Short-term power load forecasting method based on Bagging-stochastic configuration networks

Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation of power grids, and guiding power systems to formulate reasonable production plans and reduce waste of resources. However, the traditional sh...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 3; p. e0300229
Main Authors Pang, Xinfu, Sun, Wei, Li, Haibo, Liu, Wei, Luan, Changfeng
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 19.03.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0300229

Cover

Abstract Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation of power grids, and guiding power systems to formulate reasonable production plans and reduce waste of resources. However, the traditional short-term load forecasting method has limited nonlinear mapping ability and weak generalization ability to unknown data, and it is prone to the loss of time series information, further suggesting that its forecasting accuracy can still be improved. This study presents a short-term power load forecasting method based on Bagging-stochastic configuration networks (SCNs). First, the missing values in the original data are filled with the average values. Second, the influencing factors, such as the weather- and week-type data, are coded. Then, combined with the data of influencing factors after coding, the Bagging-SCNs integration algorithm is used to predict the short-term load. Finally, by taking the daily load data of Quanzhou City, Zhejiang Province as an example, the program of the abovementioned method is compiled in Python language and then compared with the long short-term memory neural network algorithm and the single-SCNs algorithm. Simulation results show that the proposed method for medium- and short-term load forecasting has a high forecasting accuracy and a significant effect on improving the accuracy of load forecasting.
AbstractList Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation of power grids, and guiding power systems to formulate reasonable production plans and reduce waste of resources. However, the traditional short-term load forecasting method has limited nonlinear mapping ability and weak generalization ability to unknown data, and it is prone to the loss of time series information, further suggesting that its forecasting accuracy can still be improved. This study presents a short-term power load forecasting method based on Bagging-stochastic configuration networks (SCNs). First, the missing values in the original data are filled with the average values. Second, the influencing factors, such as the weather- and week-type data, are coded. Then, combined with the data of influencing factors after coding, the Bagging-SCNs integration algorithm is used to predict the short-term load. Finally, by taking the daily load data of Quanzhou City, Zhejiang Province as an example, the program of the abovementioned method is compiled in Python language and then compared with the long short-term memory neural network algorithm and the single-SCNs algorithm. Simulation results show that the proposed method for medium- and short-term load forecasting has a high forecasting accuracy and a significant effect on improving the accuracy of load forecasting.
Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation of power grids, and guiding power systems to formulate reasonable production plans and reduce waste of resources. However, the traditional short-term load forecasting method has limited nonlinear mapping ability and weak generalization ability to unknown data, and it is prone to the loss of time series information, further suggesting that its forecasting accuracy can still be improved. This study presents a short-term power load forecasting method based on Bagging-stochastic configuration networks (SCNs). First, the missing values in the original data are filled with the average values. Second, the influencing factors, such as the weather- and week-type data, are coded. Then, combined with the data of influencing factors after coding, the Bagging-SCNs integration algorithm is used to predict the short-term load. Finally, by taking the daily load data of Quanzhou City, Zhejiang Province as an example, the program of the abovementioned method is compiled in Python language and then compared with the long short-term memory neural network algorithm and the single-SCNs algorithm. Simulation results show that the proposed method for medium- and short-term load forecasting has a high forecasting accuracy and a significant effect on improving the accuracy of load forecasting.Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation of power grids, and guiding power systems to formulate reasonable production plans and reduce waste of resources. However, the traditional short-term load forecasting method has limited nonlinear mapping ability and weak generalization ability to unknown data, and it is prone to the loss of time series information, further suggesting that its forecasting accuracy can still be improved. This study presents a short-term power load forecasting method based on Bagging-stochastic configuration networks (SCNs). First, the missing values in the original data are filled with the average values. Second, the influencing factors, such as the weather- and week-type data, are coded. Then, combined with the data of influencing factors after coding, the Bagging-SCNs integration algorithm is used to predict the short-term load. Finally, by taking the daily load data of Quanzhou City, Zhejiang Province as an example, the program of the abovementioned method is compiled in Python language and then compared with the long short-term memory neural network algorithm and the single-SCNs algorithm. Simulation results show that the proposed method for medium- and short-term load forecasting has a high forecasting accuracy and a significant effect on improving the accuracy of load forecasting.
Audience Academic
Author Sun, Wei
Li, Haibo
Luan, Changfeng
Liu, Wei
Pang, Xinfu
AuthorAffiliation 2 Yingkou Power Supply Company, State Grid Liaoning Electric Power Co., Ltd., Yingkou, Liaoning, China
1 Key Laboratory of Energy Saving and Controlling in Power System of Liaoning Province, Shenyang Institute of Engineering, Shenyang, Liaoning, China
Newcastle University, UNITED KINGDOM
AuthorAffiliation_xml – name: Newcastle University, UNITED KINGDOM
– name: 2 Yingkou Power Supply Company, State Grid Liaoning Electric Power Co., Ltd., Yingkou, Liaoning, China
– name: 1 Key Laboratory of Energy Saving and Controlling in Power System of Liaoning Province, Shenyang Institute of Engineering, Shenyang, Liaoning, China
Author_xml – sequence: 1
  givenname: Xinfu
  orcidid: 0000-0001-6981-596X
  surname: Pang
  fullname: Pang, Xinfu
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-8495-8619
  surname: Sun
  fullname: Sun, Wei
– sequence: 3
  givenname: Haibo
  orcidid: 0000-0002-0951-9947
  surname: Li
  fullname: Li, Haibo
– sequence: 4
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
– sequence: 5
  givenname: Changfeng
  surname: Luan
  fullname: Luan, Changfeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38502675$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhousuB_6D0QKguhFxzRp2mZvZF38GFhYcNUbL0KanrYZ02RMUtf992Z2xmUqIksuEk6e9yV5zzlODow1kCRPc7TISZW_XtnJGaEX61heIIIQxuxBcpQzgrMSI3Kwdz5Mjr1fIURJXZaPkkNSU4TLih4l364G60IWwI3p2l6DS7UVbdpZB1L4oEyfjhAG26aN8NCm1qRvRd_HeuaDlcOGkam0plP95ERQETAQrq377h8nDzuhPTzZ7SfJl_fvPp9_zC4uPyzPzy4yWRZ5yKAiKBcMoEYMUNdWuCgpKQUjVU1EVaEaMMOsqSlu6oYVZSVoQYEK1jS4AEZOkuXWt7VixddOjcLdcCsUvy1Y13Ph4jM18KJsgJYNQ0zmBaMtyyWVtQCCCa7Koo1edOs1mbW4uRZa3xnmiG-C57vg-SZ4vgs-6t5sdeupGaGVYIITevaY-Y1RA-_tz-jKYi8IjQ4vdw7O_pjABz4qL0FrYcBOnmNW4QphRHFEn2_RXsQ_KdPZaCk3OD-r6pLRmlISqcU_qLhaGFXsGHQq1meCVzNBZAL8Cr2YvOfLq0_3Zy-_ztkXe-wAQofBWz1thsXPwWf7Id6l92dcI1BsAems9w66-zbn9C-ZVOF2VmMiSv9f_BuZtBQN
CitedBy_id crossref_primary_10_1016_j_egyr_2024_08_078
crossref_primary_10_1371_journal_pone_0307654
crossref_primary_10_1016_j_infrared_2024_105609
Cites_doi 10.1109/TPWRS.2010.2052638
10.1109/TSG.2018.2844307
10.1109/TSG.2016.2628061
10.1109/TII.2020.3000184
10.1109/59.801894
10.1109/TPWRS.2017.2688178
10.1109/TLA.2016.7459606
10.1016/j.neucom.2022.01.088
10.1109/TCYB.2017.2734043
10.1109/TPWRS.2005.852123
10.1109/ACCESS.2021.3070925
10.1109/TIA.2012.2199449
10.1109/TPWRS.2013.2264488
10.1109/TSG.2020.3034194
10.1109/TPWRS.2018.2872388
10.1109/ACCESS.2021.3063123
10.1109/TPWRS.2008.922249
10.1109/ACCESS.2019.2937222
10.1109/TSG.2020.2972513
10.1109/TPWRS.2019.2963109
10.1109/TSG.2021.3091469
10.1109/TPWRS.2004.835632
10.1109/TPWRS.2005.846106
10.1007/978-1-4612-4380-9_41
10.1109/ACCESS.2019.2950957
10.1109/ACCESS.2020.3011060
10.1109/TIP.2004.841199
ContentType Journal Article
Copyright Copyright: © 2024 Pang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Pang et al 2024 Pang et al
Copyright_xml – notice: Copyright: © 2024 Pang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Pang et al 2024 Pang et al
DBID AAYXX
CITATION
NPM
IOV
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0300229
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Short-term power load forecasting method based on bagging-stochastic configuration networks
EISSN 1932-6203
ExternalDocumentID oai_doaj_org_article_46be56b909c1495d91c5c8ae3232764d
10.1371/journal.pone.0300229
PMC10950235
A786958553
38502675
10_1371_journal_pone_0300229
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 2023-MS-247
– fundername: ;
  grantid: CSC 202008210181
– fundername: ;
  grantid: LJKMZ20221716
– fundername: ;
  grantid: 2023JH2/101700261
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
IPNFZ
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c641t-e7301a9ee809e0fd7246536a93783a7708e2929b852b8b9467a545e5a9bb24e93
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Oct 03 12:42:50 EDT 2025
Sun Oct 26 01:58:33 EDT 2025
Tue Sep 30 17:09:48 EDT 2025
Mon Sep 08 17:18:07 EDT 2025
Mon Oct 20 23:00:37 EDT 2025
Mon Oct 20 17:03:13 EDT 2025
Thu Oct 16 16:21:20 EDT 2025
Thu Oct 16 16:02:43 EDT 2025
Thu May 22 21:25:52 EDT 2025
Wed Feb 19 02:13:01 EST 2025
Wed Oct 01 04:20:09 EDT 2025
Thu Apr 24 22:58:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright: © 2024 Pang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-e7301a9ee809e0fd7246536a93783a7708e2929b852b8b9467a545e5a9bb24e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-8495-8619
0000-0002-0951-9947
0000-0001-6981-596X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300229&type=printable
PMID 38502675
PQID 2972702052
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_46be56b909c1495d91c5c8ae3232764d
unpaywall_primary_10_1371_journal_pone_0300229
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10950235
proquest_miscellaneous_2972702052
gale_infotracmisc_A786958553
gale_infotracacademiconefile_A786958553
gale_incontextgauss_ISR_A786958553
gale_incontextgauss_IOV_A786958553
gale_healthsolutions_A786958553
pubmed_primary_38502675
crossref_primary_10_1371_journal_pone_0300229
crossref_citationtrail_10_1371_journal_pone_0300229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-19
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Y Wang (pone.0300229.ref005) 2010; 26
M Espinoza (pone.0300229.ref010) 2005; 20
L Jiang (pone.0300229.ref004) 2021; 12
K Chen (pone.0300229.ref003) 2018; 10
M Afrasiabi (pone.0300229.ref025) 2020; 11
Z Liu (pone.0300229.ref026) 2005; 14
BF Hobbs (pone.0300229.ref001) 1999; 14
C Zhenyu (pone.0300229.ref007) 2020; 44
M Tan (pone.0300229.ref013) 2019; 35
JC López (pone.0300229.ref009) 2018; 34
Y Zhang (pone.0300229.ref006) 2019; 43
Y Liu (pone.0300229.ref021) 2012; 48
H Aprillia (pone.0300229.ref030) 2020; 12
S Zhaoxuan (pone.0300229.ref014) 2020; 44
CM Huang (pone.0300229.ref012) 2005; 20
J Li (pone.0300229.ref015) 2020; 17
T Gu (pone.0300229.ref027) 2021; 9
J Shi (pone.0300229.ref029) 2018; 42
F Liu (pone.0300229.ref032) 2021; 9
CW Yao (pone.0300229.ref008) 2020; 44
J Liu (pone.0300229.ref019) 2022; 483
Z Yun (pone.0300229.ref022) 2008; 23
D Wang (pone.0300229.ref033) 2017; 47
MR Haq (pone.0300229.ref011) 2019; 7
Z Sun (pone.0300229.ref023) 2020; 8
B. Efron (pone.0300229.ref031) 1992
KB Song (pone.0300229.ref016) 2005; 20
C Guan (pone.0300229.ref017) 2013; 28
W Kong (pone.0300229.ref002) 2017; 33
H Jiang (pone.0300229.ref020) 2016; 9
X Tang (pone.0300229.ref024) 2019; 7
H Jiang (pone.0300229.ref028) 2016; 9
PM Macaira (pone.0300229.ref018) 2016; 14
References_xml – volume: 26
  start-page: 500
  issue: 2
  year: 2010
  ident: pone.0300229.ref005
  article-title: Secondary forecasting based on deviation analysis for short-term load forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2052638
– volume: 42
  start-page: 25
  issue: 412
  year: 2018
  ident: pone.0300229.ref029
  article-title: Multi-task learning based on deep architecture for various types of load forecasting in regional energy system integration
  publication-title: Power Syst Technol
– volume: 10
  start-page: 3943
  issue: 4
  year: 2018
  ident: pone.0300229.ref003
  article-title: Short-term load forecasting with deep residual networks
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2844307
– volume: 9
  start-page: 3341
  issue: 4
  year: 2016
  ident: pone.0300229.ref020
  article-title: A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2016.2628061
– volume: 17
  start-page: 2443
  issue: 4
  year: 2020
  ident: pone.0300229.ref015
  article-title: A novel hybrid short-term load forecasting method of smart grid using MLR and LSTM neural network
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2020.3000184
– volume: 14
  start-page: 1342
  issue: 4
  year: 1999
  ident: pone.0300229.ref001
  article-title: Analysis of the value for unit commitment of improved load forecasts
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.801894
– volume: 33
  start-page: 1087
  issue: 1
  year: 2017
  ident: pone.0300229.ref002
  article-title: Short-term residential load forecasting based on resident behaviour learning
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2688178
– volume: 9
  start-page: 3341
  issue: 4
  year: 2016
  ident: pone.0300229.ref028
  article-title: A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2628061
– volume: 14
  start-page: 1252
  issue: 3
  year: 2016
  ident: pone.0300229.ref018
  article-title: Forecasting Brazil’s electricity consumption with pegels exponential smoothing techniques.
  publication-title: IEEE Latin America Transactions
  doi: 10.1109/TLA.2016.7459606
– volume: 44
  start-page: 614
  issue: 2
  year: 2020
  ident: pone.0300229.ref007
  article-title: Ultra short-term power load forecasting based on combined LSTM-XGBoost model
  publication-title: Power Syst Technol
– volume: 483
  start-page: 171
  year: 2022
  ident: pone.0300229.ref019
  article-title: A weight initialization method based on neural network with asymmetric activation function.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.088
– volume: 47
  start-page: 3466
  issue: 10
  year: 2017
  ident: pone.0300229.ref033
  article-title: Stochastic configuration networks: Fundamentals and algorithms
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2734043
– volume: 20
  start-page: 1622
  issue: 3
  year: 2005
  ident: pone.0300229.ref010
  article-title: Short-term load forecasting, profile identification, and customer segmentation: a methodology based on periodic time series
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.852123
– volume: 9
  start-page: 54912
  year: 2021
  ident: pone.0300229.ref027
  article-title: Detecting associations based on the multi-variable maximum information coefficient
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3070925
– volume: 48
  start-page: 1136
  issue: 4
  year: 2012
  ident: pone.0300229.ref021
  article-title: Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis
  publication-title: IEEE Transactions on Industry Applications
  doi: 10.1109/TIA.2012.2199449
– volume: 28
  start-page: 3806
  issue: 4
  year: 2013
  ident: pone.0300229.ref017
  article-title: Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2013.2264488
– volume: 12
  start-page: 1467
  issue: 2
  year: 2020
  ident: pone.0300229.ref030
  article-title: Statistical load forecasting using optimal quantile regression random forest and risk assessment index
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2020.3034194
– volume: 34
  start-page: 1427
  issue: 2
  year: 2018
  ident: pone.0300229.ref009
  article-title: Parsimonious short-term load forecasting for optimal operation planning of electrical distribution systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2872388
– volume: 9
  start-page: 59754
  year: 2021
  ident: pone.0300229.ref032
  article-title: A hybrid short-term load forecasting model based on improved fuzzy c-means clustering, random forest and deep neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3063123
– volume: 23
  start-page: 853
  issue: 3
  year: 2008
  ident: pone.0300229.ref022
  article-title: RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2008.922249
– volume: 7
  start-page: 125413
  year: 2019
  ident: pone.0300229.ref011
  article-title: A new hybrid model for short-term electricity load forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937222
– volume: 11
  start-page: 3646
  issue: 4
  year: 2020
  ident: pone.0300229.ref025
  article-title: Deep-based conditional probability density function forecasting of residential loads
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2020.2972513
– volume: 44
  start-page: 3416
  issue: 09
  year: 2020
  ident: pone.0300229.ref008
  article-title: Load forecasting method based on CNN-GRU hybrid neural network
  publication-title: Power Syst Technol
– volume: 44
  start-page: 2237
  issue: 06
  year: 2020
  ident: pone.0300229.ref014
  article-title: Regional load clustering integration forecasting based on convolutional neural network support vector regression machine [J]
  publication-title: Power system technology
– volume: 35
  start-page: 2937
  issue: 4
  year: 2019
  ident: pone.0300229.ref013
  article-title: Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning
  publication-title: IEEE transactions on power systems
  doi: 10.1109/TPWRS.2019.2963109
– volume: 12
  start-page: 5362
  issue: 6
  year: 2021
  ident: pone.0300229.ref004
  article-title: Hybrid multitask multi-information fusion deep learning for household short-term load forecasting
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2021.3091469
– volume: 43
  start-page: 1884
  issue: 6
  year: 2019
  ident: pone.0300229.ref006
  article-title: A very short-term load forecasting method based on deep LSTM RNN at zone level
  publication-title: Power Syst Technol
– volume: 20
  start-page: 96
  issue: 1
  year: 2005
  ident: pone.0300229.ref016
  article-title: Short-term load forecasting for the holidays using fuzzy linear regression method
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2004.835632
– volume: 20
  start-page: 1126
  issue: 2
  year: 2005
  ident: pone.0300229.ref012
  article-title: A particle swarm optimization to identifying the ARMAX model for short-term load forecasting
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2005.846106
– start-page: 569
  volume-title: In: Breakthroughs in statistics: Methodology and distribution
  year: 1992
  ident: pone.0300229.ref031
  doi: 10.1007/978-1-4612-4380-9_41
– volume: 7
  start-page: 160660
  year: 2019
  ident: pone.0300229.ref024
  article-title: Application of bidirectional recurrent neural network combined with deep belief network in short-term load forecasting
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2950957
– volume: 8
  start-page: 134422
  year: 2020
  ident: pone.0300229.ref023
  article-title: Short-term wind power forecasting based on VMD decomposition, ConvLSTM networks and error analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011060
– volume: 14
  start-page: 411
  issue: 4
  year: 2005
  ident: pone.0300229.ref026
  article-title: Mutual information-based analysis of JPEG2000 contexts
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2004.841199
SSID ssj0053866
Score 2.4736638
Snippet Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0300229
SubjectTerms Algorithms
Analysis
Biology and Life Sciences
China
Computer and Information Sciences
Earth Sciences
Electric power systems
Engineering and Technology
Forecasts and trends
Health aspects
Methods
Neural networks
Physical Sciences
Research and Analysis Methods
Supply and demand
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlGeggEFIwCHbPOzYPraIqiABEqWoEgfLdpzdSqvsimyE-PfMxN5oA4f2wHU9OWQenm-yM98Q8kr5RsrGyxSTPxQojKVWGJwCYdzUWW7dMAvz6XN1es4-XvCLnVVf2BMW6IGD4g5ZZT2vrMqUQzBfq9xxJ40vAQqIitV4-2ZSbYupcAdDFFdVHJQrRX4Y7TJbr1o_A7eGxKUmiWjg6__3Vt5JS3-3TN7s27X5_csslzv56OQOuR2BJD0KL7BPbvj2LtmPodrRN5FP-u098uNsARg7xTuYrnEpGl2uTE0BrXpnOmx7pmGPNMWUVtNVS48Nfoiep4AM3QJlHIW6ubmc98FhaBu6x7v75Pzk_bd3p2ncqZC6iuWb1GNEG-W9zJTPmloUSLBWGUApsjRCZNIXgJis5IWVVsE1agBjeW6UtQXzqnxA9lrQ4iNCRdnUtbG5N3nNeOGg1jTWlMJWLPO5qRNSbhWsXSQcx70XSz38iyag8Aiq0mgWHc2SkHR8ah0IN66QP0bbjbJIlz38AE6koxPpq5woIc_R8jrMno5Br4-ErBQUVLxMyMtBAikzWuzJmZu-6_SHL9-vIXT2dSL0Ogo1K1CHM3EOAt4JqbgmkgcTSQh8Nzl-sfVTjUfYLdf6Vd_pQgkcM8x4kZCHwW9H_ZSS49IxnhA58eiJAqcn7eVi4B3PAY4jPVJCZqPzX8tGj_-HjZ6QWwUASuz_y9UB2dv87P1TAIQb-2yI_T_GQmAx
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoDwDBQxCPA5J83JiH7eIqiBREGVRK4Qi23F2K1bJimyE4MBvZyb2rpoiRDlwW8XjaD0ezyOe-YaQx8JUnFeG-2j8IUBJU1_lEqtAUibLMFK6r4V5c5DtT9LXR-xog3xe1cI4DkKMOG_a_iYffzS12XGc3EG8Int7GkRJHq1mBAsgCkBkwSiJJz3iEH4ZW2IB0gWymTFw1Udkc3Lwbnxsb5pjP4vDxJXT_elNA3PVo_r_rrtPGa-ziZUXu3ohv3-T8_kpq7V3hfxcrdcmq3wJuqUK9I8zUJD_jSFXyWXn79KxfcsW2TD1NbLlNEpLnznY6-fXyafDGYQCPpoKusDebXTeyJKCU220bDE7m9p21xQtb0mbmu5K_F4-9cGB1TOk0RTC--pk2lm5prVNcm9vkMneyw8v9n3X-sHXWRotfYOKRwpjeChMWJV5jDhwmQRniicyz0NuYnDsFGex4kqAtpfgChomhVJxakRyk4xqWP9tQvOkKkupIiOjMmWxhpBYKpnkKktDE8nSI8lqhwvtcNGxPce86C_7coiPLKsKZGjhGOoRfz1rYXFB_kK_i8KzpkVU7_4B7GjhdrJIM2VYpkQoNAaupYg001yaBNzePEvhrz5A0StsiexaNxXjnGcC4j6WeORRT4HIHjWmDk1l17bFq7cfz0F0-H5A9NQRVQ2wQ0tXrgFrQoEbUG4PKEE_6cHww9VBKXAIk_pq03RtEYscqyFDFnvklj04a_4knGFvNOYRPjhSAwYOR-qTWQ-PHkHUgChOHgnWp-9ce3TnXyfcJZdi8HExJTES22S0_NqZe-CjLtV9p2l-AT51l-I
  priority: 102
  providerName: Unpaywall
Title Short-term power load forecasting method based on Bagging-stochastic configuration networks
URI https://www.ncbi.nlm.nih.gov/pubmed/38502675
https://www.proquest.com/docview/2972702052
https://pubmed.ncbi.nlm.nih.gov/PMC10950235
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300229&type=printable
https://doaj.org/article/46be56b909c1495d91c5c8ae3232764d
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF71IUEviPI0lLAgJODgyO_dPSCUVA0FqaFqCQriYO2u10klyw5xIui_Z8Z2rBqo6MUH76xkz2PnG3sehLwSJuU8NdxG5w8BShDYikmsAglCmTiu0lUtzMk4Op4En6bhdItsZrY2DCz_GdrhPKnJMuv_-nH5Hgz-XTW1gbmbTf1FkZs-KC24JbFNdsFXCRzmcBK0_xXAuqOoKaC7buceueXzEAczhR1fVbX0__vgvuK5_syqvL3OF_Lyp8yyKy5rdJfcabAmHdTKsU-2TH6P7DfWXNI3Tcvpt_fJ9_M5cMDGY5oucG4azQqZUAC0RssSM6NpPWqaotdLaJHTocRv1TMbwKOeI42mEFqnF7N1rVM0rxPMywdkMjr6cnhsN2MXbB0F7so2aPRSGMMdYZw0YR72YIskABnuS8YcbjwAVYqHnuJKwEkrAYaZUAqlvMAI_yHZyYGhjwllfpokUrlGukkQehrCUamkz1QUOMaViUX8DYNj3fQkx9EYWVz9aGMQm9SsilFCcSMhi9jtrkXdk-M_9EOUXUuLHbWrG8VyFjcGGgeRMmGkhCM0Bo2JcHWouTQ-QE4WBfCoz1HycV2e2p4L8YDxSEDMFfoWeVlRYFeNHNN2ZnJdlvHHz19vQHR-1iF63RClBbBDy6ZUAt4Ju3V1KA86lHA26M7yi42exriECXW5KdZl7AmGlYhO6FnkUa23LX826m8R3tHoDgO7K_nFvGpN7gJixw5KFum3yn8jGT259imekj0PgCTm_bnigOyslmvzDIDgSvXINpsyuPJDF6-jDz2yOzwan571qk8rvcr24d5kfDr49hufeWS8
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoDwDBQxCPA5J83JiH7eIqiBREGVRK4Qi23F2K1bJimyE4MBvZyb2rpoiRDlwW8XjaD0ezyOe-YaQx8JUnFeG-2j8IUBJU1_lEqtAUibLMFK6r4V5c5DtT9LXR-xog3xe1cI4DkKMOG_a_iYffzS12XGc3EG8Int7GkRJHq1mBAsgCkBkwSiJJz3iEH4ZW2IB0gWymTFw1Udkc3Lwbnxsb5pjP4vDxJXT_elNA3PVo_r_rrtPGa-ziZUXu3ohv3-T8_kpq7V3hfxcrdcmq3wJuqUK9I8zUJD_jSFXyWXn79KxfcsW2TD1NbLlNEpLnznY6-fXyafDGYQCPpoKusDebXTeyJKCU220bDE7m9p21xQtb0mbmu5K_F4-9cGB1TOk0RTC--pk2lm5prVNcm9vkMneyw8v9n3X-sHXWRotfYOKRwpjeChMWJV5jDhwmQRniicyz0NuYnDsFGex4kqAtpfgChomhVJxakRyk4xqWP9tQvOkKkupIiOjMmWxhpBYKpnkKktDE8nSI8lqhwvtcNGxPce86C_7coiPLKsKZGjhGOoRfz1rYXFB_kK_i8KzpkVU7_4B7GjhdrJIM2VYpkQoNAaupYg001yaBNzePEvhrz5A0StsiexaNxXjnGcC4j6WeORRT4HIHjWmDk1l17bFq7cfz0F0-H5A9NQRVQ2wQ0tXrgFrQoEbUG4PKEE_6cHww9VBKXAIk_pq03RtEYscqyFDFnvklj04a_4knGFvNOYRPjhSAwYOR-qTWQ-PHkHUgChOHgnWp-9ce3TnXyfcJZdi8HExJTES22S0_NqZe-CjLtV9p2l-AT51l-I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+power+load+forecasting+method+based+on+Bagging-stochastic+configuration+networks&rft.jtitle=PloS+one&rft.au=Pang%2C+Xinfu&rft.au=Sun%2C+Wei&rft.au=Li%2C+Haibo&rft.au=Liu%2C+Wei&rft.date=2024-03-19&rft.eissn=1932-6203&rft.volume=19&rft.issue=3&rft.spage=e0300229&rft_id=info:doi/10.1371%2Fjournal.pone.0300229&rft_id=info%3Apmid%2F38502675&rft.externalDocID=38502675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon