iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects
Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA...
Saved in:
| Published in | BMC bioinformatics Vol. 24; no. 1; pp. 318 - 20 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
22.08.2023
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-023-05432-8 |
Cover
| Abstract | Background
Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis.
Results
We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance.
Conclusions
iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects. |
|---|---|
| AbstractList | Abstract Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. Results We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. Conclusions iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects. Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects. Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis.BACKGROUNDSingle-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis.We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance.RESULTSWe developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance.iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.CONCLUSIONSiDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects. Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. Results We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. Conclusions iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects. Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. Results We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. Conclusions iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects. Keywords: Single-cell RNA sequencing, Differential expression analysis, Subject effect, Zero-inflated negative binomial mixed model Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects. BackgroundSingle-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis.ResultsWe developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance.ConclusionsiDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects. |
| ArticleNumber | 318 |
| Audience | Academic |
| Author | Adams, Taylor S. McDonough, John E. Schupp, Jonas C. Kaminski, Naftali Wang, Zuoheng Wu, Weimiao Chupp, Geoffrey L. Yan, Xiting Zhao, Jiayi Wang, Ningya Liu, Yunqing |
| Author_xml | – sequence: 1 givenname: Yunqing surname: Liu fullname: Liu, Yunqing organization: Department of Biostatistics, Yale School of Public Health – sequence: 2 givenname: Jiayi surname: Zhao fullname: Zhao, Jiayi organization: Department of Biostatistics, Yale School of Public Health – sequence: 3 givenname: Taylor S. surname: Adams fullname: Adams, Taylor S. organization: Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine – sequence: 4 givenname: Ningya surname: Wang fullname: Wang, Ningya organization: Department of Biostatistics, Yale School of Public Health – sequence: 5 givenname: Jonas C. surname: Schupp fullname: Schupp, Jonas C. organization: Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research (DZL) – sequence: 6 givenname: Weimiao surname: Wu fullname: Wu, Weimiao organization: Department of Biostatistics, Yale School of Public Health, Meta Platforms, Inc – sequence: 7 givenname: John E. surname: McDonough fullname: McDonough, John E. organization: Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine – sequence: 8 givenname: Geoffrey L. surname: Chupp fullname: Chupp, Geoffrey L. organization: Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine – sequence: 9 givenname: Naftali surname: Kaminski fullname: Kaminski, Naftali organization: Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine – sequence: 10 givenname: Zuoheng surname: Wang fullname: Wang, Zuoheng email: zuoheng.wang@yale.edu organization: Department of Biostatistics, Yale School of Public Health – sequence: 11 givenname: Xiting orcidid: 0000-0001-8688-9004 surname: Yan fullname: Yan, Xiting email: xiting.yan@yale.edu organization: Department of Biostatistics, Yale School of Public Health, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37608264$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB_wB1igSGxgkeJHHg4bNBoKjFSB1MLacvxIPfI4g-3Qzr_nzoMyU6EKZeHYPuf4-vM9zY784HWWvcToHGNWv4uYsKotEKEFqkpKCvYkO8FlgwuCUXW093-cncY4Rwg3DFXPsmPa1IiRujzJlP14cT19n1ulfbJmZX2fK2uMDuu5cLm-WwYdox18bn0eYd_pQmrn8quvkzzqn6P2cuMSSeS3Nt3ki9Elu3Q6j2M31zLF59lTI1zUL3bjWfbj08X36Zfi8tvn2XRyWci6JKkQJZJGl41qJVI1RZXErFRYI1J1jVGSVpgyI9oGE6i-7IhSutGqMkoQ1jFMz7LZNlcNYs6XwS5EWPFBWL5ZGELPRUhWOs1b1nUIAToqaCmlYIRUphOEdlQaTNdZdJs1-qVY3Qrn7gMx4mv-fMufQwjf8OcMXB-2ruXYLbSSADEId1DK4Y63N7wffkFmWdOGIEh4s0sIA7CNiS9sXPMWXg9j5HBkTTFjID_LXj-QzocxeCAMqrqiZdugPVUv4N7WmwEOlutQPmlqzHALnQCq83-o4FN6YSX0nbGwfmB4e2AATdJ3qRdjjHx2fXWofbVP5R7HnzYEAdsKZBhiDNpwaZNI0HRQhXWPEycPrP_1TLvHjSD2vQ5_yT3i-g3jmQ8C |
| CitedBy_id | crossref_primary_10_1186_s12859_024_05724_7 crossref_primary_10_1186_s12859_023_05523_6 crossref_primary_10_1016_j_csbj_2023_10_045 |
| Cites_doi | 10.1152/ajplung.00352.2004 10.1093/bioinformatics/bty332 10.1017/S0305004100023987 10.1038/s41598-019-46932-z 10.1371/journal.pone.0079768 10.1183/13993003.02441-2018 10.1164/rccm.201712-2410OC 10.1038/s41467-021-25960-2 10.1038/s41467-017-02659-x 10.1136/thoraxjnl-2015-207682 10.1371/journal.pcbi.1004333 10.1084/jem.20042398 10.1038/nmeth.2967 10.15252/msb.20188746 10.1186/s12859-016-0944-6 10.32614/RJ-2017-066 10.1038/s41591-019-0468-5 10.1155/2011/717130 10.1093/biostatistics/kxm030 10.1038/s41467-020-19894-4 10.1080/01902148.2019.1680765 10.1186/s13059-017-1218-y 10.1093/bioinformatics/bty329 10.1038/s41590-019-0403-4 10.1038/ncomms14049 10.1088/1742-5468/2008/10/P10008 10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A5178 10.1371/journal.pmed.0050062 10.1186/s13059-016-1077-y 10.3389/fgene.2017.00062 10.1002/art.22559 10.1165/rcmb.2018-0313OC 10.1016/j.cmet.2016.08.020 10.1016/j.cell.2019.05.031 10.1093/jee/39.2.269 10.1371/journal.pone.0151765 10.1038/nmeth.4150 10.1186/s13059-014-0550-8 10.1126/sciadv.aba1972 10.1126/scitranslmed.aan4730 10.1038/nmeth.4612 10.1093/nar/gkx754 10.1371/journal.pone.0000180 10.1093/bioinformatics/btz453 10.1038/nbt.2859 10.1371/journal.pone.0116775 10.1038/s41592-018-0229-2 10.1093/database/baw100 10.1038/nbt.3102 10.1038/nature14966 10.1038/nrg.2015.16 10.1186/s13059-015-0844-5 10.1038/ncomms15081 10.1038/s41467-021-21038-1 10.1016/j.cell.2015.05.002 10.1186/s13059-018-1438-9 10.3389/fmolb.2021.711239 10.1126/sciadv.aba1983 10.1093/nar/gkv007 10.1038/s41598-018-21889-7 10.1038/nmeth.4402 10.1038/s41467-019-12266-7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 corrected publication 2023 2023. BioMed Central Ltd., part of Springer Nature. COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. BioMed Central Ltd., part of Springer Nature 2023 |
| Copyright_xml | – notice: The Author(s) 2023 corrected publication 2023 – notice: 2023. BioMed Central Ltd., part of Springer Nature. – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: BioMed Central Ltd., part of Springer Nature 2023 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-023-05432-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological science database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_98bb000233a34cca8225fba23b3cf131 10.1186/s12859-023-05432-8 PMC10463720 A761819826 37608264 10_1186_s12859_023_05432_8 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: National Science Foundation grantid: DMS1916246 funderid: http://dx.doi.org/10.13039/100000001 – fundername: U.S. National Library of Medicine grantid: R21LM012884; R01LM014087 funderid: http://dx.doi.org/10.13039/100000092 – fundername: National Institute on Alcohol Abuse and Alcoholism grantid: K01AA023321 funderid: http://dx.doi.org/10.13039/100000027 – fundername: NIAAA NIH HHS grantid: K01AA023321 – fundername: NIAAA NIH HHS grantid: K01 AA023321 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NLM NIH HHS grantid: R01 LM014087 – fundername: NLM NIH HHS grantid: R21 LM012884 – fundername: ; grantid: DMS1916246 – fundername: ; grantid: R21LM012884; R01LM014087 – fundername: ; grantid: K01AA023321 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c642t-a40cfe47d9c0d6305c184d1e025b7fdc35138fa97120824b2dde7ed5fda28b813 |
| IEDL.DBID | UNPAY |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:50:44 EDT 2025 Sun Oct 26 03:35:05 EDT 2025 Tue Sep 30 17:12:58 EDT 2025 Fri Sep 05 09:39:46 EDT 2025 Tue Oct 07 05:19:55 EDT 2025 Mon Oct 20 23:18:12 EDT 2025 Mon Oct 20 17:17:59 EDT 2025 Thu Oct 16 16:09:27 EDT 2025 Wed Feb 19 02:04:03 EST 2025 Wed Oct 01 04:15:43 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Sat Sep 06 07:27:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Subject effect Zero-inflated negative binomial mixed model Single-cell RNA sequencing Differential expression analysis |
| Language | English |
| License | 2023. BioMed Central Ltd., part of Springer Nature. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-a40cfe47d9c0d6305c184d1e025b7fdc35138fa97120824b2dde7ed5fda28b813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8688-9004 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05432-8 |
| PMID | 37608264 |
| PQID | 2865349706 |
| PQPubID | 44065 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_98bb000233a34cca8225fba23b3cf131 unpaywall_primary_10_1186_s12859_023_05432_8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10463720 proquest_miscellaneous_2856318846 proquest_journals_2865349706 gale_infotracmisc_A761819826 gale_infotracacademiconefile_A761819826 gale_incontextgauss_ISR_A761819826 pubmed_primary_37608264 crossref_citationtrail_10_1186_s12859_023_05432_8 crossref_primary_10_1186_s12859_023_05432_8 springer_journals_10_1186_s12859_023_05432_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-22 |
| PublicationDateYYYYMMDD | 2023-08-22 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2023 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | R Lopez (5432_CR21) 2018; 15 MI Love (5432_CR39) 2014; 15 C Soneson (5432_CR23) 2018; 15 KD Korthauer (5432_CR37) 2016; 17 A Prasse (5432_CR48) 2007; 56 B Vieth (5432_CR36) 2019; 10 EZ Macosko (5432_CR2) 2015; 161 AK Shalek (5432_CR13) 2017; 9 D Grun (5432_CR10) 2015; 525 C Trapnell (5432_CR30) 2014; 32 GC Yuan (5432_CR12) 2017; 18 HL Crowell (5432_CR20) 2020; 11 Z Miao (5432_CR32) 2018; 34 PA Reyfman (5432_CR17) 2019; 199 SM Pop (5432_CR7) 2005; 201 MK Jaakkola (5432_CR25) 2017; 18 C Jia (5432_CR27) 2017; 45 A Dal Molin (5432_CR24) 2017; 8 X Qiu (5432_CR28) 2017; 14 C Gawad (5432_CR1) 2016; 17 W Stephenson (5432_CR4) 2018; 9 MW Wynes (5432_CR43) 2005; 288 M Selman (5432_CR52) 2008; 5 F Buettner (5432_CR11) 2015; 33 CR Rao (5432_CR60) 1948; 44 F Wilcoxon (5432_CR41) 1946; 39 CT Wohnhaas (5432_CR22) 2019; 9 R Peyser (5432_CR49) 2019; 61 JW Squair (5432_CR15) 2021; 12 LR Rodriguez (5432_CR50) 2018; 8 5432_CR57 X Qiu (5432_CR29) 2017; 14 ME Ritchie (5432_CR40) 2015; 43 LN Chow (5432_CR56) 2016; 11 MD Robinson (5432_CR58) 2008; 9 JO Lloyd-Smith (5432_CR59) 2007; 2 C Yao (5432_CR6) 2019; 20 W Chung (5432_CR8) 2017; 8 PV Kharchenko (5432_CR16) 2014; 11 T Stuart (5432_CR62) 2019; 177 VD Blondel (5432_CR63) 2008; 2008 KD Zimmerman (5432_CR19) 2021; 12 FA Vieira Braga (5432_CR9) 2019; 25 G Finak (5432_CR35) 2015; 16 W Chen (5432_CR31) 2018; 19 M Delmans (5432_CR38) 2016; 17 GX Zheng (5432_CR3) 2017; 8 H Wang (5432_CR45) 2019; 45 JC Schupp (5432_CR47) 2015; 10 MD Luecken (5432_CR14) 2019; 15 5432_CR54 5432_CR51 Z Wu (5432_CR34) 2018; 34 5432_CR46 5432_CR44 A Segerstolpe (5432_CR5) 2016; 24 TS Adams (5432_CR18) 2020; 6 CA Vallejos (5432_CR26) 2015; 11 C Ye (5432_CR33) 2019; 35 G Jia (5432_CR53) 2017; 72 AC Habermann (5432_CR42) 2020; 6 ME Brooks (5432_CR61) 2017; 9 H-KG Shu (5432_CR55) 2013; 8 37858060 - BMC Bioinformatics. 2023 Oct 19;24(1):394 |
| References_xml | – volume: 18 start-page: 735 issue: 5 year: 2017 ident: 5432_CR25 publication-title: Brief Bioinform – volume: 288 start-page: L1089 issue: 6 year: 2005 ident: 5432_CR43 publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.00352.2004 – volume: 34 start-page: 3223 issue: 18 year: 2018 ident: 5432_CR32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty332 – volume: 44 start-page: 50 issue: 1 year: 1948 ident: 5432_CR60 publication-title: Proc Camb Philos Soc doi: 10.1017/S0305004100023987 – volume: 9 start-page: 10699 issue: 1 year: 2019 ident: 5432_CR22 publication-title: Sci Rep doi: 10.1038/s41598-019-46932-z – volume: 8 start-page: e79768 issue: 11 year: 2013 ident: 5432_CR55 publication-title: PLoS ONE doi: 10.1371/journal.pone.0079768 – ident: 5432_CR44 doi: 10.1183/13993003.02441-2018 – volume: 199 start-page: 1517 issue: 12 year: 2019 ident: 5432_CR17 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201712-2410OC – volume: 12 start-page: 5692 issue: 1 year: 2021 ident: 5432_CR15 publication-title: Nat Commun doi: 10.1038/s41467-021-25960-2 – volume: 9 start-page: 791 year: 2018 ident: 5432_CR4 publication-title: Nat Commun doi: 10.1038/s41467-017-02659-x – volume: 72 start-page: 780 issue: 9 year: 2017 ident: 5432_CR53 publication-title: Thorax doi: 10.1136/thoraxjnl-2015-207682 – volume: 11 start-page: e1004333 issue: 6 year: 2015 ident: 5432_CR26 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004333 – volume: 201 start-page: 1333 issue: 8 year: 2005 ident: 5432_CR7 publication-title: J Exp Med doi: 10.1084/jem.20042398 – volume: 11 start-page: 740 issue: 7 year: 2014 ident: 5432_CR16 publication-title: Nat Methods doi: 10.1038/nmeth.2967 – volume: 15 start-page: e8746 issue: 6 year: 2019 ident: 5432_CR14 publication-title: Mol Syst Biol doi: 10.15252/msb.20188746 – volume: 17 start-page: 110 year: 2016 ident: 5432_CR38 publication-title: BMC Bioinform doi: 10.1186/s12859-016-0944-6 – volume: 9 start-page: 378 issue: 2 year: 2017 ident: 5432_CR61 publication-title: R J doi: 10.32614/RJ-2017-066 – volume: 25 start-page: 1153 issue: 7 year: 2019 ident: 5432_CR9 publication-title: Nat Med doi: 10.1038/s41591-019-0468-5 – ident: 5432_CR46 doi: 10.1155/2011/717130 – volume: 9 start-page: 321 issue: 2 year: 2008 ident: 5432_CR58 publication-title: Biostatistics doi: 10.1093/biostatistics/kxm030 – volume: 11 start-page: 6077 issue: 1 year: 2020 ident: 5432_CR20 publication-title: Nat Commun doi: 10.1038/s41467-020-19894-4 – volume: 45 start-page: 288 issue: 9–10 year: 2019 ident: 5432_CR45 publication-title: Exp Lung Res doi: 10.1080/01902148.2019.1680765 – volume: 18 start-page: 84 issue: 1 year: 2017 ident: 5432_CR12 publication-title: Genome Biol doi: 10.1186/s13059-017-1218-y – volume: 34 start-page: 3340 issue: 19 year: 2018 ident: 5432_CR34 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty329 – volume: 20 start-page: 890 issue: 7 year: 2019 ident: 5432_CR6 publication-title: Nat Immunol doi: 10.1038/s41590-019-0403-4 – volume: 8 start-page: 14049 year: 2017 ident: 5432_CR3 publication-title: Nat Commun doi: 10.1038/ncomms14049 – volume: 2008 start-page: 10008 year: 2008 ident: 5432_CR63 publication-title: J Stat Mech Theory Exp doi: 10.1088/1742-5468/2008/10/P10008 – ident: 5432_CR54 doi: 10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A5178 – volume: 5 start-page: e62 issue: 3 year: 2008 ident: 5432_CR52 publication-title: PLoS Med doi: 10.1371/journal.pmed.0050062 – volume: 17 start-page: 222 issue: 1 year: 2016 ident: 5432_CR37 publication-title: Genome Biol doi: 10.1186/s13059-016-1077-y – volume: 8 start-page: 62 year: 2017 ident: 5432_CR24 publication-title: Front Genet doi: 10.3389/fgene.2017.00062 – volume: 56 start-page: 1685 issue: 5 year: 2007 ident: 5432_CR48 publication-title: Arthritis Rheum doi: 10.1002/art.22559 – volume: 61 start-page: 74 issue: 1 year: 2019 ident: 5432_CR49 publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2018-0313OC – volume: 24 start-page: 593 issue: 4 year: 2016 ident: 5432_CR5 publication-title: Cell Metab doi: 10.1016/j.cmet.2016.08.020 – volume: 177 start-page: 1888 issue: 7 year: 2019 ident: 5432_CR62 publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 39 start-page: 269 year: 1946 ident: 5432_CR41 publication-title: J Econ Entomol doi: 10.1093/jee/39.2.269 – volume: 11 start-page: e0151765 issue: 3 year: 2016 ident: 5432_CR56 publication-title: PLoS ONE doi: 10.1371/journal.pone.0151765 – volume: 14 start-page: 309 issue: 3 year: 2017 ident: 5432_CR28 publication-title: Nat Methods doi: 10.1038/nmeth.4150 – volume: 15 start-page: 550 issue: 12 year: 2014 ident: 5432_CR39 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 6 start-page: eaba1972 issue: 28 year: 2020 ident: 5432_CR42 publication-title: Sci Adv doi: 10.1126/sciadv.aba1972 – volume: 9 start-page: eaan4730 issue: 408 year: 2017 ident: 5432_CR13 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aan4730 – volume: 15 start-page: 255 issue: 4 year: 2018 ident: 5432_CR23 publication-title: Nat Methods doi: 10.1038/nmeth.4612 – volume: 45 start-page: 10978 issue: 19 year: 2017 ident: 5432_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx754 – volume: 2 start-page: e180 issue: 2 year: 2007 ident: 5432_CR59 publication-title: PLoS ONE doi: 10.1371/journal.pone.0000180 – volume: 35 start-page: 5155 issue: 24 year: 2019 ident: 5432_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz453 – volume: 32 start-page: 381 issue: 4 year: 2014 ident: 5432_CR30 publication-title: Nat Biotechnol doi: 10.1038/nbt.2859 – volume: 10 start-page: e0116775 issue: 1 year: 2015 ident: 5432_CR47 publication-title: PLoS ONE doi: 10.1371/journal.pone.0116775 – volume: 15 start-page: 1053 issue: 12 year: 2018 ident: 5432_CR21 publication-title: Nat Methods doi: 10.1038/s41592-018-0229-2 – ident: 5432_CR57 doi: 10.1093/database/baw100 – volume: 33 start-page: 155 issue: 2 year: 2015 ident: 5432_CR11 publication-title: Nat Biotechnol doi: 10.1038/nbt.3102 – volume: 525 start-page: 251 issue: 7568 year: 2015 ident: 5432_CR10 publication-title: Nature doi: 10.1038/nature14966 – volume: 17 start-page: 175 issue: 3 year: 2016 ident: 5432_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg.2015.16 – volume: 16 start-page: 278 year: 2015 ident: 5432_CR35 publication-title: Genome Biol doi: 10.1186/s13059-015-0844-5 – volume: 8 start-page: 15081 year: 2017 ident: 5432_CR8 publication-title: Nat Commun doi: 10.1038/ncomms15081 – volume: 12 start-page: 738 issue: 1 year: 2021 ident: 5432_CR19 publication-title: Nat Commun doi: 10.1038/s41467-021-21038-1 – volume: 161 start-page: 1202 issue: 5 year: 2015 ident: 5432_CR2 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 19 start-page: 70 issue: 1 year: 2018 ident: 5432_CR31 publication-title: Genome Biol doi: 10.1186/s13059-018-1438-9 – ident: 5432_CR51 doi: 10.3389/fmolb.2021.711239 – volume: 6 start-page: eaba1983 issue: 28 year: 2020 ident: 5432_CR18 publication-title: Sci Adv doi: 10.1126/sciadv.aba1983 – volume: 43 start-page: e47 issue: 7 year: 2015 ident: 5432_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume: 8 start-page: 3983 issue: 1 year: 2018 ident: 5432_CR50 publication-title: Sci Rep doi: 10.1038/s41598-018-21889-7 – volume: 14 start-page: 979 issue: 10 year: 2017 ident: 5432_CR29 publication-title: Nat Methods doi: 10.1038/nmeth.4402 – volume: 10 start-page: 4667 issue: 1 year: 2019 ident: 5432_CR36 publication-title: Nat Commun doi: 10.1038/s41467-019-12266-7 – reference: 37858060 - BMC Bioinformatics. 2023 Oct 19;24(1):394 |
| SSID | ssj0017805 |
| Score | 2.466511 |
| Snippet | Background
Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the... Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in... Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the... BackgroundSingle-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the... Abstract Background Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 318 |
| SubjectTerms | Algorithms Analysis Binomial distribution Bioinformatics Biomedical and Life Sciences Cells Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data analysis Datasets Differential expression analysis Disease Dropouts Gene expression Gene sequencing Genes Genetic research Heterogeneity Humans Life Sciences Management Microarrays Models, Statistical Research Article Ribonucleic acid RNA RNA sequencing School dropout programs School dropouts Sequence Analysis, RNA Single-cell RNA sequencing Subject effect Transcriptome Transcriptomes Zero-inflated negative binomial mixed model |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QJAQcEN8UBgoIiQOr1iZtmnB7jE0DiR02Ju0WJWkLT6r6Jvqqbf89dpqWV5AGB66N0za24ziJ_TMhbywX0maliK01Js6EU7Hx8NpGMmWNgjUY852_HInD0-zzWX62UeoLY8IGeOCBcbtKWn8fxrnhGXwOFrS8toZxy12d-gxqlkg1bqbC_QEi9Y8pMlLsdinitMXwlhhcFA42YLYMebT-P23yxqL0e8DkdGt6h9zq23NzdWGaZmNhOrhH7gaPki6GkdwnN6r2Abk51Ji8ekjK5cf9k733dOkzcn1WEx2rosDsbmh1GWJhW7psKR4dNFWM5_n0-GhBQ6i172XWhuK5LR2jEGnXWzzH6R6R04P9r3uHcSitEDvYcKxjkyWurrKiVC4pBcx5Bzu9Mq3AA7JFXTqep1zWRhUpMJdlloEVLKoyr0vDpJUpf0y22lVbPSXUJbksQB9znzMnSpsnhqW1UJZXqWVJRNKR09oF3HEsf9Fov_-QQg_S0SAd7aWjZUTeTX3OB9SNa6k_oAAnSkTM9g9Aj3TQI_03PYrIaxS_RkyMFoNuvpm-6_Snk2O9KAT4QQo2YhF5G4jqFYzBmZDDAJxAGK0Z5faMEiatmzePWqaD0eg0JgnzTBUJNL-amrEnBsK11apHmlyAGQavMSJPBqWcxo3xTfDuLCJypq4zxsxb2uV3DymON_1YrygiO6Nm__qv6zi_M2n_Pwjq2f8Q1HNym_mJDBaebZOt9Y--egGO4dq-9DbgJxJCWxk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTgh4QHwvMJBBSDywaEmcOA4SQt3oNJCoUMekvVm2k4xKVdotrWD_PXduki0gVbzW56j2ffh8vvsdwFvDhTRxLnxjtPZjYTNfO3htLaPM6AzPYKp3_jYWx6fx17PkbAvGbS0MpVW2NtEZ6nxuKUa-TxWUPM7SQHxaXPjUNYpeV9sWGrpprZB_dBBjt2A7ImSsAWwfjMbfJ927AiH4t6UzUuzXIeG3-Xhu-ei6cLQNvePJofj_a6tvHFZ_J1J2r6n34M6qWuirX3o2u3FgHT2A-42nyYZr0XgIW0X1CG6ve09ePYZ8-nl0cviBTV2lrqt2Ym23FNT6GSt-NzmyFZtWjEIKs8KnOD-bjIesScF2s_RSM4rnsjY7kdUrQ_Gd-gmcHo1-HB77TcsF3-JFZOnrOLBlEad5ZoNcoC2weAPMwwI9I5OWueVJyGWpszSM0HeITYTWMS3ypMx1JI0M-VMYVPOq2AFmg0SmKKeJq6UTuUkCHYWlyAwvQhMFHoTtTivb4JFTW4yZcvcSKdSaOwq5oxx3lPTgfTdnsUbj2Eh9QAzsKAlJ2_0wvzxXjWKqTBr33sq55jGKMzpMSWl0xA23ZchDD94Q-xVhZVSUjHOuV3WtvpxM1DAV6B9leEHz4F1DVM5xDVY3tQ24EwSv1aPc7VGiMtv-cCtlqjEmtboWfQ9ed8M0kxLkqmK-IppEoHlGb9KDZ2uh7NZNeU_47dgD2RPX3sb0R6rpTwc1ThkA1MfIg71Wsq__16ad3-uk_z8Y9Xzzql_A3cipKNr0aBcGy8tV8RJdwaV51ej3HyBpWVo priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1da9UwNMyJqA_it9UpUQQfXGfTtGkqiFznxhS2h80LewtJ2s4LpXfe3uLuv_ec9GOrjouvzUlpz_dJzgchbw0X0kSZ8I3R2o-ETX3t2mtrGaZGp2CDsd758EgcTKPvp_HpBunHHXUIrK8N7XCe1HRR7lz8Wn0Ggf_kBF6KDzXDLmw-WB8fHBAOEn6D3ARLleIoh8Po8lYB-_e7aqOE-RDqxH0RzbXvGBkq18__X619xWz9nVI53KveJbeb6lyvfuuyvGK69u-Te53PSSctkzwgG3n1kNxqp1CuHpFs9nXvZPcjnbmaXVf3RPu5KSD_Jc0vumzZis4qiocLZe7jiT89PprQLhnb7dJLTfFkl_Z5irRuDJ701I_JdH_vx-6B3w1f8C2EJEtfR4Et8ijJUhtkArSChVgwYzn4SCYpMstjxmWh04SF4EVEJgQ9meRZXGQ6lEYy_oRsVvMqf0aoDWKZAMfGrqpOZCYOdMgKkRqeMxMGHmE9ppXtOpPjgIxSuQhFCtVSRwF1lKOOkh55P-w5b_tyrIX-ggQcILGntnswX5ypTkRVKo27eeVc8wgYG1ynuDA65IbbgnHmkTdIfoVdMypMyznTTV2rbyfHapII8JRSCNU88q4DKubwD1Z3VQ6ACWy0NYLcGkGCWNvxcs9lqpcKhWXEPEqTAJZfD8u4E1PlqnzeIEwsQFGDX-mRpy1TDv-NGVDw7sgjcsSuI8SMV6rZT9d0HHMBcKKRR7Z7zr78rnWY3x64_z8I9Xw9Ul6QO6ETUdDu4RbZXC6a_CU4hUvzykn6H9yyV4U priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gCDEeEN8UBgoIiQdWrWnaNOXtODYNJPawMWlvUZKmcNKpN61Xwf577DQtV0ATvDZO1cZ27MT2z4S8NlxIk1UiNkbrOBO2jLWH19YyLY0uwQZjvfPnI3F4mn06y88CTA7WwmzG75kUey1DhLUYLEsMzgUH7b1OboCREj4wK-ZjxACx-YeimL_Omxgej8__5y68YYZ-T5Ec46S3ya2uOdeX3_VyuWGKDu6SO8GHpLOe6ffINdfcJzf7rpKXD0i1-LB_Mn9HF74G19cx0aEPCujzkrofIfu1oYuG4mXB0sV4g0-Pj2Y0JFf7WXqtKd7U0iHvkLadwZub9iE5Pdj_Mj-MQzOF2MIRYx3rLLG1y4qqtEklQMstnO0q5sDnMUVdWZ4zLmtdFiwFryAzKex7havyutKpNJLxR2SrWTXuCaE2yWUBEpj7KjlRmTzRKatFabhjJk0iwoaVVjYgjWPDi6XyJw4pVM8dBdxRnjtKRuTtOOe8x9m4kvo9MnCkRIxs_wBERwWVU6U0PpLKueYZCCq4QnltdMoNtzXjLCKvkP0KUTAaTLP5qru2VR9PjtWsEOD5lHD0isibQFSv4B-sDlULsBIInDWh3JlQgpra6fAgZSpsE63CsmCelUUCwy_HYZyJqW-NW3VIkwvYeMFPjMjjXijH_8aMJnh3FhE5EdfJwkxHmsU3DyKOsX3sUBSR3UGyf33XVSu_O0r_PzDq6f-9_RnZTr3Kwu6d7pCt9UXnnoPTtzYvvLb_BGZzS6g priority: 102 providerName: Springer Nature |
| Title | iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects |
| URI | https://link.springer.com/article/10.1186/s12859-023-05432-8 https://www.ncbi.nlm.nih.gov/pubmed/37608264 https://www.proquest.com/docview/2865349706 https://www.proquest.com/docview/2856318846 https://pubmed.ncbi.nlm.nih.gov/PMC10463720 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05432-8 https://doaj.org/article/98bb000233a34cca8225fba23b3cf131 |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Collection customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9tqxDwwPdHYFQBIfHA0iVx4ji8dWVlVFo1tVTqnizbSUZFSaemFYy_nrOTlGWgCSReEik-R_HF92H77ncAryWhTAYJdaQUwgmoih1h4LUF82MpYrTBOt_5eEiPJsFgGk63YFTnwsivSs4WFWioBiruXE5Dn5dZDrqKQrrcP0-yUugZ3S88jcTmoAVy0AkhKOXb0KIh-uc70JoMT7qnJs0o8hxc44R19swfOzYslAHy_11dX7JXV2MpNweqt-HmOj8XF9_EfH7JZvXvQlGPtgxV-dJZr2RH_bgCBPl_2XEP7lQurt0t5-R92ErzB3CjLHp58RCS2fvDce-dPTMpwibNyq7LtKC6mdvp9yo4N7dnua33Muapow8Y7NGwa1ex36aXWAlbbyTbdVikXayl3lgqHsGkf_ipd-RUtR4chSuglSMCV2VpECWxchOKSkjh0jPxUnTJZJQlioQeYZmII89HpyWQPqrlKE3CLBE-k8wjj2EnX-TpU7CVG7IIBSQ0SXw0kaErfC-jsSSpJ33XAq_-v1xVQOi6HsecmwURo7zkHkfuccM9zix4u-lzXsKAXEt9oKfNhlJDeJsHi-UZrzQCj5k0B72ECBKgHKGnFmZS-EQSlXnEs-CVnnRcg3TkOgroTKyLgn8cj3g3ouiYxbgytOBNRZQtcAxKVEkVyAmN69Wg3G1QohZRzeZ6bvNKixVcZy2TII5cbH65adY9dWReni7WmiakaBfQjbXgSSkKm3HrgCt8d2ABawhJgzHNlnz22WCc69ADXUDJgr1ann5913Wc39vI3F_8qGf_Rv4cbvlGpNC4-Luws1qu0xfok65kG7ajaYRX1v_Qhla3OxgP8H5wODwZ4dMe7bXNbg9ejwPWrlTST0eAi8o |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFSKUOEBcWMosCAQD61V22uvbSSEQg8l9HjoIeVt2fVRIkVOqBOV_BTfyMz6aA1SxEtfs7NWdu7ZnQPgveYi0n4qbK2Vsn2RxLYy7bVV5MVaxWiDqd758Ej0z_xvw2C4Ar-bWhhKq2x0olHU6SShO_ItqqDkfhw64sv0p01To-h1tRmhUbHFfra4xJCt_DzYQfp-8Ly93dPtvl1PFbAT9LVntvKdJM_8MI0TJxXI7gkGOambofHXYZ4mPHB5lKs4dD00j772UAGEWRrkqfIiHbkcv3sLbvscdQnKTzhsAzyX5gM0hTmR2Cpd6g5no1W00THiqHk6xs_MCPjXElwzhX-nabZvtfdgbV5M1eJSjcfXzOHeA7hf-7GsVzHeQ1jJikdwp5psuXgM6Whn92T7ExuZOmBTS8WaWSyoU8Ys-1Vn4BZsVDC6sBhnNr0isOOjHqsTvM0uNVOMbotZk_vIyrmm26PyCZzdCOqfwmoxKbLnwBIniEKUgsBU6olUB47y3FzEmmeu9hwL3AbTMqm7ndPQjbE0UU8kZEUdidSRhjoysmCj3TOten0shf5KBGwhqU-3-WFycS5rsZdxpM1rLueK-ygs6I4FuVYe1zzJXe5a8I7IL6kTR0GpPudqXpZycHIse6FA7yvG8M-CjzVQPsEzJKqunEBMUPOuDuR6BxJVRdJdbrhM1qqqlFeCZcHbdpl2UvpdkU3mBBMIVP7oq1rwrGLK9tyUVYXf9i2IOuzaQUx3pRj9MI3MKb-ApiRZsNlw9tX_Wob5zZb7_4NQL5af-g2s9U8PD-TB4Gj_Jdz1jLii9fDWYXV2Mc9eodM506-NpDP4ftOq5Q9iUpAX |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgiK8HxDeFAQEh8bBVa5s2TXk7bjttfExoY9LeoiRtx0mn3mm9E-y_x04_uAKa4LVxqja2Yye2fwZ4Y7iQJs6Fb4zWfixs5msHr61llBmdoQ2meufPh2L_JP5wmpyuVfG7bPcuJNnUNBBKU7XcWeRlo-JS7NQh4a75aG98dDk46vRVuBajdaMeBmMx7uMIhNjflcr8dd7AHDnU_j_35jXj9HviZB89vQ03V9VCX3zXs9magZrchTutZ8lGjSjcgytFdR-uN70mLx5APt3dOx6_Y1NXmeuqm1jXHQW1fMaKH21ObMWmFaMrhFnh070-OzocsTbl2s3SS83o_pZ12YisXhm6z6kfwslk7-t4329bLPgWDx5LX8eBLYs4zTMb5AJ13-KJLw8L9IRMWuaWJyGXpc7SMEJfITYR7oZpkSdlriNpZMgfwUY1r4onwGyQyBTlMnG1cyI3SaCjsBSZ4UVoosCDsFtpZVv8cWqDMVPuHCKFarijkDvKcUdJD7b6OYsGfeNS6vfEwJ6SkLPdg_n5mWoVUWXSuPgq55rHKL7oICWl0RE33JYhDz14TexXhI1RUfLNmV7VtTo4PlKjVKA_lOGBzIO3LVE5x3-wuq1lwJUgOK0B5eaAEpXXDoc7KVPt5lErKhbmcZYGOPyqH6aZlBBXFfMV0SQCt2P0Hj143Ahl_9-U54Tvjj2QA3EdLMxwpJp-c9DiFPGnvkUebHeS_eu7Llv57V76_4FRT__v7S_hxpfdifp0cPjxGdyKnPbi9h5twsbyfFU8R69waV44xf8Jg7VW3g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4anRDwwP0SGMggJB5YuiROnIS3MjYNJCrUUWk8WbaTjIiQVk0jGL-eY-dCM9AEEq_1cdSc-Fxsn-87AM8lZZH0E2ZLKYTtMxXbwtBri8iLpYgxBmu88_spO5r7706Cky2YdVgY-VXJfNGShmqi4vEmDL1oUA66i0K62lsmWWP0EdurXM3EZmMEsjEJoWjll2CbBZifj2B7Pv0w-WRgRqFr4x4n6NAzf5w4iFCGyP93d70Rr87XUvYXqtfgSl0uxdk3URQbMevwBlTd2zalKl_G9VqO1Y9zRJD_Vx034Xqb4pJJsyZvwVZa3obLTdPLszuQ5G8OjvdfkdxAhA3MinRtWtDdFCT93hbnliQviT7LKFJbXzCQ2XRC2tpvM0usBdEHyaQriyRVLfXBUnUX5ocHH_eP7LbXg61wB7S2he-oLPXDJFZOwtAJKdx6Jm6KKZkMs0TRwKVRJuLQ9TBp8aWHbjlMkyBLhBfJyKX3YFQuyvQBEOUEUYgGEhgQH0tk4AjPzVgsaepKz7HA7b4vVy0Ruu7HUXCzIYoYb7THUXvcaI9HFrzs5ywbGpALpV_rZdNLagpv88Nidcpbj8DjSJqLXkoF9dGOMFMLMik8KqnKXOpa8EwvOq5JOkpdBXQq6qrib49nfBIyTMxi3Bla8KIVyhb4Dkq0oArUhOb1GkjuDCTRi6jhcLe2eevFKq5Ry9SPQweHn_bDeqauzCvTRa1lAoZxAdNYC-43ptC_ty64wmf7FkQDIxkoZjhS5p8Nx7kuPdANlCzY7ezp1_-6SPO7vc39xYd6-G_ij-CqZ0wKg4u3A6P1qk4fY066lk9aJ_MT6U-EKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iDESC%3A+identifying+differential+expression+in+single-cell+RNA+sequencing+data+with+multiple+subjects&rft.jtitle=BMC+bioinformatics&rft.au=Liu%2C+Yunqing&rft.au=Zhao%2C+Jiayi&rft.au=Adams%2C+Taylor+S&rft.au=Wang%2C+Ningya&rft.date=2023-08-22&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-023-05432-8&rft.externalDocID=A761819826 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |