iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects

Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 24; no. 1; pp. 318 - 20
Main Authors Liu, Yunqing, Zhao, Jiayi, Adams, Taylor S., Wang, Ningya, Schupp, Jonas C., Wu, Weimiao, McDonough, John E., Chupp, Geoffrey L., Kaminski, Naftali, Wang, Zuoheng, Yan, Xiting
Format Journal Article
LanguageEnglish
Published London BioMed Central 22.08.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-023-05432-8

Cover

Abstract Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. Results We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. Conclusions iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.
AbstractList Abstract Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. Results We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. Conclusions iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.
Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.
Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis.BACKGROUNDSingle-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis.We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance.RESULTSWe developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance.iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.CONCLUSIONSiDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.
Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. Results We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. Conclusions iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.
Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. Results We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. Conclusions iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects. Keywords: Single-cell RNA sequencing, Differential expression analysis, Subject effect, Zero-inflated negative binomial mixed model
Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.
BackgroundSingle-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis.ResultsWe developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance.ConclusionsiDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.
ArticleNumber 318
Audience Academic
Author Adams, Taylor S.
McDonough, John E.
Schupp, Jonas C.
Kaminski, Naftali
Wang, Zuoheng
Wu, Weimiao
Chupp, Geoffrey L.
Yan, Xiting
Zhao, Jiayi
Wang, Ningya
Liu, Yunqing
Author_xml – sequence: 1
  givenname: Yunqing
  surname: Liu
  fullname: Liu, Yunqing
  organization: Department of Biostatistics, Yale School of Public Health
– sequence: 2
  givenname: Jiayi
  surname: Zhao
  fullname: Zhao, Jiayi
  organization: Department of Biostatistics, Yale School of Public Health
– sequence: 3
  givenname: Taylor S.
  surname: Adams
  fullname: Adams, Taylor S.
  organization: Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine
– sequence: 4
  givenname: Ningya
  surname: Wang
  fullname: Wang, Ningya
  organization: Department of Biostatistics, Yale School of Public Health
– sequence: 5
  givenname: Jonas C.
  surname: Schupp
  fullname: Schupp, Jonas C.
  organization: Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research (DZL)
– sequence: 6
  givenname: Weimiao
  surname: Wu
  fullname: Wu, Weimiao
  organization: Department of Biostatistics, Yale School of Public Health, Meta Platforms, Inc
– sequence: 7
  givenname: John E.
  surname: McDonough
  fullname: McDonough, John E.
  organization: Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine
– sequence: 8
  givenname: Geoffrey L.
  surname: Chupp
  fullname: Chupp, Geoffrey L.
  organization: Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine
– sequence: 9
  givenname: Naftali
  surname: Kaminski
  fullname: Kaminski, Naftali
  organization: Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine
– sequence: 10
  givenname: Zuoheng
  surname: Wang
  fullname: Wang, Zuoheng
  email: zuoheng.wang@yale.edu
  organization: Department of Biostatistics, Yale School of Public Health
– sequence: 11
  givenname: Xiting
  orcidid: 0000-0001-8688-9004
  surname: Yan
  fullname: Yan, Xiting
  email: xiting.yan@yale.edu
  organization: Department of Biostatistics, Yale School of Public Health, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37608264$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wB1igSGxgkeJHHg4bNBoKjFSB1MLacvxIPfI4g-3Qzr_nzoMyU6EKZeHYPuf4-vM9zY784HWWvcToHGNWv4uYsKotEKEFqkpKCvYkO8FlgwuCUXW093-cncY4Rwg3DFXPsmPa1IiRujzJlP14cT19n1ulfbJmZX2fK2uMDuu5cLm-WwYdox18bn0eYd_pQmrn8quvkzzqn6P2cuMSSeS3Nt3ki9Elu3Q6j2M31zLF59lTI1zUL3bjWfbj08X36Zfi8tvn2XRyWci6JKkQJZJGl41qJVI1RZXErFRYI1J1jVGSVpgyI9oGE6i-7IhSutGqMkoQ1jFMz7LZNlcNYs6XwS5EWPFBWL5ZGELPRUhWOs1b1nUIAToqaCmlYIRUphOEdlQaTNdZdJs1-qVY3Qrn7gMx4mv-fMufQwjf8OcMXB-2ruXYLbSSADEId1DK4Y63N7wffkFmWdOGIEh4s0sIA7CNiS9sXPMWXg9j5HBkTTFjID_LXj-QzocxeCAMqrqiZdugPVUv4N7WmwEOlutQPmlqzHALnQCq83-o4FN6YSX0nbGwfmB4e2AATdJ3qRdjjHx2fXWofbVP5R7HnzYEAdsKZBhiDNpwaZNI0HRQhXWPEycPrP_1TLvHjSD2vQ5_yT3i-g3jmQ8C
CitedBy_id crossref_primary_10_1186_s12859_024_05724_7
crossref_primary_10_1186_s12859_023_05523_6
crossref_primary_10_1016_j_csbj_2023_10_045
Cites_doi 10.1152/ajplung.00352.2004
10.1093/bioinformatics/bty332
10.1017/S0305004100023987
10.1038/s41598-019-46932-z
10.1371/journal.pone.0079768
10.1183/13993003.02441-2018
10.1164/rccm.201712-2410OC
10.1038/s41467-021-25960-2
10.1038/s41467-017-02659-x
10.1136/thoraxjnl-2015-207682
10.1371/journal.pcbi.1004333
10.1084/jem.20042398
10.1038/nmeth.2967
10.15252/msb.20188746
10.1186/s12859-016-0944-6
10.32614/RJ-2017-066
10.1038/s41591-019-0468-5
10.1155/2011/717130
10.1093/biostatistics/kxm030
10.1038/s41467-020-19894-4
10.1080/01902148.2019.1680765
10.1186/s13059-017-1218-y
10.1093/bioinformatics/bty329
10.1038/s41590-019-0403-4
10.1038/ncomms14049
10.1088/1742-5468/2008/10/P10008
10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A5178
10.1371/journal.pmed.0050062
10.1186/s13059-016-1077-y
10.3389/fgene.2017.00062
10.1002/art.22559
10.1165/rcmb.2018-0313OC
10.1016/j.cmet.2016.08.020
10.1016/j.cell.2019.05.031
10.1093/jee/39.2.269
10.1371/journal.pone.0151765
10.1038/nmeth.4150
10.1186/s13059-014-0550-8
10.1126/sciadv.aba1972
10.1126/scitranslmed.aan4730
10.1038/nmeth.4612
10.1093/nar/gkx754
10.1371/journal.pone.0000180
10.1093/bioinformatics/btz453
10.1038/nbt.2859
10.1371/journal.pone.0116775
10.1038/s41592-018-0229-2
10.1093/database/baw100
10.1038/nbt.3102
10.1038/nature14966
10.1038/nrg.2015.16
10.1186/s13059-015-0844-5
10.1038/ncomms15081
10.1038/s41467-021-21038-1
10.1016/j.cell.2015.05.002
10.1186/s13059-018-1438-9
10.3389/fmolb.2021.711239
10.1126/sciadv.aba1983
10.1093/nar/gkv007
10.1038/s41598-018-21889-7
10.1038/nmeth.4402
10.1038/s41467-019-12266-7
ContentType Journal Article
Copyright The Author(s) 2023 corrected publication 2023
2023. BioMed Central Ltd., part of Springer Nature.
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
BioMed Central Ltd., part of Springer Nature 2023
Copyright_xml – notice: The Author(s) 2023 corrected publication 2023
– notice: 2023. BioMed Central Ltd., part of Springer Nature.
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: BioMed Central Ltd., part of Springer Nature 2023
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-023-05432-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological science database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic



MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 20
ExternalDocumentID oai_doaj_org_article_98bb000233a34cca8225fba23b3cf131
10.1186/s12859-023-05432-8
PMC10463720
A761819826
37608264
10_1186_s12859_023_05432_8
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS1916246
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: U.S. National Library of Medicine
  grantid: R21LM012884; R01LM014087
  funderid: http://dx.doi.org/10.13039/100000092
– fundername: National Institute on Alcohol Abuse and Alcoholism
  grantid: K01AA023321
  funderid: http://dx.doi.org/10.13039/100000027
– fundername: NIAAA NIH HHS
  grantid: K01AA023321
– fundername: NIAAA NIH HHS
  grantid: K01 AA023321
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NLM NIH HHS
  grantid: R01 LM014087
– fundername: NLM NIH HHS
  grantid: R21 LM012884
– fundername: ;
  grantid: DMS1916246
– fundername: ;
  grantid: R21LM012884; R01LM014087
– fundername: ;
  grantid: K01AA023321
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c642t-a40cfe47d9c0d6305c184d1e025b7fdc35138fa97120824b2dde7ed5fda28b813
IEDL.DBID UNPAY
ISSN 1471-2105
IngestDate Fri Oct 03 12:50:44 EDT 2025
Sun Oct 26 03:35:05 EDT 2025
Tue Sep 30 17:12:58 EDT 2025
Fri Sep 05 09:39:46 EDT 2025
Tue Oct 07 05:19:55 EDT 2025
Mon Oct 20 23:18:12 EDT 2025
Mon Oct 20 17:17:59 EDT 2025
Thu Oct 16 16:09:27 EDT 2025
Wed Feb 19 02:04:03 EST 2025
Wed Oct 01 04:15:43 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Sat Sep 06 07:27:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Subject effect
Zero-inflated negative binomial mixed model
Single-cell RNA sequencing
Differential expression analysis
Language English
License 2023. BioMed Central Ltd., part of Springer Nature.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-a40cfe47d9c0d6305c184d1e025b7fdc35138fa97120824b2dde7ed5fda28b813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8688-9004
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05432-8
PMID 37608264
PQID 2865349706
PQPubID 44065
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_98bb000233a34cca8225fba23b3cf131
unpaywall_primary_10_1186_s12859_023_05432_8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10463720
proquest_miscellaneous_2856318846
proquest_journals_2865349706
gale_infotracmisc_A761819826
gale_infotracacademiconefile_A761819826
gale_incontextgauss_ISR_A761819826
pubmed_primary_37608264
crossref_citationtrail_10_1186_s12859_023_05432_8
crossref_primary_10_1186_s12859_023_05432_8
springer_journals_10_1186_s12859_023_05432_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-22
PublicationDateYYYYMMDD 2023-08-22
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References R Lopez (5432_CR21) 2018; 15
MI Love (5432_CR39) 2014; 15
C Soneson (5432_CR23) 2018; 15
KD Korthauer (5432_CR37) 2016; 17
A Prasse (5432_CR48) 2007; 56
B Vieth (5432_CR36) 2019; 10
EZ Macosko (5432_CR2) 2015; 161
AK Shalek (5432_CR13) 2017; 9
D Grun (5432_CR10) 2015; 525
C Trapnell (5432_CR30) 2014; 32
GC Yuan (5432_CR12) 2017; 18
HL Crowell (5432_CR20) 2020; 11
Z Miao (5432_CR32) 2018; 34
PA Reyfman (5432_CR17) 2019; 199
SM Pop (5432_CR7) 2005; 201
MK Jaakkola (5432_CR25) 2017; 18
C Jia (5432_CR27) 2017; 45
A Dal Molin (5432_CR24) 2017; 8
X Qiu (5432_CR28) 2017; 14
C Gawad (5432_CR1) 2016; 17
W Stephenson (5432_CR4) 2018; 9
MW Wynes (5432_CR43) 2005; 288
M Selman (5432_CR52) 2008; 5
F Buettner (5432_CR11) 2015; 33
CR Rao (5432_CR60) 1948; 44
F Wilcoxon (5432_CR41) 1946; 39
CT Wohnhaas (5432_CR22) 2019; 9
