Evaluation of stroke sequelae and rehabilitation effect on brain tumor by neuroimaging technique: A comparative study
This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on...
Saved in:
| Published in | PloS one Vol. 20; no. 2; p. e0317193 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
24.02.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0317193 |
Cover
| Abstract | This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, the SWI-BITR-UNet model. This model, introduced as novel Machine Learning (ML) model, combines the SWIN Transformer’s local receptive field and shift mechanism, and the effective feature fusion strategy in the U-Net architecture, aiming to improve the accuracy of brain lesion region segmentation in multimodal MRI scans. Through the application of a 3-D CNN encoder and decoder, as well as the integration of the CBAM attention module and jump connection, the model can finely capture and refine features, to achieve a level of segmentation accuracy comparable to that of manual segmentation by experts. This study introduces a 3D CNN encoder-decoder architecture specifically designed to enhance the processing capabilities of 3D medical imaging data. The development of the 3D CNN model utilizes the ADAM optimization algorithm to facilitate the training process. The Bra2020 dataset is utilized to assess the accuracy of the proposed deep learning neural network. By employing skip connections, the model effectively integrates the high-resolution features from the encoder with the up-sampling features from the decoder, thereby increasing the model’s sensitivity to 3D spatial characteristics. To assess both the training and testing phases, the SWI-BITR-Unet model is trained using reliable datasets and evaluated through a comprehensive array of statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), and Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Adaptive Boosting (AdaBoost), and K-Nearest Neighbor (KNN), have been employed to analyze tumor progression in the brain, with performance characterized by Hausdorff distance. In From the performance of ML models, the SWI-BITR-Unet model was more accurate than other models. Subsequently, regarding DICE coefficient values, the segmentation maps (annotation maps of brain tumor distributions) generated by the ML models indicated the models’s capability to autonomously delineate areas such as the tumor core (TC) and the enhancing tumor (ET). Moreover, the efficacy of the proposed machine learning models demonstrated superiority over existing research in the field. The computational efficiency and the ability to handle long-distance dependencies of the model make it particularly suitable for applications in clinical Settings. The results showed that the SNA-BITR-UNet model can not only effectively identify and monitor the subtle changes in the stroke injury area, but also provided a new and efficient tool in the rehabilitation process, providing a scientific basis for developing personalized rehabilitation plans. |
|---|---|
| AbstractList | This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, the SWI-BITR-UNet model. This model, introduced as novel Machine Learning (ML) model, combines the SWIN Transformer's local receptive field and shift mechanism, and the effective feature fusion strategy in the U-Net architecture, aiming to improve the accuracy of brain lesion region segmentation in multimodal MRI scans. Through the application of a 3-D CNN encoder and decoder, as well as the integration of the CBAM attention module and jump connection, the model can finely capture and refine features, to achieve a level of segmentation accuracy comparable to that of manual segmentation by experts. This study introduces a 3D CNN encoder-decoder architecture specifically designed to enhance the processing capabilities of 3D medical imaging data. The development of the 3D CNN model utilizes the ADAM optimization algorithm to facilitate the training process. The Bra2020 dataset is utilized to assess the accuracy of the proposed deep learning neural network. By employing skip connections, the model effectively integrates the high-resolution features from the encoder with the up-sampling features from the decoder, thereby increasing the model's sensitivity to 3D spatial characteristics. To assess both the training and testing phases, the SWI-BITR-Unet model is trained using reliable datasets and evaluated through a comprehensive array of statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), and Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Adaptive Boosting (AdaBoost), and K-Nearest Neighbor (KNN), have been employed to analyze tumor progression in the brain, with performance characterized by Hausdorff distance. In From the performance of ML models, the SWI-BITR-Unet model was more accurate than other models. Subsequently, regarding DICE coefficient values, the segmentation maps (annotation maps of brain tumor distributions) generated by the ML models indicated the models's capability to autonomously delineate areas such as the tumor core (TC) and the enhancing tumor (ET). Moreover, the efficacy of the proposed machine learning models demonstrated superiority over existing research in the field. The computational efficiency and the ability to handle long-distance dependencies of the model make it particularly suitable for applications in clinical Settings. The results showed that the SNA-BITR-UNet model can not only effectively identify and monitor the subtle changes in the stroke injury area, but also provided a new and efficient tool in the rehabilitation process, providing a scientific basis for developing personalized rehabilitation plans. This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, the SWI-BITR-UNet model. This model, introduced as novel Machine Learning (ML) model, combines the SWIN Transformer's local receptive field and shift mechanism, and the effective feature fusion strategy in the U-Net architecture, aiming to improve the accuracy of brain lesion region segmentation in multimodal MRI scans. Through the application of a 3-D CNN encoder and decoder, as well as the integration of the CBAM attention module and jump connection, the model can finely capture and refine features, to achieve a level of segmentation accuracy comparable to that of manual segmentation by experts. This study introduces a 3D CNN encoder-decoder architecture specifically designed to enhance the processing capabilities of 3D medical imaging data. The development of the 3D CNN model utilizes the ADAM optimization algorithm to facilitate the training process. The Bra2020 dataset is utilized to assess the accuracy of the proposed deep learning neural network. By employing skip connections, the model effectively integrates the high-resolution features from the encoder with the up-sampling features from the decoder, thereby increasing the model's sensitivity to 3D spatial characteristics. To assess both the training and testing phases, the SWI-BITR-Unet model is trained using reliable datasets and evaluated through a comprehensive array of statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), and Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Adaptive Boosting (AdaBoost), and K-Nearest Neighbor (KNN), have been employed to analyze tumor progression in the brain, with performance characterized by Hausdorff distance. In From the performance of ML models, the SWI-BITR-Unet model was more accurate than other models. Subsequently, regarding DICE coefficient values, the segmentation maps (annotation maps of brain tumor distributions) generated by the ML models indicated the models's capability to autonomously delineate areas such as the tumor core (TC) and the enhancing tumor (ET). Moreover, the efficacy of the proposed machine learning models demonstrated superiority over existing research in the field. The computational efficiency and the ability to handle long-distance dependencies of the model make it particularly suitable for applications in clinical Settings. The results showed that the SNA-BITR-UNet model can not only effectively identify and monitor the subtle changes in the stroke injury area, but also provided a new and efficient tool in the rehabilitation process, providing a scientific basis for developing personalized rehabilitation plans.This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the accurate identification and tracking of brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, the SWI-BITR-UNet model. This model, introduced as novel Machine Learning (ML) model, combines the SWIN Transformer's local receptive field and shift mechanism, and the effective feature fusion strategy in the U-Net architecture, aiming to improve the accuracy of brain lesion region segmentation in multimodal MRI scans. Through the application of a 3-D CNN encoder and decoder, as well as the integration of the CBAM attention module and jump connection, the model can finely capture and refine features, to achieve a level of segmentation accuracy comparable to that of manual segmentation by experts. This study introduces a 3D CNN encoder-decoder architecture specifically designed to enhance the processing capabilities of 3D medical imaging data. The development of the 3D CNN model utilizes the ADAM optimization algorithm to facilitate the training process. The Bra2020 dataset is utilized to assess the accuracy of the proposed deep learning neural network. By employing skip connections, the model effectively integrates the high-resolution features from the encoder with the up-sampling features from the decoder, thereby increasing the model's sensitivity to 3D spatial characteristics. To assess both the training and testing phases, the SWI-BITR-Unet model is trained using reliable datasets and evaluated through a comprehensive array of statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), and Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Adaptive Boosting (AdaBoost), and K-Nearest Neighbor (KNN), have been employed to analyze tumor progression in the brain, with performance characterized by Hausdorff distance. In From the performance of ML models, the SWI-BITR-Unet model was more accurate than other models. Subsequently, regarding DICE coefficient values, the segmentation maps (annotation maps of brain tumor distributions) generated by the ML models indicated the models's capability to autonomously delineate areas such as the tumor core (TC) and the enhancing tumor (ET). Moreover, the efficacy of the proposed machine learning models demonstrated superiority over existing research in the field. The computational efficiency and the ability to handle long-distance dependencies of the model make it particularly suitable for applications in clinical Settings. The results showed that the SNA-BITR-UNet model can not only effectively identify and monitor the subtle changes in the stroke injury area, but also provided a new and efficient tool in the rehabilitation process, providing a scientific basis for developing personalized rehabilitation plans. |
| Audience | Academic |
| Author | Guo, Xueliang Sun, Lin |
| AuthorAffiliation | 1 Medical Department of Neurology, Shengzhou People’s Hospital, Shengzhou, Zhejiang, China Faculty of Medicine of Alexandria University: Alexandria University Faculty of Medicine, EGYPT 2 Laboratory Department, Shengzhou People’s Hospital, Shengzhou, Zhejiang, China |
| AuthorAffiliation_xml | – name: 2 Laboratory Department, Shengzhou People’s Hospital, Shengzhou, Zhejiang, China – name: Faculty of Medicine of Alexandria University: Alexandria University Faculty of Medicine, EGYPT – name: 1 Medical Department of Neurology, Shengzhou People’s Hospital, Shengzhou, Zhejiang, China |
| Author_xml | – sequence: 1 givenname: Xueliang surname: Guo fullname: Guo, Xueliang – sequence: 2 givenname: Lin surname: Sun fullname: Sun, Lin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39992898$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk29v0zAQxiM0xP7AN0AQCQnBixYnTtKYN6iaBlSaNAkm3loX-9y6uHaxnUK_PS7NphbtxRQpsS6_e3z3nH2enVhnMcteFmRc0EnxYel6b8GM1yk8JrSYFIw-yc7Suxw1JaEnB-vT7DyEJSE1bZvmWXZKGWNly9qzrL_agOkhamdzp_IQvfuJecBfPRrAHKzMPS6g00bHPYVKoYh5WnUetM1jv3I-77a5xd47vYK5tvM8olhYnVQ-5tNcuNUafErfJOnYy-3z7KkCE_DF8L3Ibj9f3V5-HV3ffJldTq9HoqnKOAIQjGFJU-GsaSvREIWqRolSybKssZVU1nLCZFOXDIFOCGVKdaRWQBsp6EX2ei-7Ni7wwbDAk1ekpSwlJWK2J6SDJV_7VL7fcgea_ws4P-fgoxYGedXIolNFDRS6CmvKatYpVmHREEBUTdKq91q9XcP2NxhzL1gQvpvZXQl8NzM-zCzlfRqq7LsVSoE2ejBHxRz_sXrB527Di6KtWNvUSeHdoOBdsjxEvtJBoDFg0fX7htNRKFqS0Df_oQ_bMlBzSJ1rq1zaWOxE-bQt05YVmewaHj9ApUfiSovUotIpfpTw_ighMRH_xDn0IfDZ92-PZ29-HLNvD9gFgomL4Ey_O6_hGHx1aPW9x3f3IQHVHhDeheBRPW6EfwF_NSEM |
| Cites_doi | 10.1109/EAIT.2018.8470438 10.1109/CVPR52688.2022.02007 10.1007/978-3-030-94066-9 10.1007/s00236-022-00436-y 10.1007/978-3-030-72084-1_26 10.1016/j.ejor.2023.04.030 10.1161/STROKEAHA.122.042127 10.1109/ICASSP.2018.8462486 10.3390/s22041407 10.1007/s00216-024-05422-6 10.1023/A:1010933404324 10.1016/j.eswa.2023.122556 10.1016/j.rineng.2023.101704 10.1016/j.bspc.2022.104246 10.23919/EUSIPCO.2019.8902767 10.1109/ICCV48922.2021.00986 10.1109/TKDE.2020.3023589 10.1016/j.bspc.2022.103861 10.1109/TIT.1967.1053964 10.1242/dmm.048785 10.1038/s41579-022-00846-2 10.1055/s-0041-1735323 10.4310/SII.2009.v2.n3.a8 10.1016/j.eswa.2024.123645 10.18653/v1/P19-1441 10.1093/cercor/bhr039 10.1109/CVPR.2017.195 10.1016/S1474-4422(22)00309-X 10.1016/j.media.2016.10.004 10.3389/fenrg.2022.1016754 10.1109/TMI.2018.2845918 10.1109/IJCNN55064.2022.9892850 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Guo, Sun 2025 Guo, Sun 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Guo, Sun 2025 Guo, Sun – notice: 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0317193 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (Roanoke) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Evaluation of stroke sequelae and rehabilitation effect on brain tumor by neuroimaging technique |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3170839652 oai_doaj_org_article_46d1bf15a3ab4e53959bf94e160aeef6 10.1371/journal.pone.0317193 PMC11849865 A828654076 39992898 10_1371_journal_pone_0317193 |
| Genre | Journal Article Comparative Study |
| GeographicLocations | Taiwan China |
| GeographicLocations_xml | – name: Taiwan – name: China |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c642t-aac99e230059684c60fef5ededfd225e8d3d5d79d6529ea37039ffb05fa36dc3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:17:37 EDT 2025 Fri Oct 03 12:44:36 EDT 2025 Sun Oct 26 04:15:20 EDT 2025 Tue Sep 30 17:07:20 EDT 2025 Thu Oct 02 12:02:31 EDT 2025 Tue Oct 07 07:37:29 EDT 2025 Mon Oct 20 22:45:11 EDT 2025 Mon Oct 20 16:58:32 EDT 2025 Thu Oct 16 15:36:05 EDT 2025 Thu Oct 16 15:36:18 EDT 2025 Thu May 22 21:23:46 EDT 2025 Sun May 11 01:41:38 EDT 2025 Wed Oct 01 06:52:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Copyright: © 2025 Guo, Sun. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-aac99e230059684c60fef5ededfd225e8d3d5d79d6529ea37039ffb05fa36dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0317193 |
| PMID | 39992898 |
| PQID | 3170839652 |
| PQPubID | 1436336 |
| PageCount | e0317193 |
| ParticipantIDs | plos_journals_3170839652 doaj_primary_oai_doaj_org_article_46d1bf15a3ab4e53959bf94e160aeef6 unpaywall_primary_10_1371_journal_pone_0317193 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11849865 proquest_miscellaneous_3170932180 proquest_journals_3170839652 gale_infotracmisc_A828654076 gale_infotracacademiconefile_A828654076 gale_incontextgauss_ISR_A828654076 gale_incontextgauss_IOV_A828654076 gale_healthsolutions_A828654076 pubmed_primary_39992898 crossref_primary_10_1371_journal_pone_0317193 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-24 |
| PublicationDateYYYYMMDD | 2025-02-24 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | pone.0317193.ref023 X. He (pone.0317193.ref024) 2022; 60 pone.0317193.ref021 M. Najafzadeh (pone.0317193.ref033) 2024; 21 F. Saberi-Movahed (pone.0317193.ref037) 2023 pone.0317193.ref022 M Siciliano A (pone.0317193.ref002) 2024; 416 pone.0317193.ref027 pone.0317193.ref028 M. Najafzadeh (pone.0317193.ref029) 2024; 21 S Tiwari (pone.0317193.ref001) 2021; 12 P. Akbari (pone.0317193.ref011) 2022; 16 pone.0317193.ref025 R. Chen (pone.0317193.ref030) 2023; 10 I. Lodato (pone.0317193.ref015) 2023; 60 A Güven S (pone.0317193.ref004) 2023; 80 M. Eftekhari (pone.0317193.ref039) 2022 H. Hong (pone.0317193.ref019) 2022; 34 E. Shelhamer (pone.0317193.ref012) 2016; 34 R. Raza (pone.0317193.ref026) 2023; 79 F. Saberi-Movahed (pone.0317193.ref035) 2024; 249 M. Samareh-Jahani (pone.0317193.ref038) 2024; 240 Z. Lyu (pone.0317193.ref044) 2023; 311 H.E. Davis (pone.0317193.ref005) 2023; 21 C. Pan (pone.0317193.ref007) 2023; 54 pone.0317193.ref016 pone.0317193.ref017 L. Breiman (pone.0317193.ref045) 2001; 45 pone.0317193.ref014 X. Li (pone.0317193.ref008) 2018; 37 pone.0317193.ref018 D. Yi (pone.0317193.ref043) 2016 Andrew I. R. Maas (pone.0317193.ref006) 2022; 21 T.M. Cover (pone.0317193.ref034) 1967; 13 K. Kamnitsas (pone.0317193.ref042) 2017; 36 P Kakkar (pone.0317193.ref003) 2021; 14 S. Ni (pone.0317193.ref009) 2011; 21 M. Rezaei-Ravari (pone.0317193.ref040) 2020; 27 M. Cheng (pone.0317193.ref010) 2021 P. Tiwari (pone.0317193.ref036) 2024 pone.0317193.ref041 F. Isensee (pone.0317193.ref013) 2019 pone.0317193.ref020 T. Hastie (pone.0317193.ref031) 2009; 2 G. Liu (pone.0317193.ref032) 2022; 22 |
| References_xml | – ident: pone.0317193.ref022 doi: 10.1109/EAIT.2018.8470438 – ident: pone.0317193.ref025 doi: 10.1109/CVPR52688.2022.02007 – volume-title: How fuzzy concepts contribute to machine learning year: 2022 ident: pone.0317193.ref039 doi: 10.1007/978-3-030-94066-9 – volume-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021. Lecture Notes in Computer Science year: 2021 ident: pone.0317193.ref010 – volume: 60 start-page: 179 year: 2023 ident: pone.0317193.ref015 article-title: On partial information retrieval: the unconstrained 100 prisoner problem publication-title: Acta Informatica doi: 10.1007/s00236-022-00436-y – ident: pone.0317193.ref027 doi: 10.1007/978-3-030-72084-1_26 – volume: 311 start-page: 112 issue: 1 year: 2023 ident: pone.0317193.ref044 article-title: Cross-docking based factory logistics unitisation process: An approximate dynamic programming approach publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2023.04.030 – volume: 54 start-page: 1257 issue: 5 year: 2023 ident: pone.0317193.ref007 article-title: Incremental Value of Stroke-Induced Structural Disconnection in Predicting Global Cognitive Impairment After Stroke publication-title: Stroke doi: 10.1161/STROKEAHA.122.042127 – ident: pone.0317193.ref020 doi: 10.1109/ICASSP.2018.8462486 – year: 2016 ident: pone.0317193.ref043 article-title: 3-D Convolutional Neural Networks for Glioblastoma Segmentation publication-title: arXiv preprint arXiv:1611.04534 – volume: 22 start-page: 1407 year: 2022 ident: pone.0317193.ref032 article-title: An enhanced intrusion detectionmodel based on improved KNN in WSNS publication-title: Sensors doi: 10.3390/s22041407 – volume: 416 start-page: 4941 issue: 22 year: 2024 ident: pone.0317193.ref002 article-title: Map** small metabolite changes after traumatic brain injury using AP-MALDI MSI publication-title: Analytical and Bioanalytical Chemistry doi: 10.1007/s00216-024-05422-6 – volume: 45 start-page: 5 year: 2001 ident: pone.0317193.ref045 article-title: Random Forests publication-title: Mach. Learn doi: 10.1023/A:1010933404324 – volume: 27 start-page: 3005 issue: 6 year: 2020 ident: pone.0317193.ref040 article-title: ML-CK-ELM: An efficient multi-layer extreme learning machine using combined kernels for multi-label classification publication-title: Scientia Iranica – volume: 34 start-page: 640 issue: 9 year: 2016 ident: pone.0317193.ref012 article-title: Fully Convolutional Networks for Semantic Segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2019 ident: pone.0317193.ref013 article-title: Abstract: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation publication-title: Bildverarbeitung für die Medizin – volume: 240 start-page: 122556 year: 2024 ident: pone.0317193.ref038 article-title: Low-redundant unsupervised feature selection based on data structure learning and feature orthogonalization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122556 – volume: 21 start-page: 101704 year: 2024 ident: pone.0317193.ref029 article-title: Vulnerability of the rip current phenomenon in marine environments using machine learning models publication-title: Results in Engineering doi: 10.1016/j.rineng.2023.101704 – volume: 80 start-page: 104246 year: 2023 ident: pone.0317193.ref004 article-title: Brain MRI high resolution image creation and segmentation with the new GAN method publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.104246 – ident: pone.0317193.ref041 doi: 10.23919/EUSIPCO.2019.8902767 – ident: pone.0317193.ref017 doi: 10.1109/ICCV48922.2021.00986 – volume: 34 start-page: 3211 issue: 7 year: 2022 ident: pone.0317193.ref019 article-title: Domain-Adversarial Network Alignment publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2020.3023589 – volume: 79 start-page: 103861 year: 2023 ident: pone.0317193.ref026 article-title: ResUNet: 3D deep residual U-Net based brain tumor segmentation from multimodal MRI publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.103861 – ident: pone.0317193.ref023 doi: 10.1109/ICCV48922.2021.00986 – year: 2023 ident: pone.0317193.ref037 article-title: Deep Metric Learning with Soft Orthogonal Proxies publication-title: arXiv preprint arXiv:2306.13055 – start-page: 2835 year: 2024 ident: pone.0317193.ref036 article-title: A Self-Representation Learning Method for Unsupervised Feature Selection Using Feature Space Basis publication-title: Transactions on Machine Learning Research – volume: 13 start-page: 21 issue: 1 year: 1967 ident: pone.0317193.ref034 article-title: Nearest neighbor pattern classification (PDF) IEEE Trans publication-title: Inf. Theor doi: 10.1109/TIT.1967.1053964 – volume: 14 issue: 12 year: 2021 ident: pone.0317193.ref003 article-title: Current approaches and advances in the imaging of stroke publication-title: Disease Models & Mechanisms doi: 10.1242/dmm.048785 – volume: 21 start-page: 133 issue: 3 year: 2023 ident: pone.0317193.ref005 article-title: Long COVID: major findings, mechanisms, and recommendations publication-title: Nat Rev Microbiol doi: 10.1038/s41579-022-00846-2 – volume: 12 start-page: 680 issue: 4 year: 2021 ident: pone.0317193.ref001 article-title: Impact of stroke on quality of life of stroke survivors and their caregivers: a qualitative study from India publication-title: Journal of Neurosciences in Rural Practice doi: 10.1055/s-0041-1735323 – volume: 2 start-page: 349 issue: 3 year: 2009 ident: pone.0317193.ref031 publication-title: Multi-class AdaBoost. Statistics and Its Interface doi: 10.4310/SII.2009.v2.n3.a8 – volume: 249 start-page: 123645 year: 2024 ident: pone.0317193.ref035 article-title: Deep Nonnegative Matrix Factorization with Joint Global and Local Structure Preservation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.123645 – ident: pone.0317193.ref021 doi: 10.18653/v1/P19-1441 – ident: pone.0317193.ref028 – volume: 21 start-page: 101704 year: 2024 ident: pone.0317193.ref033 article-title: Residual energy evaluation in vortex structures: on the application of Machine Learning Models – volume: 21 start-page: 2565 issue: 11 year: 2011 ident: pone.0317193.ref009 article-title: Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural Networks in multiple sclerosis publication-title: Journal of Cerebral Cortex doi: 10.1093/cercor/bhr039 – ident: pone.0317193.ref016 doi: 10.1109/CVPR.2017.195 – volume: 21 start-page: 1004 issue: 11 year: 2022 ident: pone.0317193.ref006 article-title: Traumatic brain injury: progress and challenges in prevention, clinical care, and research publication-title: Lancet Neurology doi: 10.1016/S1474-4422(22)00309-X – volume: 36 start-page: 61 year: 2017 ident: pone.0317193.ref042 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal doi: 10.1016/j.media.2016.10.004 – volume: 10 start-page: 1016754 year: 2023 ident: pone.0317193.ref030 article-title: Islanding detection method for microgrids based on CatBoost publication-title: Front. Energy Res doi: 10.3389/fenrg.2022.1016754 – volume: 16 start-page: 1773 issue: 4 year: 2022 ident: pone.0317193.ref011 article-title: Deep Active Contours Using Locally Controlled short Vector Flow publication-title: Signal Image and Video Processing – ident: pone.0317193.ref018 – volume: 60 start-page: 4408715 year: 2022 ident: pone.0317193.ref024 article-title: Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 37 start-page: 2663 issue: 12 year: 2018 ident: pone.0317193.ref008 article-title: H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2845918 – ident: pone.0317193.ref014 doi: 10.1109/IJCNN55064.2022.9892850 |
| SSID | ssj0053866 |
| Score | 2.479298 |
| Snippet | This study aims at the limitations of traditional methods in the evaluation of stroke sequelae and rehabilitation effect monitoring, especially for the... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0317193 |
| SubjectTerms | Accuracy Algorithms Annotations Artificial neural networks Biology and Life Sciences Brain Brain - diagnostic imaging Brain cancer Brain damage Brain injury Brain mapping Brain Neoplasms - diagnostic imaging Brain Neoplasms - rehabilitation Brain tumors Care and treatment Cognitive ability Comparative studies Complications Computer and Information Sciences Datasets Deep Learning Design Development and progression Diagnosis Diagnostic imaging Effectiveness Efficiency Emotional disorders Encoders-Decoders Head injuries Health aspects Humans Image processing Image segmentation Injuries Innovations Learning algorithms Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Marking and tracking techniques Mathematical optimization Medical imaging Medical imaging equipment Medicine and Health Sciences Methods Metric space Neural networks Neural Networks, Computer Neuroimaging Neuroimaging - methods Patient outcomes Patients People and Places Quality of life Receptive field Rehabilitation Research and Analysis Methods Segmentation Social Sciences Stroke Stroke (Disease) Stroke - complications Stroke - diagnostic imaging Stroke Rehabilitation Support vector machines Tissues Traumatic brain injury Tumors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hXOCCKF81bWFBSMDBqZ21115uAbUqSIAEBfVm7XpnoSK1ozgW6r9n9iMmFpXogVuUfY7imTfrGXn2DSHPoWDAsdyJuc5VnKWyjKUqVZwYgxVRImTpuio_fOQnX7P3Z_nZ1qgv2xPm5YG94Q4zrlNl0lwyqTLImciFMiKDlCcSwDix7aQUm2LK78EYxZyHg3KsSA-DX6bLtoEp0rhwL5q3HkROr3_YlSfLRdtdlXL-3Tl5s2-W8vKXXCy2HkvHd8jtkE_Sub-PHXIDmrtkJ0RsR18GWelX90h_NAh709bQbr1qfwJ1rdQLCVQ2mq5Gst3U93pQ_KTsIAm67i_aFVWX1Ilgnl-4AUd0UIF9Tee0_iMmTp1y7X1yenx0-vYkDkMX4hpLkXUsZS0EzJiby1NmNU8MmBw0aKMx9qHUTOe6EJrnMwGS4Y4hjFFJbiTjumYPyKRBK-8SymyxJ5gAqPNMmVJBoUEqU9Saz4RmEYk3DqiWXlqjcu_XCixJvPUq67AqOCwib6yXBqwVxnZfIF2qQJfqX3SJyBPr48qfMh3Cu5rb4_RWjBARzxzCimM0tvvmu-y7rnr36ds1QF8-j0AvAsi0yJZahhMPeE9WdGuE3B8hMcTr0fKuZeTGKl2FBsHUWaAL8MoNS69efjos2x-1HXUNtL3HYO6elklEHnpSD5bFpFVgIV5GpBzRfWT68Upz_sNpk2O9mgn82xGZDpFxLe8--h_e3SO3ZnY-s5UcyPbJZL3q4QCTxrV67PaH3xuubrA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wACDkICHdEmdODESQh3qNJAoaAy0t8iO7THRJSUfQvvvOTtOtogJ7S2qr1V8X76r736H0EuVEEUh3fGpjIUfhTz1uUiFH2gNGVHAeGqrKj8v6cH36NNxfLyBln0vjCmr7H2iddSyzM1_5LtwzkG0wGg8e7_-7ZupUeZ2tR-hwd1oBfnOQozdQJszg4w1QZt7i-XXw943g3VT6hroSBLuOnlN12WhpqDeib2AvnRAWRz_wVtP1quyvioU_bei8mZbrPn5H75aXTqu9u-g2y7OxPNOMbbQhiruoi1nyTV-7eCm39xD7WIA_MalxnVTlb8UtiXWK64wLySuRnDeuKsBwfAkzIAJ3LRnZYXFObbgmKdndvARHtBh3-I5zi9AxrFFtL2PjvYXRx8OfDeMwc8hRWl8znPG1IzYeT1plNNAKx0rqaSW4BNUKomMZcIkSIgpTsCTMK1FEGtOqMzJAzQpgMvbCBOTBDLClMrjSOhUqEQqLnSSSzpjknjI7wWQrTvIjczeuyWQqnTcy4zAMicwD-0ZKQ20BjDbflBWJ5mzvyyiMhQ6jDnhIlIxYTETmkUqpAFXSlMPPTMyzrru08Hss7lpszcghUDxwlIY0IzCVOWc8Laus49fflyD6NvhiOiVI9IlaEvOXScE7MmAcY0od0aUYPr5aHnbaGTPlTq7MBL4Zq-lVy8_H5bNj5pKu0KVbUcDMX2YBh562Cn1wFkIZhkk6KmH0pG6j1g_XilOf1rMcshjIwav7aHpYBnXku6j_2_kMbo1MxOZDchAtIMmTdWqJxAmNuKps_2_P5Vr2Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXoLwaKGAQEiCRkMSxE3NbUKuC1IKgRe0psmMbqm6T1SYRKr-esZMNDRRpuUXr8SqeV2bkmW8QeqZTohmkOz5TVPpJJDJfyEz6oTGQEYVcZK6qcm-f7R4mH47o0Rp6teyFuXh_T9Lodc_RYF6VOgAFTCHguILWGYXIe4LWD_c_TY-7i-PYZ3FI-u64f20dfX0cSP_giifzWVVfFmf-XS55tS3n4vyHmM0ufIt2bqC95Sm6EpTToG1kUPz8A-Bx1WPeRNf7oBRPOy3aQGu6vIU2erOv8Ysem_rlbdRuD-jguDK4bhbVqcauHnsmNBalwosR9jfuCkYwPEk7jQI37Vm1wPIcOyTNkzM3JQkPULJv8BQXvxHJsYO_vYMOdrYP3u36_eQGv4B8pvGFKDjXMXHDfbKkYKHRhmqllVHgQHSmiKIq5YrRmGtBwO1wY2RIjSBMFeQumpTAiU2Eic0YOeFaFzSRJpM6VVpIkxaKxVwRD_lLgebzDp8jd5d0KeQ1Hfdyy9S8Z6qH3lqpD7QWXdv9ANLIe2PNE6YiaSIqiJCJpoRTLg1PdMRCobVhHnpsdSbvWlUHH5FPbU--RTQEiqeOwiJslLaE55to6zp___HrCkRfPo-InvdEpgLtK0TfNgFnsshdI8qtESX4iWK0vGk1fMmVOgeGQPzNQQSwc6n1ly8_GZbtn9qyvFJXbUcDlhdloYfudUYycBYiXw7ZfOahbGQ-I9aPV8qT7w7gHJLehMNreygYLG0l6d7_3w0P0LXYDnS2GAXJFpo0i1Y_hCizkY965_ILWc1-SQ priority: 102 providerName: Unpaywall |
| Title | Evaluation of stroke sequelae and rehabilitation effect on brain tumor by neuroimaging technique: A comparative study |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39992898 https://www.proquest.com/docview/3170839652 https://www.proquest.com/docview/3170932180 https://pubmed.ncbi.nlm.nih.gov/PMC11849865 https://doi.org/10.1371/journal.pone.0317193 https://doaj.org/article/46d1bf15a3ab4e53959bf94e160aeef6 http://dx.doi.org/10.1371/journal.pone.0317193 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (Roanoke) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrYaMYhPh4SJXU-TISQt3UMpBWprFO5SmyY3tM65IuaQT97zk7aSCiSH2JovgSJfflu_j8O4ReyZDIANIdOxA-tz2XRTbjEbcdpSAjciiLTFXlyTg4nnhfpv50C60W2msGFmtTO91PapLPer9ulx_B4D-Yrg2hu7qpN89S2QMlDSEoeT2_tXVrKb0EW_fZ2EY7MH1R3d_hxGuWGsDgzYKmDmTsoO-Qen_d_x7cmr8MzH_jzDvzWVasi1T_Lbi8U6ZztvzJZrO_ZrPRfXSvDkPxoNKbXbQl0wdotzb0Ar-t0ajfPUTlsMEDx5nCxSLPriU2FdgzJjFLBc5baN-4KhHBcMZ1_wm8KG-yHPMlNtiZVzemLxJuwGPf4wFO_mCQYwN4-widj4bnR8d23avBTiCDWdiMJZTKPjHtfCIvCRwllS-FFEqAy5CRIMIXIRWB36eSEXA0VCnu-IqRQCTkMeqkwOU9hInOESmhUia-x1XEZSgk4ypMRNCngljIXgkgnleIHLFZlgshk6m4F2uBxbXALHSopdTQajxtcyHLL-PaPGMvEC5Xrs8I4570CfUpV9STbuAwKVVgoedaxnG1ObXxCvFA78LXGIZA8dJQaEyNVBftXLKyKOLPXy82IPp21iJ6UxOpDLQlYfVGCfgmjdXVojxoUYJnSFrDe1ojV1wpYmAIRNwURAB3rrR0_fCLZlg_VBfipTIrKxqwFDdyLPSkUuqGsxDrUsjfIwtFLXVvsb49kl79MJDmkOZ6FF7bQr3GMjaS7tMN3nQf3e3rrs0aiMA7QJ1FXspnEEoueBdth9MQjtGRq4-jT120czgcn551zc-ZrnEVcG0yPh18_w2rg31a |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeRgviPG1wGAGgYCHdEmcLyMhVGBTyz6QoKC-WXZsj4kuKU2jqX8U_yNnJ80WMaG97K2qL2lyX76r736H0AuVEBVDuuPGMhJu6PPU5SIVrqc1ZEQe5amtqjw8ioffw8-TaLKG_qx6YUxZ5conWkcti8z8R74D-xxECzSOgvez366ZGmVOV1cjNGq12FfLM0jZynejTyDfl0Gwtzv-OHSbqQJuBrH2wuU8o1QFxA6eScMs9rTSkZJKagnKrVJJZCQTKuGnqOIETIJqLbxIcxLLjMBtb6CbIVxvBiYkkza_A9cRx013Hkn8nUYZ-rMiV32wncSebl_Y_eyQgHYr6M2mRXlZnPtvueZ6lc_48oxPpxf2wr076HYTxOJBrXUbaE3ld9FG4yZK_LrBsn5zD1W7LZo4LjQuF_Pil8K2fnvKFea5xPMOVjiuC0wwfBJmegVeVKfFHIsltsibJ6d2qhJuoWff4gHOzhHMsYXLvY_G1yGTB6iXA5c3ESYmw6SEKpVFodCpUIlUXOgkk3FAJXGQuxIAm9V4Hswe6iWQB9XcY0ZgrBGYgz4YKbW0Bo3bflHMj1lj3CyMpS-0H3HCRagiQiMqNA2VH3tcKR07aNvImNWtra1PYQPTw28QEIHiuaUwiBy5Kfk55lVZstGXH1cg-va1Q_SqIdIFaEvGmzYLeCeD9NWh3OpQgl_JOsubRiNXXCnZuQXClSstvXz5WbtsbmrK-HJVVDUNJAx-6jnoYa3ULWchUqaQ_acOSjvq3mF9dyU_-WkB0SFJDik8toP6rWVcSbqP_v8i22h9OD48YAejo_3H6FZgRj8bNINwC_UW80o9gXh0IZ5aL4ARu2av8xezGKMu |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYDCDQMBD2iTOl5EQKmzVymAgGKhvlh3bY6JLStNo6p_Gf8fZSbNFTGgve6viS9r4fj7f1Xe_Q-iZSoiKIdxxYxkJN_R56nKRCtfTGiIij_LUZlV-2o93v4cfJtFkDf1Z1cKYtMqVTbSGWhaZ-Y98APsceAs0joKBbtIivmyP3s5-u6aDlDlpXbXTqCGyp5YnEL6Vb8bboOvnQTDaOXi_6zYdBtwM_O6Fy3lGqQqIbUKThlnsaaUjJZXUEoCuUklkJBMq4Wup4gSWB9VaeJHmJJYZgcdeQVcTQqjJJkwmbawHZiSOm0o9kviDBhj9WZGrPqyjxJ50n9kJbcOAdlvozaZFeZ7P-2_q5vUqn_HlCZ9Oz-yLo1voZuPQ4mGNwHW0pvLbaL0xGSV-2fBav7qDqp2WWRwXGpeLefFLYZvLPeUK81zieYc3HNfJJhg-CdPJAi-q42KOxRJbFs6jY9thCbc0tK_xEGenbObYUufeRQeXoZN7qJfDLG8gTEy0SQlVKotCoVOhEqm40Ekm44BK4iB3pQA2q7k9mD3gSyAmqmePGYWxRmEOeme01MoaZm57oZgfsmahszCWvtB-xAkXoYoAGVRoGio_9rhSOnbQltExq8tcW_vChqae37AhgsRTK2HYOXKD80NelSUbf_5xAaFvXztCLxohXQBaMt6UXMA7GdavjuRmRxJsTNYZ3jCIXM1KyU5XI9y5Qun5w0_aYfNQk9KXq6KqZSB48FPPQfdrULczC14zDVKaOijtwL0z9d2R_OinJUeHgDmk8LMd1G9XxoW0--D_L7KFroG9YR_H-3sP0Y3AdIE2xAbhJuot5pV6BK7pQjy2RgAjdslG5y9Wv6dx |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXoLwaKGAQEiCRkMSxE3NbUKuC1IKgRe0psmMbqm6T1SYRKr-esZMNDRRpuUXr8SqeV2bkmW8QeqZTohmkOz5TVPpJJDJfyEz6oTGQEYVcZK6qcm-f7R4mH47o0Rp6teyFuXh_T9Lodc_RYF6VOgAFTCHguILWGYXIe4LWD_c_TY-7i-PYZ3FI-u64f20dfX0cSP_giifzWVVfFmf-XS55tS3n4vyHmM0ufIt2bqC95Sm6EpTToG1kUPz8A-Bx1WPeRNf7oBRPOy3aQGu6vIU2erOv8Ysem_rlbdRuD-jguDK4bhbVqcauHnsmNBalwosR9jfuCkYwPEk7jQI37Vm1wPIcOyTNkzM3JQkPULJv8BQXvxHJsYO_vYMOdrYP3u36_eQGv4B8pvGFKDjXMXHDfbKkYKHRhmqllVHgQHSmiKIq5YrRmGtBwO1wY2RIjSBMFeQumpTAiU2Eic0YOeFaFzSRJpM6VVpIkxaKxVwRD_lLgebzDp8jd5d0KeQ1Hfdyy9S8Z6qH3lqpD7QWXdv9ANLIe2PNE6YiaSIqiJCJpoRTLg1PdMRCobVhHnpsdSbvWlUHH5FPbU--RTQEiqeOwiJslLaE55to6zp___HrCkRfPo-InvdEpgLtK0TfNgFnsshdI8qtESX4iWK0vGk1fMmVOgeGQPzNQQSwc6n1ly8_GZbtn9qyvFJXbUcDlhdloYfudUYycBYiXw7ZfOahbGQ-I9aPV8qT7w7gHJLehMNreygYLG0l6d7_3w0P0LXYDnS2GAXJFpo0i1Y_hCizkY965_ILWc1-SQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+stroke+sequelae+and+rehabilitation+effect+on+brain+tumor+by+neuroimaging+technique%3A+A+comparative+study&rft.jtitle=PloS+one&rft.au=Guo%2C+Xueliang&rft.au=Sun%2C+Lin&rft.date=2025-02-24&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=2&rft.spage=e0317193&rft_id=info:doi/10.1371%2Fjournal.pone.0317193&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |