Short-term power load forecasting method based on Bagging-stochastic configuration networks
Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation of power grids, and guiding power systems to formulate reasonable production plans and reduce waste of resources. However, the traditional sh...
Saved in:
| Published in | PloS one Vol. 19; no. 3; p. e0300229 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
19.03.2024
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0300229 |
Cover
| Abstract | Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation of power grids, and guiding power systems to formulate reasonable production plans and reduce waste of resources. However, the traditional short-term load forecasting method has limited nonlinear mapping ability and weak generalization ability to unknown data, and it is prone to the loss of time series information, further suggesting that its forecasting accuracy can still be improved. This study presents a short-term power load forecasting method based on Bagging-stochastic configuration networks (SCNs). First, the missing values in the original data are filled with the average values. Second, the influencing factors, such as the weather- and week-type data, are coded. Then, combined with the data of influencing factors after coding, the Bagging-SCNs integration algorithm is used to predict the short-term load. Finally, by taking the daily load data of Quanzhou City, Zhejiang Province as an example, the program of the abovementioned method is compiled in Python language and then compared with the long short-term memory neural network algorithm and the single-SCNs algorithm. Simulation results show that the proposed method for medium- and short-term load forecasting has a high forecasting accuracy and a significant effect on improving the accuracy of load forecasting. |
|---|---|
| AbstractList | Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation of power grids, and guiding power systems to formulate reasonable production plans and reduce waste of resources. However, the traditional short-term load forecasting method has limited nonlinear mapping ability and weak generalization ability to unknown data, and it is prone to the loss of time series information, further suggesting that its forecasting accuracy can still be improved. This study presents a short-term power load forecasting method based on Bagging-stochastic configuration networks (SCNs). First, the missing values in the original data are filled with the average values. Second, the influencing factors, such as the weather- and week-type data, are coded. Then, combined with the data of influencing factors after coding, the Bagging-SCNs integration algorithm is used to predict the short-term load. Finally, by taking the daily load data of Quanzhou City, Zhejiang Province as an example, the program of the abovementioned method is compiled in Python language and then compared with the long short-term memory neural network algorithm and the single-SCNs algorithm. Simulation results show that the proposed method for medium- and short-term load forecasting has a high forecasting accuracy and a significant effect on improving the accuracy of load forecasting. Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation of power grids, and guiding power systems to formulate reasonable production plans and reduce waste of resources. However, the traditional short-term load forecasting method has limited nonlinear mapping ability and weak generalization ability to unknown data, and it is prone to the loss of time series information, further suggesting that its forecasting accuracy can still be improved. This study presents a short-term power load forecasting method based on Bagging-stochastic configuration networks (SCNs). First, the missing values in the original data are filled with the average values. Second, the influencing factors, such as the weather- and week-type data, are coded. Then, combined with the data of influencing factors after coding, the Bagging-SCNs integration algorithm is used to predict the short-term load. Finally, by taking the daily load data of Quanzhou City, Zhejiang Province as an example, the program of the abovementioned method is compiled in Python language and then compared with the long short-term memory neural network algorithm and the single-SCNs algorithm. Simulation results show that the proposed method for medium- and short-term load forecasting has a high forecasting accuracy and a significant effect on improving the accuracy of load forecasting.Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation of power grids, and guiding power systems to formulate reasonable production plans and reduce waste of resources. However, the traditional short-term load forecasting method has limited nonlinear mapping ability and weak generalization ability to unknown data, and it is prone to the loss of time series information, further suggesting that its forecasting accuracy can still be improved. This study presents a short-term power load forecasting method based on Bagging-stochastic configuration networks (SCNs). First, the missing values in the original data are filled with the average values. Second, the influencing factors, such as the weather- and week-type data, are coded. Then, combined with the data of influencing factors after coding, the Bagging-SCNs integration algorithm is used to predict the short-term load. Finally, by taking the daily load data of Quanzhou City, Zhejiang Province as an example, the program of the abovementioned method is compiled in Python language and then compared with the long short-term memory neural network algorithm and the single-SCNs algorithm. Simulation results show that the proposed method for medium- and short-term load forecasting has a high forecasting accuracy and a significant effect on improving the accuracy of load forecasting. |
| Audience | Academic |
| Author | Sun, Wei Li, Haibo Luan, Changfeng Liu, Wei Pang, Xinfu |
| AuthorAffiliation | 2 Yingkou Power Supply Company, State Grid Liaoning Electric Power Co., Ltd., Yingkou, Liaoning, China 1 Key Laboratory of Energy Saving and Controlling in Power System of Liaoning Province, Shenyang Institute of Engineering, Shenyang, Liaoning, China Newcastle University, UNITED KINGDOM |
| AuthorAffiliation_xml | – name: Newcastle University, UNITED KINGDOM – name: 2 Yingkou Power Supply Company, State Grid Liaoning Electric Power Co., Ltd., Yingkou, Liaoning, China – name: 1 Key Laboratory of Energy Saving and Controlling in Power System of Liaoning Province, Shenyang Institute of Engineering, Shenyang, Liaoning, China |
| Author_xml | – sequence: 1 givenname: Xinfu orcidid: 0000-0001-6981-596X surname: Pang fullname: Pang, Xinfu – sequence: 2 givenname: Wei orcidid: 0000-0001-8495-8619 surname: Sun fullname: Sun, Wei – sequence: 3 givenname: Haibo orcidid: 0000-0002-0951-9947 surname: Li fullname: Li, Haibo – sequence: 4 givenname: Wei surname: Liu fullname: Liu, Wei – sequence: 5 givenname: Changfeng surname: Luan fullname: Luan, Changfeng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38502675$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl2L1DAUhousuB_6D0QKguhFxzRp2mZvZF38GFhYcNUbL0KanrYZ02RMUtf992Z2xmUqIksuEk6e9yV5zzlODow1kCRPc7TISZW_XtnJGaEX61heIIIQxuxBcpQzgrMSI3Kwdz5Mjr1fIURJXZaPkkNSU4TLih4l364G60IWwI3p2l6DS7UVbdpZB1L4oEyfjhAG26aN8NCm1qRvRd_HeuaDlcOGkam0plP95ERQETAQrq377h8nDzuhPTzZ7SfJl_fvPp9_zC4uPyzPzy4yWRZ5yKAiKBcMoEYMUNdWuCgpKQUjVU1EVaEaMMOsqSlu6oYVZSVoQYEK1jS4AEZOkuXWt7VixddOjcLdcCsUvy1Y13Ph4jM18KJsgJYNQ0zmBaMtyyWVtQCCCa7Koo1edOs1mbW4uRZa3xnmiG-C57vg-SZ4vgs-6t5sdeupGaGVYIITevaY-Y1RA-_tz-jKYi8IjQ4vdw7O_pjABz4qL0FrYcBOnmNW4QphRHFEn2_RXsQ_KdPZaCk3OD-r6pLRmlISqcU_qLhaGFXsGHQq1meCVzNBZAL8Cr2YvOfLq0_3Zy-_ztkXe-wAQofBWz1thsXPwWf7Id6l92dcI1BsAems9w66-zbn9C-ZVOF2VmMiSv9f_BuZtBQN |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2024_08_078 crossref_primary_10_1371_journal_pone_0307654 crossref_primary_10_1016_j_infrared_2024_105609 |
| Cites_doi | 10.1109/TPWRS.2010.2052638 10.1109/TSG.2018.2844307 10.1109/TSG.2016.2628061 10.1109/TII.2020.3000184 10.1109/59.801894 10.1109/TPWRS.2017.2688178 10.1109/TLA.2016.7459606 10.1016/j.neucom.2022.01.088 10.1109/TCYB.2017.2734043 10.1109/TPWRS.2005.852123 10.1109/ACCESS.2021.3070925 10.1109/TIA.2012.2199449 10.1109/TPWRS.2013.2264488 10.1109/TSG.2020.3034194 10.1109/TPWRS.2018.2872388 10.1109/ACCESS.2021.3063123 10.1109/TPWRS.2008.922249 10.1109/ACCESS.2019.2937222 10.1109/TSG.2020.2972513 10.1109/TPWRS.2019.2963109 10.1109/TSG.2021.3091469 10.1109/TPWRS.2004.835632 10.1109/TPWRS.2005.846106 10.1007/978-1-4612-4380-9_41 10.1109/ACCESS.2019.2950957 10.1109/ACCESS.2020.3011060 10.1109/TIP.2004.841199 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Pang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Pang et al 2024 Pang et al |
| Copyright_xml | – notice: Copyright: © 2024 Pang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Pang et al 2024 Pang et al |
| DBID | AAYXX CITATION NPM IOV ISR 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0300229 |
| DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Short-term power load forecasting method based on bagging-stochastic configuration networks |
| EISSN | 1932-6203 |
| ExternalDocumentID | oai_doaj_org_article_46be56b909c1495d91c5c8ae3232764d 10.1371/journal.pone.0300229 PMC10950235 A786958553 38502675 10_1371_journal_pone_0300229 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: ; grantid: 2023-MS-247 – fundername: ; grantid: CSC 202008210181 – fundername: ; grantid: LJKMZ20221716 – fundername: ; grantid: 2023JH2/101700261 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY IPNFZ NPM RIG 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c641t-e7301a9ee809e0fd7246536a93783a7708e2929b852b8b9467a545e5a9bb24e93 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Oct 03 12:42:50 EDT 2025 Sun Oct 26 01:58:33 EDT 2025 Tue Sep 30 17:09:48 EDT 2025 Mon Sep 08 17:18:07 EDT 2025 Mon Oct 20 23:00:37 EDT 2025 Mon Oct 20 17:03:13 EDT 2025 Thu Oct 16 16:21:20 EDT 2025 Thu Oct 16 16:02:43 EDT 2025 Thu May 22 21:25:52 EDT 2025 Wed Feb 19 02:13:01 EST 2025 Wed Oct 01 04:20:09 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Copyright: © 2024 Pang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c641t-e7301a9ee809e0fd7246536a93783a7708e2929b852b8b9467a545e5a9bb24e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-8495-8619 0000-0002-0951-9947 0000-0001-6981-596X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300229&type=printable |
| PMID | 38502675 |
| PQID | 2972702052 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_46be56b909c1495d91c5c8ae3232764d unpaywall_primary_10_1371_journal_pone_0300229 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10950235 proquest_miscellaneous_2972702052 gale_infotracmisc_A786958553 gale_infotracacademiconefile_A786958553 gale_incontextgauss_ISR_A786958553 gale_incontextgauss_IOV_A786958553 gale_healthsolutions_A786958553 pubmed_primary_38502675 crossref_primary_10_1371_journal_pone_0300229 crossref_citationtrail_10_1371_journal_pone_0300229 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-19 |
| PublicationDateYYYYMMDD | 2024-03-19 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | Y Wang (pone.0300229.ref005) 2010; 26 M Espinoza (pone.0300229.ref010) 2005; 20 L Jiang (pone.0300229.ref004) 2021; 12 K Chen (pone.0300229.ref003) 2018; 10 M Afrasiabi (pone.0300229.ref025) 2020; 11 Z Liu (pone.0300229.ref026) 2005; 14 BF Hobbs (pone.0300229.ref001) 1999; 14 C Zhenyu (pone.0300229.ref007) 2020; 44 M Tan (pone.0300229.ref013) 2019; 35 JC López (pone.0300229.ref009) 2018; 34 Y Zhang (pone.0300229.ref006) 2019; 43 Y Liu (pone.0300229.ref021) 2012; 48 H Aprillia (pone.0300229.ref030) 2020; 12 S Zhaoxuan (pone.0300229.ref014) 2020; 44 CM Huang (pone.0300229.ref012) 2005; 20 J Li (pone.0300229.ref015) 2020; 17 T Gu (pone.0300229.ref027) 2021; 9 J Shi (pone.0300229.ref029) 2018; 42 F Liu (pone.0300229.ref032) 2021; 9 CW Yao (pone.0300229.ref008) 2020; 44 J Liu (pone.0300229.ref019) 2022; 483 Z Yun (pone.0300229.ref022) 2008; 23 D Wang (pone.0300229.ref033) 2017; 47 MR Haq (pone.0300229.ref011) 2019; 7 Z Sun (pone.0300229.ref023) 2020; 8 B. Efron (pone.0300229.ref031) 1992 KB Song (pone.0300229.ref016) 2005; 20 C Guan (pone.0300229.ref017) 2013; 28 W Kong (pone.0300229.ref002) 2017; 33 H Jiang (pone.0300229.ref020) 2016; 9 X Tang (pone.0300229.ref024) 2019; 7 H Jiang (pone.0300229.ref028) 2016; 9 PM Macaira (pone.0300229.ref018) 2016; 14 |
| References_xml | – volume: 26 start-page: 500 issue: 2 year: 2010 ident: pone.0300229.ref005 article-title: Secondary forecasting based on deviation analysis for short-term load forecasting publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2010.2052638 – volume: 42 start-page: 25 issue: 412 year: 2018 ident: pone.0300229.ref029 article-title: Multi-task learning based on deep architecture for various types of load forecasting in regional energy system integration publication-title: Power Syst Technol – volume: 10 start-page: 3943 issue: 4 year: 2018 ident: pone.0300229.ref003 article-title: Short-term load forecasting with deep residual networks publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2844307 – volume: 9 start-page: 3341 issue: 4 year: 2016 ident: pone.0300229.ref020 article-title: A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2016.2628061 – volume: 17 start-page: 2443 issue: 4 year: 2020 ident: pone.0300229.ref015 article-title: A novel hybrid short-term load forecasting method of smart grid using MLR and LSTM neural network publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2020.3000184 – volume: 14 start-page: 1342 issue: 4 year: 1999 ident: pone.0300229.ref001 article-title: Analysis of the value for unit commitment of improved load forecasts publication-title: IEEE Trans Power Syst doi: 10.1109/59.801894 – volume: 33 start-page: 1087 issue: 1 year: 2017 ident: pone.0300229.ref002 article-title: Short-term residential load forecasting based on resident behaviour learning publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2688178 – volume: 9 start-page: 3341 issue: 4 year: 2016 ident: pone.0300229.ref028 article-title: A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2628061 – volume: 14 start-page: 1252 issue: 3 year: 2016 ident: pone.0300229.ref018 article-title: Forecasting Brazil’s electricity consumption with pegels exponential smoothing techniques. publication-title: IEEE Latin America Transactions doi: 10.1109/TLA.2016.7459606 – volume: 44 start-page: 614 issue: 2 year: 2020 ident: pone.0300229.ref007 article-title: Ultra short-term power load forecasting based on combined LSTM-XGBoost model publication-title: Power Syst Technol – volume: 483 start-page: 171 year: 2022 ident: pone.0300229.ref019 article-title: A weight initialization method based on neural network with asymmetric activation function. publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.088 – volume: 47 start-page: 3466 issue: 10 year: 2017 ident: pone.0300229.ref033 article-title: Stochastic configuration networks: Fundamentals and algorithms publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2734043 – volume: 20 start-page: 1622 issue: 3 year: 2005 ident: pone.0300229.ref010 article-title: Short-term load forecasting, profile identification, and customer segmentation: a methodology based on periodic time series publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2005.852123 – volume: 9 start-page: 54912 year: 2021 ident: pone.0300229.ref027 article-title: Detecting associations based on the multi-variable maximum information coefficient publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3070925 – volume: 48 start-page: 1136 issue: 4 year: 2012 ident: pone.0300229.ref021 article-title: Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis publication-title: IEEE Transactions on Industry Applications doi: 10.1109/TIA.2012.2199449 – volume: 28 start-page: 3806 issue: 4 year: 2013 ident: pone.0300229.ref017 article-title: Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2013.2264488 – volume: 12 start-page: 1467 issue: 2 year: 2020 ident: pone.0300229.ref030 article-title: Statistical load forecasting using optimal quantile regression random forest and risk assessment index publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2020.3034194 – volume: 34 start-page: 1427 issue: 2 year: 2018 ident: pone.0300229.ref009 article-title: Parsimonious short-term load forecasting for optimal operation planning of electrical distribution systems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2872388 – volume: 9 start-page: 59754 year: 2021 ident: pone.0300229.ref032 article-title: A hybrid short-term load forecasting model based on improved fuzzy c-means clustering, random forest and deep neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3063123 – volume: 23 start-page: 853 issue: 3 year: 2008 ident: pone.0300229.ref022 article-title: RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2008.922249 – volume: 7 start-page: 125413 year: 2019 ident: pone.0300229.ref011 article-title: A new hybrid model for short-term electricity load forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937222 – volume: 11 start-page: 3646 issue: 4 year: 2020 ident: pone.0300229.ref025 article-title: Deep-based conditional probability density function forecasting of residential loads publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2020.2972513 – volume: 44 start-page: 3416 issue: 09 year: 2020 ident: pone.0300229.ref008 article-title: Load forecasting method based on CNN-GRU hybrid neural network publication-title: Power Syst Technol – volume: 44 start-page: 2237 issue: 06 year: 2020 ident: pone.0300229.ref014 article-title: Regional load clustering integration forecasting based on convolutional neural network support vector regression machine [J] publication-title: Power system technology – volume: 35 start-page: 2937 issue: 4 year: 2019 ident: pone.0300229.ref013 article-title: Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning publication-title: IEEE transactions on power systems doi: 10.1109/TPWRS.2019.2963109 – volume: 12 start-page: 5362 issue: 6 year: 2021 ident: pone.0300229.ref004 article-title: Hybrid multitask multi-information fusion deep learning for household short-term load forecasting publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2021.3091469 – volume: 43 start-page: 1884 issue: 6 year: 2019 ident: pone.0300229.ref006 article-title: A very short-term load forecasting method based on deep LSTM RNN at zone level publication-title: Power Syst Technol – volume: 20 start-page: 96 issue: 1 year: 2005 ident: pone.0300229.ref016 article-title: Short-term load forecasting for the holidays using fuzzy linear regression method publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2004.835632 – volume: 20 start-page: 1126 issue: 2 year: 2005 ident: pone.0300229.ref012 article-title: A particle swarm optimization to identifying the ARMAX model for short-term load forecasting publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2005.846106 – start-page: 569 volume-title: In: Breakthroughs in statistics: Methodology and distribution year: 1992 ident: pone.0300229.ref031 doi: 10.1007/978-1-4612-4380-9_41 – volume: 7 start-page: 160660 year: 2019 ident: pone.0300229.ref024 article-title: Application of bidirectional recurrent neural network combined with deep belief network in short-term load forecasting publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2950957 – volume: 8 start-page: 134422 year: 2020 ident: pone.0300229.ref023 article-title: Short-term wind power forecasting based on VMD decomposition, ConvLSTM networks and error analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011060 – volume: 14 start-page: 411 issue: 4 year: 2005 ident: pone.0300229.ref026 article-title: Mutual information-based analysis of JPEG2000 contexts publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2004.841199 |
| SSID | ssj0053866 |
| Score | 2.4736638 |
| Snippet | Accurate short-term load forecasting is of great significance in improving the dispatching efficiency of power grids, ensuring the safe and reliable operation... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0300229 |
| SubjectTerms | Algorithms Analysis Biology and Life Sciences China Computer and Information Sciences Earth Sciences Electric power systems Engineering and Technology Forecasts and trends Health aspects Methods Neural networks Physical Sciences Research and Analysis Methods Supply and demand |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlGeggEFIwCHbPOzYPraIqiABEqWoEgfLdpzdSqvsimyE-PfMxN5oA4f2wHU9OWQenm-yM98Q8kr5RsrGyxSTPxQojKVWGJwCYdzUWW7dMAvz6XN1es4-XvCLnVVf2BMW6IGD4g5ZZT2vrMqUQzBfq9xxJ40vAQqIitV4-2ZSbYupcAdDFFdVHJQrRX4Y7TJbr1o_A7eGxKUmiWjg6__3Vt5JS3-3TN7s27X5_csslzv56OQOuR2BJD0KL7BPbvj2LtmPodrRN5FP-u098uNsARg7xTuYrnEpGl2uTE0BrXpnOmx7pmGPNMWUVtNVS48Nfoiep4AM3QJlHIW6ubmc98FhaBu6x7v75Pzk_bd3p2ncqZC6iuWb1GNEG-W9zJTPmloUSLBWGUApsjRCZNIXgJis5IWVVsE1agBjeW6UtQXzqnxA9lrQ4iNCRdnUtbG5N3nNeOGg1jTWlMJWLPO5qRNSbhWsXSQcx70XSz38iyag8Aiq0mgWHc2SkHR8ah0IN66QP0bbjbJIlz38AE6koxPpq5woIc_R8jrMno5Br4-ErBQUVLxMyMtBAikzWuzJmZu-6_SHL9-vIXT2dSL0Ogo1K1CHM3EOAt4JqbgmkgcTSQh8Nzl-sfVTjUfYLdf6Vd_pQgkcM8x4kZCHwW9H_ZSS49IxnhA58eiJAqcn7eVi4B3PAY4jPVJCZqPzX8tGj_-HjZ6QWwUASuz_y9UB2dv87P1TAIQb-2yI_T_GQmAx priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoDwDBQxCPA5J83JiH7eIqiBREGVRK4Qi23F2K1bJimyE4MBvZyb2rpoiRDlwW8XjaD0ezyOe-YaQx8JUnFeG-2j8IUBJU1_lEqtAUibLMFK6r4V5c5DtT9LXR-xog3xe1cI4DkKMOG_a_iYffzS12XGc3EG8Int7GkRJHq1mBAsgCkBkwSiJJz3iEH4ZW2IB0gWymTFw1Udkc3Lwbnxsb5pjP4vDxJXT_elNA3PVo_r_rrtPGa-ziZUXu3ohv3-T8_kpq7V3hfxcrdcmq3wJuqUK9I8zUJD_jSFXyWXn79KxfcsW2TD1NbLlNEpLnznY6-fXyafDGYQCPpoKusDebXTeyJKCU220bDE7m9p21xQtb0mbmu5K_F4-9cGB1TOk0RTC--pk2lm5prVNcm9vkMneyw8v9n3X-sHXWRotfYOKRwpjeChMWJV5jDhwmQRniicyz0NuYnDsFGex4kqAtpfgChomhVJxakRyk4xqWP9tQvOkKkupIiOjMmWxhpBYKpnkKktDE8nSI8lqhwvtcNGxPce86C_7coiPLKsKZGjhGOoRfz1rYXFB_kK_i8KzpkVU7_4B7GjhdrJIM2VYpkQoNAaupYg001yaBNzePEvhrz5A0StsiexaNxXjnGcC4j6WeORRT4HIHjWmDk1l17bFq7cfz0F0-H5A9NQRVQ2wQ0tXrgFrQoEbUG4PKEE_6cHww9VBKXAIk_pq03RtEYscqyFDFnvklj04a_4knGFvNOYRPjhSAwYOR-qTWQ-PHkHUgChOHgnWp-9ce3TnXyfcJZdi8HExJTES22S0_NqZe-CjLtV9p2l-AT51l-I priority: 102 providerName: Unpaywall |
| Title | Short-term power load forecasting method based on Bagging-stochastic configuration networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38502675 https://www.proquest.com/docview/2972702052 https://pubmed.ncbi.nlm.nih.gov/PMC10950235 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300229&type=printable https://doaj.org/article/46be56b909c1495d91c5c8ae3232764d |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Open Access Journals (DOAJ) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF71IUEviPI0lLAgJODgyO_dPSCUVA0FqaFqCQriYO2u10klyw5xIui_Z8Z2rBqo6MUH76xkz2PnG3sehLwSJuU8NdxG5w8BShDYikmsAglCmTiu0lUtzMk4Op4En6bhdItsZrY2DCz_GdrhPKnJMuv_-nH5Hgz-XTW1gbmbTf1FkZs-KC24JbFNdsFXCRzmcBK0_xXAuqOoKaC7buceueXzEAczhR1fVbX0__vgvuK5_syqvL3OF_Lyp8yyKy5rdJfcabAmHdTKsU-2TH6P7DfWXNI3Tcvpt_fJ9_M5cMDGY5oucG4azQqZUAC0RssSM6NpPWqaotdLaJHTocRv1TMbwKOeI42mEFqnF7N1rVM0rxPMywdkMjr6cnhsN2MXbB0F7so2aPRSGMMdYZw0YR72YIskABnuS8YcbjwAVYqHnuJKwEkrAYaZUAqlvMAI_yHZyYGhjwllfpokUrlGukkQehrCUamkz1QUOMaViUX8DYNj3fQkx9EYWVz9aGMQm9SsilFCcSMhi9jtrkXdk-M_9EOUXUuLHbWrG8VyFjcGGgeRMmGkhCM0Bo2JcHWouTQ-QE4WBfCoz1HycV2e2p4L8YDxSEDMFfoWeVlRYFeNHNN2ZnJdlvHHz19vQHR-1iF63RClBbBDy6ZUAt4Ju3V1KA86lHA26M7yi42exriECXW5KdZl7AmGlYhO6FnkUa23LX826m8R3tHoDgO7K_nFvGpN7gJixw5KFum3yn8jGT259imekj0PgCTm_bnigOyslmvzDIDgSvXINpsyuPJDF6-jDz2yOzwan571qk8rvcr24d5kfDr49hufeWS8 |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoDwDBQxCPA5J83JiH7eIqiBREGVRK4Qi23F2K1bJimyE4MBvZyb2rpoiRDlwW8XjaD0ezyOe-YaQx8JUnFeG-2j8IUBJU1_lEqtAUibLMFK6r4V5c5DtT9LXR-xog3xe1cI4DkKMOG_a_iYffzS12XGc3EG8Int7GkRJHq1mBAsgCkBkwSiJJz3iEH4ZW2IB0gWymTFw1Udkc3Lwbnxsb5pjP4vDxJXT_elNA3PVo_r_rrtPGa-ziZUXu3ohv3-T8_kpq7V3hfxcrdcmq3wJuqUK9I8zUJD_jSFXyWXn79KxfcsW2TD1NbLlNEpLnznY6-fXyafDGYQCPpoKusDebXTeyJKCU220bDE7m9p21xQtb0mbmu5K_F4-9cGB1TOk0RTC--pk2lm5prVNcm9vkMneyw8v9n3X-sHXWRotfYOKRwpjeChMWJV5jDhwmQRniicyz0NuYnDsFGex4kqAtpfgChomhVJxakRyk4xqWP9tQvOkKkupIiOjMmWxhpBYKpnkKktDE8nSI8lqhwvtcNGxPce86C_7coiPLKsKZGjhGOoRfz1rYXFB_kK_i8KzpkVU7_4B7GjhdrJIM2VYpkQoNAaupYg001yaBNzePEvhrz5A0StsiexaNxXjnGcC4j6WeORRT4HIHjWmDk1l17bFq7cfz0F0-H5A9NQRVQ2wQ0tXrgFrQoEbUG4PKEE_6cHww9VBKXAIk_pq03RtEYscqyFDFnvklj04a_4knGFvNOYRPjhSAwYOR-qTWQ-PHkHUgChOHgnWp-9ce3TnXyfcJZdi8HExJTES22S0_NqZe-CjLtV9p2l-AT51l-I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+power+load+forecasting+method+based+on+Bagging-stochastic+configuration+networks&rft.jtitle=PloS+one&rft.au=Pang%2C+Xinfu&rft.au=Sun%2C+Wei&rft.au=Li%2C+Haibo&rft.au=Liu%2C+Wei&rft.date=2024-03-19&rft.eissn=1932-6203&rft.volume=19&rft.issue=3&rft.spage=e0300229&rft_id=info:doi/10.1371%2Fjournal.pone.0300229&rft_id=info%3Apmid%2F38502675&rft.externalDocID=38502675 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |