Deep learning-based approaches for multi-omics data integration and analysis

Background The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and analysis of complex and heterogeneous data types. Different data modalities provide complementary information that can be leveraged...

Full description

Saved in:
Bibliographic Details
Published inBioData mining Vol. 17; no. 1; pp. 38 - 29
Main Authors Ballard, Jenna L., Wang, Zexuan, Li, Wenrui, Shen, Li, Long, Qi
Format Journal Article
LanguageEnglish
Published London BioMed Central 02.10.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1756-0381
1756-0381
DOI10.1186/s13040-024-00391-z

Cover

Abstract Background The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and analysis of complex and heterogeneous data types. Different data modalities provide complementary information that can be leveraged to gain a more complete understanding of each subject. In the biomedical domain, multi-omics data includes molecular (genomics, transcriptomics, proteomics, epigenomics, metabolomics, etc.) and imaging (radiomics, pathomics) modalities which, when combined, have the potential to improve performance on prediction, classification, clustering and other tasks. Deep learning encompasses a wide variety of methods, each of which have certain strengths and weaknesses for multi-omics integration. Method In this review, we categorize recent deep learning-based approaches by their basic architectures and discuss their unique capabilities in relation to one another. We also discuss some emerging themes advancing the field of multi-omics integration. Results Deep learning-based multi-omics integration methods were categorized broadly into non-generative (feedforward neural networks, graph convolutional neural networks, and autoencoders) and generative (variational methods, generative adversarial models, and a generative pretrained model). Generative methods have the advantage of being able to impose constraints on the shared representations to enforce certain properties or incorporate prior knowledge. They can also be used to generate or impute missing modalities. Recent advances achieved by these methods include the ability to handle incomplete data as well as going beyond the traditional molecular omics data types to integrate other modalities such as imaging data. Conclusion We expect to see further growth in methods that can handle missingness, as this is a common challenge in working with complex and heterogeneous data. Additionally, methods that integrate more data types are expected to improve performance on downstream tasks by capturing a comprehensive view of each sample.
AbstractList Abstract Background The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and analysis of complex and heterogeneous data types. Different data modalities provide complementary information that can be leveraged to gain a more complete understanding of each subject. In the biomedical domain, multi-omics data includes molecular (genomics, transcriptomics, proteomics, epigenomics, metabolomics, etc.) and imaging (radiomics, pathomics) modalities which, when combined, have the potential to improve performance on prediction, classification, clustering and other tasks. Deep learning encompasses a wide variety of methods, each of which have certain strengths and weaknesses for multi-omics integration. Method In this review, we categorize recent deep learning-based approaches by their basic architectures and discuss their unique capabilities in relation to one another. We also discuss some emerging themes advancing the field of multi-omics integration. Results Deep learning-based multi-omics integration methods were categorized broadly into non-generative (feedforward neural networks, graph convolutional neural networks, and autoencoders) and generative (variational methods, generative adversarial models, and a generative pretrained model). Generative methods have the advantage of being able to impose constraints on the shared representations to enforce certain properties or incorporate prior knowledge. They can also be used to generate or impute missing modalities. Recent advances achieved by these methods include the ability to handle incomplete data as well as going beyond the traditional molecular omics data types to integrate other modalities such as imaging data. Conclusion We expect to see further growth in methods that can handle missingness, as this is a common challenge in working with complex and heterogeneous data. Additionally, methods that integrate more data types are expected to improve performance on downstream tasks by capturing a comprehensive view of each sample.
The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and analysis of complex and heterogeneous data types. Different data modalities provide complementary information that can be leveraged to gain a more complete understanding of each subject. In the biomedical domain, multi-omics data includes molecular (genomics, transcriptomics, proteomics, epigenomics, metabolomics, etc.) and imaging (radiomics, pathomics) modalities which, when combined, have the potential to improve performance on prediction, classification, clustering and other tasks. Deep learning encompasses a wide variety of methods, each of which have certain strengths and weaknesses for multi-omics integration.BACKGROUNDThe rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and analysis of complex and heterogeneous data types. Different data modalities provide complementary information that can be leveraged to gain a more complete understanding of each subject. In the biomedical domain, multi-omics data includes molecular (genomics, transcriptomics, proteomics, epigenomics, metabolomics, etc.) and imaging (radiomics, pathomics) modalities which, when combined, have the potential to improve performance on prediction, classification, clustering and other tasks. Deep learning encompasses a wide variety of methods, each of which have certain strengths and weaknesses for multi-omics integration.In this review, we categorize recent deep learning-based approaches by their basic architectures and discuss their unique capabilities in relation to one another. We also discuss some emerging themes advancing the field of multi-omics integration.METHODIn this review, we categorize recent deep learning-based approaches by their basic architectures and discuss their unique capabilities in relation to one another. We also discuss some emerging themes advancing the field of multi-omics integration.Deep learning-based multi-omics integration methods were categorized broadly into non-generative (feedforward neural networks, graph convolutional neural networks, and autoencoders) and generative (variational methods, generative adversarial models, and a generative pretrained model). Generative methods have the advantage of being able to impose constraints on the shared representations to enforce certain properties or incorporate prior knowledge. They can also be used to generate or impute missing modalities. Recent advances achieved by these methods include the ability to handle incomplete data as well as going beyond the traditional molecular omics data types to integrate other modalities such as imaging data.RESULTSDeep learning-based multi-omics integration methods were categorized broadly into non-generative (feedforward neural networks, graph convolutional neural networks, and autoencoders) and generative (variational methods, generative adversarial models, and a generative pretrained model). Generative methods have the advantage of being able to impose constraints on the shared representations to enforce certain properties or incorporate prior knowledge. They can also be used to generate or impute missing modalities. Recent advances achieved by these methods include the ability to handle incomplete data as well as going beyond the traditional molecular omics data types to integrate other modalities such as imaging data.We expect to see further growth in methods that can handle missingness, as this is a common challenge in working with complex and heterogeneous data. Additionally, methods that integrate more data types are expected to improve performance on downstream tasks by capturing a comprehensive view of each sample.CONCLUSIONWe expect to see further growth in methods that can handle missingness, as this is a common challenge in working with complex and heterogeneous data. Additionally, methods that integrate more data types are expected to improve performance on downstream tasks by capturing a comprehensive view of each sample.
The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and analysis of complex and heterogeneous data types. Different data modalities provide complementary information that can be leveraged to gain a more complete understanding of each subject. In the biomedical domain, multi-omics data includes molecular (genomics, transcriptomics, proteomics, epigenomics, metabolomics, etc.) and imaging (radiomics, pathomics) modalities which, when combined, have the potential to improve performance on prediction, classification, clustering and other tasks. Deep learning encompasses a wide variety of methods, each of which have certain strengths and weaknesses for multi-omics integration. In this review, we categorize recent deep learning-based approaches by their basic architectures and discuss their unique capabilities in relation to one another. We also discuss some emerging themes advancing the field of multi-omics integration. Deep learning-based multi-omics integration methods were categorized broadly into non-generative (feedforward neural networks, graph convolutional neural networks, and autoencoders) and generative (variational methods, generative adversarial models, and a generative pretrained model). Generative methods have the advantage of being able to impose constraints on the shared representations to enforce certain properties or incorporate prior knowledge. They can also be used to generate or impute missing modalities. Recent advances achieved by these methods include the ability to handle incomplete data as well as going beyond the traditional molecular omics data types to integrate other modalities such as imaging data. We expect to see further growth in methods that can handle missingness, as this is a common challenge in working with complex and heterogeneous data. Additionally, methods that integrate more data types are expected to improve performance on downstream tasks by capturing a comprehensive view of each sample.
Background The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and analysis of complex and heterogeneous data types. Different data modalities provide complementary information that can be leveraged to gain a more complete understanding of each subject. In the biomedical domain, multi-omics data includes molecular (genomics, transcriptomics, proteomics, epigenomics, metabolomics, etc.) and imaging (radiomics, pathomics) modalities which, when combined, have the potential to improve performance on prediction, classification, clustering and other tasks. Deep learning encompasses a wide variety of methods, each of which have certain strengths and weaknesses for multi-omics integration. Method In this review, we categorize recent deep learning-based approaches by their basic architectures and discuss their unique capabilities in relation to one another. We also discuss some emerging themes advancing the field of multi-omics integration. Results Deep learning-based multi-omics integration methods were categorized broadly into non-generative (feedforward neural networks, graph convolutional neural networks, and autoencoders) and generative (variational methods, generative adversarial models, and a generative pretrained model). Generative methods have the advantage of being able to impose constraints on the shared representations to enforce certain properties or incorporate prior knowledge. They can also be used to generate or impute missing modalities. Recent advances achieved by these methods include the ability to handle incomplete data as well as going beyond the traditional molecular omics data types to integrate other modalities such as imaging data. Conclusion We expect to see further growth in methods that can handle missingness, as this is a common challenge in working with complex and heterogeneous data. Additionally, methods that integrate more data types are expected to improve performance on downstream tasks by capturing a comprehensive view of each sample. Keywords: Deep learning, Generative model, Multi-omics integration, Imaging
The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and analysis of complex and heterogeneous data types. Different data modalities provide complementary information that can be leveraged to gain a more complete understanding of each subject. In the biomedical domain, multi-omics data includes molecular (genomics, transcriptomics, proteomics, epigenomics, metabolomics, etc.) and imaging (radiomics, pathomics) modalities which, when combined, have the potential to improve performance on prediction, classification, clustering and other tasks. Deep learning encompasses a wide variety of methods, each of which have certain strengths and weaknesses for multi-omics integration. In this review, we categorize recent deep learning-based approaches by their basic architectures and discuss their unique capabilities in relation to one another. We also discuss some emerging themes advancing the field of multi-omics integration. Deep learning-based multi-omics integration methods were categorized broadly into non-generative (feedforward neural networks, graph convolutional neural networks, and autoencoders) and generative (variational methods, generative adversarial models, and a generative pretrained model). Generative methods have the advantage of being able to impose constraints on the shared representations to enforce certain properties or incorporate prior knowledge. They can also be used to generate or impute missing modalities. Recent advances achieved by these methods include the ability to handle incomplete data as well as going beyond the traditional molecular omics data types to integrate other modalities such as imaging data. We expect to see further growth in methods that can handle missingness, as this is a common challenge in working with complex and heterogeneous data. Additionally, methods that integrate more data types are expected to improve performance on downstream tasks by capturing a comprehensive view of each sample.
Background The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and analysis of complex and heterogeneous data types. Different data modalities provide complementary information that can be leveraged to gain a more complete understanding of each subject. In the biomedical domain, multi-omics data includes molecular (genomics, transcriptomics, proteomics, epigenomics, metabolomics, etc.) and imaging (radiomics, pathomics) modalities which, when combined, have the potential to improve performance on prediction, classification, clustering and other tasks. Deep learning encompasses a wide variety of methods, each of which have certain strengths and weaknesses for multi-omics integration. Method In this review, we categorize recent deep learning-based approaches by their basic architectures and discuss their unique capabilities in relation to one another. We also discuss some emerging themes advancing the field of multi-omics integration. Results Deep learning-based multi-omics integration methods were categorized broadly into non-generative (feedforward neural networks, graph convolutional neural networks, and autoencoders) and generative (variational methods, generative adversarial models, and a generative pretrained model). Generative methods have the advantage of being able to impose constraints on the shared representations to enforce certain properties or incorporate prior knowledge. They can also be used to generate or impute missing modalities. Recent advances achieved by these methods include the ability to handle incomplete data as well as going beyond the traditional molecular omics data types to integrate other modalities such as imaging data. Conclusion We expect to see further growth in methods that can handle missingness, as this is a common challenge in working with complex and heterogeneous data. Additionally, methods that integrate more data types are expected to improve performance on downstream tasks by capturing a comprehensive view of each sample.
BackgroundThe rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and analysis of complex and heterogeneous data types. Different data modalities provide complementary information that can be leveraged to gain a more complete understanding of each subject. In the biomedical domain, multi-omics data includes molecular (genomics, transcriptomics, proteomics, epigenomics, metabolomics, etc.) and imaging (radiomics, pathomics) modalities which, when combined, have the potential to improve performance on prediction, classification, clustering and other tasks. Deep learning encompasses a wide variety of methods, each of which have certain strengths and weaknesses for multi-omics integration.MethodIn this review, we categorize recent deep learning-based approaches by their basic architectures and discuss their unique capabilities in relation to one another. We also discuss some emerging themes advancing the field of multi-omics integration.ResultsDeep learning-based multi-omics integration methods were categorized broadly into non-generative (feedforward neural networks, graph convolutional neural networks, and autoencoders) and generative (variational methods, generative adversarial models, and a generative pretrained model). Generative methods have the advantage of being able to impose constraints on the shared representations to enforce certain properties or incorporate prior knowledge. They can also be used to generate or impute missing modalities. Recent advances achieved by these methods include the ability to handle incomplete data as well as going beyond the traditional molecular omics data types to integrate other modalities such as imaging data.ConclusionWe expect to see further growth in methods that can handle missingness, as this is a common challenge in working with complex and heterogeneous data. Additionally, methods that integrate more data types are expected to improve performance on downstream tasks by capturing a comprehensive view of each sample.
ArticleNumber 38
Audience Academic
Author Ballard, Jenna L.
Wang, Zexuan
Shen, Li
Long, Qi
Li, Wenrui
Author_xml – sequence: 1
  givenname: Jenna L.
  surname: Ballard
  fullname: Ballard, Jenna L.
  email: jenna.ballard@pennmedicine.upenn.edu
  organization: Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania
– sequence: 2
  givenname: Zexuan
  surname: Wang
  fullname: Wang, Zexuan
  organization: Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania
– sequence: 3
  givenname: Wenrui
  surname: Li
  fullname: Li, Wenrui
  organization: Department of Statistics, University of Connecticut
– sequence: 4
  givenname: Li
  surname: Shen
  fullname: Shen, Li
  email: li.shen@pennmedicine.upenn.edu
  organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
– sequence: 5
  givenname: Qi
  surname: Long
  fullname: Long, Qi
  email: qlong@pennmedicine.upenn.edu
  organization: Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39358793$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURNuBP8ACRWIDixQ_YidZoaq8RhoJicfaunFuUo8ydrATYPrrcSdD26lQhbywZX_n2Pf4niZH1llMkueUnFFayjeBcpKTjLA8I4RXNLt6lJzQQsiM8JIe3VkfJ6chrAmRjAj-JDnmFRdlUfGTZPUOcUh7BG-N7bIaAjYpDIN3oC8xpK3z6WbqR5O5jdEhbWCE1NgROw-jcTYFG3kL_TaY8DR53EIf8Nl-XiTfP7z_dvEpW33-uLw4X2Va5mzMOGONKEpGgMiGYIsF8LKpKZeaIgDypmBEVgwKaAsthaAiVlIJIQrMJan4IlnOvo2DtRq82YDfKgdG7Tac7xT40egeFW8Ea0tKNJUirxtRF5xHs5pRXletFNGLz16THWD7C_r-xpASdZ2zmnNWMWe1y1ldRdXbWTVM9QYbjXb00B885fDEmkvVuZ_RMI8lkDw6vNo7ePdjwjCqjQka-x4suikoTikTrMwFj-jLe-jaTT5mvqMEjXlKckt1EOs2tnXxYn1tqs5LSgkjeUQXydk_qDgajP8b-6s1cf9A8PpAEJkRf48dTCGo5dcvh-yLu6ncxPG33SLAZkB7F4LH9v-yLu-JtBl3zRefbvqHpfvPDfEe26G_Te4B1R87kgVX
CitedBy_id crossref_primary_10_3389_fbinf_2024_1546680
crossref_primary_10_3389_fbinf_2024_1510352
crossref_primary_10_3390_cancers17060977
crossref_primary_10_1111_jipb_13879
crossref_primary_10_1016_j_patter_2025_101203
crossref_primary_10_1021_acssynbio_4c00864
Cites_doi 10.1177/15353702211065010
10.1038/s41590-018-0121-3
10.1177/1177932219899051
10.3389/fgene.2022.854752
10.1093/bib/bbab600
10.1186/s13040-020-00222-x
10.3389/fgene.2019.00617
10.1093/bioinformatics/btab403
10.1016/j.media.2021.102266
10.1093/bioinformatics/btab109
10.1093/nar/gkz757
10.1016/j.joca.2008.06.016
10.1038/ng.2529
10.1093/nar/30.1.42
10.1093/bib/bbab454
10.1038/nm.3954
10.1038/s41556-022-00932-w
10.1186/s13059-015-0694-1
10.1038/nbt.3192
10.1371/journal.pcbi.1006376
10.1186/s12864-019-6285-x
10.1016/j.cell.2016.06.017
10.1109/TCBB.2019.2909905
10.1007/978-3-030-20242-2_10
10.1038/sdata.2018.202
10.3390/jpm12040601
10.1016/j.ymeth.2019.03.004
10.1016/j.csbj.2021.08.006
10.1038/s41746-022-00742-2
10.1200/CCI.19.00126
10.1038/s41587-022-01284-4
10.1093/bioinformatics/btw344
10.1016/j.cell.2020.09.056
10.1017/S1041610209009405
10.3109/09638237.2015.1124385
10.1101/531327
10.1093/nar/gki072
10.3389/fgene.2022.806842
10.1093/nar/gky1131
10.1016/j.media.2022.102643
10.3389/fgene.2018.00477
10.1093/bioinformatics/btab608
10.1109/TMI.2020.3021387
10.1186/s13040-023-00349-7
10.1101/114892
10.1101/2022.09.05.506572
10.3390/cancers13123047
10.1093/bioinformatics/btx682
10.1038/ng.2764
10.1109/JBHI.2021.3102186
10.1038/s41588-020-0696-0
10.1038/s41467-021-22368-w
10.1038/s41586-019-1186-3
10.1101/2021.03.02.433454
10.1038/sdata.2016.15
10.1109/CSCI51800.2020.00144
10.7554/eLife.05005
10.1109/TMI.2014.2377694
10.1038/s41586-021-03500-8
10.1038/s41587-019-0290-0
10.1080/14786440109462720
10.1038/s41467-021-23774-w
10.1155/2022/5131170
10.1016/j.ymeth.2020.07.008
10.1186/s12911-020-01225-8
10.3389/fgene.2019.00166
10.1101/2023.04.30.538439
10.1109/BIBM47256.2019.8983228
10.1002/aisy.202200247
10.1016/j.eswa.2023.120761
10.1101/2021.01.25.427845
10.1101/2022.03.16.484643
10.3389/frai.2023.1098308
10.1093/bioinformatics/btac080
10.1101/2019.12.13.19014902
10.1038/nature11003
10.1016/j.isci.2023.107378
10.1016/j.csbj.2021.04.067
10.1109/TMI.2018.2868977
10.3389/fgene.2020.564792
10.1186/s13059-021-02556-z
10.3389/fgene.2022.855629
10.1038/s41598-021-85285-4
10.1038/s41598-020-70229-1
10.3389/fgene.2023.1199087
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
8AL
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s13040-024-00391-z
DatabaseName Springer Nature Link
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Biological Science Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Public Health
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic



PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1756-0381
EndPage 29
ExternalDocumentID oai_doaj_org_article_3d52f810c1654bd5b733175b213b9f65
10.1186/s13040-024-00391-z
PMC11446004
A811020451
39358793
10_1186_s13040_024_00391_z
Genre Journal Article
Review
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01 AG071470, U01 AG068057, U01 AG066833, RF1 AG068191, R01 LM013463; RF1 AG063481, R01 AG071174, U01 CA274576
– fundername: NIA NIH HHS
  grantid: U01 AG068057
– fundername: NIA NIH HHS
  grantid: U01 AG066833
– fundername: NIH HHS
  grantid: RF1 AG063481, R01 AG071174, U01 CA274576
– fundername: NLM NIH HHS
  grantid: R01 LM013463
– fundername: NIA NIH HHS
  grantid: R01 AG071470
– fundername: NIH HHS
  grantid: R01 AG071470, U01 AG068057, U01 AG066833, RF1 AG068191, R01 LM013463
GroupedDBID ---
0R~
23N
2WC
5GY
5VS
6J9
7X7
8C1
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DWQXO
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
ISR
ITC
K6V
K7-
KQ8
LK8
M48
M7P
ML~
M~E
O5R
O5S
OK1
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
~8M
AAYXX
CITATION
ALIPV
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c642t-322d57820a06d0efe7a38db136c1eaae3d720692a7af7c6551517595557e46093
IEDL.DBID M48
ISSN 1756-0381
IngestDate Tue Oct 14 19:06:21 EDT 2025
Sun Oct 26 02:18:23 EDT 2025
Tue Sep 30 17:07:15 EDT 2025
Thu Oct 02 11:44:19 EDT 2025
Tue Oct 07 05:58:30 EDT 2025
Mon Oct 20 22:48:17 EDT 2025
Mon Oct 20 16:56:00 EDT 2025
Thu Oct 16 15:45:52 EDT 2025
Mon Jul 21 05:50:51 EDT 2025
Wed Oct 01 04:37:18 EDT 2025
Thu Apr 24 23:10:22 EDT 2025
Sat Sep 06 07:24:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Multi-omics integration
Imaging
Generative model
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-322d57820a06d0efe7a38db136c1eaae3d720692a7af7c6551517595557e46093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13040-024-00391-z
PMID 39358793
PQID 3115132260
PQPubID 55347
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_3d52f810c1654bd5b733175b213b9f65
unpaywall_primary_10_1186_s13040_024_00391_z
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11446004
proquest_miscellaneous_3112528453
proquest_journals_3115132260
gale_infotracmisc_A811020451
gale_infotracacademiconefile_A811020451
gale_incontextgauss_ISR_A811020451
pubmed_primary_39358793
crossref_primary_10_1186_s13040_024_00391_z
crossref_citationtrail_10_1186_s13040_024_00391_z
springer_journals_10_1186_s13040_024_00391_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-02
PublicationDateYYYYMMDD 2024-10-02
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BioData mining
PublicationTitleAbbrev BioData Mining
PublicationTitleAlternate BioData Min
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References I Subramanian (391_CR11) 2020; 14
R Nativio (391_CR2) 2020; 52
ZJ Cao (391_CR42) 2022; 40
OB Bakker (391_CR1) 2018; 19
391_CR99
B Gong (391_CR5) 2021; 22
391_CR10
391_CR98
391_CR97
391_CR96
391_CR19
391_CR18
391_CR17
391_CR16
BH Menze (391_CR92) 2015; 34
391_CR26
391_CR25
391_CR24
391_CR23
391_CR22
391_CR21
391_CR20
391_CR29
S Xiao (391_CR89) 2016; 25
391_CR28
391_CR27
391_CR40
J Mariette (391_CR9) 2018; 34
R Satija (391_CR4) 2015; 33
391_CR37
M Kang (391_CR14) 2022; 23
391_CR36
391_CR35
391_CR34
391_CR33
391_CR32
391_CR31
391_CR30
JS Wekesa (391_CR13) 2023; 14
391_CR39
391_CR38
KLIII Pearson (391_CR6) 1901; 2
391_CR51
391_CR47
391_CR46
391_CR45
391_CR44
391_CR43
391_CR41
CG Peterfy (391_CR91) 2008; 16
391_CR49
KA Ellis (391_CR90) 2009; 21
391_CR62
391_CR61
391_CR60
DW Zijlmans (391_CR3) 2022; 24
V Agarwal (391_CR83) 2015; 4
391_CR59
391_CR58
391_CR57
391_CR56
391_CR55
391_CR54
391_CR53
391_CR52
391_CR101
391_CR100
391_CR73
391_CR72
391_CR71
391_CR70
391_CR69
391_CR68
391_CR67
391_CR66
391_CR65
391_CR64
391_CR63
Y Wen (391_CR15) 2023; 5
391_CR102
S Bakr (391_CR86) 2018; 5
C Lee (391_CR48) 2021; 130
J Barretina (391_CR82) 2012; 483
N Vahabi (391_CR12) 2022; 13
391_CR84
391_CR81
391_CR80
391_CR79
391_CR78
391_CR77
391_CR76
391_CR75
KT Ahmed (391_CR50) 2022; 38
W Zhang (391_CR74) 2015; 16
391_CR95
391_CR94
391_CR93
391_CR7
391_CR88
391_CR8
391_CR87
391_CR85
References_xml – ident: 391_CR30
  doi: 10.1177/15353702211065010
– volume: 19
  start-page: 776
  issue: 7
  year: 2018
  ident: 391_CR1
  publication-title: Nat Immunol.
  doi: 10.1038/s41590-018-0121-3
– volume: 14
  start-page: 117793221989905
  year: 2020
  ident: 391_CR11
  publication-title: Bioinforma Biol Insights.
  doi: 10.1177/1177932219899051
– volume: 13
  start-page: 854752
  year: 2022
  ident: 391_CR12
  publication-title: Front Genet.
  doi: 10.3389/fgene.2022.854752
– ident: 391_CR95
– ident: 391_CR36
  doi: 10.1093/bib/bbab600
– ident: 391_CR26
  doi: 10.1186/s13040-020-00222-x
– volume: 130
  start-page: 1513
  year: 2021
  ident: 391_CR48
  publication-title: Proc Mach Learn Res.
– ident: 391_CR60
  doi: 10.3389/fgene.2019.00617
– ident: 391_CR40
  doi: 10.1093/bioinformatics/btab403
– ident: 391_CR57
  doi: 10.1016/j.media.2021.102266
– ident: 391_CR49
  doi: 10.1093/bioinformatics/btab109
– ident: 391_CR75
  doi: 10.1093/nar/gkz757
– volume: 16
  start-page: 1433
  issue: 12
  year: 2008
  ident: 391_CR91
  publication-title: Osteoarthr Cartil / OARS Osteoarthr Res Soc.
  doi: 10.1016/j.joca.2008.06.016
– ident: 391_CR73
  doi: 10.1038/ng.2529
– ident: 391_CR69
  doi: 10.1093/nar/30.1.42
– volume: 23
  start-page: bbab454
  issue: 1
  year: 2022
  ident: 391_CR14
  publication-title: Brief Bioinforma.
  doi: 10.1093/bib/bbab454
– ident: 391_CR65
  doi: 10.1038/nm.3954
– volume: 24
  start-page: 858
  issue: 6
  year: 2022
  ident: 391_CR3
  publication-title: Nat Cell Biol.
  doi: 10.1038/s41556-022-00932-w
– ident: 391_CR98
– volume: 16
  start-page: 133
  issue: 1
  year: 2015
  ident: 391_CR74
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0694-1
– volume: 33
  start-page: 495
  issue: 5
  year: 2015
  ident: 391_CR4
  publication-title: Nat Biotechnol.
  doi: 10.1038/nbt.3192
– ident: 391_CR63
  doi: 10.1371/journal.pcbi.1006376
– ident: 391_CR38
  doi: 10.1186/s12864-019-6285-x
– ident: 391_CR64
  doi: 10.1016/j.cell.2016.06.017
– ident: 391_CR19
  doi: 10.1109/TCBB.2019.2909905
– ident: 391_CR22
  doi: 10.1007/978-3-030-20242-2_10
– volume: 5
  start-page: 180202
  issue: 1
  year: 2018
  ident: 391_CR86
  publication-title: Sci Data.
  doi: 10.1038/sdata.2018.202
– ident: 391_CR53
  doi: 10.3390/jpm12040601
– ident: 391_CR7
– ident: 391_CR43
  doi: 10.1016/j.ymeth.2019.03.004
– ident: 391_CR97
– ident: 391_CR44
  doi: 10.1016/j.csbj.2021.08.006
– ident: 391_CR100
  doi: 10.1038/s41746-022-00742-2
– ident: 391_CR102
  doi: 10.1200/CCI.19.00126
– volume: 40
  start-page: 1458
  year: 2022
  ident: 391_CR42
  publication-title: Nat Biotechnol.
  doi: 10.1038/s41587-022-01284-4
– ident: 391_CR66
  doi: 10.1093/bioinformatics/btw344
– ident: 391_CR78
  doi: 10.1016/j.cell.2020.09.056
– volume: 21
  start-page: 672
  issue: 4
  year: 2009
  ident: 391_CR90
  publication-title: Int Psychogeriatr.
  doi: 10.1017/S1041610209009405
– volume: 25
  start-page: 131
  issue: 2
  year: 2016
  ident: 391_CR89
  publication-title: J Ment Health (Abingdon, England).
  doi: 10.3109/09638237.2015.1124385
– ident: 391_CR16
  doi: 10.1101/531327
– ident: 391_CR84
– ident: 391_CR70
  doi: 10.1093/nar/gki072
– ident: 391_CR8
– ident: 391_CR24
  doi: 10.3389/fgene.2022.806842
– ident: 391_CR72
  doi: 10.1093/nar/gky1131
– ident: 391_CR61
  doi: 10.1016/j.media.2022.102643
– ident: 391_CR29
  doi: 10.3389/fgene.2018.00477
– volume: 38
  start-page: 179
  year: 2022
  ident: 391_CR50
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btab608
– ident: 391_CR55
  doi: 10.1109/TMI.2020.3021387
– ident: 391_CR31
  doi: 10.1186/s13040-023-00349-7
– ident: 391_CR28
  doi: 10.1101/114892
– ident: 391_CR94
  doi: 10.1101/2022.09.05.506572
– ident: 391_CR99
– ident: 391_CR47
  doi: 10.3390/cancers13123047
– ident: 391_CR76
– volume: 34
  start-page: 1009
  issue: 6
  year: 2018
  ident: 391_CR9
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btx682
– ident: 391_CR67
  doi: 10.1038/ng.2764
– ident: 391_CR25
  doi: 10.1109/JBHI.2021.3102186
– volume: 52
  start-page: 1024
  issue: 10
  year: 2020
  ident: 391_CR2
  publication-title: Nat Genet.
  doi: 10.1038/s41588-020-0696-0
– ident: 391_CR79
  doi: 10.1038/s41467-021-22368-w
– ident: 391_CR71
  doi: 10.1038/s41586-019-1186-3
– ident: 391_CR27
  doi: 10.1101/2021.03.02.433454
– ident: 391_CR81
  doi: 10.1038/sdata.2016.15
– ident: 391_CR59
  doi: 10.1109/CSCI51800.2020.00144
– volume: 4
  start-page: e05005
  year: 2015
  ident: 391_CR83
  publication-title: eLife.
  doi: 10.7554/eLife.05005
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  ident: 391_CR92
  publication-title: IEEE Trans Med Imaging.
  doi: 10.1109/TMI.2014.2377694
– ident: 391_CR80
  doi: 10.1038/s41586-021-03500-8
– ident: 391_CR77
  doi: 10.1038/s41587-019-0290-0
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  ident: 391_CR6
  publication-title: Lond Edinb Dublin Phil Mag J Sci.
  doi: 10.1080/14786440109462720
– ident: 391_CR10
  doi: 10.1038/s41467-021-23774-w
– ident: 391_CR54
  doi: 10.1155/2022/5131170
– ident: 391_CR33
  doi: 10.1016/j.ymeth.2020.07.008
– ident: 391_CR34
  doi: 10.1186/s12911-020-01225-8
– ident: 391_CR87
– ident: 391_CR21
  doi: 10.3389/fgene.2019.00166
– ident: 391_CR52
  doi: 10.1101/2023.04.30.538439
– ident: 391_CR56
– ident: 391_CR51
– ident: 391_CR45
  doi: 10.1109/BIBM47256.2019.8983228
– volume: 5
  start-page: 2200247
  issue: 5
  year: 2023
  ident: 391_CR15
  publication-title: Adv Intell Syst.
  doi: 10.1002/aisy.202200247
– ident: 391_CR62
  doi: 10.1016/j.eswa.2023.120761
– ident: 391_CR88
– ident: 391_CR18
  doi: 10.1101/2021.01.25.427845
– ident: 391_CR41
  doi: 10.1101/2022.03.16.484643
– ident: 391_CR101
  doi: 10.3389/frai.2023.1098308
– ident: 391_CR20
  doi: 10.1093/bioinformatics/btac080
– ident: 391_CR93
  doi: 10.1101/2019.12.13.19014902
– ident: 391_CR17
– volume: 483
  start-page: 603
  issue: 7391
  year: 2012
  ident: 391_CR82
  publication-title: Nature.
  doi: 10.1038/nature11003
– ident: 391_CR35
  doi: 10.1016/j.isci.2023.107378
– ident: 391_CR23
  doi: 10.1016/j.csbj.2021.04.067
– ident: 391_CR58
  doi: 10.1109/TMI.2018.2868977
– ident: 391_CR96
– ident: 391_CR32
  doi: 10.3389/fgene.2020.564792
– volume: 22
  start-page: 1
  year: 2021
  ident: 391_CR5
  publication-title: Genome Biol.
  doi: 10.1186/s13059-021-02556-z
– ident: 391_CR37
  doi: 10.3389/fgene.2022.855629
– ident: 391_CR46
  doi: 10.1038/s41598-021-85285-4
– ident: 391_CR85
– ident: 391_CR39
  doi: 10.1038/s41598-020-70229-1
– ident: 391_CR68
– volume: 14
  start-page: 1199087
  year: 2023
  ident: 391_CR13
  publication-title: Front Genet.
  doi: 10.3389/fgene.2023.1199087
SSID ssj0062053
Score 2.5379846
SecondaryResourceType review_article
Snippet Background The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in...
The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in fusion and...
Background The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in...
BackgroundThe rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for advances in...
Abstract Background The rapid growth of deep learning, as well as the vast and ever-growing amount of available data, have provided ample opportunity for...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 38
SubjectTerms Algorithms
Artificial neural networks
Bioinformatics
Biological analysis
Biomedical and Life Sciences
Biomedical data
Clustering
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Correlation analysis
Data analysis
Data integration
Data Mining and Knowledge Discovery
Datasets
Deep learning
Disease
Generative model
Genomics
Graph neural networks
Imaging
Integration
Integrative Analysis of Multi-Omics Data for Precision Medicine
Knowledge representation
Life Sciences
Machine learning
Medical imaging
Medical prognosis
Metabolomics
Multi-omics integration
Neural networks
Performance enhancement
Principal components analysis
Probability distribution
Proteomics
Radiomics
Review
Survival analysis
Task complexity
Transcriptomics
Variational methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB9kQdSD-G11lSqCBzdskzZpe1w_llXUg7qwt5C0ySo8-h72PWT3r3cmTeurwurBazMtzcwvk5l28huAZ4Xw3KnSMWN5wQqT18wUMmO8MMqa1tYi9CH78FEdHRfvTuTJVqsvqgkb6IEHxe3nrRS-4llDx25sKy01GSylFTy3tVeBvTSr6jGZGnywEoit8YhMpfZ79NRUxigKFijR2flsGwps_X_65K1N6feCyemv6TW4sulW5uyHWSy2NqbDG3A9RpTpwTCTm3DJdbfg8tBj8uw2vH_t3CqNzSFOGe1abToyibs-xaA1DVWFjM4n9ymVjKYjiQQaLTUdykfqkjtwfPjmy6sjFlsosAYTizXD5doSYX1mMtVmzrvS5FVrea4a7oxxeVuKTNXClMaXjcLwSaJyayll6QqV1fld2OmWnbsPqUcbVDz3GE9gUma4xUTFS6vo-XjRJcBHjeom8otTm4uFDnlGpfRgBY1W0MEK-jyBF9M9q4Fd40Lpl2SoSZKYscMFxIuOeNF_w0sCT8nMmrgvOiquOTWbvtdvP3_SBxXGQkTPzxN4HoX8EufQmHhWATVBdFkzyd2ZJC7OZj48oklH59BrIjiijwAqS-DJNEx3UsFb55abICMkhg4yT-DeAL5p3oG0Dv1qAtUMljPFzEe6b18DdTin9B_9YgJ7I4J_vddFmt-bUP4PhnrwPwz1EK4KWrBUrCF2YWf9feMeYQC4to_DWv8J8bJP_Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGTQh4QHyvMFBBSDywaE3apO0DQhtsGghOaDBpb1HSpsekU-9Y74S2vx4713YrSCdeE6dqbMexW_tngNeJqLhTqWPG8oQlJs6ZSWTEeGKUNaXNhe9D9nWsjk6Sz6fydAPGXS0MpVV2NtEb6nJW0DfyXUKFochJRe_nvxh1jaK_q10LDdO2VijfeYixG7ApCBlrBJv7B-Nvx51tVgJ1riudydRugxac0htFwjxUOrscXE8exf9fW33tsvo7kbL_m3oHbi3rubn4babTaxfW4T2423qa4d5KNe7DhqsfwM1V78mLh_Dlo3PzsG0aMWF0m5VhhzDumhCd2dBnGzKqW25CSiUNO3AJFGZoaqRvIU0ewcnhwY8PR6xtrcAKDDgWDBlZEpB9ZCJVRq5yqYmz0vJYFdwZ4-IyFZHKhUlNlRYKeSrRz8illKlLVJTHj2FUz2q3BWHFoyLjcYV-BgZrhlsMYCppFT0fB10AvOOoLlrccWp_MdU-_siUXklBoxS0l4K-DOBtv2a-Qt1YS71PguopCTHbD8zOJ7o9gDoupagyfFcq37KltNSsMpVW8NjmlZIBvCIxa8LEqCnpZmKWTaM_fT_Wexn6SATbzwN40xJVM9xDYdoaBuQEwWgNKLcHlHhoi-F0p026NRqNvlLxAF7207SSEuFqN1t6GiHRpZBxAE9Wytfv24PZob0NIBuo5YAxw5n67KeHFOf0WQDtZQA7nQZfvdc6zu_0Wv4fgnq6ftfP4Lago0jpGWIbRovzpXuOLt_CvmjP8R_grk7w
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Link
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEaIcEM-SUlBASByoRezETnIshaog4ABU6s2yE6ettMquyK5Q--s74zhhA6iCazyOEs9bnvkG4GUmGu5U7pixPGOZSUtmMpkwnhllTW1L4eeQff6iDo-yj8fyOMDkUC_M-v09L9SbDm0sFSCKjHkwc3ZxHW6gk1L-YlbtD1ZXCZSmoSnmr_smjsfj8_9phdfc0O8lkuM96W24tWoX5vynmc3WXNHBXbgTYsh4r2f6Pbjm2vtws58qef4APr1zbhGHcRAnjPxUHQ_Y4a6LMUyNfR0ho47kLqYi0XiAjUA2xaZF-gBW8hCODt5_3z9kYWgCqzCVWDJU0Jog6hOTqDpxjctNWtSWp6rizhiX1rlIVClMbpq8UhgwSYwgSill7jKVlOkj2GjnrXsMccOTquBpgxEEpmGGW0xNGmkVvR8fugj4cKK6CojiNNhipn1mUSjdc0EjF7Tngr6I4PW4Z9HjaVxJ_ZYYNVISFrZ_gCKig2rptJaiKfBbqTHL1tLSGMpcWsFTWzZKRvCC2KwJ7aKlcpoTs-o6_eHbV71XYPRDgPw8gleBqJnjP1QmdCfgSRBA1oRyZ0KJ6lhNlwdp0sEcdJogjSjtV0kEz8dl2kklbq2brzyNkBgsyDSCrV74xv_2MHVoSSMoJmI5OZjpSnt26sHCOSX8aAkj2B0k-Nd3XXXyu6OU_wOjtv_v7U9gU5BqUiGG2IGN5Y-Ve4rB3dI-81p9CW3PQdQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB7BVgh44D4CBQWExAN1iZPYSR6XoyoIKgSs1D5ZduIUxCq7Ihuh7q9nxjnYFFSV13gcxXN57Mx8A_AsDktuZWKZNjxmsY4ypmMRMB5raXRhstD1Ift4IPdn8ftDcdjB5FAtzOb_e57KlzX6WEpADGPmwMzZ-iJsSYFx9wS2Zgefpkeu4lHgsRj3nr4q5p8TRzuPA-j_2w1v7EOncySHH6VX4XJTLfXJLz2fb-xFe9fbpka1gzCkFJQfu83K7ObrUwCP51vmDbjWhaT-tNWhm3DBVrfgUtuk8uQ2fHhj7dLvukscM9r2Cr-HIre1j1Gv79ISGRU41z7lnPo9CgVK3dcV0nfYJ3dgtvf26-t91vVgYDmeTFYM7b0gxPtAB7IIbGkTHaWF4ZHMudXaRkUSBjILdaLLJJcYfwmURiaESGwsgyy6C5NqUdn74Jc8yFMelRiQ4KlOc4MnnVIYSe_Hh9YD3stH5R1AOfXJmCt3UEmlarmkkEvKcUmtPXgxzFm28BxnUr8isQ-UBK3tHqAoVGepKipEWKb4rVTnZQphqKtlIkzII5OVUnjwlJRGEXhGRdk5x7qpa_Xuy2c1TTGYInx_7sHzjqhc4Bpy3RU7ICcIb2tEuT2iROvOx8O9bqrOu9SKEJLoFkEGHjwZhmkmZcxVdtE4mlBg7CEiD-61qjys26HeoWP2IB0p-Ygx45Hq-zeHPc7p_gAdqwc7vT38-a6zOL8z2Mw5BPXg_8gfwpWQTIfyOsJtmKx-NvYRxoor87hzEr8BN5JafQ
  priority: 102
  providerName: Unpaywall
Title Deep learning-based approaches for multi-omics data integration and analysis
URI https://link.springer.com/article/10.1186/s13040-024-00391-z
https://www.ncbi.nlm.nih.gov/pubmed/39358793
https://www.proquest.com/docview/3115132260
https://www.proquest.com/docview/3112528453
https://pubmed.ncbi.nlm.nih.gov/PMC11446004
https://doi.org/10.1186/s13040-024-00391-z
https://doaj.org/article/3d52f810c1654bd5b733175b213b9f65
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: RBZ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: ABDBF
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: ADMLS
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: DIK
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: M48
  dateStart: 20081101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: AAJSJ
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Link
  customDbUrl:
  eissn: 1756-0381
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062053
  issn: 1756-0381
  databaseCode: C6C
  dateStart: 20080112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQwh4QHwTGFVASDywQJzETvKAUFdWRsWqaaNSebKcxClIVVqaVtD99dy5SVhgmhAvqWSfK-c-7Dvn_DuAF4GXMy1C7aiEBU6g_NhRAXcdFiiRqCyJPVOH7HgojkbBYMzHW1CXO6oYWF4a2lE9qdFi-vrn9_U7NPi3xuAj8abEdZiSFL3AMYDnzvk27OJOFVMph-Og-aogPNS4-uLMpeNam5PB8P97pb6wVf2ZRtl8S70J11fFXK1_qOn0wnbVvw23Kj_T7m4U4w5s6eIuXNtUnlzfg0_vtZ7bVcmIiUN7WWbX-OK6tNGVtU2uoUO3lkubEkntGloCRWmrAukrQJP7MOoffu4dOVVhBSfFcGPpoBFnBGPvKldkrs51qPwoS5gvUqaV0n4Weq6IPRWqPEwFOlUcvYyYcx7qQLix_wB2ilmhH4GdMzeNmJ-jl4GhmmIJhi85TwT9PzZqC1jNUZlWqONU_GIqTfQRCbmRgkQpSCMFeW7Bq2bMfIO5cSX1AQmqoSS8bNMwW0xkZX7Sz7iXRzhXuryVZDyhUpUhTzzmJ3EuuAXPScySEDEKSrmZqFVZyo9np7IboYdEoP3MgpcVUT7Dd0hVdYMBOUEgWi3KvRYlmmza7q61SdYaLwn2iI4GhGvBs6abRlIaXKFnK0PjcXQouG_Bw43yNe9toOxwtbUgaqllizHtnuLbVwMozuhQAFdLC_ZrDf49r6s4v99o-T8I6vH_T-wJ3PDITClxw9uDneVipZ-iM7hMOrAdjkN8Rj1Gz_6HDux2u4OzAf4eHA5PTrG1J3odc9jSMesB9oyGJ90vvwCUD2D1
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRahwQLwxFDAIxIGu6l17184BoUKpEvo4QCvltl3b64AUOaFOVKU_it_IzMZ2a5AiLr16x5Z3ZnYe9sw3AG8iUXCrYstMyiMWmbDHTCQDxiOjUpOnPeHmkB0eqf5J9HUoh2vwu-mFobLKxiY6Q51PMvpGvk2oMJQ5qeDj9BejqVH0d7UZobFUi327OMeUrfow2EX5vhVi78vx5z6rpwqwDGPtGcNn5IThHphA5YEtbGzCJE95qDJujbFhHotA9YSJTRFnCiMKiS62J6WMbaQc-BKa_BtRiLYEz088bBM8JVCjm8acRG1X6B-oeFJEzAGxs4uO83MzAv71BFdc4d9lmu2_2tuwMS-nZnFuxuMr7nDvLtyp41h_Z6l492DNlvfh5nKy5eIBHOxaO_XrkRQjRr4y9xv8clv5GCr7rpaRUVd05VOhqt9AV6Cq-KZE-how5SGcXAuLH8F6OSntE_ALHmQJDwuMYjAVNDzF9KiQqaLn40XrAW84qrMa1ZyGa4y1y24SpZdS0CgF7aSgLzx4394zXWJ6rKT-RIJqKQmP212YnI10fbx1mEtRJPiu1ByW5jKlUZixTAUP016hpAevScyaEDdKKukZmXlV6cH3b3onwQiMhgJwD97VRMUE95CZukMCOUEgXR3KzQ4lmoSsu9xok65NUqUvD5AHr9plupPK7Eo7mTsaITFgkaEHj5fK1-7bQeWhNfcg6ahlhzHdlfLnDwdYzumjA1pjD7YaDb58r1Wc32q1_D8E9XT1rl_CRv_48EAfDI72n8EtQceSCkHEJqzPzub2OQaXs_SFO9E-nF63CfkDTGKDgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEa8D4k2gQEBIHKjV2Imd5Fi2VC2UCgGVerPsxFmQVtlVsyvU_npmnAcbQBVc47HleJ5OZr4BeJWIijuVOmYsT1hi4pyZREaMJ0ZZU9pc-D5kH4_U_nHy_kSerFXx-2z3_pdkW9NAKE31cntRVq2KZ2q7QctLaYkiYR7inJ1fhisJejfqYTBRk94WK4Ey1pfK_HXeyB151P4_bfOac_o9cXL4e3oTrq_qhTn7YWazNQe1dxtudZFluNOKwh245Oq7cLXtNXl2Dw53nVuEXZOIKSPvVYY9orhrQgxeQ59dyKhOuQkpdTTswSSQeaGpkb6DMLkPx3vvvk72WddKgRV4wVgyVNuSgOsjE6kycpVLTZyVlseq4M4YF5epiFQuTGqqtFAYRkmMK3IpZeoSFeXxA9io57V7BGHFoyLjcYVxBV7ODLd4YamkVbQ-PnQB8P5EddHhjFO7i5n2941M6ZYLGrmgPRf0eQBvhjmLFmXjQuq3xKiBkhCy_YP56VR3CqfjUooqw71SuZYtpaXmlKm0gsc2r5QM4CWxWRMGRk1JNlOzahp98OWz3skwJiKYfh7A646omuM7FKarWcCTINisEeXmiBKVtBgP99KkOyPRaAI6oo8BKgrgxTBMMynxrXbzlacREkMIGQfwsBW-4b09eB3a1wCykViODmY8Un__5iHEOX0GQPsYwFYvwb_2ddHJbw1S_g-Mevx_qz-Ha5929_ThwdGHJ3BDkJZSpobYhI3l6co9xehvaZ95Bf8JSehNCg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB7BVgh44D4CBQWExAN1iZPYSR6XoyoIKgSs1D5ZduIUxCq7Ihuh7q9nxjnYFFSV13gcxXN57Mx8A_AsDktuZWKZNjxmsY4ypmMRMB5raXRhstD1Ift4IPdn8ftDcdjB5FAtzOb_e57KlzX6WEpADGPmwMzZ-iJsSYFx9wS2Zgefpkeu4lHgsRj3nr4q5p8TRzuPA-j_2w1v7EOncySHH6VX4XJTLfXJLz2fb-xFe9fbpka1gzCkFJQfu83K7ObrUwCP51vmDbjWhaT-tNWhm3DBVrfgUtuk8uQ2fHhj7dLvukscM9r2Cr-HIre1j1Gv79ISGRU41z7lnPo9CgVK3dcV0nfYJ3dgtvf26-t91vVgYDmeTFYM7b0gxPtAB7IIbGkTHaWF4ZHMudXaRkUSBjILdaLLJJcYfwmURiaESGwsgyy6C5NqUdn74Jc8yFMelRiQ4KlOc4MnnVIYSe_Hh9YD3stH5R1AOfXJmCt3UEmlarmkkEvKcUmtPXgxzFm28BxnUr8isQ-UBK3tHqAoVGepKipEWKb4rVTnZQphqKtlIkzII5OVUnjwlJRGEXhGRdk5x7qpa_Xuy2c1TTGYInx_7sHzjqhc4Bpy3RU7ICcIb2tEuT2iROvOx8O9bqrOu9SKEJLoFkEGHjwZhmkmZcxVdtE4mlBg7CEiD-61qjys26HeoWP2IB0p-Ygx45Hq-zeHPc7p_gAdqwc7vT38-a6zOL8z2Mw5BPXg_8gfwpWQTIfyOsJtmKx-NvYRxoor87hzEr8BN5JafQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+approaches+for+multi-omics+data+integration+and+analysis&rft.jtitle=BioData+mining&rft.au=Ballard%2C+Jenna%C2%A0L.&rft.au=Wang%2C+Zexuan&rft.au=Li%2C+Wenrui&rft.au=Shen%2C+Li&rft.date=2024-10-02&rft.pub=BioMed+Central&rft.eissn=1756-0381&rft.volume=17&rft_id=info:doi/10.1186%2Fs13040-024-00391-z&rft.externalDocID=PMC11446004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-0381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-0381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-0381&client=summon