R Peyser (5432_CR49) 2019; 61
JW Squair (5432_CR15) 2021; 12
LR Rodriguez (5432_CR50) 2018; 8
5432_CR57
X Qiu (5432_CR29) 2017; 14
ME Ritchie (5432_CR40) 2015; 43
LN Chow (5432_CR56) 2016; 11
MD Robinson (5432_CR58) 2008; 9
JO Lloyd-Smith (5432_CR59) 2007; 2
C Yao (5432_CR6) 2019; 20
W Chung (5432_CR8) 2017; 8
PV Kharchenko (5432_CR16) 2014; 11
T Stuart (5432_CR62) 2019; 177
VD Blondel (5432_CR63) 2008; 2008
KD Zimmerman (5432_CR19) 2021; 12
FA Vieira Braga (5432_CR9) 2019; 25
G Finak (5432_CR35) 2015; 16
W Chen (5432_CR31) 2018; 19
M Delmans (5432_CR38) 2016; 17
GX Zheng (5432_CR3) 2017; 8
H Wang (5432_CR45) 2019; 45
JC Schupp (5432_CR47) 2015; 10
MD Luecken (5432_CR14) 2019; 15
5432_CR54
5432_CR51
Z Wu (5432_CR34) 2018; 34
5432_CR46
5432_CR44
A Segerstolpe (5432_CR5) 2016; 24
TS Adams (5432_CR18) 2020; 6
CA Vallejos (5432_CR26) 2015; 11
C Ye (5432_CR33) 2019; 35
G Jia (5432_CR53) 2017; 72
AC Habermann (5432_CR42) 2020; 6
ME Brooks (5432_CR61) 2017; 9
H-KG Shu (5432_CR55) 2013; 8
37858060 - BMC Bioinformatics. 2023 Oct 19;24(1):394
References_xml – volume: 18
  start-page: 735
  issue: 5
  year: 2017
  ident: 5432_CR25
  publication-title: Brief Bioinform
– volume: 288
  start-page: L1089
  issue: 6
  year: 2005
  ident: 5432_CR43
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00352.2004
– volume: 34
  start-page: 3223
  issue: 18
  year: 2018
  ident: 5432_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty332
– volume: 44
  start-page: 50
  issue: 1
  year: 1948
  ident: 5432_CR60
  publication-title: Proc Camb Philos Soc
  doi: 10.1017/S0305004100023987
– volume: 9
  start-page: 10699
  issue: 1
  year: 2019
  ident: 5432_CR22
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-46932-z
– volume: 8
  start-page: e79768
  issue: 11
  year: 2013
  ident: 5432_CR55
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0079768
– ident: 5432_CR44
  doi: 10.1183/13993003.02441-2018
– volume: 199
  start-page: 1517
  issue: 12
  year: 2019
  ident: 5432_CR17
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201712-2410OC
– volume: 12
  start-page: 5692
  issue: 1
  year: 2021
  ident: 5432_CR15
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25960-2
– volume: 9
  start-page: 791
  year: 2018
  ident: 5432_CR4
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02659-x
– volume: 72
  start-page: 780
  issue: 9
  year: 2017
  ident: 5432_CR53
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2015-207682
– volume: 11
  start-page: e1004333
  issue: 6
  year: 2015
  ident: 5432_CR26
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004333
– volume: 201
  start-page: 1333
  issue: 8
  year: 2005
  ident: 5432_CR7
  publication-title: J Exp Med
  doi: 10.1084/jem.20042398
– volume: 11
  start-page: 740
  issue: 7
  year: 2014
  ident: 5432_CR16
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2967
– volume: 15
  start-page: e8746
  issue: 6
  year: 2019
  ident: 5432_CR14
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20188746
– volume: 17
  start-page: 110
  year: 2016
  ident: 5432_CR38
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-0944-6
– volume: 9
  start-page: 378
  issue: 2
  year: 2017
  ident: 5432_CR61
  publication-title: R J
  doi: 10.32614/RJ-2017-066
– volume: 25
  start-page: 1153
  issue: 7
  year: 2019
  ident: 5432_CR9
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0468-5
– ident: 5432_CR46
  doi: 10.1155/2011/717130
– volume: 9
  start-page: 321
  issue: 2
  year: 2008
  ident: 5432_CR58
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm030
– volume: 11
  start-page: 6077
  issue: 1
  year: 2020
  ident: 5432_CR20
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19894-4
– volume: 45
  start-page: 288
  issue: 9–10
  year: 2019
  ident: 5432_CR45
  publication-title: Exp Lung Res
  doi: 10.1080/01902148.2019.1680765
– volume: 18
  start-page: 84
  issue: 1
  year: 2017
  ident: 5432_CR12
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1218-y
– volume: 34
  start-page: 3340
  issue: 19
  year: 2018
  ident: 5432_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty329
– volume: 20
  start-page: 890
  issue: 7
  year: 2019
  ident: 5432_CR6
  publication-title: Nat Immunol
  doi: 10.1038/s41590-019-0403-4
– volume: 8
  start-page: 14049
  year: 2017
  ident: 5432_CR3
  publication-title: Nat Commun
  doi: 10.1038/ncomms14049
– volume: 2008
  start-page: 10008
  year: 2008
  ident: 5432_CR63
  publication-title: J Stat Mech Theory Exp
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: 5432_CR54
  doi: 10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A5178
– volume: 5
  start-page: e62
  issue: 3
  year: 2008
  ident: 5432_CR52
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0050062
– volume: 17
  start-page: 222
  issue: 1
  year: 2016
  ident: 5432_CR37
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1077-y
– volume: 8
  start-page: 62
  year: 2017
  ident: 5432_CR24
  publication-title: Front Genet
  doi: 10.3389/fgene.2017.00062
– volume: 56
  start-page: 1685
  issue: 5
  year: 2007
  ident: 5432_CR48
  publication-title: Arthritis Rheum
  doi: 10.1002/art.22559
– volume: 61
  start-page: 74
  issue: 1
  year: 2019
  ident: 5432_CR49
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2018-0313OC
– volume: 24
  start-page: 593
  issue: 4
  year: 2016
  ident: 5432_CR5
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.020
– volume: 177
  start-page: 1888
  issue: 7
  year: 2019
  ident: 5432_CR62
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 39
  start-page: 269
  year: 1946
  ident: 5432_CR41
  publication-title: J Econ Entomol
  doi: 10.1093/jee/39.2.269
– volume: 11
  start-page: e0151765
  issue: 3
  year: 2016
  ident: 5432_CR56
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0151765
– volume: 14
  start-page: 309
  issue: 3
  year: 2017
  ident: 5432_CR28
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4150
– volume: 15
  start-page: 550
  issue: 12
  year: 2014
  ident: 5432_CR39
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 6
  start-page: eaba1972
  issue: 28
  year: 2020
  ident: 5432_CR42
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aba1972
– volume: 9
  start-page: eaan4730
  issue: 408
  year: 2017
  ident: 5432_CR13
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aan4730
– volume: 15
  start-page: 255
  issue: 4
  year: 2018
  ident: 5432_CR23
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4612
– volume: 45
  start-page: 10978
  issue: 19
  year: 2017
  ident: 5432_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx754
– volume: 2
  start-page: e180
  issue: 2
  year: 2007
  ident: 5432_CR59
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000180
– volume: 35
  start-page: 5155
  issue: 24
  year: 2019
  ident: 5432_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz453
– volume: 32
  start-page: 381
  issue: 4
  year: 2014
  ident: 5432_CR30
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2859
– volume: 10
  start-page: e0116775
  issue: 1
  year: 2015
  ident: 5432_CR47
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0116775
– volume: 15
  start-page: 1053
  issue: 12
  year: 2018
  ident: 5432_CR21
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0229-2
– ident: 5432_CR57
  doi: 10.1093/database/baw100
– volume: 33
  start-page: 155
  issue: 2
  year: 2015
  ident: 5432_CR11
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3102
– volume: 525
  start-page: 251
  issue: 7568
  year: 2015
  ident: 5432_CR10
  publication-title: Nature
  doi: 10.1038/nature14966
– volume: 17
  start-page: 175
  issue: 3
  year: 2016
  ident: 5432_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2015.16
– volume: 16
  start-page: 278
  year: 2015
  ident: 5432_CR35
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0844-5
– volume: 8
  start-page: 15081
  year: 2017
  ident: 5432_CR8
  publication-title: Nat Commun
  doi: 10.1038/ncomms15081
– volume: 12
  start-page: 738
  issue: 1
  year: 2021
  ident: 5432_CR19
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21038-1
– volume: 161
  start-page: 1202
  issue: 5
  year: 2015
  ident: 5432_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 19
  start-page: 70
  issue: 1
  year: 2018
  ident: 5432_CR31
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1438-9
– ident: 5432_CR51
  doi: 10.3389/fmolb.2021.711239
– volume: 6
  start-page: eaba1983
  issue: 28
  year: 2020
  ident: 5432_CR18
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aba1983
– volume: 43
  start-page: e47
  issue: 7
  year: 2015
  ident: 5432_CR40
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 8
  start-page: 3983
  issue: 1
  year: 2018
  ident: 5432_CR50
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-21889-7
– volume: 14
  start-page: 979
  issue: 10
  year: 2017
  ident: 5432_CR29
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4402
– volume: 10
  start-page: 4667
  issue: 1
  year: 2019
  ident: 5432_CR36
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12266-7
– reference: 37858060 - BMC Bioinformatics. 2023 Oct 19;24(1):394
SSID ssj0017805
Score 2.466511
Snippet Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the...
Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in...
Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the...
BackgroundSingle-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the...
Abstract Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 318
SubjectTerms Algorithms
Analysis
Binomial distribution
Bioinformatics
Biomedical and Life Sciences
Cells
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data analysis
Datasets
Differential expression analysis
Disease
Dropouts
Gene expression
Gene sequencing
Genes
Genetic research
Heterogeneity
Humans
Life Sciences
Management
Microarrays
Models, Statistical
Research Article
Ribonucleic acid
RNA
RNA sequencing
School dropout programs
School dropouts
Sequence Analysis, RNA
Single-cell RNA sequencing
Subject effect
Transcriptome
Transcriptomes
Zero-inflated negative binomial mixed model
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QJAQcEN8UBgoIiQOr1iZtmnB7jE0DiR02Ju0WJWkLT6r6Jvqqbf89dpqWV5AGB66N0za24ziJ_TMhbywX0maliK01Js6EU7Hx8NpGMmWNgjUY852_HInD0-zzWX62UeoLY8IGeOCBcbtKWn8fxrnhGXwOFrS8toZxy12d-gxqlkg1bqbC_QEi9Y8pMlLsdinitMXwlhhcFA42YLYMebT-P23yxqL0e8DkdGt6h9zq23NzdWGaZmNhOrhH7gaPki6GkdwnN6r2Abk51Ji8ekjK5cf9k733dOkzcn1WEx2rosDsbmh1GWJhW7psKR4dNFWM5_n0-GhBQ6i172XWhuK5LR2jEGnXWzzH6R6R04P9r3uHcSitEDvYcKxjkyWurrKiVC4pBcx5Bzu9Mq3AA7JFXTqep1zWRhUpMJdlloEVLKoyr0vDpJUpf0y22lVbPSXUJbksQB9znzMnSpsnhqW1UJZXqWVJRNKR09oF3HEsf9Fov_-QQg_S0SAd7aWjZUTeTX3OB9SNa6k_oAAnSkTM9g9Aj3TQI_03PYrIaxS_RkyMFoNuvpm-6_Snk2O9KAT4QQo2YhF5G4jqFYzBmZDDAJxAGK0Z5faMEiatmzePWqaD0eg0JgnzTBUJNL-amrEnBsK11apHmlyAGQavMSJPBqWcxo3xTfDuLCJypq4zxsxb2uV3DymON_1YrygiO6Nm__qv6zi_M2n_Pwjq2f8Q1HNym_mJDBaebZOt9Y--egGO4dq-9DbgJxJCWxk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTgh4QHwvMJBBSDywaEmcOA4SQt3oNJCoUMekvVm2k4xKVdotrWD_PXduki0gVbzW56j2ffh8vvsdwFvDhTRxLnxjtPZjYTNfO3htLaPM6AzPYKp3_jYWx6fx17PkbAvGbS0MpVW2NtEZ6nxuKUa-TxWUPM7SQHxaXPjUNYpeV9sWGrpprZB_dBBjt2A7ImSsAWwfjMbfJ927AiH4t6UzUuzXIeG3-Xhu-ei6cLQNvePJofj_a6tvHFZ_J1J2r6n34M6qWuirX3o2u3FgHT2A-42nyYZr0XgIW0X1CG6ve09ePYZ8-nl0cviBTV2lrqt2Ym23FNT6GSt-NzmyFZtWjEIKs8KnOD-bjIesScF2s_RSM4rnsjY7kdUrQ_Gd-gmcHo1-HB77TcsF3-JFZOnrOLBlEad5ZoNcoC2weAPMwwI9I5OWueVJyGWpszSM0HeITYTWMS3ypMx1JI0M-VMYVPOq2AFmg0SmKKeJq6UTuUkCHYWlyAwvQhMFHoTtTivb4JFTW4yZcvcSKdSaOwq5oxx3lPTgfTdnsUbj2Eh9QAzsKAlJ2_0wvzxXjWKqTBr33sq55jGKMzpMSWl0xA23ZchDD94Q-xVhZVSUjHOuV3WtvpxM1DAV6B9leEHz4F1DVM5xDVY3tQ24EwSv1aPc7VGiMtv-cCtlqjEmtboWfQ9ed8M0kxLkqmK-IppEoHlGb9KDZ2uh7NZNeU_47dgD2RPX3sb0R6rpTwc1ThkA1MfIg71Wsq__16ad3-uk_z8Y9Xzzql_A3cipKNr0aBcGy8tV8RJdwaV51ej3HyBpWVo
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1da9UwNMyJqA_it9UpUQQfXGfTtGkqiFznxhS2h80LewtJ2s4LpXfe3uLuv_ec9GOrjouvzUlpz_dJzgchbw0X0kSZ8I3R2o-ETX3t2mtrGaZGp2CDsd758EgcTKPvp_HpBunHHXUIrK8N7XCe1HRR7lz8Wn0Ggf_kBF6KDzXDLmw-WB8fHBAOEn6D3ARLleIoh8Po8lYB-_e7aqOE-RDqxH0RzbXvGBkq18__X619xWz9nVI53KveJbeb6lyvfuuyvGK69u-Te53PSSctkzwgG3n1kNxqp1CuHpFs9nXvZPcjnbmaXVf3RPu5KSD_Jc0vumzZis4qiocLZe7jiT89PprQLhnb7dJLTfFkl_Z5irRuDJ701I_JdH_vx-6B3w1f8C2EJEtfR4Et8ijJUhtkArSChVgwYzn4SCYpMstjxmWh04SF4EVEJgQ9meRZXGQ6lEYy_oRsVvMqf0aoDWKZAMfGrqpOZCYOdMgKkRqeMxMGHmE9ppXtOpPjgIxSuQhFCtVSRwF1lKOOkh55P-w5b_tyrIX-ggQcILGntnswX5ypTkRVKo27eeVc8wgYG1ynuDA65IbbgnHmkTdIfoVdMypMyznTTV2rbyfHapII8JRSCNU88q4DKubwD1Z3VQ6ACWy0NYLcGkGCWNvxcs9lqpcKhWXEPEqTAJZfD8u4E1PlqnzeIEwsQFGDX-mRpy1TDv-NGVDw7sgjcsSuI8SMV6rZT9d0HHMBcKKRR7Z7zr78rnWY3x64_z8I9Xw9Ul6QO6ETUdDu4RbZXC6a_CU4hUvzykn6H9yyV4U
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gCDEeEN8UBgoIiQdWrWnaNOXtODYNJPawMWlvUZKmcNKpN61Xwf577DQtV0ATvDZO1cZ27MT2z4S8NlxIk1UiNkbrOBO2jLWH19YyLY0uwQZjvfPnI3F4mn06y88CTA7WwmzG75kUey1DhLUYLEsMzgUH7b1OboCREj4wK-ZjxACx-YeimL_Omxgej8__5y68YYZ-T5Ec46S3ya2uOdeX3_VyuWGKDu6SO8GHpLOe6ffINdfcJzf7rpKXD0i1-LB_Mn9HF74G19cx0aEPCujzkrofIfu1oYuG4mXB0sV4g0-Pj2Y0JFf7WXqtKd7U0iHvkLadwZub9iE5Pdj_Mj-MQzOF2MIRYx3rLLG1y4qqtEklQMstnO0q5sDnMUVdWZ4zLmtdFiwFryAzKex7havyutKpNJLxR2SrWTXuCaE2yWUBEpj7KjlRmTzRKatFabhjJk0iwoaVVjYgjWPDi6XyJw4pVM8dBdxRnjtKRuTtOOe8x9m4kvo9MnCkRIxs_wBERwWVU6U0PpLKueYZCCq4QnltdMoNtzXjLCKvkP0KUTAaTLP5qru2VR9PjtWsEOD5lHD0isibQFSv4B-sDlULsBIInDWh3JlQgpra6fAgZSpsE63CsmCelUUCwy_HYZyJqW-NW3VIkwvYeMFPjMjjXijH_8aMJnh3FhE5EdfJwkxHmsU3DyKOsX3sUBSR3UGyf33XVSu_O0r_PzDq6f-9_RnZTr3Kwu6d7pCt9UXnnoPTtzYvvLb_BGZzS6g
  priority: 102
  providerName: Springer Nature
Title iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects
URI https://link.springer.com/article/10.1186/s12859-023-05432-8
https://www.ncbi.nlm.nih.gov/pubmed/37608264
https://www.proquest.com/docview/2865349706
https://www.proquest.com/docview/2856318846
https://pubmed.ncbi.nlm.nih.gov/PMC10463720
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05432-8
https://doaj.org/article/98bb000233a34cca8225fba23b3cf131
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Collection
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9tqxDwwPdHYFQBIfHA0iVx4ji8dWVlVFo1tVTqnizbSUZFSaemFYy_nrOTlGWgCSReEik-R_HF92H77ncAryWhTAYJdaQUwgmoih1h4LUF82MpYrTBOt_5eEiPJsFgGk63YFTnwsivSs4WFWioBiruXE5Dn5dZDrqKQrrcP0-yUugZ3S88jcTmoAVy0AkhKOXb0KIh-uc70JoMT7qnJs0o8hxc44R19swfOzYslAHy_11dX7JXV2MpNweqt-HmOj8XF9_EfH7JZvXvQlGPtgxV-dJZr2RH_bgCBPl_2XEP7lQurt0t5-R92ErzB3CjLHp58RCS2fvDce-dPTMpwibNyq7LtKC6mdvp9yo4N7dnua33Muapow8Y7NGwa1ex36aXWAlbbyTbdVikXayl3lgqHsGkf_ipd-RUtR4chSuglSMCV2VpECWxchOKSkjh0jPxUnTJZJQlioQeYZmII89HpyWQPqrlKE3CLBE-k8wjj2EnX-TpU7CVG7IIBSQ0SXw0kaErfC-jsSSpJ33XAq_-v1xVQOi6HsecmwURo7zkHkfuccM9zix4u-lzXsKAXEt9oKfNhlJDeJsHi-UZrzQCj5k0B72ECBKgHKGnFmZS-EQSlXnEs-CVnnRcg3TkOgroTKyLgn8cj3g3ouiYxbgytOBNRZQtcAxKVEkVyAmN69Wg3G1QohZRzeZ6bvNKixVcZy2TII5cbH65adY9dWReni7WmiakaBfQjbXgSSkKm3HrgCt8d2ABawhJgzHNlnz22WCc69ADXUDJgr1ann5913Wc39vI3F_8qGf_Rv4cbvlGpNC4-Luws1qu0xfok65kG7ajaYRX1v_Qhla3OxgP8H5wODwZ4dMe7bXNbg9ejwPWrlTST0eAi8o
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFSKUOEBcWMosCAQD61V22uvbSSEQg8l9HjoIeVt2fVRIkVOqBOV_BTfyMz6aA1SxEtfs7NWdu7ZnQPgveYi0n4qbK2Vsn2RxLYy7bVV5MVaxWiDqd758Ej0z_xvw2C4Ar-bWhhKq2x0olHU6SShO_ItqqDkfhw64sv0p01To-h1tRmhUbHFfra4xJCt_DzYQfp-8Ly93dPtvl1PFbAT9LVntvKdJM_8MI0TJxXI7gkGOambofHXYZ4mPHB5lKs4dD00j772UAGEWRrkqfIiHbkcv3sLbvscdQnKTzhsAzyX5gM0hTmR2Cpd6g5no1W00THiqHk6xs_MCPjXElwzhX-nabZvtfdgbV5M1eJSjcfXzOHeA7hf-7GsVzHeQ1jJikdwp5psuXgM6Whn92T7ExuZOmBTS8WaWSyoU8Ys-1Vn4BZsVDC6sBhnNr0isOOjHqsTvM0uNVOMbotZk_vIyrmm26PyCZzdCOqfwmoxKbLnwBIniEKUgsBU6olUB47y3FzEmmeu9hwL3AbTMqm7ndPQjbE0UU8kZEUdidSRhjoysmCj3TOten0shf5KBGwhqU-3-WFycS5rsZdxpM1rLueK-ygs6I4FuVYe1zzJXe5a8I7IL6kTR0GpPudqXpZycHIse6FA7yvG8M-CjzVQPsEzJKqunEBMUPOuDuR6BxJVRdJdbrhM1qqqlFeCZcHbdpl2UvpdkU3mBBMIVP7oq1rwrGLK9tyUVYXf9i2IOuzaQUx3pRj9MI3MKb-ApiRZsNlw9tX_Wob5zZb7_4NQL5af-g2s9U8PD-TB4Gj_Jdz1jLii9fDWYXV2Mc9eodM506-NpDP4ftOq5Q9iUpAX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgiK8HxDeFAQEh8bBVa5s2TXk7bjttfExoY9LeoiRtx0mn3mm9E-y_x04_uAKa4LVxqja2Yye2fwZ4Y7iQJs6Fb4zWfixs5msHr61llBmdoQ2meufPh2L_JP5wmpyuVfG7bPcuJNnUNBBKU7XcWeRlo-JS7NQh4a75aG98dDk46vRVuBajdaMeBmMx7uMIhNjflcr8dd7AHDnU_j_35jXj9HviZB89vQ03V9VCX3zXs9magZrchTutZ8lGjSjcgytFdR-uN70mLx5APt3dOx6_Y1NXmeuqm1jXHQW1fMaKH21ObMWmFaMrhFnh070-OzocsTbl2s3SS83o_pZ12YisXhm6z6kfwslk7-t4329bLPgWDx5LX8eBLYs4zTMb5AJ13-KJLw8L9IRMWuaWJyGXpc7SMEJfITYR7oZpkSdlriNpZMgfwUY1r4onwGyQyBTlMnG1cyI3SaCjsBSZ4UVoosCDsFtpZVv8cWqDMVPuHCKFarijkDvKcUdJD7b6OYsGfeNS6vfEwJ6SkLPdg_n5mWoVUWXSuPgq55rHKL7oICWl0RE33JYhDz14TexXhI1RUfLNmV7VtTo4PlKjVKA_lOGBzIO3LVE5x3-wuq1lwJUgOK0B5eaAEpXXDoc7KVPt5lErKhbmcZYGOPyqH6aZlBBXFfMV0SQCt2P0Hj143Ahl_9-U54Tvjj2QA3EdLMxwpJp-c9DiFPGnvkUebHeS_eu7Llv57V76_4FRT__v7S_hxpfdifp0cPjxGdyKnPbi9h5twsbyfFU8R69waV44xf8Jg7VW3g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4anRDwwP0SGMggJB5YuiROnIS3MjYNJCrUUWk8WbaTjIiQVk0jGL-eY-dCM9AEEq_1cdSc-Fxsn-87AM8lZZH0E2ZLKYTtMxXbwtBri8iLpYgxBmu88_spO5r7706Cky2YdVgY-VXJfNGShmqi4vEmDL1oUA66i0K62lsmWWP0EdurXM3EZmMEsjEJoWjll2CbBZifj2B7Pv0w-WRgRqFr4x4n6NAzf5w4iFCGyP93d70Rr87XUvYXqtfgSl0uxdk3URQbMevwBlTd2zalKl_G9VqO1Y9zRJD_Vx034Xqb4pJJsyZvwVZa3obLTdPLszuQ5G8OjvdfkdxAhA3MinRtWtDdFCT93hbnliQviT7LKFJbXzCQ2XRC2tpvM0usBdEHyaQriyRVLfXBUnUX5ocHH_eP7LbXg61wB7S2he-oLPXDJFZOwtAJKdx6Jm6KKZkMs0TRwKVRJuLQ9TBp8aWHbjlMkyBLhBfJyKX3YFQuyvQBEOUEUYgGEhgQH0tk4AjPzVgsaepKz7HA7b4vVy0Ruu7HUXCzIYoYb7THUXvcaI9HFrzs5ywbGpALpV_rZdNLagpv88Nidcpbj8DjSJqLXkoF9dGOMFMLMik8KqnKXOpa8EwvOq5JOkpdBXQq6qrib49nfBIyTMxi3Bla8KIVyhb4Dkq0oArUhOb1GkjuDCTRi6jhcLe2eevFKq5Ry9SPQweHn_bDeqauzCvTRa1lAoZxAdNYC-43ptC_ty64wmf7FkQDIxkoZjhS5p8Nx7kuPdANlCzY7ezp1_-6SPO7vc39xYd6-G_ij-CqZ0wKg4u3A6P1qk4fY066lk9aJ_MT6U-EKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iDESC%3A+identifying+differential+expression+in+single-cell+RNA+sequencing+data+with+multiple+subjects&rft.jtitle=BMC+bioinformatics&rft.au=Liu%2C+Yunqing&rft.au=Zhao%2C+Jiayi&rft.au=Adams%2C+Taylor+S&rft.au=Wang%2C+Ningya&rft.date=2023-08-22&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-023-05432-8&rft.externalDocID=A761819826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon