A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity
Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer’s disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ p...
Saved in:
| Published in | PloS one Vol. 19; no. 5; p. e0293053 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
20.05.2024
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0293053 |
Cover
| Abstract | Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer’s disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient’s age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders’ development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females. |
|---|---|
| AbstractList | Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females. Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females.Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females. |
| Audience | Academic |
| Author | Hassanzadeh, Reihaneh Calhoun, Vince D. Abrol, Anees Pearlson, Godfrey Turner, Jessica A. |
| AuthorAffiliation | Medical University of Vienna: Medizinische Universitat Wien, AUSTRIA 3 Department of Psychiatry & Neuroscience, Yale University School of Medicine, New Haven, CT, United States of America 4 Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, United States of America 1 Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America 2 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America |
| AuthorAffiliation_xml | – name: 1 Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America – name: Medical University of Vienna: Medizinische Universitat Wien, AUSTRIA – name: 4 Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, United States of America – name: 2 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America – name: 3 Department of Psychiatry & Neuroscience, Yale University School of Medicine, New Haven, CT, United States of America |
| Author_xml | – sequence: 1 givenname: Reihaneh orcidid: 0000-0001-8022-8619 surname: Hassanzadeh fullname: Hassanzadeh, Reihaneh – sequence: 2 givenname: Anees surname: Abrol fullname: Abrol, Anees – sequence: 3 givenname: Godfrey surname: Pearlson fullname: Pearlson, Godfrey – sequence: 4 givenname: Jessica A. surname: Turner fullname: Turner, Jessica A. – sequence: 5 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38768123$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk89u1DAQxiNURGnhDRBEQkJw2CW2E8fhglYVlEqVKvHvag32ZNfFawc7admeeA2egzfiSXC626qLeqhysDX-zTfj-Zy9bMd5h1n2hBRTwmry-tQPwYGddik8LWjDiordyx6ShtEJpwXbubHfzfZiPC0SITh_kO0yUXNBKHuY_ZnlyrvWD05jGLd98NaizpegFsZhbhGCM26eQ9cFn4Jv8sPghy6HVHwVTUwbnSsLMZrWKOiNd7lv85jSL3y3COgMXDIze7FAs8Tw99fvmGsTESLmQxzFA8Y-rZPYQ495Ozg16oDNHfbnPnwfO3OYgmemXz3K7rdgIz7erPvZl_fvPh98mByfHB4dzI4nipe0n5SNEIUuC1ppTlXT6JoRKsqGK8WRNS2hNQWosC0YcFBNzSgXjaC6bWhTFiXbz56tdTvro9zMO0pW8IYKURGSiKM1oT2cyi6YJYSV9GDkZcCHuYTQG2VRUqKBCA5Cc1bSGgTRJW3bmmiiec0haVVrrcF1sDoHa68FSSFHy69akKPlcmN5ynu76XL4tkStMFkIdquZ7RNnFnLuzyQhpCh5OSq83CgE_2NITsiliQqtBYd-GC9c1TwVSwX3s-f_obePZUPNId3cpOeVCqtRVM7qpqzoWDVR01uo9GlcmuQ3tibFtxJebSWMrxV_9nMYYpRHnz7enT35us2-uMEuEGy_iN4O4xOM2-DTm6O-nvHV75SAcg2o4GMM2N7Nwn-J4je8 |
| Cites_doi | 10.1016/j.neuroimage.2018.10.003 10.1109/ISBI52829.2022.9761466 10.1111/j.2517-6161.1995.tb02031.x 10.1093/schbul/sbaa078 10.1523/JNEUROSCI.2965-15.2016 10.2147/NDT.S172933 10.1002/hbm.24241 10.1016/j.neuroimage.2007.11.001 10.1001/jamapsychiatry.2021.0042 10.1016/j.nicl.2020.102375 10.1212/WNL.0b013e318233b33d 10.1002/hbm.1048 10.3389/fnins.2020.00779 10.1176/appi.ajp.2013.12101339 10.1007/BF02988596 10.1016/S2215-0366(18)30174-3 10.1073/pnas.0308627101 10.1016/S0010-440X(96)90035-8 10.3389/fnins.2018.00770 10.1001/archneur.1985.04060100083029 10.1371/journal.pone.0277572 10.1227/NEU.0000000000000307 10.1371/journal.pcbi.1000100 10.1001/jamapsychiatry.2015.1546 10.1007/s40263-020-00707-7 10.1001/archpsyc.55.3.205 10.1093/brain/awf185 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Hassanzadeh et al 2024 Hassanzadeh et al 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Hassanzadeh et al 2024 Hassanzadeh et al – notice: 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0293053 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Group analysis and classification of schizophrenia and Alzheimer’s disease using rs-FNC |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3069288511 oai_doaj_org_article_21da186a8d63427a81d42ff71d1d676a 10.1371/journal.pone.0293053 PMC11104643 A794526433 38768123 10_1371_journal_pone_0293053 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: ; grantid: R01MH118695 – fundername: ; grantid: 2112455 – fundername: ; grantid: R01AG073949 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c642t-49880d4025d62c99d73128496cc6e39f1272aa5ef03a6ac973268982df9294043 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:18:19 EDT 2025 Tue Oct 14 19:03:03 EDT 2025 Sun Oct 26 04:17:01 EDT 2025 Tue Sep 30 17:09:03 EDT 2025 Fri Sep 05 06:29:16 EDT 2025 Tue Oct 07 07:52:03 EDT 2025 Mon Oct 20 22:53:22 EDT 2025 Mon Oct 20 16:58:41 EDT 2025 Thu Oct 16 16:07:08 EDT 2025 Thu Oct 16 16:11:44 EDT 2025 Thu May 22 21:24:02 EDT 2025 Wed Feb 19 02:08:07 EST 2025 Wed Oct 01 04:43:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright: © 2024 Hassanzadeh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-49880d4025d62c99d73128496cc6e39f1272aa5ef03a6ac973268982df9294043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: No authors have competing interests. |
| ORCID | 0000-0001-8022-8619 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0293053 |
| PMID | 38768123 |
| PQID | 3069288511 |
| PQPubID | 1436336 |
| PageCount | e0293053 |
| ParticipantIDs | plos_journals_3069288511 doaj_primary_oai_doaj_org_article_21da186a8d63427a81d42ff71d1d676a unpaywall_primary_10_1371_journal_pone_0293053 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11104643 proquest_miscellaneous_3057693029 proquest_journals_3069288511 gale_infotracmisc_A794526433 gale_infotracacademiconefile_A794526433 gale_incontextgauss_ISR_A794526433 gale_incontextgauss_IOV_A794526433 gale_healthsolutions_A794526433 pubmed_primary_38768123 crossref_primary_10_1371_journal_pone_0293053 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-20 |
| PublicationDateYYYYMMDD | 2024-05-20 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | MD Greicius (pone.0293053.ref025) 2004; 101 DP Purohit (pone.0293053.ref008) 1998; 55 M Yu (pone.0293053.ref021) 2018; 39 M K (pone.0293053.ref030) 2020; 11 S Lang (pone.0293053.ref015) 2014; 74 Y Benjamini (pone.0293053.ref022) 1995; 57 A Mechelli (pone.0293053.ref013) 2019 pone.0293053.ref023 pone.0293053.ref002 TS Stroup (pone.0293053.ref007) 2021; 78 AR Ribe (pone.0293053.ref006) 2015; 72 C Davatzikos (pone.0293053.ref012) 2019; 197 D Jones (pone.0293053.ref024) 2011; 77 CI Cohen (pone.0293053.ref004) 2018; 5 Y Du (pone.0293053.ref019) 2020; 28 CA Tamminga (pone.0293053.ref018) 2013; 170 K Bradley (pone.0293053.ref027) 2002; 125 L Cai (pone.0293053.ref005) 2018; 14 P Kochunov (pone.0293053.ref009) 2021; 47 M Marcinkowska (pone.0293053.ref011) 2020; 34 E Kraepelin (pone.0293053.ref003) 1919 KE White (pone.0293053.ref010) 1996; 37 M Leming (pone.0293053.ref031) 2023; 18 ZS Khachaturian (pone.0293053.ref001) 1985; 42 L Zhang (pone.0293053.ref014) 2020; 14 JR Cohen (pone.0293053.ref020) 2016; 36 H Matsuda (pone.0293053.ref026) 2001; 15 VD Calhoun (pone.0293053.ref017) 2001; 14 K Supekar (pone.0293053.ref029) 2008; 4 M Grieder (pone.0293053.ref028) 2018; 12 MJ Jafri (pone.0293053.ref016) 2008; 39 |
| References_xml | – volume: 197 start-page: 652 year: 2019 ident: pone.0293053.ref012 article-title: Machine learning in neuroimaging: Progress and challenges publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.003 – ident: pone.0293053.ref023 doi: 10.1109/ISBI52829.2022.9761466 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: pone.0293053.ref022 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal statistical society: series B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 47 start-page: 197 issue: 1 year: 2021 ident: pone.0293053.ref009 article-title: A white matter connection of schizophrenia and Alzheimer’s disease publication-title: Schizophrenia bulletin doi: 10.1093/schbul/sbaa078 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: pone.0293053.ref030 article-title: Training confounder-free deep learning models for medical applications publication-title: Nat Commun – volume: 36 start-page: 12083 issue: 48 year: 2016 ident: pone.0293053.ref020 article-title: The segregation and integration of distinct brain networks and their relationship to cognition publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2965-15.2016 – volume: 14 start-page: 2047 year: 2018 ident: pone.0293053.ref005 article-title: Schizophrenia and risk of dementia: a meta-analysis study publication-title: Neuropsychiatric disease and treatment doi: 10.2147/NDT.S172933 – volume: 39 start-page: 4213 issue: 11 year: 2018 ident: pone.0293053.ref021 article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data publication-title: Human brain mapping doi: 10.1002/hbm.24241 – volume: 39 start-page: 1666 issue: 4 year: 2008 ident: pone.0293053.ref016 article-title: A method for functional network connectivity among spatially independent resting-state components in schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.001 – volume: 78 start-page: 632 issue: 6 year: 2021 ident: pone.0293053.ref007 article-title: Age-specific prevalence and incidence of dementia diagnoses among older US adults with schizophrenia publication-title: JAMA psychiatry doi: 10.1001/jamapsychiatry.2021.0042 – volume: 28 start-page: 102375 year: 2020 ident: pone.0293053.ref019 article-title: NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2020.102375 – volume: 77 start-page: 1524 issue: 16 year: 2011 ident: pone.0293053.ref024 article-title: Age-related changes in the default mode network are more advanced in Alzheimer disease publication-title: Neurology doi: 10.1212/WNL.0b013e318233b33d – volume-title: Machine learning: methods and applications to brain disorders year: 2019 ident: pone.0293053.ref013 – start-page: 13 year: 1919 ident: pone.0293053.ref003 article-title: Dementia praecox publication-title: Cutting and Shepherd – volume: 14 start-page: 140 issue: 3 year: 2001 ident: pone.0293053.ref017 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Human brain mapping doi: 10.1002/hbm.1048 – volume: 14 start-page: 779 year: 2020 ident: pone.0293053.ref014 article-title: A survey on deep learning for neuroimaging-based brain disorder analysis publication-title: Frontiers in neuroscience doi: 10.3389/fnins.2020.00779 – volume: 170 start-page: 1263 issue: 11 year: 2013 ident: pone.0293053.ref018 article-title: Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) publication-title: American Journal of psychiatry doi: 10.1176/appi.ajp.2013.12101339 – volume: 15 start-page: 85 issue: 2 year: 2001 ident: pone.0293053.ref026 article-title: Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease publication-title: Annals of nuclear medicine doi: 10.1007/BF02988596 – volume: 5 start-page: 528 issue: 7 year: 2018 ident: pone.0293053.ref004 article-title: Very late-onset schizophrenia-like psychosis: positive findings but questions remain unanswered publication-title: The Lancet Psychiatry doi: 10.1016/S2215-0366(18)30174-3 – volume: 101 start-page: 4637 issue: 13 year: 2004 ident: pone.0293053.ref025 article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0308627101 – volume: 37 start-page: 188 issue: 3 year: 1996 ident: pone.0293053.ref010 article-title: Schizophrenia and Alzheimer’s disease: clinical and pathophysiologic analogies publication-title: Comprehensive psychiatry doi: 10.1016/S0010-440X(96)90035-8 – volume: 12 start-page: 770 year: 2018 ident: pone.0293053.ref028 article-title: Default mode network complexity and cognitive decline in mild Alzheimer’s disease publication-title: Frontiers in neuroscience doi: 10.3389/fnins.2018.00770 – ident: pone.0293053.ref002 – volume: 42 start-page: 1097 issue: 11 year: 1985 ident: pone.0293053.ref001 article-title: Diagnosis of Alzheimer’s disease publication-title: Archives of neurology doi: 10.1001/archneur.1985.04060100083029 – volume: 18 start-page: e0277572 issue: 3 year: 2023 ident: pone.0293053.ref031 article-title: Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham publication-title: Plos One doi: 10.1371/journal.pone.0277572 – volume: 74 start-page: 453 issue: 5 year: 2014 ident: pone.0293053.ref015 article-title: Resting-state functional magnetic resonance imaging: review of neurosurgical applications publication-title: Neurosurgery doi: 10.1227/NEU.0000000000000307 – volume: 4 start-page: e1000100 issue: 6 year: 2008 ident: pone.0293053.ref029 article-title: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1000100 – volume: 72 start-page: 1095 issue: 11 year: 2015 ident: pone.0293053.ref006 article-title: Long-term risk of dementia in persons with schizophrenia: a Danish population-based cohort study publication-title: JAMA psychiatry doi: 10.1001/jamapsychiatry.2015.1546 – volume: 34 start-page: 243 issue: 3 year: 2020 ident: pone.0293053.ref011 article-title: Management of dementia-related psychosis, agitation and aggression: A review of the pharmacology and clinical effects of potential drug candidates publication-title: CNS drugs doi: 10.1007/s40263-020-00707-7 – volume: 55 start-page: 205 issue: 3 year: 1998 ident: pone.0293053.ref008 article-title: Alzheimer disease and related neurodegenerative diseases in elderly patients with schizophrenia: a postmortem neuropathologic study of 100 cases publication-title: Archives of general psychiatry doi: 10.1001/archpsyc.55.3.205 – volume: 125 start-page: 1772 issue: 8 year: 2002 ident: pone.0293053.ref027 article-title: Cerebral perfusion SPET correlated with Braak pathological stage in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awf185 |
| SSID | ssj0053866 |
| Score | 2.4578068 |
| Snippet | Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer’s disease (AD) and schizophrenia (SZ). While... Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0293053 |
| SubjectTerms | Abnormalities Advertising executives Age Aged Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - physiopathology Alzheimer's disease Biology and Life Sciences Biomarkers Brain - diagnostic imaging Brain - physiopathology Case-Control Studies Cerebellum Classification Cognitive ability Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - physiopathology Comparative analysis Computer and Information Sciences Confounding (Statistics) Connectome - methods Data mining Datasets Deep learning Dementia Development and progression Diagnosis Diagnostic imaging Diseases Disorders Female Functional magnetic resonance imaging Gender Genetic factors Humans Identification and classification Learning algorithms Machine Learning Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical research Medicine and Health Sciences Medicine, Experimental Mental disorders Middle Aged Motor task performance Nerve Net - diagnostic imaging Nerve Net - physiopathology Neural networks Neurodegenerative diseases Physiological aspects Regression analysis Research and Analysis Methods Rest - physiology Review boards Schizophrenia Schizophrenia - diagnostic imaging Schizophrenia - physiopathology Sensorimotor integration Sensory integration Social Sciences Statistical analysis Support vector machines Variables Visual observation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQX-AFMb7WbYBBSIOHdImTODFvBTENJEAChvYWOf7oJmVJ1bSa4L_iP-TOcaJGTGIPPLWqL03iO9_9zj7_TMhLzqVOYmWDEoJnkJRlFkjF0wCCHQf4muTK4nzHp8_85DT5eJaebR31hTVhHT1w13FHLNIyyrnMNY8TlknAVwmzNot0pHnGHTQKc9EnU50PhlHMud8oF2fRkdfLbNnUZhZChAvTeBSIHF__4JUny6ppr4Ocf1dO3t7US_nzSlbVVlg6vkfuejxJ59177JBbpr5PdvyIbekrTyv9-gH5PaeQ-1o8RsmsqC9Rr4yml66e0lB_gMSC9jzjb6ibmaLSE5fAF00Vwm2sL3IqpY2l7XbdnpOZV7_OzcWlWR221K8AUSywX1A8CQQ-A7ePiWJQ7eYiad2Vo-Nz1c4HQ3bwkJwev__-7iTwBzYECtKYdZAI8AYaMtJUc6aE0FmM4U9wpbiJhY1YxqRMjQ1jyaVCoiCei5xpCyANaX4ekUkNKtoltMyYESnLtRGQglqNPGQikpDOprEN83JKgl57xbLj5Sjc4lwG-UzX9QVqu_DanpK3qOJBFlm13Q9ga4W3teJftjYlz9BAim6L6uAbijk4tRSQZQy3eeEkkFmjxtKdhdy0bfHhy48bCH37OhI69EK2AVNT0m-XgHdCxq6R5MFIEvyDGjXvojn3vdIWkCQKliPShit7E7---fnQjH-K5Xi1aTYok7ozNJmYksfdiBh6Nob4CqgR7puPxsqo68ct9cW5IzaHuIsr7XDpbBhWN9Lu3v_Q7j65wwCxYmkICw_IZL3amCeAONflU-dc_gAPboFY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbtMwFLZGdwE3E-NvhQEGIQEX6RIncRIkhDq0aSBR0GBod5Hjn25Sl5SmFYIrXoPn4I14Es5xnLCICe2qVX3SJD7_9vF3CHnCuVBRKI1XgPP0oqJIPCF57IGz4xC-Rqk0uN7xbsIPjqK3x_HxGpm0Z2GwrLK1idZQq0riGvkOhLYZSzE-eDX_4mHXKNxdbVtoCNdaQb20EGNXyDpDZKwBWd_dm3w4bG0zaDfn7gBdmAQ7jl-jeVXqkQ-ez4_DnoOyOP6dtR7MZ1V9USj6b0Xl1VU5F9--itnsnLvav042XJxJx41gbJI1Xd4gm06Ta_rMwU0_v0l-jSnkxAbbK-kFdaXrM63oma2z1NQ1lpjSFn_8BbUrVlQ4QBP4oqjEMBzrjiyraWVofb6ez9KMZ99P9OmZXvz-8bOmbm-IYun9lGKPEPj07Akniu62WaWkZVOojk9WWusMecMtcrS_9-n1gedaOXgSEpylF2VgJxTkqrHiTGaZSkJ0jBmXkuswMwFLmBCxNn4ouJAIIcTTLGXKQPiGAEC3yaAEJm0RWiRMZzFLlc4gOTUKEcqyQECiG4fGT4sh8Vr-5fMGsSO323YJZDrN5OfI79zxe0h2kckdLeJt2x-qxTR36puzQIkg5SJVPIxYIiDKj5gxSaACxRMuhuQhikjeHF7trEY-BnMXQ8wZwm0eWwrE3CixqGcqVnWdv3n_-RJEHw97RE8dkalA2KRwByngnRDLq0e53aMEyyF7w1so0O2s1PlfHYMrWyG_ePhRN4x_ioV6pa5WSBPb7posG5I7jU50MxuC54V4Eu6b9rSlN_X9kfL0xEKeg0fGPXi4dNQp1qW4e_f_L3KPXGMQpWI5CPO3yWC5WOn7EGUuiwfOdPwBLLCBfw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLZGdwE3wPhbYYBBSIBEQuMkTsJdQUwDaQMBRdtV5Pinm-jSqmmF2BWvwXPwRjwJ5zhO1MCQylWr-riJj8-vffyZkEecCxWF0ngFOE8vKorEE5LHHjg7DuFrlEqD6x37B3xvFL09jA83yLPmLMzq_n2YBM8dR_3ZtNT-AHwTCM0FssljiLx7ZHN08H54VG8cM4-zQehOx_2ra8f7WJD-1hT3ZpNpdV6c-Xe55MVlORPfvorJZMUX7V4h-80o6hKUL_5yUfjy7A-Ax3WHeZVcdkEpHdZStEU2dHmNbDm1r-gTh0399Dr5OaSQQBu8i0nPqatzn2hFT21RpqbuFooxbcDKX1C7vEWFQz-BL4pKjNmxSMnKBZ0aWq0W_1ma4eTsWJ-c6vmv7z8q6jaSKNbpjyleKAKfnj0ORdE310uatKyr2vHNSmvKIcm4QUa7rz-92vPcvQ-ehGxo4UUZGBUFiW2sOJNZppIQvWjGpeQ6zEzAEiZErM0gFFxIxBviaZYyZSDWQ7Sgm6RXAiO3CS0SprOYpUpnkMkahXBmWSAgK45DM0iLPvEaechnNbxHbvf4EkiLaubnOCe5m5M-eYlC09IiOLf9ASYzd7qes0CJIOUiVTyMWCIgJYiYMUmgAsUTLvrkPopcXp90bU1MPgTbGEOAGsJjHloKBOgosQJoLJZVlb9593kNoo8fOkSPHZGZgvBK4U5dwJgQ-KtDudOhBDMjO83bqCANV6occs2MpRiwQ89Gac5vftA2459iVV-pp0ukie1VnCzrk1u1jrWcDcFNQ_AJz0072tdhfbelPDm2-OjgvnHDHrr6raKuNbu3_7fDHXKJQZCL1SRssEN6i_lS34UgdVHcc7bpN6BOk-s priority: 102 providerName: Unpaywall |
| Title | A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38768123 https://www.proquest.com/docview/3069288511 https://www.proquest.com/docview/3057693029 https://pubmed.ncbi.nlm.nih.gov/PMC11104643 https://doi.org/10.1371/journal.pone.0293053 https://doaj.org/article/21da186a8d63427a81d42ff71d1d676a http://dx.doi.org/10.1371/journal.pone.0293053 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw0Nq6B3hBjK8VRjEIafCQqnESJ0ZCqJtWBtLKNCgqT5ETO92kLilNKxj_in_IneNEixhoL2kVn5P2vs8-3xHyknOpfC_NnASMp-MnSejIlAcOGDsO7qsfpRmudxyP-dHE_zgNphuk7tlqEVheG9phP6nJct7_-f3yHQj8W9O1IXTrSf1Fkev-AOwXMNYm2QJbJbCZw7Hf7CuAdJvdS_RaHM4Gnj1M96-ntIyVqenfaO7OYl6U17mlf2dX3lrnC3n5Q87nV0zX6C65Y31OOqyYZJts6Pwe2bZSXdJXtvT06_vk95BCfJxhqyW9pDaNfa4VvTA5l5raJhMzWtcif0PN6hWVtrgJfFE0RZccc5AM2WmR0fJqbp-BGc5_nenzC73cK6ndJaKYhD-j2C0EPh1z1omi4a3WK2lepazj78qNnoYI4gGZjA6_HBw5tqmDk0Kos3J8ARpDQdQaKM5SIVTooYkUPE259kTmspBJGehs4EkuUywmxCMRMZWBI4elgB6STg4k2iE0CZkWAYuUFhCmZgprlQlXQsgbeNkgSrrEqakXL6raHbHZwAsh5qlQHyO1Y0vtLtlHEjewWHnb3CiWs9gKcsxcJd2Iy0hxz2ehBH_fZ1kWuspVPOSyS54hg8TVMdZGf8RDUHwBeJ8evOaFgcDqGzmm98zkuizjD5--3gDo82kLaM8CZQWwWirtkQr4T1jVqwW524IEHZK2hneQnWuslDEEkoJF6I3DzJrFrx9-3gzjQzFlL9fFGmEC02eTiS55VElEg1kPbDB4lvDeqCUrLdS3R_LzM1P8HGwz7sbD1H4jVjei7uP_o-AJuc3AX8XEEDbYJZ3Vcq2fgr-5SnpkM5yGcI0OXLyO3vfI1v7h-OS0Z1ZwekbFwL3J-GT47Q8m54da |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHk1UOiCQMDBaby21zYSQuFRJfSBBG2Vm9nsrtNKqR3iRFU58Tf4E1z4R_wSZtZrU4sK9dJTouzYjndmv5nZnQchTzgXyvdk6oxAeTr-aBQ6QvLAAWXHwXz1I5nifsfOLu_v-x-GwXCJ_KxyYTCsssJEA9Qql7hHvgGmbcwitA9eT7862DUKT1erFhqlWGzp0xNw2YpXg3fA36eMbb7fe9t3bFcBR4KtPXf8GERWgdsUKM5kHKvQQ4yOuZRce3HqspAJEei06wkuJFaz4VEcMZWCJYG1aOC-V8hV3wMsgfUTDmsHD7CDc5ue54XuhpWGzjTPdKcLerUbeA31Z7oE1LqgNZ3kxXmG7r_xmsuLbCpOT8RkckYZbt4g160VS3ul2K2QJZ3dJCsWJwr63BazfnGL_OpR8LhTbN6kZ9QGxk-0oscmilNT27ZiTKvq5i-p2Q-jwpZLgS-KSjTyMarJCBLNU1qcjRY0NL3Jt0N9dKxnv7__KKg9eaIY2D-m2IEEPh2TP0VRmZd7oDQrw-Dxn2UG-8EruU32L4Wld0grAyatEjoKmY4DFikdg-ubKqx_FrsC3OjAS7vRqE2cin_JtKwHkphDwRD8qHLyE-R3YvndJm-QyTUtVvM2P-SzcWLBIWGuEm7ERaS457NQgA_hszQNXeUqHnLRJusoIkmZGltjUtIDMA3AovXgMY8NBVb0yDBkaCwWRZEMPh5cgOjzpwbRM0uU5iBsUtg0DXgnrBTWoFxrUAIuycbwKgp0NStF8ncFw5WVkJ8__KgexptiGGCm8wXSBKZ3J4vb5G65JuqZ9UCvg7UKz40aq6Ux9c2R7OjQFFQHfY8n_HBpp15YF-Luvf-_yDpZ7u_tbCfbg92t--QaA3sYA09Yd4205rOFfgD27Hz00IAIJV8uG7X-ADEOtTI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGkYAXxPi3wmAGgYCHtI2TOAkSQoVRrQwGAob6FtzY7iZ1SWlaTeOJr8Hn4I2PwyfhznHCIia0lz21qi9J4zvf_c6-P4Q84FxI30u1Mwbj6fjjceiIlAcOGDsO8NWPUo37HW93-Nau_3oUjFbIryoXBsMqK51oFLXMU9wj7wK0jVmE-KCrbVjE-83B89lXBztI4Ulr1U6jFJFtdXQI7lvxbLgJvH7I2ODVp5dbju0w4KSAuxeOH4P4SnChAslZGscy9FBfxzxNufJi7bKQCREo3fMEFylWtuFRHDGpAVVgXRq47zlyPvS8GMMJw1Ht7IEe4dym6nmh27WS0Znlmer0wMb2Aq9hCk3HgNoutGbTvDgJ9P4bu3lxmc3E0aGYTo8ZxsEVctkiWtovRXCVrKjsKlm1OqOgj21h6yfXyM8-Be9bYyMnNac2SH6qJD0wEZ2K2hYWE1pVOn9Kzd4YFbZ0CnyRNEXAjxFORqhormlxPHLQ0PSn3_bU_oGa__7-o6D2FIpikP-EYjcS-HRMLhVFw17uh9KsDInHf5YZOwAeynWyeyYsvUFaGTBpjdBxyFQcsEiqGNxgLbEWWuwKcKkDT_eicZs4Ff-SWVkbJDEHhCH4VOXkJ8jvxPK7TV4gk2tarOxtfsjnk8QqioS5UrgRF5Hkns9CAf6Ez7QOXelKHnLRJhsoIkmZJlvrp6QPijUAdOvBY-4bCqzukeE6mYhlUSTDd59PQfTxQ4PokSXSOQhbKmzKBrwTVg1rUK43KEFHpY3hNRToalaK5O9qhisrIT95-F49jDfFkMBM5UukCUwfTxa3yc1yTdQz64GNB-QKz40aq6Ux9c2RbH_PFFcH24-n_XBpp15Yp-Lurf-_yAa5APoqeTPc2b5NLjGAxhiDwnrrpLWYL9UdgLaL8V2jQyj5ctZK6w_tg7l1 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFLZGdwE3wPhbYYBBSIBEQuMkTsJdQUwDaQMBRdtV5Pinm-jSqmmF2BWvwXPwRjwJ5zhO1MCQylWr-riJj8-vffyZkEecCxWF0ngFOE8vKorEE5LHHjg7DuFrlEqD6x37B3xvFL09jA83yLPmLMzq_n2YBM8dR_3ZtNT-AHwTCM0FssljiLx7ZHN08H54VG8cM4-zQehOx_2ra8f7WJD-1hT3ZpNpdV6c-Xe55MVlORPfvorJZMUX7V4h-80o6hKUL_5yUfjy7A-Ax3WHeZVcdkEpHdZStEU2dHmNbDm1r-gTh0399Dr5OaSQQBu8i0nPqatzn2hFT21RpqbuFooxbcDKX1C7vEWFQz-BL4pKjNmxSMnKBZ0aWq0W_1ma4eTsWJ-c6vmv7z8q6jaSKNbpjyleKAKfnj0ORdE310uatKyr2vHNSmvKIcm4QUa7rz-92vPcvQ-ehGxo4UUZGBUFiW2sOJNZppIQvWjGpeQ6zEzAEiZErM0gFFxIxBviaZYyZSDWQ7Sgm6RXAiO3CS0SprOYpUpnkMkahXBmWSAgK45DM0iLPvEaechnNbxHbvf4EkiLaubnOCe5m5M-eYlC09IiOLf9ASYzd7qes0CJIOUiVTyMWCIgJYiYMUmgAsUTLvrkPopcXp90bU1MPgTbGEOAGsJjHloKBOgosQJoLJZVlb9593kNoo8fOkSPHZGZgvBK4U5dwJgQ-KtDudOhBDMjO83bqCANV6occs2MpRiwQ89Gac5vftA2459iVV-pp0ukie1VnCzrk1u1jrWcDcFNQ_AJz0072tdhfbelPDm2-OjgvnHDHrr6raKuNbu3_7fDHXKJQZCL1SRssEN6i_lS34UgdVHcc7bpN6BOk-s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+confounder+controlled+machine+learning+approach%3A+Group+analysis+and+classification+of+schizophrenia+and+Alzheimer%27s+disease+using+resting-state+functional+network+connectivity&rft.jtitle=PloS+one&rft.au=Hassanzadeh%2C+Reihaneh&rft.au=Abrol%2C+Anees&rft.au=Pearlson%2C+Godfrey&rft.au=Turner%2C+Jessica+A&rft.date=2024-05-20&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=5&rft.spage=e0293053&rft_id=info:doi/10.1371%2Fjournal.pone.0293053&rft.externalDocID=A794526433 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |