMwc8hRWl8znPG1IzYeT1plNNAKx0rqaSW4BNUKomMZcIkSIgpTsCTMK1FEGtOqMzJAzQpgMvbCBOTBDLClMrjSOhUqEQqLnSSSzpjknjI7wWQrTvIjczeuyWQqnTcy4zAMicwD-0ZKQ20BjDbflBWJ5mzvyyiMhQ6jDnhIlIxYTETmkUqpAFXSlMPPTMyzrru08Hss7lpszcghUDxwlIY0IzCVOWc8Laus49fflyD6NvhiOiVI9IlaEvOXScE7MmAcY0od0aUYPr5aHnbaGTPlTq7MBL4Zq-lVy8_H5bNj5pKu0KVbUcDMX2YBh562Cn1wFkIZhkk6KmH0pG6j1g_XilOf1rMcshjIwav7aHpYBnXku6j_2_kMbo1MxOZDchAtIMmTdWqJxAmNuKps_2_P5Vr2Q
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXoLwaKGAQEiCRkMSxE3NbUKuC1IKgRe0psmMbqm6T1SYRKr-esZMNDRRpuUXr8SqeV2bkmW8QeqZTohmkOz5TVPpJJDJfyEz6oTGQEYVcZK6qcm-f7R4mH47o0Rp6teyFuXh_T9Lodc_RYF6VOgAFTCHguILWGYXIe4LWD_c_TY-7i-PYZ3FI-u64f20dfX0cSP_giifzWVVfFmf-XS55tS3n4vyHmM0ufIt2bqC95Sm6EpTToG1kUPz8A-Bx1WPeRNf7oBRPOy3aQGu6vIU2erOv8Ysem_rlbdRuD-jguDK4bhbVqcauHnsmNBalwosR9jfuCkYwPEk7jQI37Vm1wPIcOyTNkzM3JQkPULJv8BQXvxHJsYO_vYMOdrYP3u36_eQGv4B8pvGFKDjXMXHDfbKkYKHRhmqllVHgQHSmiKIq5YrRmGtBwO1wY2RIjSBMFeQumpTAiU2Eic0YOeFaFzSRJpM6VVpIkxaKxVwRD_lLgebzDp8jd5d0KeQ1Hfdyy9S8Z6qH3lqpD7QWXdv9ANLIe2PNE6YiaSIqiJCJpoRTLg1PdMRCobVhHnpsdSbvWlUHH5FPbU--RTQEiqeOwiJslLaE55to6zp___HrCkRfPo-InvdEpgLtK0TfNgFnsshdI8qtESX4iWK0vGk1fMmVOgeGQPzNQQSwc6n1ly8_GZbtn9qyvFJXbUcDlhdloYfudUYycBYiXw7ZfOahbGQ-I9aPV8qT7w7gHJLehMNreygYLG0l6d7_3w0P0LXYDnS2GAXJFpo0i1Y_hCizkY965_ILWc1-SQ
  priority: 102
  providerName: Unpaywall
Title Evaluation of stroke sequelae and rehabilitation effect on brain tumor by neuroimaging technique: A comparative study
URI https://www.ncbi.nlm.nih.gov/pubmed/39992898
https://www.proquest.com/docview/3170839652
https://www.proquest.com/docview/3170932180
https://pubmed.ncbi.nlm.nih.gov/PMC11849865
https://doi.org/10.1371/journal.pone.0317193
https://doaj.org/article/46d1bf15a3ab4e53959bf94e160aeef6
http://dx.doi.org/10.1371/journal.pone.0317193
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (Roanoke)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrYaMYhPh4SJXU-TISQt3UMpBWprFO5SmyY3tM65IuaQT97zk7aSCiSH2JovgSJfflu_j8O4ReyZDIANIdOxA-tz2XRTbjEbcdpSAjciiLTFXlyTg4nnhfpv50C60W2msGFmtTO91PapLPer9ulx_B4D-Yrg2hu7qpN89S2QMlDSEoeT2_tXVrKb0EW_fZ2EY7MH1R3d_hxGuWGsDgzYKmDmTsoO-Qen_d_x7cmr8MzH_jzDvzWVasi1T_Lbi8U6ZztvzJZrO_ZrPRfXSvDkPxoNKbXbQl0wdotzb0Ar-t0ajfPUTlsMEDx5nCxSLPriU2FdgzJjFLBc5baN-4KhHBcMZ1_wm8KG-yHPMlNtiZVzemLxJuwGPf4wFO_mCQYwN4-widj4bnR8d23avBTiCDWdiMJZTKPjHtfCIvCRwllS-FFEqAy5CRIMIXIRWB36eSEXA0VCnu-IqRQCTkMeqkwOU9hInOESmhUia-x1XEZSgk4ypMRNCngljIXgkgnleIHLFZlgshk6m4F2uBxbXALHSopdTQajxtcyHLL-PaPGMvEC5Xrs8I4570CfUpV9STbuAwKVVgoedaxnG1ObXxCvFA78LXGIZA8dJQaEyNVBftXLKyKOLPXy82IPp21iJ6UxOpDLQlYfVGCfgmjdXVojxoUYJnSFrDe1ojV1wpYmAIRNwURAB3rrR0_fCLZlg_VBfipTIrKxqwFDdyLPSkUuqGsxDrUsjfIwtFLXVvsb49kl79MJDmkOZ6FF7bQr3GMjaS7tMN3nQf3e3rrs0aiMA7QJ1FXspnEEoueBdth9MQjtGRq4-jT120czgcn551zc-ZrnEVcG0yPh18_w2rg31a
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeRgviPG1wGAGgYCHdEmcLyMhVGBTyz6QoKC-WXZsj4kuKU2jqX8U_yNnJ80WMaG97K2qL2lyX76r736H0AuVEBVDuuPGMhJu6PPU5SIVrqc1ZEQe5amtqjw8ioffw8-TaLKG_qx6YUxZ5conWkcti8z8R74D-xxECzSOgvez366ZGmVOV1cjNGq12FfLM0jZynejTyDfl0Gwtzv-OHSbqQJuBrH2wuU8o1QFxA6eScMs9rTSkZJKagnKrVJJZCQTKuGnqOIETIJqLbxIcxLLjMBtb6CbIVxvBiYkkza_A9cRx013Hkn8nUYZ-rMiV32wncSebl_Y_eyQgHYr6M2mRXlZnPtvueZ6lc_48oxPpxf2wr076HYTxOJBrXUbaE3ld9FG4yZK_LrBsn5zD1W7LZo4LjQuF_Pil8K2fnvKFea5xPMOVjiuC0wwfBJmegVeVKfFHIsltsibJ6d2qhJuoWff4gHOzhHMsYXLvY_G1yGTB6iXA5c3ESYmw6SEKpVFodCpUIlUXOgkk3FAJXGQuxIAm9V4Hswe6iWQB9XcY0ZgrBGYgz4YKbW0Bo3bflHMj1lj3CyMpS-0H3HCRagiQiMqNA2VH3tcKR07aNvImNWtra1PYQPTw28QEIHiuaUwiBy5Kfk55lVZstGXH1cg-va1Q_SqIdIFaEvGmzYLeCeD9NWh3OpQgl_JOsubRiNXXCnZuQXClSstvXz5WbtsbmrK-HJVVDUNJAx-6jnoYa3ULWchUqaQ_acOSjvq3mF9dyU_-WkB0SFJDik8toP6rWVcSbqP_v8i22h9OD48YAejo_3H6FZgRj8bNINwC_UW80o9gXh0IZ5aL4ARu2av8xezGKMu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYDCDQMBD2iTOl5EQKmzVymAgGKhvlh3bY6JLStNo6p_Gf8fZSbNFTGgve6viS9r4fj7f1Xe_Q-iZSoiKIdxxYxkJN_R56nKRCtfTGiIij_LUZlV-2o93v4cfJtFkDf1Z1cKYtMqVTbSGWhaZ-Y98APsceAs0joKBbtIivmyP3s5-u6aDlDlpXbXTqCGyp5YnEL6Vb8bboOvnQTDaOXi_6zYdBtwM_O6Fy3lGqQqIbUKThlnsaaUjJZXUEoCuUklkJBMq4Wup4gSWB9VaeJHmJJYZgcdeQVcTQqjJJkwmbawHZiSOm0o9kviDBhj9WZGrPqyjxJ50n9kJbcOAdlvozaZFeZ7P-2_q5vUqn_HlCZ9Oz-yLo1voZuPQ4mGNwHW0pvLbaL0xGSV-2fBav7qDqp2WWRwXGpeLefFLYZvLPeUK81zieYc3HNfJJhg-CdPJAi-q42KOxRJbFs6jY9thCbc0tK_xEGenbObYUufeRQeXoZN7qJfDLG8gTEy0SQlVKotCoVOhEqm40Ekm44BK4iB3pQA2q7k9mD3gSyAmqmePGYWxRmEOeme01MoaZm57oZgfsmahszCWvtB-xAkXoYoAGVRoGio_9rhSOnbQltExq8tcW_vChqae37AhgsRTK2HYOXKD80NelSUbf_5xAaFvXztCLxohXQBaMt6UXMA7GdavjuRmRxJsTNYZ3jCIXM1KyU5XI9y5Qun5w0_aYfNQk9KXq6KqZSB48FPPQfdrULczC14zDVKaOijtwL0z9d2R_OinJUeHgDmk8LMd1G9XxoW0--D_L7KFroG9YR_H-3sP0Y3AdIE2xAbhJuot5pV6BK7pQjy2RgAjdslG5y9Wv6dx
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXoLwaKGAQEiCRkMSxE3NbUKuC1IKgRe0psmMbqm6T1SYRKr-esZMNDRRpuUXr8SqeV2bkmW8QeqZTohmkOz5TVPpJJDJfyEz6oTGQEYVcZK6qcm-f7R4mH47o0Rp6teyFuXh_T9Lodc_RYF6VOgAFTCHguILWGYXIe4LWD_c_TY-7i-PYZ3FI-u64f20dfX0cSP_giifzWVVfFmf-XS55tS3n4vyHmM0ufIt2bqC95Sm6EpTToG1kUPz8A-Bx1WPeRNf7oBRPOy3aQGu6vIU2erOv8Ysem_rlbdRuD-jguDK4bhbVqcauHnsmNBalwosR9jfuCkYwPEk7jQI37Vm1wPIcOyTNkzM3JQkPULJv8BQXvxHJsYO_vYMOdrYP3u36_eQGv4B8pvGFKDjXMXHDfbKkYKHRhmqllVHgQHSmiKIq5YrRmGtBwO1wY2RIjSBMFeQumpTAiU2Eic0YOeFaFzSRJpM6VVpIkxaKxVwRD_lLgebzDp8jd5d0KeQ1Hfdyy9S8Z6qH3lqpD7QWXdv9ANLIe2PNE6YiaSIqiJCJpoRTLg1PdMRCobVhHnpsdSbvWlUHH5FPbU--RTQEiqeOwiJslLaE55to6zp___HrCkRfPo-InvdEpgLtK0TfNgFnsshdI8qtESX4iWK0vGk1fMmVOgeGQPzNQQSwc6n1ly8_GZbtn9qyvFJXbUcDlhdloYfudUYycBYiXw7ZfOahbGQ-I9aPV8qT7w7gHJLehMNreygYLG0l6d7_3w0P0LXYDnS2GAXJFpo0i1Y_hCizkY965_ILWc1-SQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+stroke+sequelae+and+rehabilitation+effect+on+brain+tumor+by+neuroimaging+technique%3A+A+comparative+study&rft.jtitle=PloS+one&rft.au=Guo%2C+Xueliang&rft.au=Sun%2C+Lin&rft.date=2025-02-24&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=2&rft.spage=e0317193&rft_id=info:doi/10.1371%2Fjournal.pone.0317193&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon