Diagnostic test accuracy of machine learning algorithms for the detection intracranial hemorrhage: a systematic review and meta-analysis study

Background This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans. Methods Until May 2023, systematic searches were conducted in ISI Web of Scien...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 22; no. 1; pp. 114 - 23
Main Authors Maghami, Masoud, Sattari, Shahab Aldin, Tahmasbi, Marziyeh, Panahi, Pegah, Mozafari, Javad, Shirbandi, Kiarash
Format Journal Article
LanguageEnglish
Published London BioMed Central 04.12.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1475-925X
1475-925X
DOI10.1186/s12938-023-01172-1

Cover

Abstract Background This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans. Methods Until May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used. Results At last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88–0.943, I 2  = 99%). The pooled specificity was 0.945 (95% CI 0.918–0.964, I 2  = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78–459.66, I 2  = 100%). These results were significant for the specificity of the different network architecture models ( p -value = 0.0289). However, the results for sensitivity ( p -value = 0.6417) and DOR ( p -value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854–0.973, I 2  = 93%). Conclusion This meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN).
AbstractList This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans. Until May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used. At last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88-0.943, I  = 99%). The pooled specificity was 0.945 (95% CI 0.918-0.964, I  = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78-459.66, I  = 100%). These results were significant for the specificity of the different network architecture models (p-value = 0.0289). However, the results for sensitivity (p-value = 0.6417) and DOR (p-value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854-0.973, I  = 93%). This meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN).
Abstract Background This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans. Methods Until May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used. Results At last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88–0.943, I 2 = 99%). The pooled specificity was 0.945 (95% CI 0.918–0.964, I 2 = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78–459.66, I 2 = 100%). These results were significant for the specificity of the different network architecture models (p-value = 0.0289). However, the results for sensitivity (p-value = 0.6417) and DOR (p-value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854–0.973, I 2 = 93%). Conclusion This meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN).
BackgroundThis systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans.MethodsUntil May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used.ResultsAt last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88–0.943, I2 = 99%). The pooled specificity was 0.945 (95% CI 0.918–0.964, I2 = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78–459.66, I2 = 100%). These results were significant for the specificity of the different network architecture models (p-value = 0.0289). However, the results for sensitivity (p-value = 0.6417) and DOR (p-value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854–0.973, I2 = 93%).ConclusionThis meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN).
This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans.BACKGROUNDThis systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans.Until May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used.METHODSUntil May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used.At last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88-0.943, I2 = 99%). The pooled specificity was 0.945 (95% CI 0.918-0.964, I2 = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78-459.66, I2 = 100%). These results were significant for the specificity of the different network architecture models (p-value = 0.0289). However, the results for sensitivity (p-value = 0.6417) and DOR (p-value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854-0.973, I2 = 93%).RESULTSAt last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88-0.943, I2 = 99%). The pooled specificity was 0.945 (95% CI 0.918-0.964, I2 = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78-459.66, I2 = 100%). These results were significant for the specificity of the different network architecture models (p-value = 0.0289). However, the results for sensitivity (p-value = 0.6417) and DOR (p-value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854-0.973, I2 = 93%).This meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN).CONCLUSIONThis meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN).
This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans. Until May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used. At last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88-0.943, I.sup.2 = 99%). The pooled specificity was 0.945 (95% CI 0.918-0.964, I.sup.2 = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78-459.66, I.sup.2 = 100%). These results were significant for the specificity of the different network architecture models (p-value = 0.0289). However, the results for sensitivity (p-value = 0.6417) and DOR (p-value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854-0.973, I.sup.2 = 93%). This meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN).
Background This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans. Methods Until May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used. Results At last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88-0.943, I.sup.2 = 99%). The pooled specificity was 0.945 (95% CI 0.918-0.964, I.sup.2 = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78-459.66, I.sup.2 = 100%). These results were significant for the specificity of the different network architecture models (p-value = 0.0289). However, the results for sensitivity (p-value = 0.6417) and DOR (p-value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854-0.973, I.sup.2 = 93%). Conclusion This meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN). Keywords: Brain diseases, Cerebrovascular disorders, Intracranial hemorrhages, Artificial intelligence, Machine learning, Deep learning, Meta-analysis
Background This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans. Methods Until May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used. Results At last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88–0.943, I 2  = 99%). The pooled specificity was 0.945 (95% CI 0.918–0.964, I 2  = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78–459.66, I 2  = 100%). These results were significant for the specificity of the different network architecture models ( p -value = 0.0289). However, the results for sensitivity ( p -value = 0.6417) and DOR ( p -value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854–0.973, I 2  = 93%). Conclusion This meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN).
ArticleNumber 114
Audience Academic
Author Sattari, Shahab Aldin
Mozafari, Javad
Maghami, Masoud
Tahmasbi, Marziyeh
Panahi, Pegah
Shirbandi, Kiarash
Author_xml – sequence: 1
  givenname: Masoud
  surname: Maghami
  fullname: Maghami, Masoud
  organization: Medical Doctor (MD), School of Medicine, Ahvaz Jundishapur University of Medical Sciences
– sequence: 2
  givenname: Shahab Aldin
  surname: Sattari
  fullname: Sattari, Shahab Aldin
  organization: Department of Neurosurgery, Johns Hopkins University School of Medicine
– sequence: 3
  givenname: Marziyeh
  surname: Tahmasbi
  fullname: Tahmasbi, Marziyeh
  organization: Department of Medical Imaging and Radiation Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences
– sequence: 4
  givenname: Pegah
  surname: Panahi
  fullname: Panahi, Pegah
  organization: Medical Doctor (MD), School of Medicine, Ahvaz Jundishapur University of Medical Sciences
– sequence: 5
  givenname: Javad
  surname: Mozafari
  fullname: Mozafari, Javad
  organization: Department of Emergency Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Department of Radiology, Resident (MD), EUREGIO-KLINIK Albert-Schweitzer-Straße GmbH
– sequence: 6
  givenname: Kiarash
  orcidid: 0000-0002-1055-6606
  surname: Shirbandi
  fullname: Shirbandi, Kiarash
  email: Shirbandi.k@gmail.com
  organization: Independent Medical Imaging Researcher
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38049809$$D View this record in MEDLINE/PubMed
BookMark eNqNkstq3DAYhU1JaS7tC3RRBN20C6eSZVtSNyWkt4FAoRfoTvwjSx4FW0okOem8RJ-5ciZNMqGE4oWN_J2jX-dov9hx3umieE7wISG8fRNJJSgvcUVLTAirSvKo2CM1a0pRNT937nzvFvsxnmJcYdyKJ8Uu5bgWHIu94vd7C73zMVmFko4JgVJTALVG3qAR1Mo6jQYNwVnXIxh6H2xajREZH1BaadTppFWy3iHrUhYGcBYGtNKjD2EFvX6LAMV1THqEeZOgL6y-ROA6NOoEJTgY1tFGFNPUrZ8Wjw0MUT-7fh8UPz5--H78uTz58mlxfHRSqrauUin4EpaEG2EMaSrBwLSiEcxwTAyIxmDOKKeCMFgaY-oOE411SznUrFryWtCDYrHx7TycyrNgRwhr6cHKqwUfegkhjztoyRhvKAXVAie1bhSQmtStVpTghoHqshfdeE3uDNaXMAw3hgTLuSm5aUrmpuRVU5Jk1buN6mxajrpTek5v2Bpl-4-zK9n7i-zZilrg2eHVtUPw51PuTo42Kj0M4LSfoqy44JRQTGlGX95DT_0UcvKZErgi1RzYLdVDPrd1xs-FzqbyiLGmZtmszdThP6j8dHq0Kt9QY_P6luD1liAzSf9KPUwxysW3r9vsi7up3MTx98JmoNoAKvgYgzb_lzW_J1I2wXxp8-h2eFh6XW7M-7heh9vkHlD9AfiwHxo
CitedBy_id crossref_primary_10_1016_j_imu_2025_101633
crossref_primary_10_1007_s11547_024_01867_y
crossref_primary_10_12688_f1000research_160378_1
crossref_primary_10_3390_biomedicines12061220
crossref_primary_10_3390_brainsci14030228
Cites_doi 10.4855/arXiv.1902.07208
10.1038/s41598-017-13111-x
10.1016/S2589-7500(19)30123-2
10.1007/s00234-021-02874-w
10.1001/jama.2017.19163
10.1161/01.STR.0000258112.14918.24
10.1007/s42979-021-00592-x
10.1001/jamanetworkopen.2022.16393
10.1109/TNNLS.2016.2599820
10.1073/pnas.1908021116
10.1227/NEU.0000000000001841
10.12809/hkmj209053
10.1016/j.jacr.2021.03.005
10.1016/j.ejrad.2021.110073
10.1002/brb3.2085
10.1007/s10489-021-02782-9
10.1093/neuros/nyaa029
10.1001/jama.1994.03510330081039
10.1007/s00330-019-06163-2
10.1007/s00330-021-08352-4
10.1038/s41598-020-77441-z
10.1007/s10143-022-01802-7
10.1148/ryai.2020200024
10.1148/ryai.210168
10.4103/0970-1591.91444
10.48550/arXiv.1710.04934
10.1136/bmj.m689
10.1007/s00234-019-02330-w
10.4103/bc.bc_36_18
10.48550/arXiv.1512.06220
10.1038/s41598-021-95533-2
10.3390/jcm10051086
10.1016/j.wneu.2022.05.109
10.3390/s20185097
10.1038/s41746-017-0015-z
10.1016/j.wneu.2023.03.019
10.3390/ijerph18126499
10.1038/s41551-018-0324-9
10.1016/j.acra.2020.01.035
10.3174/ajnr.A5742
10.1155/2022/3560507
10.3390/jimaging9020037
10.32896/ajmedtech.v2n1.1-18
10.1016/S0140-6736(18)31645-3
10.1016/j.nicl.2021.102785
10.2174/1573405617666210218100641
10.2174/1381612827666211213143357
10.3390/cancers15020470
10.1016/j.acra.2017.12.007
10.1038/s41568-018-0016-5
10.3389/fneur.2021.703258
10.4178/epih.e2019007
10.3389/fneur.2021.656112
10.1007/s11547-022-01530-4
10.1016/j.ejmp.2022.05.015
10.1007/s12975-021-00937-x
10.1161/STROKEAHA.117.020058
10.1371/journal.pone.0260560
10.5853/jos.2016.00864
10.1148/rg.246045065
10.7326/0003-4819-125-7-199610010-00011
10.1038/s41598-022-05872-x
10.3389/fnins.2020.541817
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12938-023-01172-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological science database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 23
ExternalDocumentID oai_doaj_org_article_778533ac6a814e5ca14146ec31057acd
10.1186/s12938-023-01172-1
PMC10694901
A775471306
38049809
10_1186_s12938_023_01172_1
Genre Meta-Analysis
Systematic Review
Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c642t-98bab18f9ff15297af69597f801fa95f087383917abfff4d01e0e638a472b8493
IEDL.DBID M48
ISSN 1475-925X
IngestDate Fri Oct 03 12:51:49 EDT 2025
Sun Oct 26 04:11:55 EDT 2025
Tue Sep 30 17:17:48 EDT 2025
Thu Oct 02 03:54:45 EDT 2025
Mon Oct 06 18:30:39 EDT 2025
Mon Oct 20 23:08:27 EDT 2025
Mon Oct 20 17:08:46 EDT 2025
Thu Oct 16 16:30:34 EDT 2025
Mon Jul 21 06:04:32 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Wed Oct 01 00:48:28 EDT 2025
Sat Sep 06 07:30:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Cerebrovascular disorders
Intracranial hemorrhages
Machine learning
Artificial intelligence
Brain diseases
Meta-analysis
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-98bab18f9ff15297af69597f801fa95f087383917abfff4d01e0e638a472b8493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Review-4
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-1055-6606
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-023-01172-1
PMID 38049809
PQID 2902120873
PQPubID 42562
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_778533ac6a814e5ca14146ec31057acd
unpaywall_primary_10_1186_s12938_023_01172_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10694901
proquest_miscellaneous_2898313033
proquest_journals_2902120873
gale_infotracmisc_A775471306
gale_infotracacademiconefile_A775471306
gale_incontextgauss_ISR_A775471306
pubmed_primary_38049809
crossref_primary_10_1186_s12938_023_01172_1
crossref_citationtrail_10_1186_s12938_023_01172_1
springer_journals_10_1186_s12938_023_01172_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-04
PublicationDateYYYYMMDD 2023-12-04
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References M Grewal (1172_CR28) 2018
RE Hughes (1172_CR9) 2023
R Manikandan (1172_CR66) 2011; 27
M Nagendran (1172_CR63) 2020; 368
H Lee (1172_CR33) 2019; 3
P Kumaravel (1172_CR31) 2021; 17
J Guo (1172_CR69) 2015
S Chilamkurthy (1172_CR25) 2018; 392
N Schmitt (1172_CR39) 2022; 32
JM Hong (1172_CR3) 2021; 12
R Jaeschke (1172_CR56) 1994; 271
JY Lee (1172_CR17) 2020; 10
H Salehinejad (1172_CR38) 2021; 11
A Kundisch (1172_CR18) 2021; 16
T Leng (1172_CR8) 2019; 5
W Kuo (1172_CR32) 2019; 116
A Majumdar (1172_CR34) 2018; 2018
Q Zhou (1172_CR50) 2022; 28
JM Abrigo (1172_CR52) 2023; 29
PB Sporns (1172_CR10) 2021; 10
J Xu (1172_CR47) 2021; 14
X Xu (1172_CR48) 2021; 11
L Shi (1172_CR5) 2017; 7
A Hosny (1172_CR13) 2018; 18
M Daugaard Jorgensen (1172_CR58) 2022; 146
JF Barrett (1172_CR62) 2004; 24
SJ An (1172_CR1) 2017; 19
SP Singh (1172_CR60) 2020; 20
W Samek (1172_CR61) 2017; 28
A Phaphuangwittayakul (1172_CR36) 2022; 52
SR Shim (1172_CR67) 2019; 41
G Danilov (1172_CR27) 2020; 272
C Goutte (1172_CR57) 2005
BN Rao (1172_CR37) 2022; 2022
RS Rindler (1172_CR2) 2020; 86
G Trevisi (1172_CR43) 2022
AA Rabinstein (1172_CR6) 2018; 49
IH Sarker (1172_CR16) 2021; 2
TJ O'Neill (1172_CR53) 2021; 3
H Ye (1172_CR49) 2019; 29
L Cortes-Ferre (1172_CR26) 2022; 9
BS Hopkins (1172_CR29) 2022; 90
A Derevianko (1172_CR14) 2023; 15
DT Ginat (1172_CR4) 2020; 62
TR Fleming (1172_CR54) 1996; 125
D Abe (1172_CR20) 2022; 5
P Cronin (1172_CR65) 2018; 25
M Rana (1172_CR15) 2022; 24
AF Voter (1172_CR45) 2021; 18
J McLouth (1172_CR35) 2021; 12
A Tharek (1172_CR42) 2022; 2
M Raghu (1172_CR59) 2019
M Seyam (1172_CR40) 2022; 4
X Liu (1172_CR55) 2019; 1
V Vidhya (1172_CR11) 2021; 18
MR Arbabshirani (1172_CR23) 2018; 1
D Alis (1172_CR21) 2022; 12
M Altuve (1172_CR22) 2022; 99
T Kau (1172_CR30) 2022; 64
MDF McInnes (1172_CR64) 2018; 319
X Wang (1172_CR46) 2021; 32
PD Chang (1172_CR24) 2018; 39
Z Tang (1172_CR41) 2022
G Neves (1172_CR51) 2023; 173
P Doebler (1172_CR68) 2015; 1
B Rao (1172_CR12) 2021; 28
JH Rha (1172_CR7) 2007; 38
S Matsoukas (1172_CR19) 2022; 127
K Uchida (1172_CR44) 2022; 13
References_xml – year: 2019
  ident: 1172_CR59
  publication-title: Adv Neural Inf Process Syst
  doi: 10.4855/arXiv.1902.07208
– volume: 7
  start-page: 14345
  issue: 1
  year: 2017
  ident: 1172_CR5
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-13111-x
– volume: 1
  start-page: e271
  issue: 6
  year: 2019
  ident: 1172_CR55
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(19)30123-2
– volume: 64
  start-page: 981
  issue: 5
  year: 2022
  ident: 1172_CR30
  publication-title: Neuroradiology
  doi: 10.1007/s00234-021-02874-w
– volume: 319
  start-page: 388
  issue: 4
  year: 2018
  ident: 1172_CR64
  publication-title: JAMA
  doi: 10.1001/jama.2017.19163
– volume: 38
  start-page: 967
  issue: 3
  year: 2007
  ident: 1172_CR7
  publication-title: Stroke
  doi: 10.1161/01.STR.0000258112.14918.24
– volume-title: StatPearls
  year: 2023
  ident: 1172_CR9
– volume: 24
  start-page: 1
  year: 2022
  ident: 1172_CR15
  publication-title: Multimed Tools Appl
– volume: 2
  start-page: 160
  issue: 3
  year: 2021
  ident: 1172_CR16
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-021-00592-x
– volume: 5
  issue: 6
  year: 2022
  ident: 1172_CR20
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2022.16393
– volume: 28
  start-page: 2660
  issue: 11
  year: 2017
  ident: 1172_CR61
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2599820
– volume: 116
  start-page: 22737
  issue: 45
  year: 2019
  ident: 1172_CR32
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1908021116
– volume: 90
  start-page: 383
  issue: 4
  year: 2022
  ident: 1172_CR29
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0000000000001841
– volume: 29
  start-page: 112
  issue: 2
  year: 2023
  ident: 1172_CR52
  publication-title: Hong Kong Med J
  doi: 10.12809/hkmj209053
– volume: 18
  start-page: 1143
  issue: 8
  year: 2021
  ident: 1172_CR45
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2021.03.005
– volume: 146
  year: 2022
  ident: 1172_CR58
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.110073
– volume: 11
  start-page: e02085
  issue: 5
  year: 2021
  ident: 1172_CR48
  publication-title: Brain and behavior
  doi: 10.1002/brb3.2085
– volume: 1
  start-page: 15
  year: 2015
  ident: 1172_CR68
  publication-title: R Packag
– volume: 52
  start-page: 7320
  issue: 7
  year: 2022
  ident: 1172_CR36
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02782-9
– volume: 86
  start-page: E414
  issue: 5
  year: 2020
  ident: 1172_CR2
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyaa029
– volume: 271
  start-page: 703
  issue: 9
  year: 1994
  ident: 1172_CR56
  publication-title: JAMA
  doi: 10.1001/jama.1994.03510330081039
– volume: 29
  start-page: 6191
  issue: 11
  year: 2019
  ident: 1172_CR49
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06163-2
– volume: 32
  start-page: 2246
  issue: 4
  year: 2022
  ident: 1172_CR39
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08352-4
– volume: 10
  start-page: 20546
  issue: 1
  year: 2020
  ident: 1172_CR17
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-77441-z
– year: 2022
  ident: 1172_CR43
  publication-title: Neurosurg Rev
  doi: 10.1007/s10143-022-01802-7
– volume: 3
  issue: 2
  year: 2021
  ident: 1172_CR53
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2020200024
– volume: 4
  issue: 2
  year: 2022
  ident: 1172_CR40
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.210168
– volume: 27
  start-page: 513
  issue: 4
  year: 2011
  ident: 1172_CR66
  publication-title: Indian J Urol
  doi: 10.4103/0970-1591.91444
– year: 2018
  ident: 1172_CR28
  publication-title: IEEE
  doi: 10.48550/arXiv.1710.04934
– volume: 368
  year: 2020
  ident: 1172_CR63
  publication-title: BMJ
  doi: 10.1136/bmj.m689
– volume: 62
  start-page: 335
  issue: 3
  year: 2020
  ident: 1172_CR4
  publication-title: Neuroradiology
  doi: 10.1007/s00234-019-02330-w
– volume: 5
  start-page: 8
  issue: 1
  year: 2019
  ident: 1172_CR8
  publication-title: Brain Circ
  doi: 10.4103/bc.bc_36_18
– year: 2015
  ident: 1172_CR69
  publication-title: arXiv Prepr
  doi: 10.48550/arXiv.1512.06220
– volume: 11
  start-page: 17051
  issue: 1
  year: 2021
  ident: 1172_CR38
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95533-2
– volume: 10
  start-page: 1086
  issue: 5
  year: 2021
  ident: 1172_CR10
  publication-title: J Clin Med
  doi: 10.3390/jcm10051086
– volume: 2018
  start-page: 583
  year: 2018
  ident: 1172_CR34
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– year: 2022
  ident: 1172_CR41
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2022.05.109
– volume: 20
  start-page: 5097
  issue: 18
  year: 2020
  ident: 1172_CR60
  publication-title: Sensors
  doi: 10.3390/s20185097
– volume: 1
  start-page: 9
  year: 2018
  ident: 1172_CR23
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-017-0015-z
– volume: 173
  start-page: e800
  year: 2023
  ident: 1172_CR51
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2023.03.019
– volume: 18
  start-page: 6499
  issue: 12
  year: 2021
  ident: 1172_CR11
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph18126499
– volume: 3
  start-page: 173
  issue: 3
  year: 2019
  ident: 1172_CR33
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0324-9
– volume: 28
  start-page: 85
  issue: 1
  year: 2021
  ident: 1172_CR12
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2020.01.035
– volume: 39
  start-page: 1609
  issue: 9
  year: 2018
  ident: 1172_CR24
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5742
– volume: 2022
  start-page: 3560507
  year: 2022
  ident: 1172_CR37
  publication-title: Comput Math Methods Med
  doi: 10.1155/2022/3560507
– volume: 9
  start-page: 37
  issue: 2
  year: 2022
  ident: 1172_CR26
  publication-title: J Imaging
  doi: 10.3390/jimaging9020037
– volume: 272
  start-page: 370
  year: 2020
  ident: 1172_CR27
  publication-title: Stud Health Technol Inform
– volume: 2
  start-page: 1
  issue: 1
  year: 2022
  ident: 1172_CR42
  publication-title: Asian J Med Technol
  doi: 10.32896/ajmedtech.v2n1.1-18
– volume: 392
  start-page: 2388
  issue: 10162
  year: 2018
  ident: 1172_CR25
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31645-3
– volume: 32
  start-page: 102785
  year: 2021
  ident: 1172_CR46
  publication-title: NeuroImage Clinical
  doi: 10.1016/j.nicl.2021.102785
– volume: 17
  start-page: 1226
  issue: 10
  year: 2021
  ident: 1172_CR31
  publication-title: Curr Med Imaging
  doi: 10.2174/1573405617666210218100641
– volume: 28
  start-page: 287
  issue: 4
  year: 2022
  ident: 1172_CR50
  publication-title: Curr Pharm Des
  doi: 10.2174/1381612827666211213143357
– volume: 15
  start-page: 470
  issue: 2
  year: 2023
  ident: 1172_CR14
  publication-title: Cancers
  doi: 10.3390/cancers15020470
– volume: 25
  start-page: 573
  issue: 5
  year: 2018
  ident: 1172_CR65
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2017.12.007
– volume-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. in European conference on information retrieval
  year: 2005
  ident: 1172_CR57
– volume: 18
  start-page: 500
  issue: 8
  year: 2018
  ident: 1172_CR13
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-018-0016-5
– volume: 12
  year: 2021
  ident: 1172_CR3
  publication-title: Front Neurol
  doi: 10.3389/fneur.2021.703258
– volume: 41
  year: 2019
  ident: 1172_CR67
  publication-title: Epidemiol Health
  doi: 10.4178/epih.e2019007
– volume: 12
  start-page: 656112
  year: 2021
  ident: 1172_CR35
  publication-title: Front Neurol
  doi: 10.3389/fneur.2021.656112
– volume: 127
  start-page: 1106
  issue: 10
  year: 2022
  ident: 1172_CR19
  publication-title: Radiol Med
  doi: 10.1007/s11547-022-01530-4
– volume: 99
  start-page: 113
  year: 2022
  ident: 1172_CR22
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2022.05.015
– volume: 13
  start-page: 370
  issue: 3
  year: 2022
  ident: 1172_CR44
  publication-title: Transl Stroke Res
  doi: 10.1007/s12975-021-00937-x
– volume: 49
  start-page: 275
  issue: 2
  year: 2018
  ident: 1172_CR6
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.020058
– volume: 16
  issue: 11
  year: 2021
  ident: 1172_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0260560
– volume: 19
  start-page: 3
  issue: 1
  year: 2017
  ident: 1172_CR1
  publication-title: J Stroke
  doi: 10.5853/jos.2016.00864
– volume: 24
  start-page: 1679
  issue: 6
  year: 2004
  ident: 1172_CR62
  publication-title: Radiographics
  doi: 10.1148/rg.246045065
– volume: 125
  start-page: 605
  issue: 7
  year: 1996
  ident: 1172_CR54
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-125-7-199610010-00011
– volume: 12
  start-page: 2084
  issue: 1
  year: 2022
  ident: 1172_CR21
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-05872-x
– volume: 14
  start-page: 541817
  year: 2021
  ident: 1172_CR47
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.541817
SSID ssj0020069
Score 2.4173415
SecondaryResourceType review_article
Snippet Background This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of...
This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial...
Background This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of...
BackgroundThis systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of...
Abstract Background This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Brain
Brain diseases
Cerebrovascular disorders
Computed tomography
Computer-aided medical diagnosis
CT imaging
Deep learning
Diagnostic imaging
Diagnostic systems
Diagnostic tests
Diagnostic Tests, Routine
Differential thermal analysis
Digital libraries
Digital systems
Engineering
Hemorrhage
Humans
Intracranial hemorrhages
Ischemia
Learning algorithms
Libraries
Machine Learning
Medical imaging equipment
Medical research
Medical tests
Medicine, Experimental
Meta-analysis
Methods
Neural networks
Older people
Prospective Studies
Retrospective Studies
Review
Sensitivity analysis
Sensitivity and Specificity
Stroke
Support vector machines
Systematic review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD0APCMorUJBBSBxo1DjJxja38qgKUjkAlXqzJo69u9JuttrNCvVP8JuZSbzpBqTCgWs8kRLP45tJxt8w9irNpNW59bF09OmmLFVcaiviIk1lhYhbFi3P7OmX4uQs_3w-Ot8a9UU9YR09cLdxh1IioGRgC1AidyMLIkfndjajAbVgK4q-idKbYiqUWkTAuzkio4rDFaGaihGfYuJAS2MxgKGWrf_PmLwFSr83TPZ_TXfZrXV9AZc_YDbbAqbju-xOyCj5Ufcm99gNV--x3S2ewT128zT8Qb_Pfn7oeutQmGOW2XCwdr0Ee8kXns_bzkrHwyiJMYfZeLGcNpP5imNyyzFZ5JVr2u6tmk_pKS1iHZown1DH7nKC0ektB37FD827szEc6orPXQMxBBYU3hLbPmBnxx-_vz-Jw0yG2GKl0sRalVAK5bX3iPxagi801iQegc6DHvlESax5sQaE0nufV4lwiUMfh1ympcp19pDt1IvaPWbcAwKldcKrSuZOgHZe-gwLqApsXhQ-YmKjImMDYTnNzZiZtnBRhenUalCtplWrERF7099z0dF1XCv9jjTfSxLVdnsBDdAEAzR_M8CIvSS7MUSmUVO3zhjWq5X59O2rOSJ6QYlZQhGx10HIL0g3EA4_4E4Q_9ZAcn8gid5uh8sb8zQh2qxMqomon7Y-Yi_6ZbqTOuhqt1ijjNIqo4QFZR511ty_d6awTlSJjpga2PlgY4Yr9XTScpELOjiNOWXEDjYucfVc1-38Qe82_6CoJ_9DUU_Z7ZQiAPUi5ftsp1mu3TPMKJvyeRs8fgGB12_M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwF7QDC-AgMZhMQDi1YnaWwjIbTBpoG0Cg0m7c1yHLud1CalTYX2T_A3c5c6aQPSxGt8kWLfd3z3O0LeRDE3MjEu5BZ_3WSZCDNpWJhGEc_B42ZpjTN7NkxPL5Kvl4PLLTJsemGwrLKxibWhzkuD_8gPIolg5H3B44-znyFOjcLb1WaEhvajFfIPNcTYLbIdITJWj2wfHQ-_nbcpGALzNq0zIj1YoLcTIfitELHRopB13FON4v-vrd5wVn8XUra3qTvkzrKY6etfejLZcFgn98k9H2nSw5VoPCBbttglOxv4g7vk9pm_WX9Ifn9e1dwBMYXos6Kw1-Vcm2taOjqtKy4t9SMmRlRPRnA21Xi6oBD0UggiaW6ruqqroFf4lQZ8IIg2HWMl73wMVus91XSNG01XPTNUFzmd2kqH2qOj0Brw9hG5ODn-8ek09LMaQgMZTBVKkemMCSedg4hAcu1SCbmKAwfotBw4ZBzEYozrzDmX5H1m-xZ0Xyc8ykQi48ekV5SFfUqo0-BAjWVO5DyxTEvruIshscq1SdLUBYQ1LFLGA5njPI2JqhMakaoVWxWwVdVsVSwg79p3ZisYjxupj5DzLSVCcNcPyvlIeY1WnEOkE2uTasESOzCaJeB1rIlxcrI2eUBeo9woBNkosIpnpJeLhfry_VwdIuwgh-ghDchbT-RK5I32TRFwEojL1aHc61CCFTDd5UY8lbdCC7XWmYC8apfxTaysK2y5BBohRYyBDNA8WUlzu-9YQP4o-jIgoiPnnYPprhRX4xqjnGFDNcSaAdlvVGL9XTed_H6rNv_BqGc37_o5uRuhbmP1UbJHetV8aV9ADFllL71h-AMO4G4b
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQJgF7mGD8CgxkEBIPLFqdpI7N2xhMA2k8AJP2Zl0cu63UplObCu2f4G_mLnGzBtAEr_G5Snx3_u7qu8-MvU7S3OrM-jh39NdNUai40FbEMknyEhG3kA3P7NkXeXqefb4YXgSaHOqF2Ty_F0oeLgmPVIzIEhN7WRJjprONICWbg1l53CVXRLm7bor567we8DT8_H_uwhsw9HuJZHdOusPurKpLuPoB0-kGFJ3cY7shhuRHrdLvs1uu2mM7G8yCe-z2WTgzf8B-fmir6VCYY1xZc7B2tQB7xeeez5paSsfD5REjDtPRfDGpx7Mlx3CWY3jIS1c39VoVn9BbWkQ3NFo-phrdxRj3o3cc-DUjNG-7YThUJZ-5GmIIvCe8obJ9yM5PPn4_Po3DLQyxxdykjrUqoBDKa-8R63UOXmrMQjxCmwc99AOVY5aLWR8U3vusHAg3cOjVkOVJoTKdPmJb1bxyTxj3gNBonfCqzDMnQDuf-xRTphJsJqWPmFiryNhAUU43ZUxNk6ooaVq1GlSradRqRMTednMuW4KOG6Xfk-Y7SSLXbh6gzZngqybPMYZJwUpQInNDCyJDPHE2pTuRwZYRe0V2Y4g-o6L6nBGslkvz6dtXc0SEgpj3D2TE3gQhPyfdQGh3wJUgxq2e5H5PEv3b9ofX5mnC_rI0iSZqflr6iL3shmkm1cxVbr5CGaVVSiEKyjxurbn77lRhZqgGOmKqZ-e9hemPVJNxwz4uqFUao8iIHaxd4vq9blr5g85t_kFRT__v15-xuwn5OtUZZftsq16s3HOMFuviRbNN_ALNymBx
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZQVwL2wGNhIbAgg5A4sO42b5tbeawWpF0hoFI5WY5jtxVtUqWJ0HLhH_CbGSdu2ixoBQeu9VhKJp6Zb-qZbxB65vmxZIHUJFbmr5skoSRh0iWR58UpRNwkqnlmT8-ik1HwfhyO7ajSVU20nS-aGwqiNoR8pKGN6G-3pM-bjgczUUEVR8tUNw6ARkcrE8MogWhEDOOZRyA72olCwOo9tDM6-zD8UrccxSFhXjhed9L8cWMnWtWk_r-77q3YdbGusr1c3UXXqmwpzr-J-Xwrfh3fRD_Wb96UrXztV2XSl98vkEL-P9XcQjcs9MXD5qzeRldUtod2twgR99DVU3vVfwf9fNMUAYIwBjhcYiFlVQh5jnONF3UJqMJ25sUEi_kkL2bldLHCgMIxoFqcqrIuM8vwzDythKAMtoanprS4mIIbfYkF3hBZ46aJB4ssxQtVCiIsXQuuGXjvotHx28-vT4gdHkEkpFQlYTQRiUs10xogCouFjhgkTxoishYs1AMaQ3IOyapItNZBOnDVQIEzEkHsJTRg_j7qZXmm7iOsBUR0qVxN0zhQrmBKx9qHTC8VMogi7SB3fUi4tMzqZsDHnNcZFo14o3YOaue12rnroBftnmXDK3Kp9Ctz9lpJwwle_5AXE25dDI9jgF6-kJGgbqBCKdwAwqCSvhnlLGTqoKfm5HLD-pGZsqKJqFYr_u7TRz40PIgxwJnIQc-tkM7NtxG2SwM0YYjCOpIHHUlwS7K7vDYQbt3iinvMTBQwqnfQk3bZ7DSlfpnKK5ChjPoGWYHMvcae2vf2KSS0dMAcRDuW1lFMdyWbTWvSdNd0eAP4ddDh2ig3z3WZ5g9bw_2LD_Xg38QfouuesUVTHhUcoF5ZVOoRgNwyeWw91S9fA6II
  priority: 102
  providerName: Unpaywall
Title Diagnostic test accuracy of machine learning algorithms for the detection intracranial hemorrhage: a systematic review and meta-analysis study
URI https://link.springer.com/article/10.1186/s12938-023-01172-1
https://www.ncbi.nlm.nih.gov/pubmed/38049809
https://www.proquest.com/docview/2902120873
https://www.proquest.com/docview/2898313033
https://pubmed.ncbi.nlm.nih.gov/PMC10694901
https://biomedical-engineering-online.biomedcentral.com/counter/pdf/10.1186/s12938-023-01172-1
https://doaj.org/article/778533ac6a814e5ca14146ec31057acd
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ADMLS
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M48
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: AAJSJ
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: C6C
  dateStart: 20020112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2kYA9IBi3wKgMQvDAAs2lsY2EUFdWBlKnaaxSebIcx24ntWnXpoL-CX4z56Rp1sBU8VKp9UmVnPuJj79DyCs_YFqE2rrM4KubOOZuLLTnRr7PEoi4cZTjzHZOo5Nu-K3X6G2RVbttwcDZjaUdzpPqTofvfl0tPoHBf8wNnkfvZxizuAvRx0WEM9_1Xk-uXBwshRuwxZSNbbILwUvgdIdOWG40YEEtVmdpbvyrSrzKYf3_dd5r0evvzspye3WP3J6nE7X4qYbDtQjWvkfuFqknbS515T7ZMuk-2VsDJNwntzrFVvsD8vvzsgkPiCmkoxlVWs-nSi_o2NJR3oJpaDFzok_VsA-cyAajGYUsmEJWSROT5W1eKb3Eu9QQFEHX6QBbe6cDcGMfqKLXQNJ0eYiGqjShI5MpVxVwKTRHwH1Iuu3ji9aJWwxvcDWUNJkreKxij1thLaQIgikbCSheLEREq0TD1jmD4hiKRRVba8Ok7pm6AWegQubHPBTBI7KTjlPzhFCrIKJq41mesNB4ShjLbACVVqJ0GEXWId5KRFIXyOY4YGMo8wqHR3IpVglilblYpeeQt-U1kyWux0bqI5R8SYmY3PkP42lfFiYuGYPUJ1A6UtwLTUMrL4QwZHSAo5SVThzyEvVGIupGim09fTWfzeTX7-eyiTiEDNKJyCFvCiI7Rtmo4pQEcAKBuiqUBxVKcAu6urxST7myKukLRPRH1jvkRbmMV2KrXWrGc6DhggeY2QDN46U2l88dcCgoeV04hFf0vMKY6kp6OchByz08YQ3Jp0MOVyZxfV-bOH9Yms1_COrp5qd-Ru74aNvYjhQekJ1sOjfPIanM4hrZZj0Gn7z9pUZ2j45Pz87hWytq1fLXNLXcbcBK9_Ss-eMP7sN5Mg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamITH2gGDcAgMMAvHAojWXxg4SQoMxtezyAJvUN89x7HZSm5Qm1dQ_wU_hN3JObm1AqnjZa3yiJD63z_Hxdwh543pMhb4yNtP46yaKuB2FyrED12UxZNwoKHhmT8-C3oX_bdAdbJDf9VkYLKusY2IRqONU4T_yfTdEMvIOZ96n6U8bu0bh7mrdQqM0i2O9uIYlW_axfwj6feu6R1_Pv_TsqquArQBr53bIIxk53ITGQO4KmTRBCKjaQKg2MuwafASgBofJyBjjxx1HdzRYqfSZG3EfyZcg5N_yPYgl4D9ssFzgIe1vfTCHB_sZ5lJuQ1a0kXnNtZ1W8it6BPybCVZS4d9lms1e7TbZmidTubiW4_FKOjy6R-5WOJYelIZ3n2zoZIdsr7Ab7pDbp9W-_QPy67Cs6ANhCtg2p1Kp-UyqBU0NnRT1nJpWDSyGVI6HMPP5aJJRgNQUICqNdV7UjCX0Ct9SQYYFx6EjrBOejSAmfqCSLlmpaXkih8okphOdS1tW3Cu0oNN9SC5uRGePyGaSJvoJoUZCelbaMTxmvnZkqA0zHizbYqn8IDAWcWoVCVXRpGO3jrEolks8EKVaBahVFGoVjkXeN_dMS5KQtdKfUfONJBJ8FxfS2VBU8UIwBjjKkyqQ3PF1V0nHh5ymlYd9maWKLfIa7UYghUeCNUJDOc8y0f_xXRwgqSEDbBJY5F0lZFLUjayOXMBMIOtXS3K3JQkxRrWHa_MUVYzLxNIjLfKqGcY7sW4v0ekcZHjIPYRJIPO4tObmuz0Oq1PeCS3CW3bempj2SHI1KhjQHTyuDUjWInu1Syzfa93M7zVu8x-Kerr-q1-Srd756Yk46Z8dPyN3XPRzrHPyd8lmPpvr54BW8-hFESIoubzpmPQHWymjzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkAZ7QDC-AgMMQuKBRWs-Gtu8jY5qAzYhYNLerItjt5XapGpTof0T_M3cJWnWAJrgNT5Xie_Ov7v67mfGXoeRMCo2zheW_rpJU-mnygR-EoYiQ8RNk4pn9vQsOT6PP170Lza6-Ktq9_WRZN3TQCxNeXkwz1zt4jI5WBJKSR_xxidOs9DH_OdmjOhGdxgMkkGbchER77pV5q_zOnBUsfb_uTdvgNPvhZPt6ekOu7XK53D5A6bTDYAa3mV3msiSH9amcI_dsPku29ngG9xl26fNSfp99vOorrFDYY7RZsnBmNUCzCUvHJ9VFZaWN1dKjDhMR8ViUo5nS45BLsegkWe2rKq4cj6htzSIeWjKfEyVu4sx7lLvOPArnmhe98hwyDM-syX40LCh8Irg9gE7H374Pjj2m7sZfIMZS-krmUIaSKecwwhACXCJwtzEIeA5UH3XkwJzX8wFIXXOxVkvsD2Lvg6xCFMZq-gh28qL3D5m3AECprGBk5mIbQDKOuEiTKQyMHGSOI8FaxVp0xCX0_0ZU10lMDLRtVo1qlVXatWBx962c-Y1bce10u9J860kUW5XD4rFSDcerIXAyCYCk4AMYts3EMSIMtZEdFMymMxjr8huNJFq5FS1M4LVcqlPvn3Vh0QzKDBaSDz2phFyBekGmiYIXAni4epI7nUk0etNd3htnrrZdZY6VETYT0vvsZftMM2kSrrcFiuUkUpGFLigzKPamtvvjiTmi7KnPCY7dt5ZmO5IPhlXnOQBNVBjbOmx_bVLXL3XdSu_37rNPyjqyf_9-gu2_eVoqD-fnH16ym6H5PZUiBTvsa1ysbLPMJws0-fVjvELsctrpw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZQVwL2wGNhIbAgg5A4sO42b5tbeawWpF0hoFI5WY5jtxVtUqWJ0HLhH_CbGSdu2ixoBQeu9VhKJp6Zb-qZbxB65vmxZIHUJFbmr5skoSRh0iWR58UpRNwkqnlmT8-ik1HwfhyO7ajSVU20nS-aGwqiNoR8pKGN6G-3pM-bjgczUUEVR8tUNw6ARkcrE8MogWhEDOOZRyA72olCwOo9tDM6-zD8UrccxSFhXjhed9L8cWMnWtWk_r-77q3YdbGusr1c3UXXqmwpzr-J-Xwrfh3fRD_Wb96UrXztV2XSl98vkEL-P9XcQjcs9MXD5qzeRldUtod2twgR99DVU3vVfwf9fNMUAYIwBjhcYiFlVQh5jnONF3UJqMJ25sUEi_kkL2bldLHCgMIxoFqcqrIuM8vwzDythKAMtoanprS4mIIbfYkF3hBZ46aJB4ssxQtVCiIsXQuuGXjvotHx28-vT4gdHkEkpFQlYTQRiUs10xogCouFjhgkTxoishYs1AMaQ3IOyapItNZBOnDVQIEzEkHsJTRg_j7qZXmm7iOsBUR0qVxN0zhQrmBKx9qHTC8VMogi7SB3fUi4tMzqZsDHnNcZFo14o3YOaue12rnroBftnmXDK3Kp9Ctz9lpJwwle_5AXE25dDI9jgF6-kJGgbqBCKdwAwqCSvhnlLGTqoKfm5HLD-pGZsqKJqFYr_u7TRz40PIgxwJnIQc-tkM7NtxG2SwM0YYjCOpIHHUlwS7K7vDYQbt3iinvMTBQwqnfQk3bZ7DSlfpnKK5ChjPoGWYHMvcae2vf2KSS0dMAcRDuW1lFMdyWbTWvSdNd0eAP4ddDh2ig3z3WZ5g9bw_2LD_Xg38QfouuesUVTHhUcoF5ZVOoRgNwyeWw91S9fA6II
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+test+accuracy+of+machine+learning+algorithms+for+the+detection+intracranial+hemorrhage%3A+a+systematic+review+and+meta-analysis+study&rft.jtitle=Biomedical+engineering+online&rft.au=Maghami%2C+Masoud&rft.au=Shahab+Aldin+Sattari&rft.au=Tahmasbi%2C+Marziyeh&rft.au=Panahi%2C+Pegah&rft.date=2023-12-04&rft.pub=Springer+Nature+B.V&rft.eissn=1475-925X&rft.volume=22&rft.spage=1&rft_id=info:doi/10.1186%2Fs12938-023-01172-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon