A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity

Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer’s disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ p...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 5; p. e0293053
Main Authors Hassanzadeh, Reihaneh, Abrol, Anees, Pearlson, Godfrey, Turner, Jessica A., Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 20.05.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0293053

Cover

Abstract Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer’s disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient’s age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders’ development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females.
AbstractList Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females.
Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females.Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females.
Audience Academic
Author Hassanzadeh, Reihaneh
Calhoun, Vince D.
Abrol, Anees
Pearlson, Godfrey
Turner, Jessica A.
AuthorAffiliation Medical University of Vienna: Medizinische Universitat Wien, AUSTRIA
3 Department of Psychiatry & Neuroscience, Yale University School of Medicine, New Haven, CT, United States of America
4 Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, United States of America
1 Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
2 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
AuthorAffiliation_xml – name: 1 Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
– name: Medical University of Vienna: Medizinische Universitat Wien, AUSTRIA
– name: 4 Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, United States of America
– name: 2 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
– name: 3 Department of Psychiatry & Neuroscience, Yale University School of Medicine, New Haven, CT, United States of America
Author_xml – sequence: 1
  givenname: Reihaneh
  orcidid: 0000-0001-8022-8619
  surname: Hassanzadeh
  fullname: Hassanzadeh, Reihaneh
– sequence: 2
  givenname: Anees
  surname: Abrol
  fullname: Abrol, Anees
– sequence: 3
  givenname: Godfrey
  surname: Pearlson
  fullname: Pearlson, Godfrey
– sequence: 4
  givenname: Jessica A.
  surname: Turner
  fullname: Turner, Jessica A.
– sequence: 5
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38768123$$D View this record in MEDLINE/PubMed
BookMark eNqNk89u1DAQxiNURGnhDRBEQkJw2CW2E8fhglYVlEqVKvHvag32ZNfFawc7admeeA2egzfiSXC626qLeqhysDX-zTfj-Zy9bMd5h1n2hBRTwmry-tQPwYGddik8LWjDiordyx6ShtEJpwXbubHfzfZiPC0SITh_kO0yUXNBKHuY_ZnlyrvWD05jGLd98NaizpegFsZhbhGCM26eQ9cFn4Jv8sPghy6HVHwVTUwbnSsLMZrWKOiNd7lv85jSL3y3COgMXDIze7FAs8Tw99fvmGsTESLmQxzFA8Y-rZPYQ495Ozg16oDNHfbnPnwfO3OYgmemXz3K7rdgIz7erPvZl_fvPh98mByfHB4dzI4nipe0n5SNEIUuC1ppTlXT6JoRKsqGK8WRNS2hNQWosC0YcFBNzSgXjaC6bWhTFiXbz56tdTvro9zMO0pW8IYKURGSiKM1oT2cyi6YJYSV9GDkZcCHuYTQG2VRUqKBCA5Cc1bSGgTRJW3bmmiiec0haVVrrcF1sDoHa68FSSFHy69akKPlcmN5ynu76XL4tkStMFkIdquZ7RNnFnLuzyQhpCh5OSq83CgE_2NITsiliQqtBYd-GC9c1TwVSwX3s-f_obePZUPNId3cpOeVCqtRVM7qpqzoWDVR01uo9GlcmuQ3tibFtxJebSWMrxV_9nMYYpRHnz7enT35us2-uMEuEGy_iN4O4xOM2-DTm6O-nvHV75SAcg2o4GMM2N7Nwn-J4je8
Cites_doi 10.1016/j.neuroimage.2018.10.003
10.1109/ISBI52829.2022.9761466
10.1111/j.2517-6161.1995.tb02031.x
10.1093/schbul/sbaa078
10.1523/JNEUROSCI.2965-15.2016
10.2147/NDT.S172933
10.1002/hbm.24241
10.1016/j.neuroimage.2007.11.001
10.1001/jamapsychiatry.2021.0042
10.1016/j.nicl.2020.102375
10.1212/WNL.0b013e318233b33d
10.1002/hbm.1048
10.3389/fnins.2020.00779
10.1176/appi.ajp.2013.12101339
10.1007/BF02988596
10.1016/S2215-0366(18)30174-3
10.1073/pnas.0308627101
10.1016/S0010-440X(96)90035-8
10.3389/fnins.2018.00770
10.1001/archneur.1985.04060100083029
10.1371/journal.pone.0277572
10.1227/NEU.0000000000000307
10.1371/journal.pcbi.1000100
10.1001/jamapsychiatry.2015.1546
10.1007/s40263-020-00707-7
10.1001/archpsyc.55.3.205
10.1093/brain/awf185
ContentType Journal Article
Copyright Copyright: © 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Hassanzadeh et al 2024 Hassanzadeh et al
2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Hassanzadeh et al 2024 Hassanzadeh et al
– notice: 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0293053
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE - Academic
Agricultural Science Database


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Group analysis and classification of schizophrenia and Alzheimer’s disease using rs-FNC
EISSN 1932-6203
ExternalDocumentID 3069288511
oai_doaj_org_article_21da186a8d63427a81d42ff71d1d676a
10.1371/journal.pone.0293053
PMC11104643
A794526433
38768123
10_1371_journal_pone_0293053
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: ;
  grantid: R01MH118695
– fundername: ;
  grantid: 2112455
– fundername: ;
  grantid: R01AG073949
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c642t-49880d4025d62c99d73128496cc6e39f1272aa5ef03a6ac973268982df9294043
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:18:19 EDT 2025
Tue Oct 14 19:03:03 EDT 2025
Sun Oct 26 04:17:01 EDT 2025
Tue Sep 30 17:09:03 EDT 2025
Fri Sep 05 06:29:16 EDT 2025
Tue Oct 07 07:52:03 EDT 2025
Mon Oct 20 22:53:22 EDT 2025
Mon Oct 20 16:58:41 EDT 2025
Thu Oct 16 16:07:08 EDT 2025
Thu Oct 16 16:11:44 EDT 2025
Thu May 22 21:24:02 EDT 2025
Wed Feb 19 02:08:07 EST 2025
Wed Oct 01 04:43:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-49880d4025d62c99d73128496cc6e39f1272aa5ef03a6ac973268982df9294043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: No authors have competing interests.
ORCID 0000-0001-8022-8619
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0293053
PMID 38768123
PQID 3069288511
PQPubID 1436336
PageCount e0293053
ParticipantIDs plos_journals_3069288511
doaj_primary_oai_doaj_org_article_21da186a8d63427a81d42ff71d1d676a
unpaywall_primary_10_1371_journal_pone_0293053
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11104643
proquest_miscellaneous_3057693029
proquest_journals_3069288511
gale_infotracmisc_A794526433
gale_infotracacademiconefile_A794526433
gale_incontextgauss_ISR_A794526433
gale_incontextgauss_IOV_A794526433
gale_healthsolutions_A794526433
pubmed_primary_38768123
crossref_primary_10_1371_journal_pone_0293053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-20
PublicationDateYYYYMMDD 2024-05-20
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References MD Greicius (pone.0293053.ref025) 2004; 101
DP Purohit (pone.0293053.ref008) 1998; 55
M Yu (pone.0293053.ref021) 2018; 39
M K (pone.0293053.ref030) 2020; 11
S Lang (pone.0293053.ref015) 2014; 74
Y Benjamini (pone.0293053.ref022) 1995; 57
A Mechelli (pone.0293053.ref013) 2019
pone.0293053.ref023
pone.0293053.ref002
TS Stroup (pone.0293053.ref007) 2021; 78
AR Ribe (pone.0293053.ref006) 2015; 72
C Davatzikos (pone.0293053.ref012) 2019; 197
D Jones (pone.0293053.ref024) 2011; 77
CI Cohen (pone.0293053.ref004) 2018; 5
Y Du (pone.0293053.ref019) 2020; 28
CA Tamminga (pone.0293053.ref018) 2013; 170
K Bradley (pone.0293053.ref027) 2002; 125
L Cai (pone.0293053.ref005) 2018; 14
P Kochunov (pone.0293053.ref009) 2021; 47
M Marcinkowska (pone.0293053.ref011) 2020; 34
E Kraepelin (pone.0293053.ref003) 1919
KE White (pone.0293053.ref010) 1996; 37
M Leming (pone.0293053.ref031) 2023; 18
ZS Khachaturian (pone.0293053.ref001) 1985; 42
L Zhang (pone.0293053.ref014) 2020; 14
JR Cohen (pone.0293053.ref020) 2016; 36
H Matsuda (pone.0293053.ref026) 2001; 15
VD Calhoun (pone.0293053.ref017) 2001; 14
K Supekar (pone.0293053.ref029) 2008; 4
M Grieder (pone.0293053.ref028) 2018; 12
MJ Jafri (pone.0293053.ref016) 2008; 39
References_xml – volume: 197
  start-page: 652
  year: 2019
  ident: pone.0293053.ref012
  article-title: Machine learning in neuroimaging: Progress and challenges
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.003
– ident: pone.0293053.ref023
  doi: 10.1109/ISBI52829.2022.9761466
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: pone.0293053.ref022
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal statistical society: series B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 47
  start-page: 197
  issue: 1
  year: 2021
  ident: pone.0293053.ref009
  article-title: A white matter connection of schizophrenia and Alzheimer’s disease
  publication-title: Schizophrenia bulletin
  doi: 10.1093/schbul/sbaa078
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: pone.0293053.ref030
  article-title: Training confounder-free deep learning models for medical applications
  publication-title: Nat Commun
– volume: 36
  start-page: 12083
  issue: 48
  year: 2016
  ident: pone.0293053.ref020
  article-title: The segregation and integration of distinct brain networks and their relationship to cognition
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2965-15.2016
– volume: 14
  start-page: 2047
  year: 2018
  ident: pone.0293053.ref005
  article-title: Schizophrenia and risk of dementia: a meta-analysis study
  publication-title: Neuropsychiatric disease and treatment
  doi: 10.2147/NDT.S172933
– volume: 39
  start-page: 4213
  issue: 11
  year: 2018
  ident: pone.0293053.ref021
  article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data
  publication-title: Human brain mapping
  doi: 10.1002/hbm.24241
– volume: 39
  start-page: 1666
  issue: 4
  year: 2008
  ident: pone.0293053.ref016
  article-title: A method for functional network connectivity among spatially independent resting-state components in schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.001
– volume: 78
  start-page: 632
  issue: 6
  year: 2021
  ident: pone.0293053.ref007
  article-title: Age-specific prevalence and incidence of dementia diagnoses among older US adults with schizophrenia
  publication-title: JAMA psychiatry
  doi: 10.1001/jamapsychiatry.2021.0042
– volume: 28
  start-page: 102375
  year: 2020
  ident: pone.0293053.ref019
  article-title: NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2020.102375
– volume: 77
  start-page: 1524
  issue: 16
  year: 2011
  ident: pone.0293053.ref024
  article-title: Age-related changes in the default mode network are more advanced in Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318233b33d
– volume-title: Machine learning: methods and applications to brain disorders
  year: 2019
  ident: pone.0293053.ref013
– start-page: 13
  year: 1919
  ident: pone.0293053.ref003
  article-title: Dementia praecox
  publication-title: Cutting and Shepherd
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  ident: pone.0293053.ref017
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Human brain mapping
  doi: 10.1002/hbm.1048
– volume: 14
  start-page: 779
  year: 2020
  ident: pone.0293053.ref014
  article-title: A survey on deep learning for neuroimaging-based brain disorder analysis
  publication-title: Frontiers in neuroscience
  doi: 10.3389/fnins.2020.00779
– volume: 170
  start-page: 1263
  issue: 11
  year: 2013
  ident: pone.0293053.ref018
  article-title: Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP)
  publication-title: American Journal of psychiatry
  doi: 10.1176/appi.ajp.2013.12101339
– volume: 15
  start-page: 85
  issue: 2
  year: 2001
  ident: pone.0293053.ref026
  article-title: Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease
  publication-title: Annals of nuclear medicine
  doi: 10.1007/BF02988596
– volume: 5
  start-page: 528
  issue: 7
  year: 2018
  ident: pone.0293053.ref004
  article-title: Very late-onset schizophrenia-like psychosis: positive findings but questions remain unanswered
  publication-title: The Lancet Psychiatry
  doi: 10.1016/S2215-0366(18)30174-3
– volume: 101
  start-page: 4637
  issue: 13
  year: 2004
  ident: pone.0293053.ref025
  article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0308627101
– volume: 37
  start-page: 188
  issue: 3
  year: 1996
  ident: pone.0293053.ref010
  article-title: Schizophrenia and Alzheimer’s disease: clinical and pathophysiologic analogies
  publication-title: Comprehensive psychiatry
  doi: 10.1016/S0010-440X(96)90035-8
– volume: 12
  start-page: 770
  year: 2018
  ident: pone.0293053.ref028
  article-title: Default mode network complexity and cognitive decline in mild Alzheimer’s disease
  publication-title: Frontiers in neuroscience
  doi: 10.3389/fnins.2018.00770
– ident: pone.0293053.ref002
– volume: 42
  start-page: 1097
  issue: 11
  year: 1985
  ident: pone.0293053.ref001
  article-title: Diagnosis of Alzheimer’s disease
  publication-title: Archives of neurology
  doi: 10.1001/archneur.1985.04060100083029
– volume: 18
  start-page: e0277572
  issue: 3
  year: 2023
  ident: pone.0293053.ref031
  article-title: Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham
  publication-title: Plos One
  doi: 10.1371/journal.pone.0277572
– volume: 74
  start-page: 453
  issue: 5
  year: 2014
  ident: pone.0293053.ref015
  article-title: Resting-state functional magnetic resonance imaging: review of neurosurgical applications
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0000000000000307
– volume: 4
  start-page: e1000100
  issue: 6
  year: 2008
  ident: pone.0293053.ref029
  article-title: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1000100
– volume: 72
  start-page: 1095
  issue: 11
  year: 2015
  ident: pone.0293053.ref006
  article-title: Long-term risk of dementia in persons with schizophrenia: a Danish population-based cohort study
  publication-title: JAMA psychiatry
  doi: 10.1001/jamapsychiatry.2015.1546
– volume: 34
  start-page: 243
  issue: 3
  year: 2020
  ident: pone.0293053.ref011
  article-title: Management of dementia-related psychosis, agitation and aggression: A review of the pharmacology and clinical effects of potential drug candidates
  publication-title: CNS drugs
  doi: 10.1007/s40263-020-00707-7
– volume: 55
  start-page: 205
  issue: 3
  year: 1998
  ident: pone.0293053.ref008
  article-title: Alzheimer disease and related neurodegenerative diseases in elderly patients with schizophrenia: a postmortem neuropathologic study of 100 cases
  publication-title: Archives of general psychiatry
  doi: 10.1001/archpsyc.55.3.205
– volume: 125
  start-page: 1772
  issue: 8
  year: 2002
  ident: pone.0293053.ref027
  article-title: Cerebral perfusion SPET correlated with Braak pathological stage in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awf185
SSID ssj0053866
Score 2.4578068
Snippet Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer’s disease (AD) and schizophrenia (SZ). While...
Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0293053
SubjectTerms Abnormalities
Advertising executives
Age
Aged
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - physiopathology
Alzheimer's disease
Biology and Life Sciences
Biomarkers
Brain - diagnostic imaging
Brain - physiopathology
Case-Control Studies
Cerebellum
Classification
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - physiopathology
Comparative analysis
Computer and Information Sciences
Confounding (Statistics)
Connectome - methods
Data mining
Datasets
Deep learning
Dementia
Development and progression
Diagnosis
Diagnostic imaging
Diseases
Disorders
Female
Functional magnetic resonance imaging
Gender
Genetic factors
Humans
Identification and classification
Learning algorithms
Machine Learning
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical research
Medicine and Health Sciences
Medicine, Experimental
Mental disorders
Middle Aged
Motor task performance
Nerve Net - diagnostic imaging
Nerve Net - physiopathology
Neural networks
Neurodegenerative diseases
Physiological aspects
Regression analysis
Research and Analysis Methods
Rest - physiology
Review boards
Schizophrenia
Schizophrenia - diagnostic imaging
Schizophrenia - physiopathology
Sensorimotor integration
Sensory integration
Social Sciences
Statistical analysis
Support vector machines
Variables
Visual observation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQX-AFMb7WbYBBSIOHdImTODFvBTENJEAChvYWOf7oJmVJ1bSa4L_iP-TOcaJGTGIPPLWqL03iO9_9zj7_TMhLzqVOYmWDEoJnkJRlFkjF0wCCHQf4muTK4nzHp8_85DT5eJaebR31hTVhHT1w13FHLNIyyrnMNY8TlknAVwmzNot0pHnGHTQKc9EnU50PhlHMud8oF2fRkdfLbNnUZhZChAvTeBSIHF__4JUny6ppr4Ocf1dO3t7US_nzSlbVVlg6vkfuejxJ59177JBbpr5PdvyIbekrTyv9-gH5PaeQ-1o8RsmsqC9Rr4yml66e0lB_gMSC9jzjb6ibmaLSE5fAF00Vwm2sL3IqpY2l7XbdnpOZV7_OzcWlWR221K8AUSywX1A8CQQ-A7ePiWJQ7eYiad2Vo-Nz1c4HQ3bwkJwev__-7iTwBzYECtKYdZAI8AYaMtJUc6aE0FmM4U9wpbiJhY1YxqRMjQ1jyaVCoiCei5xpCyANaX4ekUkNKtoltMyYESnLtRGQglqNPGQikpDOprEN83JKgl57xbLj5Sjc4lwG-UzX9QVqu_DanpK3qOJBFlm13Q9ga4W3teJftjYlz9BAim6L6uAbijk4tRSQZQy3eeEkkFmjxtKdhdy0bfHhy48bCH37OhI69EK2AVNT0m-XgHdCxq6R5MFIEvyDGjXvojn3vdIWkCQKliPShit7E7---fnQjH-K5Xi1aTYok7ozNJmYksfdiBh6Nob4CqgR7puPxsqo68ct9cW5IzaHuIsr7XDpbBhWN9Lu3v_Q7j65wwCxYmkICw_IZL3amCeAONflU-dc_gAPboFY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbtMwFLZGdwE3E-NvhQEGIQEX6RIncRIkhDq0aSBR0GBod5Hjn25Sl5SmFYIrXoPn4I14Es5xnLCICe2qVX3SJD7_9vF3CHnCuVBRKI1XgPP0oqJIPCF57IGz4xC-Rqk0uN7xbsIPjqK3x_HxGpm0Z2GwrLK1idZQq0riGvkOhLYZSzE-eDX_4mHXKNxdbVtoCNdaQb20EGNXyDpDZKwBWd_dm3w4bG0zaDfn7gBdmAQ7jl-jeVXqkQ-ez4_DnoOyOP6dtR7MZ1V9USj6b0Xl1VU5F9--itnsnLvav042XJxJx41gbJI1Xd4gm06Ta_rMwU0_v0l-jSnkxAbbK-kFdaXrM63oma2z1NQ1lpjSFn_8BbUrVlQ4QBP4oqjEMBzrjiyraWVofb6ez9KMZ99P9OmZXvz-8bOmbm-IYun9lGKPEPj07Akniu62WaWkZVOojk9WWusMecMtcrS_9-n1gedaOXgSEpylF2VgJxTkqrHiTGaZSkJ0jBmXkuswMwFLmBCxNn4ouJAIIcTTLGXKQPiGAEC3yaAEJm0RWiRMZzFLlc4gOTUKEcqyQECiG4fGT4sh8Vr-5fMGsSO323YJZDrN5OfI79zxe0h2kckdLeJt2x-qxTR36puzQIkg5SJVPIxYIiDKj5gxSaACxRMuhuQhikjeHF7trEY-BnMXQ8wZwm0eWwrE3CixqGcqVnWdv3n_-RJEHw97RE8dkalA2KRwByngnRDLq0e53aMEyyF7w1so0O2s1PlfHYMrWyG_ePhRN4x_ioV6pa5WSBPb7posG5I7jU50MxuC54V4Eu6b9rSlN_X9kfL0xEKeg0fGPXi4dNQp1qW4e_f_L3KPXGMQpWI5CPO3yWC5WOn7EGUuiwfOdPwBLLCBfw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLZGdwE3wPhbYYBBSIBEQuMkTsJdQUwDaQMBRdtV5Pinm-jSqmmF2BWvwXPwRjwJ5zhO1MCQylWr-riJj8-vffyZkEecCxWF0ngFOE8vKorEE5LHHjg7DuFrlEqD6x37B3xvFL09jA83yLPmLMzq_n2YBM8dR_3ZtNT-AHwTCM0FssljiLx7ZHN08H54VG8cM4-zQehOx_2ra8f7WJD-1hT3ZpNpdV6c-Xe55MVlORPfvorJZMUX7V4h-80o6hKUL_5yUfjy7A-Ax3WHeZVcdkEpHdZStEU2dHmNbDm1r-gTh0399Dr5OaSQQBu8i0nPqatzn2hFT21RpqbuFooxbcDKX1C7vEWFQz-BL4pKjNmxSMnKBZ0aWq0W_1ma4eTsWJ-c6vmv7z8q6jaSKNbpjyleKAKfnj0ORdE310uatKyr2vHNSmvKIcm4QUa7rz-92vPcvQ-ehGxo4UUZGBUFiW2sOJNZppIQvWjGpeQ6zEzAEiZErM0gFFxIxBviaZYyZSDWQ7Sgm6RXAiO3CS0SprOYpUpnkMkahXBmWSAgK45DM0iLPvEaechnNbxHbvf4EkiLaubnOCe5m5M-eYlC09IiOLf9ASYzd7qes0CJIOUiVTyMWCIgJYiYMUmgAsUTLvrkPopcXp90bU1MPgTbGEOAGsJjHloKBOgosQJoLJZVlb9593kNoo8fOkSPHZGZgvBK4U5dwJgQ-KtDudOhBDMjO83bqCANV6occs2MpRiwQ89Gac5vftA2459iVV-pp0ukie1VnCzrk1u1jrWcDcFNQ_AJz0072tdhfbelPDm2-OjgvnHDHrr6raKuNbu3_7fDHXKJQZCL1SRssEN6i_lS34UgdVHcc7bpN6BOk-s
  priority: 102
  providerName: Unpaywall
Title A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity
URI https://www.ncbi.nlm.nih.gov/pubmed/38768123
https://www.proquest.com/docview/3069288511
https://www.proquest.com/docview/3057693029
https://pubmed.ncbi.nlm.nih.gov/PMC11104643
https://doi.org/10.1371/journal.pone.0293053
https://doaj.org/article/21da186a8d63427a81d42ff71d1d676a
http://dx.doi.org/10.1371/journal.pone.0293053
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw0Nq6B3hBjK8VRjEIafCQqnESJ0ZCqJtWBtLKNCgqT5ETO92kLilNKxj_in_IneNEixhoL2kVn5P2vs8-3xHyknOpfC_NnASMp-MnSejIlAcOGDsO7qsfpRmudxyP-dHE_zgNphuk7tlqEVheG9phP6nJct7_-f3yHQj8W9O1IXTrSf1Fkev-AOwXMNYm2QJbJbCZw7Hf7CuAdJvdS_RaHM4Gnj1M96-ntIyVqenfaO7OYl6U17mlf2dX3lrnC3n5Q87nV0zX6C65Y31OOqyYZJts6Pwe2bZSXdJXtvT06_vk95BCfJxhqyW9pDaNfa4VvTA5l5raJhMzWtcif0PN6hWVtrgJfFE0RZccc5AM2WmR0fJqbp-BGc5_nenzC73cK6ndJaKYhD-j2C0EPh1z1omi4a3WK2lepazj78qNnoYI4gGZjA6_HBw5tqmDk0Kos3J8ARpDQdQaKM5SIVTooYkUPE259kTmspBJGehs4EkuUywmxCMRMZWBI4elgB6STg4k2iE0CZkWAYuUFhCmZgprlQlXQsgbeNkgSrrEqakXL6raHbHZwAsh5qlQHyO1Y0vtLtlHEjewWHnb3CiWs9gKcsxcJd2Iy0hxz2ehBH_fZ1kWuspVPOSyS54hg8TVMdZGf8RDUHwBeJ8evOaFgcDqGzmm98zkuizjD5--3gDo82kLaM8CZQWwWirtkQr4T1jVqwW524IEHZK2hneQnWuslDEEkoJF6I3DzJrFrx9-3gzjQzFlL9fFGmEC02eTiS55VElEg1kPbDB4lvDeqCUrLdS3R_LzM1P8HGwz7sbD1H4jVjei7uP_o-AJuc3AX8XEEDbYJZ3Vcq2fgr-5SnpkM5yGcI0OXLyO3vfI1v7h-OS0Z1ZwekbFwL3J-GT47Q8m54da
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHk1UOiCQMDBaby21zYSQuFRJfSBBG2Vm9nsrtNKqR3iRFU58Tf4E1z4R_wSZtZrU4sK9dJTouzYjndmv5nZnQchTzgXyvdk6oxAeTr-aBQ6QvLAAWXHwXz1I5nifsfOLu_v-x-GwXCJ_KxyYTCsssJEA9Qql7hHvgGmbcwitA9eT7862DUKT1erFhqlWGzp0xNw2YpXg3fA36eMbb7fe9t3bFcBR4KtPXf8GERWgdsUKM5kHKvQQ4yOuZRce3HqspAJEei06wkuJFaz4VEcMZWCJYG1aOC-V8hV3wMsgfUTDmsHD7CDc5ue54XuhpWGzjTPdKcLerUbeA31Z7oE1LqgNZ3kxXmG7r_xmsuLbCpOT8RkckYZbt4g160VS3ul2K2QJZ3dJCsWJwr63BazfnGL_OpR8LhTbN6kZ9QGxk-0oscmilNT27ZiTKvq5i-p2Q-jwpZLgS-KSjTyMarJCBLNU1qcjRY0NL3Jt0N9dKxnv7__KKg9eaIY2D-m2IEEPh2TP0VRmZd7oDQrw-Dxn2UG-8EruU32L4Wld0grAyatEjoKmY4DFikdg-ubKqx_FrsC3OjAS7vRqE2cin_JtKwHkphDwRD8qHLyE-R3YvndJm-QyTUtVvM2P-SzcWLBIWGuEm7ERaS457NQgA_hszQNXeUqHnLRJusoIkmZGltjUtIDMA3AovXgMY8NBVb0yDBkaCwWRZEMPh5cgOjzpwbRM0uU5iBsUtg0DXgnrBTWoFxrUAIuycbwKgp0NStF8ncFw5WVkJ8__KgexptiGGCm8wXSBKZ3J4vb5G65JuqZ9UCvg7UKz40aq6Ux9c2R7OjQFFQHfY8n_HBpp15YF-Luvf-_yDpZ7u_tbCfbg92t--QaA3sYA09Yd4205rOFfgD27Hz00IAIJV8uG7X-ADEOtTI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGkYAXxPi3wmAGgYCHtI2TOAkSQoVRrQwGAob6FtzY7iZ1SWlaTeOJr8Hn4I2PwyfhznHCIia0lz21qi9J4zvf_c6-P4Q84FxI30u1Mwbj6fjjceiIlAcOGDsO8NWPUo37HW93-Nau_3oUjFbIryoXBsMqK51oFLXMU9wj7wK0jVmE-KCrbVjE-83B89lXBztI4Ulr1U6jFJFtdXQI7lvxbLgJvH7I2ODVp5dbju0w4KSAuxeOH4P4SnChAslZGscy9FBfxzxNufJi7bKQCREo3fMEFylWtuFRHDGpAVVgXRq47zlyPvS8GMMJw1Ht7IEe4dym6nmh27WS0Znlmer0wMb2Aq9hCk3HgNoutGbTvDgJ9P4bu3lxmc3E0aGYTo8ZxsEVctkiWtovRXCVrKjsKlm1OqOgj21h6yfXyM8-Be9bYyMnNac2SH6qJD0wEZ2K2hYWE1pVOn9Kzd4YFbZ0CnyRNEXAjxFORqhormlxPHLQ0PSn3_bU_oGa__7-o6D2FIpikP-EYjcS-HRMLhVFw17uh9KsDInHf5YZOwAeynWyeyYsvUFaGTBpjdBxyFQcsEiqGNxgLbEWWuwKcKkDT_eicZs4Ff-SWVkbJDEHhCH4VOXkJ8jvxPK7TV4gk2tarOxtfsjnk8QqioS5UrgRF5Hkns9CAf6Ez7QOXelKHnLRJhsoIkmZJlvrp6QPijUAdOvBY-4bCqzukeE6mYhlUSTDd59PQfTxQ4PokSXSOQhbKmzKBrwTVg1rUK43KEFHpY3hNRToalaK5O9qhisrIT95-F49jDfFkMBM5UukCUwfTxa3yc1yTdQz64GNB-QKz40aq6Ux9c2RbH_PFFcH24-n_XBpp15Yp-Lurf-_yAa5APoqeTPc2b5NLjGAxhiDwnrrpLWYL9UdgLaL8V2jQyj5ctZK6w_tg7l1
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLZGdwE3wPhbYYBBSIBEQuMkTsJdQUwDaQMBRdtV5Pinm-jSqmmF2BWvwXPwRjwJ5zhO1MCQylWr-riJj8-vffyZkEecCxWF0ngFOE8vKorEE5LHHjg7DuFrlEqD6x37B3xvFL09jA83yLPmLMzq_n2YBM8dR_3ZtNT-AHwTCM0FssljiLx7ZHN08H54VG8cM4-zQehOx_2ra8f7WJD-1hT3ZpNpdV6c-Xe55MVlORPfvorJZMUX7V4h-80o6hKUL_5yUfjy7A-Ax3WHeZVcdkEpHdZStEU2dHmNbDm1r-gTh0399Dr5OaSQQBu8i0nPqatzn2hFT21RpqbuFooxbcDKX1C7vEWFQz-BL4pKjNmxSMnKBZ0aWq0W_1ma4eTsWJ-c6vmv7z8q6jaSKNbpjyleKAKfnj0ORdE310uatKyr2vHNSmvKIcm4QUa7rz-92vPcvQ-ehGxo4UUZGBUFiW2sOJNZppIQvWjGpeQ6zEzAEiZErM0gFFxIxBviaZYyZSDWQ7Sgm6RXAiO3CS0SprOYpUpnkMkahXBmWSAgK45DM0iLPvEaechnNbxHbvf4EkiLaubnOCe5m5M-eYlC09IiOLf9ASYzd7qes0CJIOUiVTyMWCIgJYiYMUmgAsUTLvrkPopcXp90bU1MPgTbGEOAGsJjHloKBOgosQJoLJZVlb9593kNoo8fOkSPHZGZgvBK4U5dwJgQ-KtDudOhBDMjO83bqCANV6occs2MpRiwQ89Gac5vftA2459iVV-pp0ukie1VnCzrk1u1jrWcDcFNQ_AJz0072tdhfbelPDm2-OjgvnHDHrr6raKuNbu3_7fDHXKJQZCL1SRssEN6i_lS34UgdVHcc7bpN6BOk-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+confounder+controlled+machine+learning+approach%3A+Group+analysis+and+classification+of+schizophrenia+and+Alzheimer%27s+disease+using+resting-state+functional+network+connectivity&rft.jtitle=PloS+one&rft.au=Hassanzadeh%2C+Reihaneh&rft.au=Abrol%2C+Anees&rft.au=Pearlson%2C+Godfrey&rft.au=Turner%2C+Jessica+A&rft.date=2024-05-20&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=5&rft.spage=e0293053&rft_id=info:doi/10.1371%2Fjournal.pone.0293053&rft.externalDocID=A794526433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon