The Poisson distribution model fits UMI-based single-cell RNA-sequencing data

Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggreg...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 24; no. 1; pp. 256 - 27
Main Authors Pan, Yue, Landis, Justin T., Moorad, Razia, Wu, Di, Marron, J. S., Dittmer, Dirk P.
Format Journal Article
LanguageEnglish
Published London BioMed Central 17.06.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-023-05349-2

Cover

Abstract Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. Results We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. Conclusions This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson .
AbstractList Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson.
Abstract Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. Results We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. Conclusions This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson.
BackgroundModeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels.ResultsWe avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods.ConclusionsThis new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson.
Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. Results We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. Conclusions This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson .
Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson.
Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. Results We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. Conclusions This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson. Keywords: Single cell, RNA-seq, Poisson distribution, Data representation
Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels.BACKGROUNDModeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels.We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods.RESULTSWe avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods.This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson.CONCLUSIONSThis new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson.
ArticleNumber 256
Audience Academic
Author Moorad, Razia
Pan, Yue
Dittmer, Dirk P.
Wu, Di
Marron, J. S.
Landis, Justin T.
Author_xml – sequence: 1
  givenname: Yue
  surname: Pan
  fullname: Pan, Yue
  organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
– sequence: 2
  givenname: Justin T.
  surname: Landis
  fullname: Landis, Justin T.
  organization: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
– sequence: 3
  givenname: Razia
  surname: Moorad
  fullname: Moorad, Razia
  organization: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
– sequence: 4
  givenname: Di
  surname: Wu
  fullname: Wu, Di
  organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Adam School of Dentistry, University of North Carolina at Chapel Hill
– sequence: 5
  givenname: J. S.
  surname: Marron
  fullname: Marron, J. S.
  organization: Department of Biostatistics, University of North Carolina at Chapel Hill, Department of Statistics and Operations Research, University of North Carolina at Chapel Hill
– sequence: 6
  givenname: Dirk P.
  surname: Dittmer
  fullname: Dittmer, Dirk P.
  email: dirkdittmer@me.com
  organization: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37330471$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wB1igSGxgkeJHHDsrNKp4jNQCKu3acuyb1KOMPY0doP8eZ2YoMxWqUBZJrs851_58j7MD5x1k2UuMTjEW1buAiWB1gQgtEKNlXZAn2REuOS4IRuxg5_swOw5hgRDmArFn2SHllKK0eJRdXN1A_s3bELzLjQ1xsM0YbfpZegN93toY8uuLedGoACYP1nU9FBr6Pr_8MisC3I7gdKrmRkX1PHvaqj7Ai-37JLv--OHq7HNx_vXT_Gx2XuiqJLHAJW6BMo1oTQWvASEFYBjTTcsRbZQQlaaUQq2EUhVHlTJg2hbhum2YIIaeZPNNrvFqIVeDXarhTnpl5brgh06qIVrdg9S4KRkRhgNjZd1oQUohDKOgMGHM6JRFN1mjW6m7n6rv7wMxkhNouQEtE2i5Bi1Jcr3fuFZjswSjwcVB9Xtb2V9x9kZ2_kfKJLyiNUsJb7YJg08QQ5RLGyawyoEfgySCcMI4QVWSvn4gXfhxcInwWoVIxcSOqlPp3Na1PjXWU6iccUZpicpqanv6D1V6DCytTgPW2lTfM7zdMyRNhF-xU2MIcv79cl_7apfKPY4_85YEZCPQgw9hgPb_WIsHJm2jmoY0bd32j1u3lxtSH9fB8JfcI67f_hwFzw
CitedBy_id crossref_primary_10_1038_s41467_025_57157_2
crossref_primary_10_12677_ACM_2024_142343
crossref_primary_10_1093_nargab_lqaf023
crossref_primary_10_1016_j_jmoldx_2024_11_002
Cites_doi 10.1186/gb-2013-14-1-r7
10.1038/s41467-018-07931-2
10.1016/j.cels.2017.08.014
10.1128/mbio.03473-21
10.1186/s13059-019-1662-y
10.1038/nbt.3192
10.1016/j.cels.2019.03.003
10.1093/bioinformatics/btm134
10.1038/nprot.2016.154
10.12688/f1000research.15666.1
10.1038/nmeth.4263
10.1038/s41592-018-0033-z
10.1038/nmeth.1315
10.1186/s13059-019-1874-1
10.1186/s13059-021-02445-5
10.1017/CBO9780511811241
10.1186/s13059-020-02096-y
10.1038/nbt.3102
10.1038/s41586-019-0969-x
10.1186/s13059-015-0805-z
10.1093/nar/gkw430
10.1101/gr.161034.113
10.1038/s41587-019-0379-5
10.1126/science.aaa1934
10.1093/bfgp/elx046
10.1186/s13059-016-0947-7
10.1186/s13059-019-1861-6
10.1038/nmeth.4236
10.1038/nrg3833
10.1038/ncomms14049
10.1073/pnas.1915085117
10.1186/s13059-015-0844-5
10.1186/gb-2008-9-1-r17
10.1038/nbt.4096
10.1111/biom.12647
10.1214/17-AOAS1110
10.1038/nmeth.2967
10.1007/BF01908075
10.1111/imm.12224
10.1016/j.cell.2019.05.031
10.1038/nmeth.4150
10.21105/joss.00861
10.1186/s13059-016-1077-y
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-023-05349-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database


MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 27
ExternalDocumentID oai_doaj_org_article_c1b4528d7e5549bc82488d53ea1255dc
10.1186/s12859-023-05349-2
PMC10276395
A753340465
37330471
10_1186_s12859_023_05349_2
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: University of North Carolina Computational Medicine Program Award 2020
– fundername: National Institutes of Health
  grantid: CA16086; DE018304; CA16086; CA16086; CA16086
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Science Foundation
  grantid: DMS-2113404
– fundername: NIH HHS
  grantid: DE018304
– fundername: NIH HHS
  grantid: CA16086
– fundername: NCI NIH HHS
  grantid: P30 CA016086
– fundername: NCI NIH HHS
  grantid: P01 CA019014
– fundername: ;
– fundername: ;
  grantid: DMS-2113404
– fundername: ;
  grantid: CA16086; DE018304; CA16086; CA16086; CA16086
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c642t-141fe35c0393879e00aeed55cbf703ba886c333e9a8aa6706adedff019fb582d3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:46:40 EDT 2025
Sun Oct 26 04:14:45 EDT 2025
Tue Sep 30 17:13:23 EDT 2025
Thu Sep 04 18:46:16 EDT 2025
Mon Oct 06 18:14:08 EDT 2025
Mon Oct 20 22:19:26 EDT 2025
Mon Oct 20 16:07:29 EDT 2025
Thu Oct 16 16:17:17 EDT 2025
Wed Feb 19 02:01:09 EST 2025
Wed Oct 01 04:15:42 EDT 2025
Thu Apr 24 22:50:50 EDT 2025
Sat Sep 06 07:27:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Data representation
Single cell
RNA-seq
Poisson distribution
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c642t-141fe35c0393879e00aeed55cbf703ba886c333e9a8aa6706adedff019fb582d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-023-05349-2
PMID 37330471
PQID 2827026586
PQPubID 44065
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_c1b4528d7e5549bc82488d53ea1255dc
unpaywall_primary_10_1186_s12859_023_05349_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10276395
proquest_miscellaneous_2827257206
proquest_journals_2827026586
gale_infotracmisc_A753340465
gale_infotracacademiconefile_A753340465
gale_incontextgauss_ISR_A753340465
pubmed_primary_37330471
crossref_primary_10_1186_s12859_023_05349_2
crossref_citationtrail_10_1186_s12859_023_05349_2
springer_journals_10_1186_s12859_023_05349_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-17
PublicationDateYYYYMMDD 2023-06-17
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References PK Kimes (5349_CR30) 2017; 73
5349_CR32
L Hubert (5349_CR42) 1985; 2
KD Korthauer (5349_CR6) 2016; 17
C Hafemeister (5349_CR18) 2019; 20
V Svensson (5349_CR26) 2020; 38
FW Townes (5349_CR25) 2019; 20
TW LeBien (5349_CR36) 2008; 112
CS McGinnis (5349_CR17) 2019; 8
M Huang (5349_CR12) 2018; 15
G Finak (5349_CR5) 2015; 16
GX Zheng (5349_CR44) 2017; 8
JT Landis (5349_CR27) 2022; 13
S Liu (5349_CR33) 2021; 22
X Qiu (5349_CR7) 2017; 14
L Van der Maaten (5349_CR34) 2008; 9
E Pierson (5349_CR21) 2015; 16
L Zhu (5349_CR14) 2018; 12
G Eraslan (5349_CR13) 2019; 10
F Tang (5349_CR1) 2009; 6
MW Fiers (5349_CR8) 2018; 17
P Huang (5349_CR38) 2020; 117
O Stegle (5349_CR15) 2015; 16
5349_CR19
H Kim (5349_CR43) 2007; 23
L Cheng (5349_CR28) 2020; 5
T Stuart (5349_CR31) 2019; 177
B Fu (5349_CR37) 2014; 141
R Bacher (5349_CR20) 2017; 14
R Satija (5349_CR23) 2015; 33
J Cao (5349_CR39) 2019; 566
CKA Zeileis (5349_CR48) 2008
F Buettner (5349_CR3) 2015; 33
JK Kim (5349_CR11) 2013; 14
TE Chan (5349_CR9) 2017; 5
5349_CR45
TH Kim (5349_CR22) 2020; 21
PV Kharchenko (5349_CR4) 2014; 11
GK Marinov (5349_CR10) 2014; 24
VY Kiselev (5349_CR40) 2017; 14
AT Lun (5349_CR16) 2019; 20
Z Ji (5349_CR41) 2016; 44
AC Cameron (5349_CR47) 2005
A Zeisel (5349_CR2) 2015; 347
SH Robbins (5349_CR35) 2008; 9
5349_CR29
A Butler (5349_CR46) 2018; 36
R Zilionis (5349_CR24) 2017; 12
36798423 - Res Sq. 2023 Feb 06
References_xml – volume: 14
  start-page: 1
  issue: 1
  year: 2013
  ident: 5349_CR11
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-1-r7
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 5349_CR13
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07931-2
– volume: 5
  start-page: 251
  issue: 3
  year: 2017
  ident: 5349_CR9
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.08.014
– volume: 13
  start-page: 03473
  issue: 1
  year: 2022
  ident: 5349_CR27
  publication-title: MBio
  doi: 10.1128/mbio.03473-21
– volume: 5
  start-page: e135344
  issue: 11
  year: 2020
  ident: 5349_CR28
  publication-title: JCI insight
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: 5349_CR16
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1662-y
– volume: 33
  start-page: 495
  issue: 5
  year: 2015
  ident: 5349_CR23
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3192
– volume: 8
  start-page: 329
  issue: 4
  year: 2019
  ident: 5349_CR17
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2019.03.003
– volume: 23
  start-page: 1495
  issue: 12
  year: 2007
  ident: 5349_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm134
– volume: 12
  start-page: 44
  issue: 1
  year: 2017
  ident: 5349_CR24
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2016.154
– ident: 5349_CR29
  doi: 10.12688/f1000research.15666.1
– volume: 14
  start-page: 584
  issue: 6
  year: 2017
  ident: 5349_CR20
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4263
– volume-title: Applied econometrics with R
  year: 2008
  ident: 5349_CR48
– volume: 15
  start-page: 539
  issue: 7
  year: 2018
  ident: 5349_CR12
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0033-z
– volume: 6
  start-page: 377
  issue: 5
  year: 2009
  ident: 5349_CR1
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1315
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: 5349_CR18
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1874-1
– volume: 22
  start-page: 1
  issue: 1
  year: 2021
  ident: 5349_CR33
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02445-5
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 5349_CR34
  publication-title: J Mach Learn Res
– volume-title: Microeconometrics: methods and applications
  year: 2005
  ident: 5349_CR47
  doi: 10.1017/CBO9780511811241
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 5349_CR22
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02096-y
– volume: 33
  start-page: 155
  issue: 2
  year: 2015
  ident: 5349_CR3
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3102
– volume: 566
  start-page: 496
  issue: 7745
  year: 2019
  ident: 5349_CR39
  publication-title: Nature
  doi: 10.1038/s41586-019-0969-x
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  ident: 5349_CR21
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0805-z
– volume: 44
  start-page: 117
  issue: 13
  year: 2016
  ident: 5349_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw430
– volume: 24
  start-page: 496
  issue: 3
  year: 2014
  ident: 5349_CR10
  publication-title: Genome Res
  doi: 10.1101/gr.161034.113
– volume: 38
  start-page: 147
  issue: 2
  year: 2020
  ident: 5349_CR26
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0379-5
– volume: 347
  start-page: 1138
  issue: 6226
  year: 2015
  ident: 5349_CR2
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 17
  start-page: 246
  issue: 4
  year: 2018
  ident: 5349_CR8
  publication-title: Brief Funct Genomics
  doi: 10.1093/bfgp/elx046
– ident: 5349_CR19
  doi: 10.1186/s13059-016-0947-7
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: 5349_CR25
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1861-6
– volume: 14
  start-page: 483
  issue: 5
  year: 2017
  ident: 5349_CR40
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4236
– volume: 16
  start-page: 133
  issue: 3
  year: 2015
  ident: 5349_CR15
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3833
– ident: 5349_CR45
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 5349_CR44
  publication-title: Nat Commun
  doi: 10.1038/ncomms14049
– volume: 117
  start-page: 12868
  issue: 23
  year: 2020
  ident: 5349_CR38
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1915085117
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  ident: 5349_CR5
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0844-5
– volume: 9
  start-page: 1
  issue: 1
  year: 2008
  ident: 5349_CR35
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-1-r17
– volume: 36
  start-page: 411
  issue: 5
  year: 2018
  ident: 5349_CR46
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4096
– volume: 73
  start-page: 811
  issue: 3
  year: 2017
  ident: 5349_CR30
  publication-title: Biometrics
  doi: 10.1111/biom.12647
– volume: 12
  start-page: 609
  issue: 1
  year: 2018
  ident: 5349_CR14
  publication-title: Ann Appl Stat
  doi: 10.1214/17-AOAS1110
– volume: 11
  start-page: 740
  issue: 7
  year: 2014
  ident: 5349_CR4
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2967
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 5349_CR42
  publication-title: J Classif
  doi: 10.1007/BF01908075
– volume: 141
  start-page: 483
  issue: 4
  year: 2014
  ident: 5349_CR37
  publication-title: Immunology
  doi: 10.1111/imm.12224
– volume: 177
  start-page: 1888
  issue: 7
  year: 2019
  ident: 5349_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 112
  start-page: 1570
  issue: 5
  year: 2008
  ident: 5349_CR36
  publication-title: Blood J Am Soc Hematol
– volume: 14
  start-page: 309
  issue: 3
  year: 2017
  ident: 5349_CR7
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4150
– ident: 5349_CR32
  doi: 10.21105/joss.00861
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: 5349_CR6
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1077-y
– reference: 36798423 - Res Sq. 2023 Feb 06;:
SSID ssj0017805
Score 2.4614837
Snippet Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved...
Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has...
Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved...
BackgroundModeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved...
Abstract Background Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 256
SubjectTerms Accuracy
Algorithms
Analysis
Approximation
Bioinformatics
Biomedical and Life Sciences
Cluster Analysis
Clustering
Clustering (Computers)
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer simulation
Data representation
Electronic data processing
Gene Expression Profiling - methods
Gene sequencing
Genes
Heterogeneity
Hypotheses
Hypothesis testing
Information management
Life Sciences
Mathematical models
Methods
Microarrays
Modelling
Optimization
Parameter estimation
Parameters
Poisson Distribution
Probability
Representations
Ribonucleic acid
RNA
RNA - genetics
RNA sequencing
RNA-seq
Sequence Analysis, RNA - methods
Single cell
Single-Cell Analysis - methods
Single-cell technologies
Statistical models
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5SEPVBvDu1yiiCDzZ0ZnKZ5HEVSytskepC30Iml1pYZouzS-m_95y5uaNQffB1cgYm53zJl2ROvkPI2wg0p7LCU-Y4pzxyQS2wDlXKu8CCLLXHu8PzE3m04J_PxNlWqS_MCevkgTvHHbi84qJQvgxAfLpyqgDIecGCBWoW3uHsmyk9bKb6_weo1D9ckVHyoMlRp40CP1EAHde0mNBQq9b_55y8RUq_J0yOf03vkTub-tJeX9nlcouYDh-Q-_2KMp11PXlIboX6Ebnd1Zi8fkzmAIT0ywr8u6pTjzK5fYWrtC2Ck8aLdZMu5scU-cyneHSwDBTP89PTkxntU63haYrJpE_I4vDTt49HtK-hQB3sLNY053kMTDi8gqtKHbLMAisK4aoIY72ySknHGAvaKmtlmUnrg48RFn6xEqrw7CnZqVd1eE7S3EbHCi0945x7KxXXwfPcVmXQXlqRkHxwqXG9wDjWuViadqOhpOnCYCAMpg2DKRLyfnznspPXuNH6A0ZqtERp7PYBAMb0gDF_A0xC3mCcDYpf1Jhdc243TWOOv56aWYkXkzMuoS_veqO4gj44219WAE-gXtbEcm9iCaPTTZsHOJl-dmgMbHNL2PsKJRPyemzGNzHjrQ6rTWcD02mRgc2zDn1jv1mJp1BlnhA1weXEMdOW-uJ7qx0O60lgFA3ftT9A-Nd33eT5_RHm_xCo3f8RqBfkbtGOWEnzco_srH9swktYAa6rV-1g_wnI4VID
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_1iqgP4rerVVYRfLCh-5Fksw8iV2lphTvK6UHfQjbJ1sKxe_bukP73zuxmt12Fw9fNBDYzk5lJMvMbQj6U4OZklFiaGsYoKxmnGrwOldIalzqR5RZrhydTcTJn3875-Q6ZdrUwmFbZ2cTGUNva4B35ARwNMjgvcCm-LH9R7BqFr6tdCw3tWyvYzw3E2B2ymyAy1ojsHh5Nz2b9uwIi-HelM1IcrGLEb6PgtygoI8tpMnBPDYr_v7b6lrP6O5Gyf019QO5tqqW-_q0Xi1sO6_gReegjzXDcqsZjsuOqJ-Ru23vy-imZgIKEZzXwva5Ci_C5vvNV2DTHCcvL9SqcT04p-jkb4pXCwlG85w9n0zH1KdjwNcQk02dkfnz04-sJ9b0VqIETx5rGLC5dyg2W5sosd1GkwVtybooSbEChpRQmTVOXa6m1yCKhrbNlCQFhWXCZ2PQ5GVV15V6SMNalSZNc2JQxZrWQLHeWxbrIXG6F5gGJO5Yq44HHsf_FQjUHEClUKwYFYlCNGFQSkE_9nGULu7GV-hAl1VMiZHbzob66UH4HKhMXjCfSZg4iqLwwMgHbZXnqNMR43JqAvEc5KwTFqDDr5kJvVit1-n2mxhkWLEdMwFo-eqKyhjUY7YsYgBOIozWg3BtQwq41w-FOnZS3Git1o-MBedcP40zMhKtcvWlpwMwmEdC8aLWvX3ea4e1UFgdEDvRywJjhSHX5s8EUhzgTPE0O_7XfqfDNf23j_H6v5v8hqFfbV_2a3E-avShonO2R0fpq495AzLcu3vqN_AclOVBG
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA8yEfVB_LY6pYrggws2zWcfr8OxCXfI9MLeQpqkOri0Y72Xsf_ec9reeqsy9DU5Kc35zsf5hZC3FYQ5k-WBci8EFZWQ1EHUocYEH3lUughYOzw_VocL8flUng4wOVgLs31-z4z60DJEWKMQWSioiygouNubEKRUdzCr9scTA8Tm3xTF_HXcJPB0-Px_euGtMPT7FcnxnPQuub2uz93VpVsut0LRwX1yb8gh01kv9AfkRqwfklv9q5JXj8gcRJ9-aYCjTZ0GBMYd3rRKu2dv0ups1aaL-RHFCBZS3CxYRoo7-OnJ8YwOl6uhNcXro4_J4uDTt_1DOryaQD2sJVaUCVZFLj0W3RpdxCxzEAel9GUF1l06Y5TnnMfCGeeUzpQLMVQVpHpVKU0e-BOyUzd1fEZS5irP80IFLoQIThlRxCCYK3UsgnIyIWzDUusHSHF82WJpu6WFUbYXgwUx2E4MNk_I-3HMeQ-ocS31R5TUSIlg2F0D6IgdbMt6VgqZm6Aj5EZF6U0OXilIHh1kbzL4hLxBOVuEu6jxPs13t25be_T1xM40liJnQsFc3g1EVQNz8G4oTwBOIELWhHJ3Qgn26KfdG3Wygz9oLSxsNax2pVEJeT1240i841bHZt3TgAPNM6B52mvfOG-ucd9Js4SYiV5OGDPtqc9-dGjhkEFCDCngv_Y2Kvzrv67j_N6o5v8gqOf_9_UX5E7e2aaiTO-SndXFOr6E7G5VvurM-ieaXEKe
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTQh44PujMFBASDwwd0n8EeexIKYNqdVUqDSeLMd2RkVJqqYVGn8958QJzUATSLzGZyk-32dy9zuEXuXg5kQYG0w0pZjmlGEFXgcLYbQlliepcb3D4wk_ntEPZ-xsB03bXpjsm87mpQcNdUDFw-029EXT5eCmKNjV4dLkjdILflhFDokNgwfCIFY0xWCW9ziD-HwX7c0mp6PPdZtREmHIcVjbPfPHjT0PVQP5_26ut_zV5VrK7ofqTXR9UyzVxXe1WGz5rKPbqGpP25SqfB1u1tlQ_7gEBPl_2XEH3fIhbjBqZPIu2rHFPXStGXp5cR-NQTKD0xIuvCwC43B7_citoJ7KE-TzdRXMxifYOVgTuG8ZC4vdD4ZgOhlhX_sNTwNX3foAzY7ef3p3jP1QB6wh1VnjiEa5JUy7nmCRpDYMFbhpxnSWg_HJlBBcE0JsqoRSPAm5MtbkOUSiecZEbMhDtFuUhX2MgkjlmsQpN4RSahQXNLWGRipLbGq4YgMUtRcptUc8d4M3FrLOfASXDZsksEnWbJLxAL3p9iwbvI8rqd86-egoHVZ3_aBcnUuv-lJHGWWxMImF0C3NtIjBaBpGrILgkhk9QC-ddEmHxlG4cp9ztakqefJxKkeJ65QOKYezvPZEeQln0Mp3TwAnHIBXj3K_RwnmQveXWyGW3lxVEvLuBJJxJvgAveiW3U5XglfYctPQgH2PQ6B51Mh8d26SuM9iSTRAoqcNPcb0V4r5lxrMHAJccHEpvNdBqzi_3usqzh90yvUXF_Xk38ifohtxrTscR8k-2l2vNvYZBJ_r7Lm3Jj8B1V97Ig
  priority: 102
  providerName: Unpaywall
Title The Poisson distribution model fits UMI-based single-cell RNA-sequencing data
URI https://link.springer.com/article/10.1186/s12859-023-05349-2
https://www.ncbi.nlm.nih.gov/pubmed/37330471
https://www.proquest.com/docview/2827026586
https://www.proquest.com/docview/2827257206
https://pubmed.ncbi.nlm.nih.gov/PMC10276395
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05349-2
https://doaj.org/article/c1b4528d7e5549bc82488d53ea1255dc
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1raxQxMNQWUT-Ib0_rsYrgBxvdRzbJfhDZHj3bgzuOqwfnp5BNsrWw7NZ7oPfvneyrXS1F_HIHyQSSmck8svNA6G0Kao67vsaBIgSTlIRYgtbBnGtlAkNZpG3u8HhCj-dktAgXO6hpd1QjcHWta2f7Sc2X2YdfP7af4cJ_Ki88px9Xnq3ChkH7YGApEmEQyXugqSLbymFMLr8q2Pr9TeLMtes6yqms4f-3pL6iqv4Mo2y_pd5Ddzb5hdz-lFl2RV0NH6D7tZ3pxBVjPEQ7Jn-EbledJ7eP0RjYw5kWgPUid7Qtnlv3vXLK1jhOer5eOfPxCbZaTjv2QSEz2L7yO7NJjOsAbBh1bIjpEzQfHn0dHOO6swJW4G-ssUe81AShsom5nEXGdSXoyjBUSQoSIJGcUxUEgYkkl5Iyl0ptdJqCOZgmIfd18BTt5kVuniPHk6kK_IjqgBCiJeUkMpp4MmEm0lSGPeQ1KBWqLjtuu19konQ_OBUVGQSQQZRkEH4PvW_XXFRFN26EPrSUaiFtwexyoFieifr-CeUlJPS5ZgbspyhR3AfJpcPASLDwQq166I2ls7AlMXIbc3MmN6uVODmdiZjZdGWXUDjLuxooLeAMStYpDIAJW0WrA7nfgYQ7q7rTDTuJhuUFOL8MPOKQ0x563U7blTYOLjfFpoIBIeu7APOs4r723AGzb1PM6yHe4csOYroz-fn3sqI4WJmgZyLY10HDwpf7ugnzBy2b_wOhXvz_xl6iu355Tyn22D7aXS835hVYg-ukj26xBYNfPvzSR3txPDodwf_h0WQ6g9EBHfTLd5Z-KQpgZj6Zxt9-A9eZYS8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDaPCAuFMYEBCIB2YtiR3HeUCoXKaWrRMaq9Q349jOmFQlZW019af4Rs7JbQtIFS97jU-i-NyPfS6EvM7AzEk_tJQZzinPeEQ1WB0qpTWOOREnFmuHR4diMOZfJ9Fkg_xuamEwrbLRiaWitoXBM_JdCA1iiBciKT7MflGcGoW3q80IjYot9t3qHEK2-fvhZ6DvmzDc-3L8aUDrqQLUgK-9oAEPMscig0WpMk6c72uwE1Fk0gy4P9VSCsMYc4mWWovYF9o6m2XgCmVpJEPL4LvXyHXOQJeA_MSTNsALcD5AU5gjxe48wO5wFKwiBVbnCQ07xq-cEfCvJbhkCv9O02zvam-RrWU-06tzPZ1eMod7d8jt2o_1-hXj3SUbLr9HblSTLVf3yQjYz_tWAFWL3LPYnLeeq-WVo3e87HQx98ajIUUraj08sJg6ircI3tFhn9YJ3vDUwxTWB2R8JTh-SDbzInePiRfozLAwEZZxzq0WkifO8kCnsUus0FGPBA1KlanbmuN0jakqwxspVEUGBWRQJRlU2CPv2ndmVVOPtdAfkVItJDbkLh8UZyeqlm9lgpRHobSxA_8sSY0MQTPaiDkNHmRkTY-8QjorbLmRY07PiV7O52r4_Uj1YyyH9rmAvbytgbIC9mB0XSIBmMAuXR3I7Q4k6ATTXW7YSdU6aa4uJKhHXrbL-Cbm2eWuWFYwoMRDH2AeVdzX7pvFePYVBz0iO3zZQUx3JT_9WXYsBy8W7FgC_7XTsPDFf63D_E7L5v9BqCfrd_2CbA2ORwfqYHi4_5TcDEu5FDSIt8nm4mzpnoF3uUiflyLtkR9XrUP-AAHMh30
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQEF8PiK9BYUBASDwwa0n8EeexFKoVaDUNJu3NcvwxJlVJtbZC---5S9LQAJrg1T5Hse_Od7bvfkfImwBmTsWpo8xyTnngghqwOlQpZz3zMssd5g5PZ_LwhH86FadbWfx1tPvmSbLJaUCUpnJ1sHChUXElD5YJ4q5RsDcUhIjnFDbh6xysG9YwGMlR946AiP2bVJm_juuZoxq1_8-9ecs4_R442b2e3iG31uXCXP4w8_mWgRrfI3dbzzIaNqJwn1zz5QNyo6k1efmQTEEgoqMK1rkqI4dwuW2lq6guhhOF89UyOplOKNo1F-EVwtxTvNePjmdD2oZcQ2uEQaWPyMn447fRIW1rKVALJ4wVTXgSPBMWU3FVlvs4NmAdhbBFAJ0vjFLSMsZ8bpQxMoulcd6FAA5gKIRKHdslO2VV-ickSkywLM2lY5xzZ6TiuXc8MUXmcyeNGJBks6TatkDjWO9irusDh5K6YYMGNuiaDTodkHfdmEUDs3El9XvkVEeJENl1Q3VxpluN0zYpuEiVyzx4THlhVQp7lRPMG_DphLMD8hr5rBEEo8QomzOzXi715OuxHmaYoBxzCXN52xKFCuZgTZu0ACuBuFk9yr0eJWip7XdvxEm3u8RSw3E3gzOwUHJAXnXdOBIj30pfrRsa2FbTGGgeN9LXzZtleBuVJQOienLZW5h-T3n-vcYQB78SLEsO_7W_EeFf_3XVyu93Yv4PjHr6f19_SW4efRjrL5PZ52fkdlqrqaRJtkd2Vhdr_xzcv1Xxotbwn4T1TdQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTQh44PujMFBASDwwd0n8EeexIKYNqdVUqDSeLMd2RkVJqqYVGn8958QJzUATSLzGZyk-32dy9zuEXuXg5kQYG0w0pZjmlGEFXgcLYbQlliepcb3D4wk_ntEPZ-xsB03bXpjsm87mpQcNdUDFw-029EXT5eCmKNjV4dLkjdILflhFDokNgwfCIFY0xWCW9ziD-HwX7c0mp6PPdZtREmHIcVjbPfPHjT0PVQP5_26ut_zV5VrK7ofqTXR9UyzVxXe1WGz5rKPbqGpP25SqfB1u1tlQ_7gEBPl_2XEH3fIhbjBqZPIu2rHFPXStGXp5cR-NQTKD0xIuvCwC43B7_citoJ7KE-TzdRXMxifYOVgTuG8ZC4vdD4ZgOhlhX_sNTwNX3foAzY7ef3p3jP1QB6wh1VnjiEa5JUy7nmCRpDYMFbhpxnSWg_HJlBBcE0JsqoRSPAm5MtbkOUSiecZEbMhDtFuUhX2MgkjlmsQpN4RSahQXNLWGRipLbGq4YgMUtRcptUc8d4M3FrLOfASXDZsksEnWbJLxAL3p9iwbvI8rqd86-egoHVZ3_aBcnUuv-lJHGWWxMImF0C3NtIjBaBpGrILgkhk9QC-ddEmHxlG4cp9ztakqefJxKkeJ65QOKYezvPZEeQln0Mp3TwAnHIBXj3K_RwnmQveXWyGW3lxVEvLuBJJxJvgAveiW3U5XglfYctPQgH2PQ6B51Mh8d26SuM9iSTRAoqcNPcb0V4r5lxrMHAJccHEpvNdBqzi_3usqzh90yvUXF_Xk38ifohtxrTscR8k-2l2vNvYZBJ_r7Lm3Jj8B1V97Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Poisson+distribution+model+fits+UMI-based+single-cell+RNA-sequencing+data&rft.jtitle=BMC+bioinformatics&rft.au=Pan%2C+Yue&rft.au=Landis%2C+Justin+T.&rft.au=Moorad%2C+Razia&rft.au=Wu%2C+Di&rft.date=2023-06-17&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=24&rft_id=info:doi/10.1186%2Fs12859-023-05349-2&rft.externalDocID=PMC10276395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon