The Poisson distribution model fits UMI-based single-cell RNA-sequencing data
Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggreg...
Saved in:
| Published in | BMC bioinformatics Vol. 24; no. 1; pp. 256 - 27 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
17.06.2023
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-023-05349-2 |
Cover
| Abstract | Background
Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels.
Results
We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods.
Conclusions
This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package
scpoisson
. |
|---|---|
| AbstractList | Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson. Abstract Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. Results We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. Conclusions This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson. BackgroundModeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels.ResultsWe avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods.ConclusionsThis new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson. Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. Results We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. Conclusions This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson . Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson. Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. Results We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. Conclusions This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson. Keywords: Single cell, RNA-seq, Poisson distribution, Data representation Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels.BACKGROUNDModeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels.We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods.RESULTSWe avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods.This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson.CONCLUSIONSThis new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson. |
| ArticleNumber | 256 |
| Audience | Academic |
| Author | Moorad, Razia Pan, Yue Dittmer, Dirk P. Wu, Di Marron, J. S. Landis, Justin T. |
| Author_xml | – sequence: 1 givenname: Yue surname: Pan fullname: Pan, Yue organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill – sequence: 2 givenname: Justin T. surname: Landis fullname: Landis, Justin T. organization: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill – sequence: 3 givenname: Razia surname: Moorad fullname: Moorad, Razia organization: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill – sequence: 4 givenname: Di surname: Wu fullname: Wu, Di organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Adam School of Dentistry, University of North Carolina at Chapel Hill – sequence: 5 givenname: J. S. surname: Marron fullname: Marron, J. S. organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Department of Statistics and Operations Research, University of North Carolina at Chapel Hill – sequence: 6 givenname: Dirk P. surname: Dittmer fullname: Dittmer, Dirk P. email: dirkdittmer@me.com organization: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37330471$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB_wB1igSGxgkeJHHDsrNKp4jNQCKu3acuyb1KOMPY0doP8eZ2YoMxWqUBZJrs851_58j7MD5x1k2UuMTjEW1buAiWB1gQgtEKNlXZAn2REuOS4IRuxg5_swOw5hgRDmArFn2SHllKK0eJRdXN1A_s3bELzLjQ1xsM0YbfpZegN93toY8uuLedGoACYP1nU9FBr6Pr_8MisC3I7gdKrmRkX1PHvaqj7Ai-37JLv--OHq7HNx_vXT_Gx2XuiqJLHAJW6BMo1oTQWvASEFYBjTTcsRbZQQlaaUQq2EUhVHlTJg2hbhum2YIIaeZPNNrvFqIVeDXarhTnpl5brgh06qIVrdg9S4KRkRhgNjZd1oQUohDKOgMGHM6JRFN1mjW6m7n6rv7wMxkhNouQEtE2i5Bi1Jcr3fuFZjswSjwcVB9Xtb2V9x9kZ2_kfKJLyiNUsJb7YJg08QQ5RLGyawyoEfgySCcMI4QVWSvn4gXfhxcInwWoVIxcSOqlPp3Na1PjXWU6iccUZpicpqanv6D1V6DCytTgPW2lTfM7zdMyRNhF-xU2MIcv79cl_7apfKPY4_85YEZCPQgw9hgPb_WIsHJm2jmoY0bd32j1u3lxtSH9fB8JfcI67f_hwFzw |
| CitedBy_id | crossref_primary_10_1038_s41467_025_57157_2 crossref_primary_10_12677_ACM_2024_142343 crossref_primary_10_1093_nargab_lqaf023 crossref_primary_10_1016_j_jmoldx_2024_11_002 |
| Cites_doi | 10.1186/gb-2013-14-1-r7 10.1038/s41467-018-07931-2 10.1016/j.cels.2017.08.014 10.1128/mbio.03473-21 10.1186/s13059-019-1662-y 10.1038/nbt.3192 10.1016/j.cels.2019.03.003 10.1093/bioinformatics/btm134 10.1038/nprot.2016.154 10.12688/f1000research.15666.1 10.1038/nmeth.4263 10.1038/s41592-018-0033-z 10.1038/nmeth.1315 10.1186/s13059-019-1874-1 10.1186/s13059-021-02445-5 10.1017/CBO9780511811241 10.1186/s13059-020-02096-y 10.1038/nbt.3102 10.1038/s41586-019-0969-x 10.1186/s13059-015-0805-z 10.1093/nar/gkw430 10.1101/gr.161034.113 10.1038/s41587-019-0379-5 10.1126/science.aaa1934 10.1093/bfgp/elx046 10.1186/s13059-016-0947-7 10.1186/s13059-019-1861-6 10.1038/nmeth.4236 10.1038/nrg3833 10.1038/ncomms14049 10.1073/pnas.1915085117 10.1186/s13059-015-0844-5 10.1186/gb-2008-9-1-r17 10.1038/nbt.4096 10.1111/biom.12647 10.1214/17-AOAS1110 10.1038/nmeth.2967 10.1007/BF01908075 10.1111/imm.12224 10.1016/j.cell.2019.05.031 10.1038/nmeth.4150 10.21105/joss.00861 10.1186/s13059-016-1077-y |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-023-05349-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 27 |
| ExternalDocumentID | oai_doaj_org_article_c1b4528d7e5549bc82488d53ea1255dc 10.1186/s12859-023-05349-2 PMC10276395 A753340465 37330471 10_1186_s12859_023_05349_2 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: University of North Carolina Computational Medicine Program Award 2020 – fundername: National Institutes of Health grantid: CA16086; DE018304; CA16086; CA16086; CA16086 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Science Foundation grantid: DMS-2113404 – fundername: NIH HHS grantid: DE018304 – fundername: NIH HHS grantid: CA16086 – fundername: NCI NIH HHS grantid: P30 CA016086 – fundername: NCI NIH HHS grantid: P01 CA019014 – fundername: ; – fundername: ; grantid: DMS-2113404 – fundername: ; grantid: CA16086; DE018304; CA16086; CA16086; CA16086 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c642t-141fe35c0393879e00aeed55cbf703ba886c333e9a8aa6706adedff019fb582d3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:46:40 EDT 2025 Sun Oct 26 04:14:45 EDT 2025 Tue Sep 30 17:13:23 EDT 2025 Thu Sep 04 18:46:16 EDT 2025 Mon Oct 06 18:14:08 EDT 2025 Mon Oct 20 22:19:26 EDT 2025 Mon Oct 20 16:07:29 EDT 2025 Thu Oct 16 16:17:17 EDT 2025 Wed Feb 19 02:01:09 EST 2025 Wed Oct 01 04:15:42 EDT 2025 Thu Apr 24 22:50:50 EDT 2025 Sat Sep 06 07:27:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Data representation Single cell RNA-seq Poisson distribution |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c642t-141fe35c0393879e00aeed55cbf703ba886c333e9a8aa6706adedff019fb582d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-023-05349-2 |
| PMID | 37330471 |
| PQID | 2827026586 |
| PQPubID | 44065 |
| PageCount | 27 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c1b4528d7e5549bc82488d53ea1255dc unpaywall_primary_10_1186_s12859_023_05349_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10276395 proquest_miscellaneous_2827257206 proquest_journals_2827026586 gale_infotracmisc_A753340465 gale_infotracacademiconefile_A753340465 gale_incontextgauss_ISR_A753340465 pubmed_primary_37330471 crossref_primary_10_1186_s12859_023_05349_2 crossref_citationtrail_10_1186_s12859_023_05349_2 springer_journals_10_1186_s12859_023_05349_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-17 |
| PublicationDateYYYYMMDD | 2023-06-17 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2023 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | PK Kimes (5349_CR30) 2017; 73 5349_CR32 L Hubert (5349_CR42) 1985; 2 KD Korthauer (5349_CR6) 2016; 17 C Hafemeister (5349_CR18) 2019; 20 V Svensson (5349_CR26) 2020; 38 FW Townes (5349_CR25) 2019; 20 TW LeBien (5349_CR36) 2008; 112 CS McGinnis (5349_CR17) 2019; 8 M Huang (5349_CR12) 2018; 15 G Finak (5349_CR5) 2015; 16 GX Zheng (5349_CR44) 2017; 8 JT Landis (5349_CR27) 2022; 13 S Liu (5349_CR33) 2021; 22 X Qiu (5349_CR7) 2017; 14 L Van der Maaten (5349_CR34) 2008; 9 E Pierson (5349_CR21) 2015; 16 L Zhu (5349_CR14) 2018; 12 G Eraslan (5349_CR13) 2019; 10 F Tang (5349_CR1) 2009; 6 MW Fiers (5349_CR8) 2018; 17 P Huang (5349_CR38) 2020; 117 O Stegle (5349_CR15) 2015; 16 5349_CR19 H Kim (5349_CR43) 2007; 23 L Cheng (5349_CR28) 2020; 5 T Stuart (5349_CR31) 2019; 177 B Fu (5349_CR37) 2014; 141 R Bacher (5349_CR20) 2017; 14 R Satija (5349_CR23) 2015; 33 J Cao (5349_CR39) 2019; 566 CKA Zeileis (5349_CR48) 2008 F Buettner (5349_CR3) 2015; 33 JK Kim (5349_CR11) 2013; 14 TE Chan (5349_CR9) 2017; 5 5349_CR45 TH Kim (5349_CR22) 2020; 21 PV Kharchenko (5349_CR4) 2014; 11 GK Marinov (5349_CR10) 2014; 24 VY Kiselev (5349_CR40) 2017; 14 AT Lun (5349_CR16) 2019; 20 Z Ji (5349_CR41) 2016; 44 AC Cameron (5349_CR47) 2005 A Zeisel (5349_CR2) 2015; 347 SH Robbins (5349_CR35) 2008; 9 5349_CR29 A Butler (5349_CR46) 2018; 36 R Zilionis (5349_CR24) 2017; 12 36798423 - Res Sq. 2023 Feb 06 |
| References_xml | – volume: 14 start-page: 1 issue: 1 year: 2013 ident: 5349_CR11 publication-title: Genome Biol doi: 10.1186/gb-2013-14-1-r7 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 5349_CR13 publication-title: Nat Commun doi: 10.1038/s41467-018-07931-2 – volume: 5 start-page: 251 issue: 3 year: 2017 ident: 5349_CR9 publication-title: Cell Syst doi: 10.1016/j.cels.2017.08.014 – volume: 13 start-page: 03473 issue: 1 year: 2022 ident: 5349_CR27 publication-title: MBio doi: 10.1128/mbio.03473-21 – volume: 5 start-page: e135344 issue: 11 year: 2020 ident: 5349_CR28 publication-title: JCI insight – volume: 20 start-page: 1 issue: 1 year: 2019 ident: 5349_CR16 publication-title: Genome Biol doi: 10.1186/s13059-019-1662-y – volume: 33 start-page: 495 issue: 5 year: 2015 ident: 5349_CR23 publication-title: Nat Biotechnol doi: 10.1038/nbt.3192 – volume: 8 start-page: 329 issue: 4 year: 2019 ident: 5349_CR17 publication-title: Cell Syst doi: 10.1016/j.cels.2019.03.003 – volume: 23 start-page: 1495 issue: 12 year: 2007 ident: 5349_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm134 – volume: 12 start-page: 44 issue: 1 year: 2017 ident: 5349_CR24 publication-title: Nat Protoc doi: 10.1038/nprot.2016.154 – ident: 5349_CR29 doi: 10.12688/f1000research.15666.1 – volume: 14 start-page: 584 issue: 6 year: 2017 ident: 5349_CR20 publication-title: Nat Methods doi: 10.1038/nmeth.4263 – volume-title: Applied econometrics with R year: 2008 ident: 5349_CR48 – volume: 15 start-page: 539 issue: 7 year: 2018 ident: 5349_CR12 publication-title: Nat Methods doi: 10.1038/s41592-018-0033-z – volume: 6 start-page: 377 issue: 5 year: 2009 ident: 5349_CR1 publication-title: Nat Methods doi: 10.1038/nmeth.1315 – volume: 20 start-page: 1 issue: 1 year: 2019 ident: 5349_CR18 publication-title: Genome Biol doi: 10.1186/s13059-019-1874-1 – volume: 22 start-page: 1 issue: 1 year: 2021 ident: 5349_CR33 publication-title: Genome Biol doi: 10.1186/s13059-021-02445-5 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 5349_CR34 publication-title: J Mach Learn Res – volume-title: Microeconometrics: methods and applications year: 2005 ident: 5349_CR47 doi: 10.1017/CBO9780511811241 – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 5349_CR22 publication-title: Genome Biol doi: 10.1186/s13059-020-02096-y – volume: 33 start-page: 155 issue: 2 year: 2015 ident: 5349_CR3 publication-title: Nat Biotechnol doi: 10.1038/nbt.3102 – volume: 566 start-page: 496 issue: 7745 year: 2019 ident: 5349_CR39 publication-title: Nature doi: 10.1038/s41586-019-0969-x – volume: 16 start-page: 1 issue: 1 year: 2015 ident: 5349_CR21 publication-title: Genome Biol doi: 10.1186/s13059-015-0805-z – volume: 44 start-page: 117 issue: 13 year: 2016 ident: 5349_CR41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw430 – volume: 24 start-page: 496 issue: 3 year: 2014 ident: 5349_CR10 publication-title: Genome Res doi: 10.1101/gr.161034.113 – volume: 38 start-page: 147 issue: 2 year: 2020 ident: 5349_CR26 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0379-5 – volume: 347 start-page: 1138 issue: 6226 year: 2015 ident: 5349_CR2 publication-title: Science doi: 10.1126/science.aaa1934 – volume: 17 start-page: 246 issue: 4 year: 2018 ident: 5349_CR8 publication-title: Brief Funct Genomics doi: 10.1093/bfgp/elx046 – ident: 5349_CR19 doi: 10.1186/s13059-016-0947-7 – volume: 20 start-page: 1 issue: 1 year: 2019 ident: 5349_CR25 publication-title: Genome Biol doi: 10.1186/s13059-019-1861-6 – volume: 14 start-page: 483 issue: 5 year: 2017 ident: 5349_CR40 publication-title: Nat Methods doi: 10.1038/nmeth.4236 – volume: 16 start-page: 133 issue: 3 year: 2015 ident: 5349_CR15 publication-title: Nat Rev Genet doi: 10.1038/nrg3833 – ident: 5349_CR45 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 5349_CR44 publication-title: Nat Commun doi: 10.1038/ncomms14049 – volume: 117 start-page: 12868 issue: 23 year: 2020 ident: 5349_CR38 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1915085117 – volume: 16 start-page: 1 issue: 1 year: 2015 ident: 5349_CR5 publication-title: Genome Biol doi: 10.1186/s13059-015-0844-5 – volume: 9 start-page: 1 issue: 1 year: 2008 ident: 5349_CR35 publication-title: Genome Biol doi: 10.1186/gb-2008-9-1-r17 – volume: 36 start-page: 411 issue: 5 year: 2018 ident: 5349_CR46 publication-title: Nat Biotechnol doi: 10.1038/nbt.4096 – volume: 73 start-page: 811 issue: 3 year: 2017 ident: 5349_CR30 publication-title: Biometrics doi: 10.1111/biom.12647 – volume: 12 start-page: 609 issue: 1 year: 2018 ident: 5349_CR14 publication-title: Ann Appl Stat doi: 10.1214/17-AOAS1110 – volume: 11 start-page: 740 issue: 7 year: 2014 ident: 5349_CR4 publication-title: Nat Methods doi: 10.1038/nmeth.2967 – volume: 2 start-page: 193 issue: 1 year: 1985 ident: 5349_CR42 publication-title: J Classif doi: 10.1007/BF01908075 – volume: 141 start-page: 483 issue: 4 year: 2014 ident: 5349_CR37 publication-title: Immunology doi: 10.1111/imm.12224 – volume: 177 start-page: 1888 issue: 7 year: 2019 ident: 5349_CR31 publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 112 start-page: 1570 issue: 5 year: 2008 ident: 5349_CR36 publication-title: Blood J Am Soc Hematol – volume: 14 start-page: 309 issue: 3 year: 2017 ident: 5349_CR7 publication-title: Nat Methods doi: 10.1038/nmeth.4150 – ident: 5349_CR32 doi: 10.21105/joss.00861 – volume: 17 start-page: 1 issue: 1 year: 2016 ident: 5349_CR6 publication-title: Genome Biol doi: 10.1186/s13059-016-1077-y – reference: 36798423 - Res Sq. 2023 Feb 06;: |
| SSID | ssj0017805 |
| Score | 2.4614837 |
| Snippet | Background
Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved... Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has... Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved... BackgroundModeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved... Abstract Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 256 |
| SubjectTerms | Accuracy Algorithms Analysis Approximation Bioinformatics Biomedical and Life Sciences Cluster Analysis Clustering Clustering (Computers) Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer simulation Data representation Electronic data processing Gene Expression Profiling - methods Gene sequencing Genes Heterogeneity Hypotheses Hypothesis testing Information management Life Sciences Mathematical models Methods Microarrays Modelling Optimization Parameter estimation Parameters Poisson Distribution Probability Representations Ribonucleic acid RNA RNA - genetics RNA sequencing RNA-seq Sequence Analysis, RNA - methods Single cell Single-Cell Analysis - methods Single-cell technologies Statistical models |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5SEPVBvDu1yiiCDzZ0ZnKZ5HEVSytskepC30Iml1pYZouzS-m_95y5uaNQffB1cgYm53zJl2ROvkPI2wg0p7LCU-Y4pzxyQS2wDlXKu8CCLLXHu8PzE3m04J_PxNlWqS_MCevkgTvHHbi84qJQvgxAfLpyqgDIecGCBWoW3uHsmyk9bKb6_weo1D9ckVHyoMlRp40CP1EAHde0mNBQq9b_55y8RUq_J0yOf03vkTub-tJeX9nlcouYDh-Q-_2KMp11PXlIboX6Ebnd1Zi8fkzmAIT0ywr8u6pTjzK5fYWrtC2Ck8aLdZMu5scU-cyneHSwDBTP89PTkxntU63haYrJpE_I4vDTt49HtK-hQB3sLNY053kMTDi8gqtKHbLMAisK4aoIY72ySknHGAvaKmtlmUnrg48RFn6xEqrw7CnZqVd1eE7S3EbHCi0945x7KxXXwfPcVmXQXlqRkHxwqXG9wDjWuViadqOhpOnCYCAMpg2DKRLyfnznspPXuNH6A0ZqtERp7PYBAMb0gDF_A0xC3mCcDYpf1Jhdc243TWOOv56aWYkXkzMuoS_veqO4gj44219WAE-gXtbEcm9iCaPTTZsHOJl-dmgMbHNL2PsKJRPyemzGNzHjrQ6rTWcD02mRgc2zDn1jv1mJp1BlnhA1weXEMdOW-uJ7qx0O60lgFA3ftT9A-Nd33eT5_RHm_xCo3f8RqBfkbtGOWEnzco_srH9swktYAa6rV-1g_wnI4VID priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_1iqgP4rerVVYRfLCh-5Fksw8iV2lphTvK6UHfQjbJ1sKxe_bukP73zuxmt12Fw9fNBDYzk5lJMvMbQj6U4OZklFiaGsYoKxmnGrwOldIalzqR5RZrhydTcTJn3875-Q6ZdrUwmFbZ2cTGUNva4B35ARwNMjgvcCm-LH9R7BqFr6tdCw3tWyvYzw3E2B2ymyAy1ojsHh5Nz2b9uwIi-HelM1IcrGLEb6PgtygoI8tpMnBPDYr_v7b6lrP6O5Gyf019QO5tqqW-_q0Xi1sO6_gReegjzXDcqsZjsuOqJ-Ru23vy-imZgIKEZzXwva5Ci_C5vvNV2DTHCcvL9SqcT04p-jkb4pXCwlG85w9n0zH1KdjwNcQk02dkfnz04-sJ9b0VqIETx5rGLC5dyg2W5sosd1GkwVtybooSbEChpRQmTVOXa6m1yCKhrbNlCQFhWXCZ2PQ5GVV15V6SMNalSZNc2JQxZrWQLHeWxbrIXG6F5gGJO5Yq44HHsf_FQjUHEClUKwYFYlCNGFQSkE_9nGULu7GV-hAl1VMiZHbzob66UH4HKhMXjCfSZg4iqLwwMgHbZXnqNMR43JqAvEc5KwTFqDDr5kJvVit1-n2mxhkWLEdMwFo-eqKyhjUY7YsYgBOIozWg3BtQwq41w-FOnZS3Git1o-MBedcP40zMhKtcvWlpwMwmEdC8aLWvX3ea4e1UFgdEDvRywJjhSHX5s8EUhzgTPE0O_7XfqfDNf23j_H6v5v8hqFfbV_2a3E-avShonO2R0fpq495AzLcu3vqN_AclOVBG priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA8yEfVB_LY6pYrggws2zWcfr8OxCXfI9MLeQpqkOri0Y72Xsf_ec9reeqsy9DU5Kc35zsf5hZC3FYQ5k-WBci8EFZWQ1EHUocYEH3lUughYOzw_VocL8flUng4wOVgLs31-z4z60DJEWKMQWSioiygouNubEKRUdzCr9scTA8Tm3xTF_HXcJPB0-Px_euGtMPT7FcnxnPQuub2uz93VpVsut0LRwX1yb8gh01kv9AfkRqwfklv9q5JXj8gcRJ9-aYCjTZ0GBMYd3rRKu2dv0ups1aaL-RHFCBZS3CxYRoo7-OnJ8YwOl6uhNcXro4_J4uDTt_1DOryaQD2sJVaUCVZFLj0W3RpdxCxzEAel9GUF1l06Y5TnnMfCGeeUzpQLMVQVpHpVKU0e-BOyUzd1fEZS5irP80IFLoQIThlRxCCYK3UsgnIyIWzDUusHSHF82WJpu6WFUbYXgwUx2E4MNk_I-3HMeQ-ocS31R5TUSIlg2F0D6IgdbMt6VgqZm6Aj5EZF6U0OXilIHh1kbzL4hLxBOVuEu6jxPs13t25be_T1xM40liJnQsFc3g1EVQNz8G4oTwBOIELWhHJ3Qgn26KfdG3Wygz9oLSxsNax2pVEJeT1240i841bHZt3TgAPNM6B52mvfOG-ucd9Js4SYiV5OGDPtqc9-dGjhkEFCDCngv_Y2Kvzrv67j_N6o5v8gqOf_9_UX5E7e2aaiTO-SndXFOr6E7G5VvurM-ieaXEKe priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTQh44PujMFBASDwwd0n8EeexIKYNqdVUqDSeLMd2RkVJqqYVGn8958QJzUATSLzGZyk-32dy9zuEXuXg5kQYG0w0pZjmlGEFXgcLYbQlliepcb3D4wk_ntEPZ-xsB03bXpjsm87mpQcNdUDFw-029EXT5eCmKNjV4dLkjdILflhFDokNgwfCIFY0xWCW9ziD-HwX7c0mp6PPdZtREmHIcVjbPfPHjT0PVQP5_26ut_zV5VrK7ofqTXR9UyzVxXe1WGz5rKPbqGpP25SqfB1u1tlQ_7gEBPl_2XEH3fIhbjBqZPIu2rHFPXStGXp5cR-NQTKD0xIuvCwC43B7_citoJ7KE-TzdRXMxifYOVgTuG8ZC4vdD4ZgOhlhX_sNTwNX3foAzY7ef3p3jP1QB6wh1VnjiEa5JUy7nmCRpDYMFbhpxnSWg_HJlBBcE0JsqoRSPAm5MtbkOUSiecZEbMhDtFuUhX2MgkjlmsQpN4RSahQXNLWGRipLbGq4YgMUtRcptUc8d4M3FrLOfASXDZsksEnWbJLxAL3p9iwbvI8rqd86-egoHVZ3_aBcnUuv-lJHGWWxMImF0C3NtIjBaBpGrILgkhk9QC-ddEmHxlG4cp9ztakqefJxKkeJ65QOKYezvPZEeQln0Mp3TwAnHIBXj3K_RwnmQveXWyGW3lxVEvLuBJJxJvgAveiW3U5XglfYctPQgH2PQ6B51Mh8d26SuM9iSTRAoqcNPcb0V4r5lxrMHAJccHEpvNdBqzi_3usqzh90yvUXF_Xk38ifohtxrTscR8k-2l2vNvYZBJ_r7Lm3Jj8B1V97Ig priority: 102 providerName: Unpaywall |
| Title | The Poisson distribution model fits UMI-based single-cell RNA-sequencing data |
| URI | https://link.springer.com/article/10.1186/s12859-023-05349-2 https://www.ncbi.nlm.nih.gov/pubmed/37330471 https://www.proquest.com/docview/2827026586 https://www.proquest.com/docview/2827257206 https://pubmed.ncbi.nlm.nih.gov/PMC10276395 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05349-2 https://doaj.org/article/c1b4528d7e5549bc82488d53ea1255dc |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1raxQxMNQWUT-Ib0_rsYrgBxvdRzbJfhDZHj3bgzuOqwfnp5BNsrWw7NZ7oPfvneyrXS1F_HIHyQSSmck8svNA6G0Kao67vsaBIgSTlIRYgtbBnGtlAkNZpG3u8HhCj-dktAgXO6hpd1QjcHWta2f7Sc2X2YdfP7af4cJ_Ki88px9Xnq3ChkH7YGApEmEQyXugqSLbymFMLr8q2Pr9TeLMtes6yqms4f-3pL6iqv4Mo2y_pd5Ddzb5hdz-lFl2RV0NH6D7tZ3pxBVjPEQ7Jn-EbledJ7eP0RjYw5kWgPUid7Qtnlv3vXLK1jhOer5eOfPxCbZaTjv2QSEz2L7yO7NJjOsAbBh1bIjpEzQfHn0dHOO6swJW4G-ssUe81AShsom5nEXGdSXoyjBUSQoSIJGcUxUEgYkkl5Iyl0ptdJqCOZgmIfd18BTt5kVuniPHk6kK_IjqgBCiJeUkMpp4MmEm0lSGPeQ1KBWqLjtuu19konQ_OBUVGQSQQZRkEH4PvW_XXFRFN26EPrSUaiFtwexyoFieifr-CeUlJPS5ZgbspyhR3AfJpcPASLDwQq166I2ls7AlMXIbc3MmN6uVODmdiZjZdGWXUDjLuxooLeAMStYpDIAJW0WrA7nfgYQ7q7rTDTuJhuUFOL8MPOKQ0x563U7blTYOLjfFpoIBIeu7APOs4r723AGzb1PM6yHe4csOYroz-fn3sqI4WJmgZyLY10HDwpf7ugnzBy2b_wOhXvz_xl6iu355Tyn22D7aXS835hVYg-ukj26xBYNfPvzSR3txPDodwf_h0WQ6g9EBHfTLd5Z-KQpgZj6Zxt9-A9eZYS8 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDaPCAuFMYEBCIB2YtiR3HeUCoXKaWrRMaq9Q349jOmFQlZW019af4Rs7JbQtIFS97jU-i-NyPfS6EvM7AzEk_tJQZzinPeEQ1WB0qpTWOOREnFmuHR4diMOZfJ9Fkg_xuamEwrbLRiaWitoXBM_JdCA1iiBciKT7MflGcGoW3q80IjYot9t3qHEK2-fvhZ6DvmzDc-3L8aUDrqQLUgK-9oAEPMscig0WpMk6c72uwE1Fk0gy4P9VSCsMYc4mWWovYF9o6m2XgCmVpJEPL4LvXyHXOQJeA_MSTNsALcD5AU5gjxe48wO5wFKwiBVbnCQ07xq-cEfCvJbhkCv9O02zvam-RrWU-06tzPZ1eMod7d8jt2o_1-hXj3SUbLr9HblSTLVf3yQjYz_tWAFWL3LPYnLeeq-WVo3e87HQx98ajIUUraj08sJg6ircI3tFhn9YJ3vDUwxTWB2R8JTh-SDbzInePiRfozLAwEZZxzq0WkifO8kCnsUus0FGPBA1KlanbmuN0jakqwxspVEUGBWRQJRlU2CPv2ndmVVOPtdAfkVItJDbkLh8UZyeqlm9lgpRHobSxA_8sSY0MQTPaiDkNHmRkTY-8QjorbLmRY07PiV7O52r4_Uj1YyyH9rmAvbytgbIC9mB0XSIBmMAuXR3I7Q4k6ATTXW7YSdU6aa4uJKhHXrbL-Cbm2eWuWFYwoMRDH2AeVdzX7pvFePYVBz0iO3zZQUx3JT_9WXYsBy8W7FgC_7XTsPDFf63D_E7L5v9BqCfrd_2CbA2ORwfqYHi4_5TcDEu5FDSIt8nm4mzpnoF3uUiflyLtkR9XrUP-AAHMh30 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQEF8PiK9BYUBASDwwa0n8EeexFKoVaDUNJu3NcvwxJlVJtbZC---5S9LQAJrg1T5Hse_Od7bvfkfImwBmTsWpo8xyTnngghqwOlQpZz3zMssd5g5PZ_LwhH86FadbWfx1tPvmSbLJaUCUpnJ1sHChUXElD5YJ4q5RsDcUhIjnFDbh6xysG9YwGMlR946AiP2bVJm_juuZoxq1_8-9ecs4_R442b2e3iG31uXCXP4w8_mWgRrfI3dbzzIaNqJwn1zz5QNyo6k1efmQTEEgoqMK1rkqI4dwuW2lq6guhhOF89UyOplOKNo1F-EVwtxTvNePjmdD2oZcQ2uEQaWPyMn447fRIW1rKVALJ4wVTXgSPBMWU3FVlvs4NmAdhbBFAJ0vjFLSMsZ8bpQxMoulcd6FAA5gKIRKHdslO2VV-ickSkywLM2lY5xzZ6TiuXc8MUXmcyeNGJBks6TatkDjWO9irusDh5K6YYMGNuiaDTodkHfdmEUDs3El9XvkVEeJENl1Q3VxpluN0zYpuEiVyzx4THlhVQp7lRPMG_DphLMD8hr5rBEEo8QomzOzXi715OuxHmaYoBxzCXN52xKFCuZgTZu0ACuBuFk9yr0eJWip7XdvxEm3u8RSw3E3gzOwUHJAXnXdOBIj30pfrRsa2FbTGGgeN9LXzZtleBuVJQOienLZW5h-T3n-vcYQB78SLEsO_7W_EeFf_3XVyu93Yv4PjHr6f19_SW4efRjrL5PZ52fkdlqrqaRJtkd2Vhdr_xzcv1Xxotbwn4T1TdQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTQh44PujMFBASDwwd0n8EeexIKYNqdVUqDSeLMd2RkVJqqYVGn8958QJzUATSLzGZyk-32dy9zuEXuXg5kQYG0w0pZjmlGEFXgcLYbQlliepcb3D4wk_ntEPZ-xsB03bXpjsm87mpQcNdUDFw-029EXT5eCmKNjV4dLkjdILflhFDokNgwfCIFY0xWCW9ziD-HwX7c0mp6PPdZtREmHIcVjbPfPHjT0PVQP5_26ut_zV5VrK7ofqTXR9UyzVxXe1WGz5rKPbqGpP25SqfB1u1tlQ_7gEBPl_2XEH3fIhbjBqZPIu2rHFPXStGXp5cR-NQTKD0xIuvCwC43B7_citoJ7KE-TzdRXMxifYOVgTuG8ZC4vdD4ZgOhlhX_sNTwNX3foAzY7ef3p3jP1QB6wh1VnjiEa5JUy7nmCRpDYMFbhpxnSWg_HJlBBcE0JsqoRSPAm5MtbkOUSiecZEbMhDtFuUhX2MgkjlmsQpN4RSahQXNLWGRipLbGq4YgMUtRcptUc8d4M3FrLOfASXDZsksEnWbJLxAL3p9iwbvI8rqd86-egoHVZ3_aBcnUuv-lJHGWWxMImF0C3NtIjBaBpGrILgkhk9QC-ddEmHxlG4cp9ztakqefJxKkeJ65QOKYezvPZEeQln0Mp3TwAnHIBXj3K_RwnmQveXWyGW3lxVEvLuBJJxJvgAveiW3U5XglfYctPQgH2PQ6B51Mh8d26SuM9iSTRAoqcNPcb0V4r5lxrMHAJccHEpvNdBqzi_3usqzh90yvUXF_Xk38ifohtxrTscR8k-2l2vNvYZBJ_r7Lm3Jj8B1V97Ig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Poisson+distribution+model+fits+UMI-based+single-cell+RNA-sequencing+data&rft.jtitle=BMC+bioinformatics&rft.au=Pan%2C+Yue&rft.au=Landis%2C+Justin+T.&rft.au=Moorad%2C+Razia&rft.au=Wu%2C+Di&rft.date=2023-06-17&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=24&rft_id=info:doi/10.1186%2Fs12859-023-05349-2&rft.externalDocID=PMC10276395 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |