Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose

Expansin is a plant protein family that induces plant cell wall-loosening and cellulose disruption without exerting cellulose-hydrolytic activity. Expansin-like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we fou...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 102; no. 5; pp. 1342 - 1353
Main Authors Kim, Eun Sil, Lee, Hee Jin, Bang, Won-Gi, Choi, In-Geol, Kim, Kyoung Heon
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2009
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0006-3592
1097-0290
1097-0290
DOI10.1002/bit.22193

Cover

Abstract Expansin is a plant protein family that induces plant cell wall-loosening and cellulose disruption without exerting cellulose-hydrolytic activity. Expansin-like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a β-expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose-binding and cellulose-weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7-fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non-eukaryotic source. Biotechnol. Bioeng. 2009;102: 1342-1353.
AbstractList Expansin is a plant protein family that induces plant cell wall-loosening and cellulose disruption without exerting cellulose-hydrolytic activity. Expansin-like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a β-expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose-binding and cellulose-weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7-fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non-eukaryotic source. Biotechnol. Bioeng. 2009;102: 1342-1353.
Expansin is a plant protein family that induces plant cell wall-loosening and cellulose disruption without exerting cellulose-hydrolytic activity. Expansin-like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a -expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose-binding and cellulose-weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7-fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non-eukaryotic source. Biotechnol. Bioeng. 2009; 102: 1342-1353.
Expansin is a plant protein family that induces plant cell wall-loosening and cellulose disruption without exerting cellulose-hydrolytic activity. Expansin-like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a beta-expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose-binding and cellulose-weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7-fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non-eukaryotic source.
Expansin is a plant protein family that induces plant cell wall-loosening and cellulose disruption without exerting cellulose-hydrolytic activity. Expansin-like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a β-expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose-binding and cellulose-weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7-fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non-eukaryotic source. [PUBLICATION ABSTRACT]
Expansin is a plant protein family that induces plant cell wall‐loosening and cellulose disruption without exerting cellulose‐hydrolytic activity. Expansin‐like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a β‐expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose‐binding and cellulose‐weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7‐fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non‐eukaryotic source. Biotechnol. Bioeng. 2009;102: 1342–1353. © 2008 Wiley Periodicals, Inc.
Expansin is a plant protein family that induces plant cell wall-loosening and cellulose disruption without exerting cellulose-hydrolytic activity. Expansin-like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a beta-expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose-binding and cellulose-weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7-fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non-eukaryotic source.Expansin is a plant protein family that induces plant cell wall-loosening and cellulose disruption without exerting cellulose-hydrolytic activity. Expansin-like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a beta-expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose-binding and cellulose-weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7-fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non-eukaryotic source.
Expansin is a plant protein family that induces plant cell wall‐loosening and cellulose disruption without exerting cellulose‐hydrolytic activity. Expansin‐like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a β‐expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose‐binding and cellulose‐weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7‐fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non‐eukaryotic source. Biotechnol. Bioeng. 2009;102: 1342–1353. © 2008 Wiley Periodicals, Inc.
Author Kim, Eun Sil
Kim, Kyoung Heon
Lee, Hee Jin
Bang, Won-Gi
Choi, In-Geol
Author_xml – sequence: 1
  fullname: Kim, Eun Sil
– sequence: 2
  fullname: Lee, Hee Jin
– sequence: 3
  fullname: Bang, Won-Gi
– sequence: 4
  fullname: Choi, In-Geol
– sequence: 5
  fullname: Kim, Kyoung Heon
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21228067$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19058186$$D View this record in MEDLINE/PubMed
BookMark eNqFkttu1DAQhi1URLeFC14AIiSQuEjrQ-LEl7SiB1GBBC1FvbFsZ8y6zcaLnYimT4_30CJVgpUvbI-__9d4ZnbQVuc7QOglwXsEY7qvXb9HKRHsCZoQLKocU4G30ARjzHNWCrqNdmK8Tteq5vwZ2iYClzWp-QSNR0Nneuc71WZmqoIyPQR3pxahzNtMZXoVSu9wO1dddF1mg59lB8q4th1iFgfdu9bFzPqQQTdVnYEmHe7GWbIx2XRsgm_HmIhkaCCJWh_hOXpqVRvhxXrfRRdHH88PT_KzL8enhx_OcsMLynLQrC61aEQhtFVMGzACcG2s1ZxrYCYFoKka2wCnWOm0VGMJIVQBA67ZLnq38p0H_2uA2MuZi4ssVAd-iJJzUaTisY1gwQlPVSs2gowRUZWk2ghSTHhR4DKBbx6B134IqSeJIaziuF66vVpDg55BI-fBzVQY5X0zE_B2DahoVGtD6oSLDxwllNaYL4zerzgTfIwB7F8rLBcDJdNAyeVAJXb_EWtcv5yOPijX_k_x27Uw_ttaHpye3yvylcLFHm4fFCrcyJRtVcrLz8eyuvz66erk6of8nvjXK94qL9XPkP548S3VkmFSCl6VBfsDVTr3ag
CODEN BIBIAU
CitedBy_id crossref_primary_10_1021_acs_langmuir_0c00104
crossref_primary_10_1016_j_jplph_2010_03_017
crossref_primary_10_3168_jds_2018_15334
crossref_primary_10_1002_1873_3468_13528
crossref_primary_10_1146_annurev_micro_090816_093315
crossref_primary_10_1016_j_jbiotec_2014_07_013
crossref_primary_10_1016_j_biortech_2023_128844
crossref_primary_10_1111_mpp_12049
crossref_primary_10_1007_s11274_011_0650_5
crossref_primary_10_1007_s12155_011_9125_7
crossref_primary_10_1002_bbb_2142
crossref_primary_10_1039_C4RA05891G
crossref_primary_10_1016_j_copbio_2009_05_007
crossref_primary_10_1007_s10570_023_05637_3
crossref_primary_10_1016_j_jclepro_2023_138196
crossref_primary_10_1007_s10529_015_1842_0
crossref_primary_10_1007_s00449_015_1406_7
crossref_primary_10_1186_1754_6834_5_51
crossref_primary_10_1107_S2053230X15002198
crossref_primary_10_1089_ind_2013_0010
crossref_primary_10_1016_j_fgb_2014_05_008
crossref_primary_10_1111_j_1365_2958_2009_06889_x
crossref_primary_10_1007_s00253_014_6001_3
crossref_primary_10_1007_s00253_015_7071_6
crossref_primary_10_1016_j_biortech_2014_02_004
crossref_primary_10_1186_s13068_024_02500_w
crossref_primary_10_3168_jds_2019_16339
crossref_primary_10_1016_j_enzmictec_2019_109442
crossref_primary_10_1093_molbev_mst206
crossref_primary_10_1016_j_indcrop_2018_10_029
crossref_primary_10_1016_j_biortech_2015_03_129
crossref_primary_10_1007_s00253_015_6595_0
crossref_primary_10_1371_journal_pone_0224381
crossref_primary_10_1016_j_biortech_2014_11_042
crossref_primary_10_1007_s00253_015_6534_0
crossref_primary_10_1007_s10570_023_05402_6
crossref_primary_10_1146_annurev_chembioeng_061010_114205
crossref_primary_10_1016_j_biortech_2012_05_098
crossref_primary_10_1007_s10529_015_1927_9
crossref_primary_10_1186_1475_2859_10_8
crossref_primary_10_1007_s00253_013_4879_9
crossref_primary_10_1007_s00253_014_6116_6
crossref_primary_10_3390_catal2020244
crossref_primary_10_1016_j_biortech_2011_08_095
crossref_primary_10_1074_jbc_M111_225037
crossref_primary_10_1007_s00253_011_3421_1
crossref_primary_10_1007_s12010_011_9166_6
crossref_primary_10_1021_cr500351c
crossref_primary_10_1186_s13068_017_0721_4
crossref_primary_10_1017_qpb_2022_6
crossref_primary_10_1007_s10059_010_0033_z
crossref_primary_10_1074_jbc_M111_320358
crossref_primary_10_1186_s13068_016_0590_2
crossref_primary_10_1016_j_biortech_2013_09_086
crossref_primary_10_1007_s00253_023_12608_y
crossref_primary_10_1007_s00253_013_4822_0
crossref_primary_10_1186_s13068_022_02128_8
crossref_primary_10_1016_j_indcrop_2024_119072
crossref_primary_10_1186_s13068_016_0474_5
crossref_primary_10_1186_s40643_021_00446_7
crossref_primary_10_1016_j_carbpol_2013_04_094
crossref_primary_10_1128_AEM_01369_19
crossref_primary_10_1186_1754_6834_4_33
crossref_primary_10_1007_s43538_024_00373_z
crossref_primary_10_1016_j_biortech_2021_125139
crossref_primary_10_1007_s00253_015_6592_3
crossref_primary_10_1016_j_carbpol_2020_117287
crossref_primary_10_1371_journal_pone_0122296
crossref_primary_10_1007_s00792_023_01290_7
crossref_primary_10_1016_j_indcrop_2021_114106
crossref_primary_10_1016_j_fuel_2013_01_037
crossref_primary_10_1111_j_1467_7652_2009_00486_x
crossref_primary_10_1016_j_biortech_2018_08_042
crossref_primary_10_1016_j_carbpol_2025_123469
crossref_primary_10_4028_www_scientific_net_AMR_183_185_790
crossref_primary_10_1007_s10126_017_9782_4
crossref_primary_10_1007_s00425_014_2163_6
crossref_primary_10_1016_j_procbio_2016_09_012
crossref_primary_10_1016_j_enzmictec_2016_06_017
crossref_primary_10_1186_s13068_018_1318_2
crossref_primary_10_1371_journal_pone_0055485
crossref_primary_10_3389_fmicb_2023_1205767
crossref_primary_10_1002_elsc_201000011
crossref_primary_10_1016_j_biortech_2023_130188
crossref_primary_10_1016_j_indcrop_2016_01_022
crossref_primary_10_3390_catal11111343
crossref_primary_10_2478_v10182_011_0034_z
crossref_primary_10_1002_pro_4315
crossref_primary_10_3389_fmicb_2022_876466
crossref_primary_10_1016_j_envres_2022_114291
crossref_primary_10_1002_bit_24719
crossref_primary_10_1016_j_jbiosc_2014_09_010
crossref_primary_10_1371_journal_pone_0095638
crossref_primary_10_1016_j_mib_2011_04_004
crossref_primary_10_1007_s00253_009_2323_y
crossref_primary_10_1016_j_fuel_2022_125109
crossref_primary_10_1002_jctb_2430
crossref_primary_10_1039_C5CP06674C
crossref_primary_10_1007_s11596_021_2383_5
crossref_primary_10_1016_j_procbio_2024_03_008
crossref_primary_10_1016_j_jbiotec_2013_07_028
crossref_primary_10_1371_journal_pone_0075022
crossref_primary_10_1021_acs_est_1c05960
crossref_primary_10_1021_acs_biomac_9b01694
crossref_primary_10_1093_plcell_koad291
crossref_primary_10_1007_s00253_012_4412_6
crossref_primary_10_1016_j_bej_2013_12_018
crossref_primary_10_1016_j_jbiotec_2017_05_024
crossref_primary_10_1016_j_procbio_2015_02_003
crossref_primary_10_1016_j_procbio_2016_06_017
crossref_primary_10_1186_s12934_017_0697_6
crossref_primary_10_1016_j_scitotenv_2023_166704
crossref_primary_10_1107_S2053230X14015520
Cites_doi 10.1007/BF02920125
10.1016/S1369-5266(99)00039-4
10.1002/bit.260420811
10.1073/pnas.0605979103
10.1002/bit.20942
10.1073/pnas.91.14.6574
10.1038/427030a
10.1038/nbt0208-169
10.1016/S0960-8524(97)00103-X
10.1002/jcc.20084
10.1038/35030000
10.1042/bj2550895
10.1007/10_2007_066
10.1002/bit.21856
10.1093/nar/18.20.6069
10.1002/bit.21636
10.1002/bit.20286
10.1186/gb-2005-6-12-242
10.1016/j.enzmictec.2007.05.012
10.1007/s11103-004-0158-6
10.1021/bp0340180
10.1038/nmeth.f.202
10.1002/bit.260440907
10.1002/bit.20783
10.1016/0960-8524(91)90120-9
10.1021/ie50421a003
10.1074/jbc.M209554200
10.1046/j.1432-1033.2002.03095.x
10.2210/pdb2bh0/pdb
10.1385/ABAB:84-86:1-9:217
10.1093/bioinformatics/16.6.566
10.1016/j.biortech.2004.10.017
10.1073/pnas.160216697
ContentType Journal Article
Copyright Copyright © 2008 Wiley Periodicals, Inc.
2009 INIST-CNRS
Copyright John Wiley and Sons, Limited Apr 1, 2009
Copyright_xml – notice: Copyright © 2008 Wiley Periodicals, Inc.
– notice: 2009 INIST-CNRS
– notice: Copyright John Wiley and Sons, Limited Apr 1, 2009
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7QH
7QL
7UA
M7N
7S9
L.6
7X8
DOI 10.1002/bit.22193
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Aqualine
Bacteriology Abstracts (Microbiology B)
Water Resources Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Aqualine
Water Resources Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
Biotechnology Research Abstracts
MEDLINE

Materials Research Database

Solid State and Superconductivity Abstracts
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 1353
ExternalDocumentID 1660381311
19058186
21228067
10_1002_bit_22193
BIT22193
ark_67375_WNG_7WRKZHZX_V
US201301596754
Genre article
Journal Article
Feature
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XFK
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
AGHNM
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7QH
7QL
7UA
M7N
7S9
L.6
7X8
ID FETCH-LOGICAL-c6423-eb385b9d949bfa3bcec9e08cffb66be3cceced7dfde620ababaadf1112ae3e6b3
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Fri Jul 11 08:06:41 EDT 2025
Fri Jul 11 05:21:56 EDT 2025
Fri Jul 11 04:15:51 EDT 2025
Fri Jul 11 16:11:33 EDT 2025
Fri Jul 25 10:25:13 EDT 2025
Thu Apr 03 06:58:14 EDT 2025
Mon Jul 21 09:14:02 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Tue Jul 01 03:28:25 EDT 2025
Wed Jan 22 17:05:39 EST 2025
Tue Sep 09 05:29:26 EDT 2025
Wed Dec 27 19:15:05 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Enzyme
Bacillus subtilis
Cellulose
cellulose hydrolysis
bacterial expansin
Biofuel
Bacillaceae
Synergism
Glycosylases
Characterization
Hydrolysis
structural homolog
Bacillales
Cellulase
Glycosidases
Hydrolases
Bacteria
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6423-eb385b9d949bfa3bcec9e08cffb66be3cceced7dfde620ababaadf1112ae3e6b3
Notes http://dx.doi.org/10.1002/bit.22193
ark:/67375/WNG-7WRKZHZX-V
ArticleID:BIT22193
istex:DA19AF60C1465583F37B8E54DEF20DD5C4C3575C
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 19058186
PQID 213760817
PQPubID 48814
PageCount 12
ParticipantIDs proquest_miscellaneous_66942213
proquest_miscellaneous_46165814
proquest_miscellaneous_33197517
proquest_miscellaneous_20164405
proquest_journals_213760817
pubmed_primary_19058186
pascalfrancis_primary_21228067
crossref_primary_10_1002_bit_22193
crossref_citationtrail_10_1002_bit_22193
wiley_primary_10_1002_bit_22193_BIT22193
istex_primary_ark_67375_WNG_7WRKZHZX_V
fao_agris_US201301596754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 April 2009
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 1 April 2009
  day: 01
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wiley Subscription Services, Inc
References Berlin A, Maximenko V, Bura R, Kang KY, Gilkes N, Saddler J. 2006. A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 93(5): 880-886.
Woodward J, Lima M, Lee NE. 1988. The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem J 255(3): 895-899.
Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssonen E, Bhatia A, Ward M, Penttila M. 2002. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17): 4202-4211.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 25(13): 1605-1612.
Gregg DJ, Boussaid A, Saddler JN. 1998. Techno-economic evaluations of a generic wood-to-ethanol process: Effect of increased cellulose yields and enzyme recycle. Bioresource Technol 63(1): 7-12.
Xiao ZZ, Storms R, Tsang A. 2004. Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng 88(7): 832-837.
Boraston AB, Kwan E, Chiu P, Warren RAJ, Kilburn DG. 2003. Recognition and hydrolysis of noncrystalline cellulose. J Biol Chem 278(8): 6120-6127.
Qin L, Kudla U, Roze EHA, Goverse A, Popeijus H, Nieuwland J, Overmars H, Jones JT, Schots A, Smant G, et al. 2004. Plant degradation: A nematode expansin acting on plants. Nature 427(6969): 30-30.
Yang B, Willies DM, Wyman CE. 2006. Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol Bioeng 94(6): 1122-1128.
Han YJ, Chen HZ. 2007. Synergism between corn stover protein and cellulase. Enzyme Microb Technol 41(5): 638-645.
Irwin DC, Spezio M, Walker LP, Wilson DB. 1993. Activity studies of eight purified cellulases-Specificity, synergism, and binding domain effects. Biotechnol Bioeng 42(8): 1002-1013.
Kende H, Bradford KJ, Brummell DA, Cho HT, Cosgrove DJ, Fleming AJ, Gehring C, Lee Y, McQueen-Mason S, Rose JKC, et al. 2004. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55(3): 311-314.
Cosgrove DJ. 2000a. Loosening of plant cell walls by expansins. Nature 407(6802): 321-326.
Sherrad EC, Kressman FW. 1945. Review of processes in the United States prior to World War II. Ind Eng Chem 37(1): 5-8.
Nguyen QA, Tucker MP, Boynton BL, Keller FA, Schell DJ. 1998. Dilute acid pretreatment of softwoods. Appl Biochem Biotechnol 70-72: 77-87.
Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ. 2006. Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103(40): 14664-14671.
Adney B, Baker J. 1996. Measurement of cellulase activities, Chemical Analysis and Testing Task: LAP-006. Golden, CO, USA: National Renewable Energy Laboratory.
Aslanidis C, Dejong PJ. 1990. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18(20): 6069-6074.
Moser F, Irwin D, Chen S, Wilson DB. 2008. Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 100(6): 1066-1077.
Graslund S, Nordlund P, Weigelt J, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, et al. 2008. Protein production and purification. Nat Methods 5: 135-146.
Lynd LR, Laser MS, Bransby D, Dale BE, Davision B, Hamilton R, Himmel M, Keller H, McMillan JM, Sheehan J, et al. 2008. How biotech can transform biofuels. Nat Biotechnol 26(2): 169-172.
Carrard G, Koivula A, Soderlund H, Beguin P. 2000. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97(19): 10342-10347.
Sampedro J, Cosgrove DJ. 2005. The expansin superfamily. Genome Biol 6(12): 242-252.
Rudolf A, Baudel H, Zacchi G, Hahn-Hagerdal B, Liden G. 2008. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99: 783-790.
Cosgrove DJ. 2000b. New genes and new biological roles for expansins. Curr Opin Plant Biol 3(1): 73-78.
Kim KH, Tucker M, Nguyen Q. 2005. Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis. Bioresource Technol 96(11): 1249-1255.
Medve J, Stahlberg J, Tjerneld F. 1994. Adsorption and synergism of cellobiohydrolase-I and cellohydrolase-II of Trichoderma-reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 44(9): 1064-1073.
Baker JO, King MR, Adney WS, Decker SR, Vinzant TB, Lantz SE, Nieves RE, Thomas SR, Li LC, Cosgrove DJ, Himmel E. 2000. Investigation of the cell-wall loosening protein expansin as a possible additive in the enzymatic saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 84-86: 217-223.
McQueen-Mason S, Cosgrove DJ. 1994. Disruption of hydrogen-bonding between plant-cell wall polymers by proteins that wall extension. Proc Natl Acad Sci USA 91(14): 6574-6578.
Wingren A, Galbe M, Zacchi G. 2003. Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4): 1109-1117.
Merino ST, Cherry J. 2007. Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108: 95-120.
Holm L, Park J. 2000. DaliLite workbench for protein structure comparison. Bioinformatics 16(6): 566-567.
Torget R, Himmel ME, Grohmann K. 1991. Dilute sulfuric acid pretreatment of hardwood bark. Bioresource Technol 35(3): 239-246.
2006; 93
2004; 88
2007; 108
2006; 94
1991; 35
2000b; 3
1990; 18
2004; 25
1945; 37
1993; 42
1994; 44
1996
2007
2006
2008; 5
2008; 99
2003; 19
1998; 63
2008; 100
2004; 427
2003; 278
2004; 55
2000; 16
2001
2000; 97
2005; 96
2008; 26
2002; 269
1988; 255
2005; 6
2000a; 407
2007; 41
1998; 70–72
1994; 91
2006; 103
2000; 84–86
Adney B (e_1_2_1_2_1) 1996
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssonen E, Bhatia A, Ward M, Penttila M. 2002. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17): 4202-4211.
– reference: Kende H, Bradford KJ, Brummell DA, Cho HT, Cosgrove DJ, Fleming AJ, Gehring C, Lee Y, McQueen-Mason S, Rose JKC, et al. 2004. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55(3): 311-314.
– reference: Nguyen QA, Tucker MP, Boynton BL, Keller FA, Schell DJ. 1998. Dilute acid pretreatment of softwoods. Appl Biochem Biotechnol 70-72: 77-87.
– reference: Torget R, Himmel ME, Grohmann K. 1991. Dilute sulfuric acid pretreatment of hardwood bark. Bioresource Technol 35(3): 239-246.
– reference: Baker JO, King MR, Adney WS, Decker SR, Vinzant TB, Lantz SE, Nieves RE, Thomas SR, Li LC, Cosgrove DJ, Himmel E. 2000. Investigation of the cell-wall loosening protein expansin as a possible additive in the enzymatic saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 84-86: 217-223.
– reference: Adney B, Baker J. 1996. Measurement of cellulase activities, Chemical Analysis and Testing Task: LAP-006. Golden, CO, USA: National Renewable Energy Laboratory.
– reference: Sampedro J, Cosgrove DJ. 2005. The expansin superfamily. Genome Biol 6(12): 242-252.
– reference: Han YJ, Chen HZ. 2007. Synergism between corn stover protein and cellulase. Enzyme Microb Technol 41(5): 638-645.
– reference: Sherrad EC, Kressman FW. 1945. Review of processes in the United States prior to World War II. Ind Eng Chem 37(1): 5-8.
– reference: Cosgrove DJ. 2000a. Loosening of plant cell walls by expansins. Nature 407(6802): 321-326.
– reference: Moser F, Irwin D, Chen S, Wilson DB. 2008. Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 100(6): 1066-1077.
– reference: Gregg DJ, Boussaid A, Saddler JN. 1998. Techno-economic evaluations of a generic wood-to-ethanol process: Effect of increased cellulose yields and enzyme recycle. Bioresource Technol 63(1): 7-12.
– reference: Medve J, Stahlberg J, Tjerneld F. 1994. Adsorption and synergism of cellobiohydrolase-I and cellohydrolase-II of Trichoderma-reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 44(9): 1064-1073.
– reference: Yang B, Willies DM, Wyman CE. 2006. Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol Bioeng 94(6): 1122-1128.
– reference: Graslund S, Nordlund P, Weigelt J, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, et al. 2008. Protein production and purification. Nat Methods 5: 135-146.
– reference: McQueen-Mason S, Cosgrove DJ. 1994. Disruption of hydrogen-bonding between plant-cell wall polymers by proteins that wall extension. Proc Natl Acad Sci USA 91(14): 6574-6578.
– reference: Cosgrove DJ. 2000b. New genes and new biological roles for expansins. Curr Opin Plant Biol 3(1): 73-78.
– reference: Wingren A, Galbe M, Zacchi G. 2003. Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4): 1109-1117.
– reference: Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ. 2006. Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103(40): 14664-14671.
– reference: Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 25(13): 1605-1612.
– reference: Aslanidis C, Dejong PJ. 1990. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18(20): 6069-6074.
– reference: Boraston AB, Kwan E, Chiu P, Warren RAJ, Kilburn DG. 2003. Recognition and hydrolysis of noncrystalline cellulose. J Biol Chem 278(8): 6120-6127.
– reference: Rudolf A, Baudel H, Zacchi G, Hahn-Hagerdal B, Liden G. 2008. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99: 783-790.
– reference: Carrard G, Koivula A, Soderlund H, Beguin P. 2000. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97(19): 10342-10347.
– reference: Merino ST, Cherry J. 2007. Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108: 95-120.
– reference: Qin L, Kudla U, Roze EHA, Goverse A, Popeijus H, Nieuwland J, Overmars H, Jones JT, Schots A, Smant G, et al. 2004. Plant degradation: A nematode expansin acting on plants. Nature 427(6969): 30-30.
– reference: Xiao ZZ, Storms R, Tsang A. 2004. Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng 88(7): 832-837.
– reference: Lynd LR, Laser MS, Bransby D, Dale BE, Davision B, Hamilton R, Himmel M, Keller H, McMillan JM, Sheehan J, et al. 2008. How biotech can transform biofuels. Nat Biotechnol 26(2): 169-172.
– reference: Irwin DC, Spezio M, Walker LP, Wilson DB. 1993. Activity studies of eight purified cellulases-Specificity, synergism, and binding domain effects. Biotechnol Bioeng 42(8): 1002-1013.
– reference: Berlin A, Maximenko V, Bura R, Kang KY, Gilkes N, Saddler J. 2006. A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 93(5): 880-886.
– reference: Kim KH, Tucker M, Nguyen Q. 2005. Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis. Bioresource Technol 96(11): 1249-1255.
– reference: Holm L, Park J. 2000. DaliLite workbench for protein structure comparison. Bioinformatics 16(6): 566-567.
– reference: Woodward J, Lima M, Lee NE. 1988. The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem J 255(3): 895-899.
– volume: 100
  start-page: 1066
  issue: 6
  year: 2008
  end-page: 1077
  article-title: Regulation and characterization of carbohydrate‐binding module proteins E7 and E8
  publication-title: Biotechnol Bioeng
– volume: 6
  start-page: 242
  issue: 12
  year: 2005
  end-page: 252
  article-title: The expansin superfamily
  publication-title: Genome Biol
– volume: 103
  start-page: 14664
  issue: 40
  year: 2006
  end-page: 14671
  article-title: Crystal structure and activities of EXPB1 (Zea m 1), a β‐expansin and group‐1 pollen allergen from maize
  publication-title: Proc Natl Acad Sci USA
– volume: 55
  start-page: 311
  issue: 3
  year: 2004
  end-page: 314
  article-title: Nomenclature for members of the expansin superfamily of genes and proteins
  publication-title: Plant Mol Biol
– volume: 26
  start-page: 169
  issue: 2
  year: 2008
  end-page: 172
  article-title: How biotech can transform biofuels
  publication-title: Nat Biotechnol
– volume: 70–72
  start-page: 77
  year: 1998
  end-page: 87
  article-title: Dilute acid pretreatment of softwoods
  publication-title: Appl Biochem Biotechnol
– volume: 19
  start-page: 1109
  issue: 4
  year: 2003
  end-page: 1117
  article-title: Techno‐economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks
  publication-title: Biotechnol Prog
– year: 2001
– year: 2007
– volume: 278
  start-page: 6120
  issue: 8
  year: 2003
  end-page: 6127
  article-title: Recognition and hydrolysis of noncrystalline cellulose
  publication-title: J Biol Chem
– year: 1996
– volume: 91
  start-page: 6574
  issue: 14
  year: 1994
  end-page: 6578
  article-title: Disruption of hydrogen‐bonding between plant‐cell wall polymers by proteins that wall extension
  publication-title: Proc Natl Acad Sci USA
– volume: 427
  start-page: 30
  issue: 6969
  year: 2004
  end-page: 30
  article-title: Plant degradation: A nematode expansin acting on plants
  publication-title: Nature
– volume: 97
  start-page: 10342
  issue: 19
  year: 2000
  end-page: 10347
  article-title: Cellulose‐binding domains promote hydrolysis of different sites on crystalline cellulose
  publication-title: Proc Natl Acad Sci USA
– volume: 88
  start-page: 832
  issue: 7
  year: 2004
  end-page: 837
  article-title: Microplate‐based filter paper assay to measure total cellulase activity
  publication-title: Biotechnol Bioeng
– volume: 108
  start-page: 95
  year: 2007
  end-page: 120
  article-title: Progress and challenges in enzyme development for biomass utilization
  publication-title: Adv Biochem Eng Biotechnol
– volume: 407
  start-page: 321
  issue: 6802
  year: 2000a
  end-page: 326
  article-title: Loosening of plant cell walls by expansins
  publication-title: Nature
– volume: 42
  start-page: 1002
  issue: 8
  year: 1993
  end-page: 1013
  article-title: Activity studies of eight purified cellulases—Specificity, synergism, and binding domain effects
  publication-title: Biotechnol Bioeng
– volume: 93
  start-page: 880
  issue: 5
  year: 2006
  end-page: 886
  article-title: A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates
  publication-title: Biotechnol Bioeng
– volume: 3
  start-page: 73
  issue: 1
  year: 2000b
  end-page: 78
  article-title: New genes and new biological roles for expansins
  publication-title: Curr Opin Plant Biol
– volume: 18
  start-page: 6069
  issue: 20
  year: 1990
  end-page: 6074
  article-title: Ligation‐independent cloning of PCR products (LIC‐PCR)
  publication-title: Nucleic Acids Res
– volume: 269
  start-page: 4202
  issue: 17
  year: 2002
  end-page: 4211
  article-title: Swollenin, a protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials
  publication-title: Eur J Biochem
– volume: 94
  start-page: 1122
  issue: 6
  year: 2006
  end-page: 1128
  article-title: Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion
  publication-title: Biotechnol Bioeng
– volume: 37
  start-page: 5
  issue: 1
  year: 1945
  end-page: 8
  article-title: Review of processes in the United States prior to World War II
  publication-title: Ind Eng Chem
– volume: 25
  start-page: 1605
  issue: 13
  year: 2004
  end-page: 1612
  article-title: UCSF Chimera—A visualization system for exploratory research and analysis
  publication-title: J Comput Chem
– volume: 41
  start-page: 638
  issue: 5
  year: 2007
  end-page: 645
  article-title: Synergism between corn stover protein and cellulase
  publication-title: Enzyme Microb Technol
– volume: 84–86
  start-page: 217
  year: 2000
  end-page: 223
  article-title: Investigation of the cell‐wall loosening protein expansin as a possible additive in the enzymatic saccharification of lignocellulosic biomass
  publication-title: Appl Biochem Biotechnol
– volume: 255
  start-page: 895
  issue: 3
  year: 1988
  end-page: 899
  article-title: The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose
  publication-title: Biochem J
– volume: 63
  start-page: 7
  issue: 1
  year: 1998
  end-page: 12
  article-title: Techno‐economic evaluations of a generic wood‐to‐ethanol process: Effect of increased cellulose yields and enzyme recycle
  publication-title: Bioresource Technol
– year: 2006
– volume: 5
  start-page: 135
  year: 2008
  end-page: 146
  article-title: Protein production and purification
  publication-title: Nat Methods
– volume: 96
  start-page: 1249
  issue: 11
  year: 2005
  end-page: 1255
  article-title: Conversion of bark‐rich biomass mixture into fermentable sugar by two‐stage dilute acid‐catalyzed hydrolysis
  publication-title: Bioresource Technol
– volume: 35
  start-page: 239
  issue: 3
  year: 1991
  end-page: 246
  article-title: Dilute sulfuric acid pretreatment of hardwood bark
  publication-title: Bioresource Technol
– volume: 99
  start-page: 783
  year: 2008
  end-page: 790
  article-title: Simultaneous saccharification and fermentation of steam‐pretreated bagasse using TMB3400 and CBS6054
  publication-title: Biotechnol Bioeng
– volume: 44
  start-page: 1064
  issue: 9
  year: 1994
  end-page: 1073
  article-title: Adsorption and synergism of cellobiohydrolase‐I and cellohydrolase‐II of during hydrolysis of microcrystalline cellulose
  publication-title: Biotechnol Bioeng
– volume: 16
  start-page: 566
  issue: 6
  year: 2000
  end-page: 567
  article-title: DaliLite workbench for protein structure comparison
  publication-title: Bioinformatics
– ident: e_1_2_1_24_1
  doi: 10.1007/BF02920125
– ident: e_1_2_1_9_1
  doi: 10.1016/S1369-5266(99)00039-4
– ident: e_1_2_1_16_1
  doi: 10.1002/bit.260420811
– ident: e_1_2_1_37_1
  doi: 10.1073/pnas.0605979103
– ident: e_1_2_1_36_1
  doi: 10.1002/bit.20942
– ident: e_1_2_1_20_1
  doi: 10.1073/pnas.91.14.6574
– ident: e_1_2_1_27_1
  doi: 10.1038/427030a
– ident: e_1_2_1_19_1
  doi: 10.1038/nbt0208-169
– ident: e_1_2_1_13_1
  doi: 10.1016/S0960-8524(97)00103-X
– ident: e_1_2_1_26_1
  doi: 10.1002/jcc.20084
– ident: e_1_2_1_8_1
  doi: 10.1038/35030000
– ident: e_1_2_1_34_1
  doi: 10.1042/bj2550895
– ident: e_1_2_1_22_1
  doi: 10.1007/10_2007_066
– ident: e_1_2_1_23_1
  doi: 10.1002/bit.21856
– volume-title: Measurement of cellulase activities, Chemical Analysis and Testing Task: LAP‐006
  year: 1996
  ident: e_1_2_1_2_1
– ident: e_1_2_1_3_1
  doi: 10.1093/nar/18.20.6069
– ident: e_1_2_1_28_1
  doi: 10.1002/bit.21636
– ident: e_1_2_1_35_1
  doi: 10.1002/bit.20286
– ident: e_1_2_1_30_1
  doi: 10.1186/gb-2005-6-12-242
– ident: e_1_2_1_14_1
  doi: 10.1016/j.enzmictec.2007.05.012
– ident: e_1_2_1_17_1
  doi: 10.1007/s11103-004-0158-6
– ident: e_1_2_1_33_1
  doi: 10.1021/bp0340180
– ident: e_1_2_1_12_1
  doi: 10.1038/nmeth.f.202
– ident: e_1_2_1_21_1
  doi: 10.1002/bit.260440907
– ident: e_1_2_1_5_1
  doi: 10.1002/bit.20783
– ident: e_1_2_1_11_1
– ident: e_1_2_1_32_1
  doi: 10.1016/0960-8524(91)90120-9
– ident: e_1_2_1_31_1
  doi: 10.1021/ie50421a003
– ident: e_1_2_1_6_1
  doi: 10.1074/jbc.M209554200
– ident: e_1_2_1_29_1
  doi: 10.1046/j.1432-1033.2002.03095.x
– ident: e_1_2_1_25_1
  doi: 10.2210/pdb2bh0/pdb
– ident: e_1_2_1_4_1
  doi: 10.1385/ABAB:84-86:1-9:217
– ident: e_1_2_1_10_1
– ident: e_1_2_1_15_1
  doi: 10.1093/bioinformatics/16.6.566
– ident: e_1_2_1_18_1
  doi: 10.1016/j.biortech.2004.10.017
– ident: e_1_2_1_7_1
  doi: 10.1073/pnas.160216697
SSID ssj0007866
Score 2.3303297
Snippet Expansin is a plant protein family that induces plant cell wall-loosening and cellulose disruption without exerting cellulose-hydrolytic activity....
Expansin is a plant protein family that induces plant cell wall‐loosening and cellulose disruption without exerting cellulose‐hydrolytic activity....
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1342
SubjectTerms Amino Acid Sequence
Bacillus subtilis
Bacillus subtilis - enzymology
Bacillus subtilis - genetics
Bacteria
bacterial expansin
Bacterial Proteins - genetics
Bacterial Proteins - isolation & purification
Bacterial Proteins - metabolism
Bacteriology
Biodiesel fuels
biofuel
Biological and medical sciences
Biotechnology
cellulase
Cellulase - metabolism
Cellulose
Cellulose - metabolism
cellulose hydrolysis
Cloning, Molecular
E coli
Enzymes
Enzymes - genetics
Enzymes - isolation & purification
Enzymes - metabolism
Escherichia coli - genetics
Eukaryotes
Fundamental and applied biological sciences. Psychology
Gene Expression
Genes
Hydrolysis
Models, Molecular
Molecular Sequence Data
Nematoda
Protein Structure, Tertiary
Recombinant Proteins - genetics
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Sequence Homology, Amino Acid
structural homolog
Synergism
Synergistic effect
Zea mays
Title Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose
URI https://api.istex.fr/ark:/67375/WNG-7WRKZHZX-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.22193
https://www.ncbi.nlm.nih.gov/pubmed/19058186
https://www.proquest.com/docview/213760817
https://www.proquest.com/docview/20164405
https://www.proquest.com/docview/33197517
https://www.proquest.com/docview/46165814
https://www.proquest.com/docview/66942213
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJAQ88NEBK4NhITTxkq6JEycRT-ugFBB7GCurpkmWv8KqlQQ1jbTur-dsNylFK0IoL1Z8jpTz-fw7-_wzQq8J9KtWRHoE0IIX6lh7ACNSL5CA5nVIeMzNAecvR3QwDD-NotEGelufhXH8EM2CmxkZ1l-bAc5Fub8kDRXjWSeA8WaYPn1CDW_-u-MldVScuH1KEzGTKA1qVqFusN-0XJmLbmW8AIRqlHtlMiR5CUrK3O0WN8HPVTRrp6P-A3Re_4jLQrnsVDPRkdd_cDz-558-RPcXMBUfOLt6hDZ03kJbBzmE6D_meA_bxFG7It9Ct3t16c5hfX1cC937jelwC837MH-6ZUcsG45odwQUFxnmWLhXUK-vwEOV4xyboy-4x-V4MqlKXFZiNp6MSwwwG-v8wqYuQOF6blln8cVcTQtLsGI-aDYkqklR6sdo2H9_cjjwFrc-eBJiIeJBdJ9EIlVpmIqMEyG1THU3kVkmKBWaSHihVawypWnQ5QIerjJw2QHXRFNBnqDNvMj1NsKKqpj6MlFRSsKMKO5nlIQJlSrNAp-TNnpT9z-TC0p0czPHhDky54CB6plVfRu9akR_Oh6Qm4S2wYgY_w7-mQ2_BmZXGOAixGRhG-1Zy2oa8-mlyamLI3Z69IHFp8efzwZnI_atjXZXTK9pABjD7ILHbbRT2yJb-JsSKk1yU-JD7cumFjrcKJvnuqhAxJCpATxfL0HAHcfR374RUh8Qqx-ul6A0DUEXoIqnbpgstZV2I0OfCEq3xr5ejaz38cQWnv276A66W-_zdf3naHM2rfQLgIszsWv9wi-342er
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2ITR44KMDVgabhdDES7omTpxE4mUdlI5tfRgtqyYhy19h1UqCmlZa99dzdpqUohUhlBcrPkfy5Xz-nX3-GaG3BP6rVkQ6BNCC4-tQOwAjYseTgOa1T3jIzQHnsy7t9P3Pg2Cwht6XZ2EKfohqwc2MDOuvzQA3C9IHC9ZQMZw0PBhwZB3d8wFomNDrw_mCPCqMip1KEzOTIPZKXqGmd1A1XZqN1hOeAUY16r0xOZI8BzUlxf0WdwHQZTxrJ6T2Y_St7EqRh3LdmE5EQ97-wfL4v319gh7NkSo-LEzrKVrTaQ1tHaYQpf-Y4X1sc0ftonwN3W-Vpc2j8ga5Gnr4G9nhFpq1YQotVh6xrGiii1OgOEswx6J4BfX6BpxUPkyxOf2CW1wOR6NpjvOpmAxHwxwD0sY6vbLZC1C4nVniWXw1U-PMcqyYD5o9iekoy_Uz1G9_7B11nPnFD46EcIg4EOBHgYhV7Mci4URILWPdjGSSCEqFJhJeaBWqRGnqNbmAh6sEvLbHNdFUkOdoI81SvY2woiqkroxUEBM_IYq7CSV-RKWKE8_lpI7elQbA5JwV3VzOMWIFn7PHQPXMqr6O3lSiPwsqkLuEtsGKGP8OLpr1v3hmYxgQI4Rlfh3tW9OqGvPxtUmrCwN20f3Ewovzk8vO5YB9raPdJdurGgDMMBvhYR3tlMbI5i4nh0qT3xS5ULtX1cIPN8rmqc6mIGL41AChr5Yg4JHD4G_f8KkLoNX1V0tQGvugC1DFi2KcLLQVNwPDoAhKt9a-Wo2sddyzhZf_LrqHNju9s1N2etw92UEPym2_pvsKbUzGU_0a0ONE7Fon8Qv-gmvK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2Ib4e-NiAlcFmITTxkq6JEycRT-ugdAwqNFZWTUiWP1m1kkxNI6376zknTUrRihDKixWfI-V8Pv_OPv-M0GsC_aoVkQ4BtOD4OtQOwIjY8SSgee0THnJ7wPlzj3b7_sdBMFhBb6uzMCU_RL3gZkdG4a_tAL9UZm9OGiqGk6YH442sols-BSRhEdHxnDsqjMqNShsykyD2KlqhlrdXN12YjFYNTwGiWu1e2RRJnoGWTHm9xU34cxHOFvNR5yH6Xv1JmYZy0cwnoimv_yB5_M9ffYQezHAq3i8N6zFa0ck62thPIEb_OcW7uMgcLZbk19HtdlW6e1DdH7eO7v9GdbiBph2YQMt1RyxrkujyDChODeZYlK-gXl-Bi8qGCbZnX3Cby-FolGc4y8VkOBpmGHA21sl5kbsAhetpQTuLz6dqnBYMK_aDdkciH6WZfoL6nfcnB11ndu2DIyEYIg6E91EgYhX7sTCcCKllrFuRNEZQKjSR8EKrUBmlqdfiAh6uDPhsj2uiqSBP0VqSJnoTYUVVSF0ZqSAmviGKu4YSP6JSxcZzOWmgN1X_MznjRLdXc4xYyebsMVA9K1TfQK9q0cuSCOQmoU0wIsZ_gINm_a-e3RYGvAhBmd9Au4Vl1Y35-MIm1YUBO-19YOHp8dFZ92zAvjXQ9oLp1Q0AZNht8LCBtipbZDOHk0GlzW6KXKjdqWuhw62yeaLTHEQsmxrg8-USBPxxGPztGz51AbK6_nIJSmMfdAGqeFYOk7m24lZg-RNB6YWxL1cjax-eFIXn_y66g-58eddhnw57R1voXrXn13JfoLXJONcvATpOxHbhIn4BbnFqeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+characterization+of+a+bacterial+expansin+from+Bacillus+subtilis+for+enhanced+enzymatic+hydrolysis+of+cellulose&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Kim%2C+Eun+Sil&rft.au=Lee%2C+Hee+Jin&rft.au=Bang%2C+Won-Gi&rft.au=Choi%2C+In-Geol&rft.date=2009-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=102&rft.issue=5&rft.spage=1342&rft_id=info:doi/10.1002%2Fbit.22193&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1660381311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon