SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice

Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized...

Full description

Saved in:
Bibliographic Details
Published inCardiovascular diabetology Vol. 18; no. 1; pp. 16 - 15
Main Authors Adingupu, Damilola D., Göpel, Sven O., Grönros, Julia, Behrendt, Margareta, Sotak, Matus, Miliotis, Tasso, Dahlqvist, Ulrika, Gan, Li-Ming, Jönsson-Rylander, Ann-Cathrine
Format Journal Article
LanguageEnglish
Published London BioMed Central 07.02.2019
BMC
Subjects
Online AccessGet full text
ISSN1475-2840
1475-2840
DOI10.1186/s12933-019-0820-6

Cover

Abstract Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob −/− mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. Methods Lean, ob/ob −/− untreated and ob/ob −/− treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. Results Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob −/− animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l -Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. Conclusions Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob −/− mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.
AbstractList Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob−/− mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. Methods Lean, ob/ob−/− untreated and ob/ob−/− treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. Results Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob−/− animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. Conclusions Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob−/− mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i's promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. Lean, ob/ob untreated and ob/ob treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. L-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.
Abstract Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob−/− mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. Methods Lean, ob/ob−/− untreated and ob/ob−/− treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. Results Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob−/− animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. Conclusions Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob−/− mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.
BackgroundSodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i's promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob(-/-) mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance.MethodsLean, ob/ob(-/-) untreated and ob/ob(-/-) treated with SGLT2i were followed for 10weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study.ResultsSodium-glucose cotransporter 2 inhibitors treatment of ob/ob(-/-) animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively.ConclusionsSodium-glucose cotransporter 2 inhibitors treatment of ob/ob(-/-) mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.
Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob −/− mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. Methods Lean, ob/ob −/− untreated and ob/ob −/− treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. Results Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob −/− animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l -Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. Conclusions Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob −/− mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i's promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob-/- mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance.BACKGROUNDSodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i's promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob-/- mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance.Lean, ob/ob-/- untreated and ob/ob-/- treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study.METHODSLean, ob/ob-/- untreated and ob/ob-/- treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study.Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob-/- animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. L-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively.RESULTSSodium-glucose cotransporter 2 inhibitors treatment of ob/ob-/- animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. L-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively.Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob-/- mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.CONCLUSIONSSodium-glucose cotransporter 2 inhibitors treatment of ob/ob-/- mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.
ArticleNumber 16
Author Dahlqvist, Ulrika
Göpel, Sven O.
Gan, Li-Ming
Sotak, Matus
Grönros, Julia
Adingupu, Damilola D.
Miliotis, Tasso
Behrendt, Margareta
Jönsson-Rylander, Ann-Cathrine
Author_xml – sequence: 1
  givenname: Damilola D.
  orcidid: 0000-0002-0312-2359
  surname: Adingupu
  fullname: Adingupu, Damilola D.
  organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg
– sequence: 2
  givenname: Sven O.
  surname: Göpel
  fullname: Göpel, Sven O.
  email: Sven.Gopel@astrazeneca.com
  organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg
– sequence: 3
  givenname: Julia
  surname: Grönros
  fullname: Grönros, Julia
  organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg
– sequence: 4
  givenname: Margareta
  surname: Behrendt
  fullname: Behrendt, Margareta
  organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg
– sequence: 5
  givenname: Matus
  surname: Sotak
  fullname: Sotak, Matus
  organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg
– sequence: 6
  givenname: Tasso
  surname: Miliotis
  fullname: Miliotis, Tasso
  organization: Translational Science, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg
– sequence: 7
  givenname: Ulrika
  surname: Dahlqvist
  fullname: Dahlqvist, Ulrika
  organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg
– sequence: 8
  givenname: Li-Ming
  surname: Gan
  fullname: Gan, Li-Ming
  organization: Early Clinical Development, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Department of Cardiology, Sahlgrenska University Hospital
– sequence: 9
  givenname: Ann-Cathrine
  surname: Jönsson-Rylander
  fullname: Jönsson-Rylander, Ann-Cathrine
  organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30732594$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/278444$$DView record from Swedish Publication Index
BookMark eNp9ks1u1DAUhSNURH_gAdigSGzYhPFf7GSDhCoolUZiQVlbjnOT8Sixg520al8A1jwiT4IzGUqnEiyiRNffOff65pwmR9ZZSJKXGL3FuOCrgElJaYZwmaGCoIw_SU4wE3lGCoaOHnwfJ6chbBHCouD4WXJMkaAkL9lJ8v3LxfqKpMZuTGVG42x6Y8ZNCv2g2s40nbszNjX94N01hFQ776zyt2lvdKyooKdO-bSZrN5pla1TrXxtlI6sHb2K9c6Mt7FBOniIBxWMRqeuWrnq14-fq_jMZvA8edqoLsCL_fss-frxw9X5p2z9-eLy_P0605zhMcsbwkSj81zXWhFGMFQFLTQCgkARXiiqSEWQ0IxCzZHWPJJE4DqvGiiFomfJ5eJbO7WVgzd9vI50yshdwflWKh8n7EDWRU1wg5DgGBgHoTBlqEQ5rhoMCvHolS1e4QaGqTpwa6dBxlI7yQCSiIIxFvl3Cx_hHmoN84K6A9nhiTUb2bprySnnqJwbvtkbePdtgjDK3gQNXacsuClIggsa14SKGX39CN26ydu42h2FcpEzEalXDye6H-VPPiKAFyD-7hA8NPcIRnLOoFwyKGMG5ZxBObcWjzTajGrOR7yU6f6rJPuFxi62Bf936H-LfgNRFvTm
CitedBy_id crossref_primary_10_1371_journal_pone_0263481
crossref_primary_10_3389_fcvm_2022_995216
crossref_primary_10_3390_ijms22020818
crossref_primary_10_1093_cvr_cvab120
crossref_primary_10_1152_ajpheart_00603_2021
crossref_primary_10_1186_s12933_020_01174_6
crossref_primary_10_1016_j_coph_2020_08_015
crossref_primary_10_3390_antiox11122500
crossref_primary_10_3390_jcm11185377
crossref_primary_10_1016_j_jacc_2019_11_031
crossref_primary_10_1186_s12933_024_02504_8
crossref_primary_10_2174_1570161119999201102213214
crossref_primary_10_3390_antiox13010016
crossref_primary_10_1016_j_metabol_2021_154710
crossref_primary_10_1016_j_jchf_2021_05_019
crossref_primary_10_1186_s12933_020_01042_3
crossref_primary_10_1186_s12933_020_01004_9
crossref_primary_10_3389_fphar_2020_561494
crossref_primary_10_1186_s12933_021_01252_3
crossref_primary_10_1186_s12933_024_02491_w
crossref_primary_10_1093_eurheartj_ehz730
crossref_primary_10_1016_j_intimp_2023_110072
crossref_primary_10_3390_immuno5010011
crossref_primary_10_1080_10408363_2021_1993439
crossref_primary_10_3390_jcm13195911
crossref_primary_10_3390_ijms25116218
crossref_primary_10_3389_fphar_2025_1523727
crossref_primary_10_1177_2040622320974833
crossref_primary_10_1186_s12933_020_0990_2
crossref_primary_10_1016_j_taap_2020_115153
crossref_primary_10_1080_07853890_2024_2304667
crossref_primary_10_2174_1568026623666221213085917
crossref_primary_10_1186_s12933_020_01028_1
crossref_primary_10_1016_j_ejphar_2023_175531
crossref_primary_10_1002_ehf2_14435
crossref_primary_10_1016_j_cardfail_2025_01_008
crossref_primary_10_3390_biomedicines13030728
crossref_primary_10_1016_j_ejphar_2021_174081
crossref_primary_10_1016_j_jacc_2021_07_042
crossref_primary_10_1016_j_phrs_2020_104870
crossref_primary_10_1016_j_hfc_2022_03_007
crossref_primary_10_3389_fcvm_2023_1111721
crossref_primary_10_3390_biomedicines9101356
crossref_primary_10_1007_s11094_025_03284_5
crossref_primary_10_1016_j_biopha_2023_115686
crossref_primary_10_12677_ACM_2022_1291171
crossref_primary_10_1093_cvr_cvad157
crossref_primary_10_1093_ndt_gfz230
crossref_primary_10_2174_1389450124666230907115831
crossref_primary_10_1093_cvr_cvaa323
crossref_primary_10_1016_j_cbi_2024_111229
crossref_primary_10_1360_SSV_2021_0311
crossref_primary_10_1016_j_ejphar_2022_175342
crossref_primary_10_1016_j_carrev_2024_09_010
crossref_primary_10_1186_s12933_024_02466_x
crossref_primary_10_3389_fcvm_2023_1291450
crossref_primary_10_3390_ijms25147628
crossref_primary_10_3389_fendo_2024_1359255
crossref_primary_10_1186_s12933_019_0980_4
crossref_primary_10_3390_biomedicines10092274
crossref_primary_10_1159_000504694
crossref_primary_10_2337_dc21_1765
crossref_primary_10_1016_j_jjcc_2024_02_002
crossref_primary_10_3390_metabo13060736
crossref_primary_10_2174_1871525719666210809121016
crossref_primary_10_3390_biomedicines13030744
crossref_primary_10_3390_life13061256
crossref_primary_10_14797_mdcvj_1120
crossref_primary_10_2147_DDDT_S269514
crossref_primary_10_1111_micc_12656
crossref_primary_10_3390_ijms23042336
crossref_primary_10_3389_fmed_2021_712671
crossref_primary_10_3390_jcdd12030090
crossref_primary_10_1016_j_lfs_2020_118974
crossref_primary_10_1111_jdi_14199
crossref_primary_10_1186_s12933_020_01040_5
crossref_primary_10_7759_cureus_63796
crossref_primary_10_3389_fcell_2023_1278166
crossref_primary_10_1007_s11239_023_02862_2
crossref_primary_10_3389_fendo_2023_1115619
crossref_primary_10_1016_j_ahjo_2022_100187
crossref_primary_10_3390_ijms23073651
crossref_primary_10_1097_CRD_0000000000000638
crossref_primary_10_1002_jcp_31264
crossref_primary_10_3390_biomedicines13020409
crossref_primary_10_1016_j_ajpc_2025_100928
crossref_primary_10_1186_s12933_020_00997_7
crossref_primary_10_1007_s10741_020_10041_1
crossref_primary_10_1093_cvr_cvaa064
crossref_primary_10_1002_clc_24158
crossref_primary_10_1111_micc_12825
crossref_primary_10_3389_fphar_2020_00042
crossref_primary_10_1111_ijcp_14794
crossref_primary_10_1002_ejhf_1902
crossref_primary_10_1016_j_pharmthera_2021_107832
crossref_primary_10_1007_s10741_021_10096_8
crossref_primary_10_1016_j_biopha_2023_115011
crossref_primary_10_1016_j_tips_2022_04_005
crossref_primary_10_1161_JAHA_123_030975
crossref_primary_10_3390_ijms22168786
crossref_primary_10_5551_jat_RV17064
crossref_primary_10_1016_j_amjmed_2024_04_035
crossref_primary_10_1186_s12933_021_01380_w
crossref_primary_10_1186_s12933_022_01532_6
crossref_primary_10_1002_ejhf_1732
crossref_primary_10_1186_s12933_020_01041_4
crossref_primary_10_2337_db20_0921
crossref_primary_10_1007_s12265_022_10220_5
crossref_primary_10_2147_DDDT_S371506
crossref_primary_10_1134_S0022093024070159
crossref_primary_10_3390_biom12020278
crossref_primary_10_3390_metabo13020295
crossref_primary_10_1016_j_atherosclerosis_2024_117560
crossref_primary_10_1186_s12933_023_01816_5
crossref_primary_10_1007_s12928_023_00924_z
crossref_primary_10_1186_s12933_023_01855_y
crossref_primary_10_1186_s12933_022_01607_4
crossref_primary_10_1093_cvr_cvae047
crossref_primary_10_1055_s_0040_1721388
crossref_primary_10_1155_2022_8861911
crossref_primary_10_3390_cells10102699
crossref_primary_10_1093_ehjcvp_pvad053
crossref_primary_10_1093_cvr_cvaa002
crossref_primary_10_1186_s12933_019_0889_y
crossref_primary_10_1007_s10863_024_10020_3
crossref_primary_10_1186_s12876_023_03085_8
crossref_primary_10_3390_life13020443
crossref_primary_10_1007_s40200_023_01305_2
crossref_primary_10_12677_acm_2024_1482233
Cites_doi 10.1016/j.ejphar.2017.05.019
10.1016/j.jtcvs.2009.12.031
10.1371/journal.pone.0151511
10.1161/CIRCHEARTFAILURE.115.002560
10.1007/s00210-015-1134-1
10.1152/ajprenal.2000.278.3.F339
10.1016/j.redox.2017.06.009
10.1016/j.metabol.2016.01.001
10.1186/s12933-017-0511-0
10.1111/j.1749-6632.1999.tb07798.x
10.1007/s12265-013-9497-5
10.1016/j.amjcard.2005.07.126
10.1177/1479164115610057
10.1371/journal.pone.0030555
10.1177/1479164114559852
10.1258/acb.2009.009196
10.1186/s12944-017-0443-4
10.1007/s40265-014-0337-y
10.1097/MOL.0b013e3283541cfc
10.4158/EP14489.OR
10.2337/dc15-2688
10.1038/srep31214
10.2337/dc16-0330
10.1161/CIRCULATIONAHA.111.050427
10.1089/neu.1995.12.325
10.1161/JAHA.116.004875
10.4291/wjgp.v8.i2.51
10.1371/journal.pone.0130648
10.1007/978-90-481-3271-3_20
10.1073/pnas.1705845114
10.21037/atm.2016.10.36
10.1093/eurheartj/ehy531
10.1007/s00125-016-4158-2
10.1007/s10741-017-9665-9
10.1007/s10557-017-6734-1
10.1016/j.jacc.2007.06.027
10.1093/eurheartj/ehx721
10.1177/1535370216654227
10.1186/s12933-018-0750-8
10.3390/ijms160612230
10.2337/dc16-0041
10.2337/db16-0049
10.1186/s12933-018-0708-x
10.1096/fasebj.9.8.7768357
10.1177/1474651410377832
10.1172/JCI70704
10.1056/NEJMoa1611925
10.1016/j.ebiom.2017.05.028
10.1186/s12933-017-0510-1
10.1371/journal.pone.0176511
10.1111/dom.12881
10.1161/01.CIR.0000089189.70578.E2
10.1186/s12933-014-0148-1
10.2337/db16-0733
10.1172/JCI72227
10.1161/01.HYP.0000154082.72286.2a
10.1186/s12933-017-0621-8
10.1677/joe.1.06241
10.1111/jdi.12370
10.1152/ajpendo.00055.2017
10.1186/s13098-016-0169-x
10.1186/s12933-016-0489-z
10.1016/j.jacbts.2017.07.003
10.1016/S0272-6386(99)70442-7
10.1056/NEJMoa1504720
10.1152/physiolgenomics.00194.2006
10.1161/hc4401.098293
10.1148/radiol.2015150035
10.1016/j.niox.2006.12.001
10.1016/j.amepre.2013.04.017
10.3803/EnM.2017.32.2.171
10.2337/diabetes.53.9.2366
10.1210/en.2005-0938
10.1186/s12933-017-0564-0
10.2337/db07-1472
10.3810/pgm.2013.05.2667
10.1002/hep.20701
10.1111/ijcp.12675
10.1038/nm.3828
10.1007/s00125-006-0229-0
10.1056/NEJMoa1812389
ContentType Journal Article
Copyright The Author(s) 2019
Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTPV
AOWAS
F1U
DOA
DOI 10.1186/s12933-019-0820-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1475-2840
EndPage 15
ExternalDocumentID oai_doaj_org_article_d8d21f00761e46e7a13409051bf1ea06
oai_gup_ub_gu_se_278444
PMC6366096
30732594
10_1186_s12933_019_0820_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
29B
2WC
53G
5GY
5VS
6J9
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
4.4
ADTPV
AHSBF
AOWAS
C1A
F1U
H13
IPNFZ
RIG
ID FETCH-LOGICAL-c641t-5f247fc55cdca2421eb838c0e20ea268a3a2b207c43ed60cc65cd271d5bfe97a3
IEDL.DBID M48
ISSN 1475-2840
IngestDate Wed Aug 27 01:25:49 EDT 2025
Tue Sep 09 23:59:21 EDT 2025
Thu Aug 21 14:03:04 EDT 2025
Thu Sep 04 23:45:07 EDT 2025
Fri Jul 25 20:03:25 EDT 2025
Mon Jul 21 05:50:58 EDT 2025
Tue Jul 01 04:19:49 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Sat Sep 06 07:24:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Endothelial
Coronary
Microvascular
Prediabetes
SGLT2
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-5f247fc55cdca2421eb838c0e20ea268a3a2b207c43ed60cc65cd271d5bfe97a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0312-2359
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12933-019-0820-6
PMID 30732594
PQID 2183057547
PQPubID 42570
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_d8d21f00761e46e7a13409051bf1ea06
swepub_primary_oai_gup_ub_gu_se_278444
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6366096
proquest_miscellaneous_2183641086
proquest_journals_2183057547
pubmed_primary_30732594
crossref_primary_10_1186_s12933_019_0820_6
crossref_citationtrail_10_1186_s12933_019_0820_6
springer_journals_10_1186_s12933_019_0820_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-07
PublicationDateYYYYMMDD 2019-02-07
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-07
  day: 07
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cardiovascular diabetology
PublicationTitleAbbrev Cardiovasc Diabetol
PublicationTitleAlternate Cardiovasc Diabetol
PublicationYear 2019
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References HU Westergren (820_CR36) 2017; 12
P Lindström (820_CR39) 2010; 654
E Ferrannini (820_CR9) 2014; 124
M Pfeifer (820_CR28) 2017; 16
L Xu (820_CR71) 2017; 20
NH Buus (820_CR53) 2001; 104
K Sato (820_CR14) 1995; 9
R Patil (820_CR3) 2017; 8
B Brannick (820_CR43) 2016; 241
B Zinman (820_CR5) 2015; 373
L-M Gan (820_CR37) 2013; 6
AR Aroor (820_CR22) 2018; 17
E Ferrannini (820_CR80) 2016
SY Li (820_CR50) 2006; 49
DM Lee (820_CR21) 2018; 17
MC Michel (820_CR31) 2015; 388
SJ Shah (820_CR34) 2018; 39
TF Luscher (820_CR1) 2003; 108
L Hansen (820_CR10) 2014; 20
S-A Cha (820_CR69) 2017; 16
EA Ashikhmina (820_CR42) 2010; 140
F Dong (820_CR41) 2006; 188
HU Westergren (820_CR40) 2015; 10
SL Kristensen (820_CR44) 2016; 9
H Al Jobori (820_CR77) 2017; 19
NJ Byrne (820_CR56) 2017; 2
JM Hazlehurst (820_CR46) 2016; 65
P Meneton (820_CR70) 2000; 278
M-Y Wang (820_CR55) 2017; 114
JS Gottdiener (820_CR59) 2006; 97
MR Salazar (820_CR2) 2016; 13
M Joubert (820_CR25) 2017; 66
AJ Scheen (820_CR17) 2015; 75
LM Gan (820_CR51) 2017; 6
WF Keane (820_CR72) 1999; 33
H Ibsen (820_CR73) 2005; 45
A Merovci (820_CR11) 2014; 124
B Lin (820_CR24) 2014; 13
E Ferrannini (820_CR68) 2014; 124
LJ Williams (820_CR57) 2017; 32
T Jojima (820_CR64) 2016; 8
SA Brunton (820_CR18) 2015; 69
B Neal (820_CR6) 2017; 377
VR Taqueti (820_CR33) 2018; 39
VL Murthy (820_CR52) 2011; 124
G Daniele (820_CR13) 2016; 39
RJ MacIsaac (820_CR79) 2016; 4
DE Kleiner (820_CR47) 2005; 41
K Yamada (820_CR12) 2015; 6
E Ellis (820_CR82) 1995; 12
SD Wiviott (820_CR7) 2019; 380
J Buchanan (820_CR49) 2005; 146
JC Marini (820_CR61) 2017; 313
X Zhuo (820_CR4) 2013; 45
N Hammoudi (820_CR32) 2017; 31
A Tahara (820_CR20) 2017; 809
A Kaplan (820_CR26) 2018; 23
S Blackwell (820_CR60) 2010; 47
C Bonner (820_CR45) 2015; 21
RM Salek (820_CR74) 2007; 29
A Solini (820_CR29) 2017; 16
RL Widya (820_CR67) 2016; 279
S Steven (820_CR23) 2017; 13
F Briand (820_CR78) 2016
JH Han (820_CR81) 2017; 60
AS Wierzbicki (820_CR66) 2012; 23
M Abdul-Ghani (820_CR58) 2016; 39
S Han (820_CR15) 2008; 57
J Habibi (820_CR54) 2017; 16
F Shigiyama (820_CR30) 2017; 16
C Ott (820_CR27) 2017; 16
L Cortigiani (820_CR35) 2007; 50
MG Pedersen (820_CR76) 2016; 6
CJ Bailey (820_CR8) 2010; 10
A Ptaszynska (820_CR75) 2013; 125
RM Saraiva (820_CR63) 2007; 16
Y Liang (820_CR16) 2012; 7
SJH Brinkmann (820_CR62) 2015; 16
C Komiya (820_CR65) 2016; 11
SE Inzucchi (820_CR19) 2015; 12
E Shafrir (820_CR38) 1999; 892
PK Mazumder (820_CR48) 2004; 53
References_xml – volume: 809
  start-page: 163
  year: 2017
  ident: 820_CR20
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2017.05.019
– volume: 140
  start-page: 1300
  issue: 6
  year: 2010
  ident: 820_CR42
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2009.12.031
– volume: 11
  start-page: e0151511
  issue: 3
  year: 2016
  ident: 820_CR65
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0151511
– volume: 9
  start-page: e002560
  issue: 1
  year: 2016
  ident: 820_CR44
  publication-title: Circ Heart Fail
  doi: 10.1161/CIRCHEARTFAILURE.115.002560
– volume: 388
  start-page: 801
  issue: 8
  year: 2015
  ident: 820_CR31
  publication-title: Naunyn-Schmiedeberg’s Arch Pharmacol
  doi: 10.1007/s00210-015-1134-1
– volume: 278
  start-page: F339
  issue: 3
  year: 2000
  ident: 820_CR70
  publication-title: Am J Physiol Renal Physiol
  doi: 10.1152/ajprenal.2000.278.3.F339
– volume: 13
  start-page: 370
  year: 2017
  ident: 820_CR23
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2017.06.009
– volume: 65
  start-page: 1096
  issue: 8
  year: 2016
  ident: 820_CR46
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2016.01.001
– volume: 16
  start-page: 29
  issue: 1
  year: 2017
  ident: 820_CR28
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-017-0511-0
– volume: 892
  start-page: 223
  year: 1999
  ident: 820_CR38
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1999.tb07798.x
– volume: 6
  start-page: 715
  issue: 5
  year: 2013
  ident: 820_CR37
  publication-title: J Cardiovasc Transl Res
  doi: 10.1007/s12265-013-9497-5
– volume: 97
  start-page: 83
  issue: 1
  year: 2006
  ident: 820_CR59
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2005.07.126
– volume: 13
  start-page: 157
  issue: 2
  year: 2016
  ident: 820_CR2
  publication-title: Diabetes Vasc Dis Res
  doi: 10.1177/1479164115610057
– volume: 7
  start-page: e30555
  issue: 2
  year: 2012
  ident: 820_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030555
– volume: 12
  start-page: 90
  issue: 2
  year: 2015
  ident: 820_CR19
  publication-title: Diabetes Vasc Dis Res
  doi: 10.1177/1479164114559852
– volume: 47
  start-page: 17
  issue: Pt 1
  year: 2010
  ident: 820_CR60
  publication-title: Ann Clin Biochem
  doi: 10.1258/acb.2009.009196
– volume: 16
  start-page: 58
  issue: 1
  year: 2017
  ident: 820_CR69
  publication-title: Lipids Health Dis
  doi: 10.1186/s12944-017-0443-4
– volume: 75
  start-page: 33
  issue: 1
  year: 2015
  ident: 820_CR17
  publication-title: Drugs
  doi: 10.1007/s40265-014-0337-y
– volume: 23
  start-page: 345
  issue: 4
  year: 2012
  ident: 820_CR66
  publication-title: Curr Opin Lipidol
  doi: 10.1097/MOL.0b013e3283541cfc
– volume: 20
  start-page: 1187
  issue: 11
  year: 2014
  ident: 820_CR10
  publication-title: Endocr Pract
  doi: 10.4158/EP14489.OR
– volume: 39
  start-page: 2036
  issue: 11
  year: 2016
  ident: 820_CR13
  publication-title: Diabetes Care
  doi: 10.2337/dc15-2688
– volume: 6
  start-page: 31214
  year: 2016
  ident: 820_CR76
  publication-title: Sci Rep
  doi: 10.1038/srep31214
– year: 2016
  ident: 820_CR80
  publication-title: Diabetes Care
  doi: 10.2337/dc16-0330
– volume: 124
  start-page: 2215
  issue: 20
  year: 2011
  ident: 820_CR52
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.111.050427
– volume: 12
  start-page: 325
  year: 1995
  ident: 820_CR82
  publication-title: J Neurotrauma
  doi: 10.1089/neu.1995.12.325
– volume: 6
  start-page: e004875
  issue: 4
  year: 2017
  ident: 820_CR51
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.116.004875
– volume: 8
  start-page: 51
  issue: 2
  year: 2017
  ident: 820_CR3
  publication-title: World J Gastrointest Pathophysiol
  doi: 10.4291/wjgp.v8.i2.51
– volume: 10
  start-page: e0130648
  issue: 6
  year: 2015
  ident: 820_CR40
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0130648
– volume: 654
  start-page: 463
  year: 2010
  ident: 820_CR39
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-90-481-3271-3_20
– volume: 114
  start-page: 6611
  issue: 25
  year: 2017
  ident: 820_CR55
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1705845114
– volume: 4
  start-page: 409
  issue: 20
  year: 2016
  ident: 820_CR79
  publication-title: Ann Transl Med
  doi: 10.21037/atm.2016.10.36
– volume: 39
  start-page: 3439
  issue: 37
  year: 2018
  ident: 820_CR34
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehy531
– volume: 60
  start-page: 364
  issue: 2
  year: 2017
  ident: 820_CR81
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-4158-2
– volume: 23
  start-page: 419
  issue: 3
  year: 2018
  ident: 820_CR26
  publication-title: Heart Fail Rev
  doi: 10.1007/s10741-017-9665-9
– volume: 31
  start-page: 233
  issue: 3
  year: 2017
  ident: 820_CR32
  publication-title: Cardiovasc Drugs Ther
  doi: 10.1007/s10557-017-6734-1
– volume: 50
  start-page: 1354
  issue: 14
  year: 2007
  ident: 820_CR35
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2007.06.027
– volume: 39
  start-page: 840
  issue: 10
  year: 2018
  ident: 820_CR33
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehx721
– volume: 241
  start-page: 1323
  issue: 12
  year: 2016
  ident: 820_CR43
  publication-title: Exp Biol Med
  doi: 10.1177/1535370216654227
– volume: 17
  start-page: 108
  issue: 1
  year: 2018
  ident: 820_CR22
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-018-0750-8
– volume: 16
  start-page: 12230
  issue: 6
  year: 2015
  ident: 820_CR62
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms160612230
– volume: 39
  start-page: 717
  issue: 5
  year: 2016
  ident: 820_CR58
  publication-title: Diabetes Care
  doi: 10.2337/dc16-0041
– year: 2016
  ident: 820_CR78
  publication-title: Diabetes
  doi: 10.2337/db16-0049
– volume: 17
  start-page: 62
  issue: 1
  year: 2018
  ident: 820_CR21
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-018-0708-x
– volume: 9
  start-page: 651
  issue: 8
  year: 1995
  ident: 820_CR14
  publication-title: FASEB J
  doi: 10.1096/fasebj.9.8.7768357
– volume: 10
  start-page: 193
  issue: 4
  year: 2010
  ident: 820_CR8
  publication-title: Br J Diabetes Vasc Dis
  doi: 10.1177/1474651410377832
– volume: 124
  start-page: 509
  issue: 2
  year: 2014
  ident: 820_CR11
  publication-title: J Clin Invest
  doi: 10.1172/JCI70704
– volume: 377
  start-page: 644
  issue: 7
  year: 2017
  ident: 820_CR6
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1611925
– volume: 20
  start-page: 137
  year: 2017
  ident: 820_CR71
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.05.028
– volume: 16
  start-page: 26
  issue: 1
  year: 2017
  ident: 820_CR27
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-017-0510-1
– volume: 12
  start-page: e0176511
  issue: 4
  year: 2017
  ident: 820_CR36
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0176511
– volume: 19
  start-page: 809
  issue: 6
  year: 2017
  ident: 820_CR77
  publication-title: Diabetes Obes Metab
  doi: 10.1111/dom.12881
– volume: 108
  start-page: 1655
  issue: 13
  year: 2003
  ident: 820_CR1
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000089189.70578.E2
– volume: 13
  start-page: 148
  issue: 1
  year: 2014
  ident: 820_CR24
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-014-0148-1
– volume: 66
  start-page: 1030
  issue: 4
  year: 2017
  ident: 820_CR25
  publication-title: Diabetes
  doi: 10.2337/db16-0733
– volume: 124
  start-page: 499
  issue: 2
  year: 2014
  ident: 820_CR9
  publication-title: J Clin Invest
  doi: 10.1172/JCI72227
– volume: 45
  start-page: 198
  issue: 2
  year: 2005
  ident: 820_CR73
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000154082.72286.2a
– volume: 16
  start-page: 138
  issue: 1
  year: 2017
  ident: 820_CR29
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-017-0621-8
– volume: 188
  start-page: 25
  issue: 1
  year: 2006
  ident: 820_CR41
  publication-title: J Endocrinol
  doi: 10.1677/joe.1.06241
– volume: 6
  start-page: 699
  issue: 6
  year: 2015
  ident: 820_CR12
  publication-title: J Diabetes Invest
  doi: 10.1111/jdi.12370
– volume: 313
  start-page: E233
  issue: 2
  year: 2017
  ident: 820_CR61
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00055.2017
– volume: 8
  start-page: 45
  year: 2016
  ident: 820_CR64
  publication-title: Diabetol Metab Syndr
  doi: 10.1186/s13098-016-0169-x
– volume: 16
  start-page: 9
  issue: 1
  year: 2017
  ident: 820_CR54
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-016-0489-z
– volume: 2
  start-page: 347
  issue: 4
  year: 2017
  ident: 820_CR56
  publication-title: JACC Basic Transl Sci
  doi: 10.1016/j.jacbts.2017.07.003
– volume: 33
  start-page: 1004
  issue: 5
  year: 1999
  ident: 820_CR72
  publication-title: Am J Kidney Dis
  doi: 10.1016/S0272-6386(99)70442-7
– volume: 373
  start-page: 2117
  issue: 22
  year: 2015
  ident: 820_CR5
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1504720
– volume: 29
  start-page: 99
  issue: 2
  year: 2007
  ident: 820_CR74
  publication-title: Physiol Genom
  doi: 10.1152/physiolgenomics.00194.2006
– volume: 104
  start-page: 2305
  issue: 19
  year: 2001
  ident: 820_CR53
  publication-title: Circulation
  doi: 10.1161/hc4401.098293
– volume: 279
  start-page: 443
  issue: 2
  year: 2016
  ident: 820_CR67
  publication-title: Radiology
  doi: 10.1148/radiol.2015150035
– volume: 16
  start-page: 331
  issue: 3
  year: 2007
  ident: 820_CR63
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2006.12.001
– volume: 124
  start-page: 499
  issue: 2
  year: 2014
  ident: 820_CR68
  publication-title: J Clin Invest
  doi: 10.1172/JCI72227
– volume: 45
  start-page: 253
  issue: 3
  year: 2013
  ident: 820_CR4
  publication-title: Am J Prev Med
  doi: 10.1016/j.amepre.2013.04.017
– volume: 32
  start-page: 171
  issue: 2
  year: 2017
  ident: 820_CR57
  publication-title: Endocrinol Metab
  doi: 10.3803/EnM.2017.32.2.171
– volume: 53
  start-page: 2366
  issue: 9
  year: 2004
  ident: 820_CR48
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.9.2366
– volume: 146
  start-page: 5341
  issue: 12
  year: 2005
  ident: 820_CR49
  publication-title: Endocrinology
  doi: 10.1210/en.2005-0938
– volume: 16
  start-page: 84
  issue: 1
  year: 2017
  ident: 820_CR30
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-017-0564-0
– volume: 57
  start-page: 1723
  issue: 6
  year: 2008
  ident: 820_CR15
  publication-title: Diabetes
  doi: 10.2337/db07-1472
– volume: 125
  start-page: 181
  issue: 3
  year: 2013
  ident: 820_CR75
  publication-title: Postgrad Med
  doi: 10.3810/pgm.2013.05.2667
– volume: 41
  start-page: 1313
  issue: 6
  year: 2005
  ident: 820_CR47
  publication-title: Hepatology
  doi: 10.1002/hep.20701
– volume: 69
  start-page: 1071
  issue: 10
  year: 2015
  ident: 820_CR18
  publication-title: Int J Clin Pract
  doi: 10.1111/ijcp.12675
– volume: 21
  start-page: 512
  issue: 5
  year: 2015
  ident: 820_CR45
  publication-title: Nat Med
  doi: 10.1038/nm.3828
– volume: 49
  start-page: 1434
  issue: 6
  year: 2006
  ident: 820_CR50
  publication-title: Diabetologia
  doi: 10.1007/s00125-006-0229-0
– volume: 380
  start-page: 347
  issue: 4
  year: 2019
  ident: 820_CR7
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1812389
SSID ssj0017861
Score 2.5416431
Snippet Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization...
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to...
Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization...
BackgroundSodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization...
Abstract Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16
SubjectTerms Alanine
Alanine transaminase
Angiology
Animals
Antidiabetics
Arginine
Benzhydryl Compounds - pharmacology
Biomarkers - blood
Biomarkers - urine
Blood glucose
Body weight
Cardiology
Cardiovascular System & Cardiology
Cholesterol
Clinical Medicine
Coronary
Coronary artery disease
Coronary Artery Disease - etiology
Coronary Artery Disease - metabolism
Coronary Artery Disease - physiopathology
Coronary Artery Disease - prevention & control
Coronary Circulation - drug effects
cotransporter 2 inhibitor
dapagliflozin
Diabetes
Diabetes mellitus
Diabetic Angiopathies - etiology
Diabetic Angiopathies - metabolism
Diabetic Angiopathies - physiopathology
Diabetic Angiopathies - prevention & control
Diabetic Cardiomyopathies - etiology
Diabetic Cardiomyopathies - metabolism
Diabetic Cardiomyopathies - physiopathology
Diabetic Cardiomyopathies - prevention & control
diabetic complications
Disease Models, Animal
Doppler effect
Endocrinology & Metabolism
Endothelial
Energy Metabolism - drug effects
Fatty liver
fatty liver-disease
flow reserve
Flow velocity
Food intake
Glucagon
Glucose
Glucosides - pharmacology
Heart failure
Hypertension
Hypoglycemia
Hypotheses
Insulin
Insulin resistance
Ketones
Klinisk medicin
Leptin
Liver
Liver diseases
Male
Medicine
Medicine & Public Health
Metabolic syndrome
Metabolism
Mice, Inbred C57BL
Microcirculation - drug effects
Microvascular
Microvasculature
mouse
Muscle contraction
Myocardial Contraction - drug effects
nitric-oxide synthase
Obesity - complications
Obesity - metabolism
Original Investigation
Prediabetes
Prediabetic State - complications
Prediabetic State - drug therapy
Prediabetic State - metabolism
SGLT2
Sodium
Sodium-glucose cotransporter
Sodium-Glucose Transporter 2 - metabolism
Sodium-Glucose Transporter 2 Inhibitors - pharmacology
Steatosis
Studies
Translation
Ultrasound
Ventricular Function, Left - drug effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQD4gL4p9AQUZCHEDRxonjJEdAlApRLrRSb5ZjT7aRtslqfw70BcqZR-RJmLGTwAIqFw45JHFiy_NNZsbzZczYc4ugaNBwxKbJIabttePKCRdDlTglRZ2G9Y6jT-rwRH44zU9_2eqLOGGhPHCYuJkrXSoaShgJkAoKIzIMSRBKdSPAhGLbeD4GU0P-oCiVGHKYolSzNVk14g1VMZm8WO1YIV-s_28e5p9EySlb-ltlUW-NDm6xm4MbyV-H4d9m16C7w64fDYnyu-zy8_uPxylvu7O29qQsTguuHFD554u2WfQXbcdbv6AAa26pjIFZfeHnRM8byamcbJ5_1nSOWw8lyz23nf6GIP8dO-DLFYQF3Nbyvp719fev32Z40MvgHjs5eHf89jAe9lyILYpmE-dNKovG5rl11lC6GOoyK20CaQImVaXJTFqnSWFlBk4l1ipsmRbC5XUDVWGy-2yv6zt4yHiegMjBSUXsRWkrtIWuwfivtAKsK5uIJaMMtB0KktO-GAvtA5NS6SA2jWLTJDatIvZyemQZqnFc1fgNCXZqSIW0_QWElx7gpf8Fr4jtj7DQg3avNbmV5OfKImLPptuol5RsMR3029AGZxQjxog9CCiaRkLfVQw7ZcSKHXztDHX3Ttee-drfKlMKo86IvRqR-HNYV8zEiwDWnQ7m26XGS_OtXoOm_LOUj_7HlD1mN1KvaURr3md7m9UWnqDntqmfeiX9AQudQoY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj5RAEO7omhgvxveiq2kT40FDhoamgZNR47oxrhd3k7l1mu5ilmSEcR4H_QN69if6S6xqHhvUzGEu0EBDvau-qWLsmUWmqNBwhKZKIaTx2mHhhAuhiJySooy7fMfpJ3VyLj_M03mfcNv0sMpBJ3pF7VpLOfIZmXLyLWT2avU1pKlRVF3tR2hcZdd86zLk52w-Blwiy5XoK5kiV7MN2TZCDxUhGb5QTWyRb9n_Pz_zX7jkWDP9q7-ot0nHt9jN3pnkrzvq32ZXoLnDrp_25fK77Mfn9x_PYl43F3XpoVmc0q4cUAUslnW1bL_XDa99WgE23FIzA7P-xr8QSG-AqHKyfP5a0zhuPUNZ7hHu9J8I8uLxAXy1hi6NW1velrO2_P3z1wx_dDO4x86P3529PQn7yQuhRQJtw7SKZVbZNLXOGioaQ5knuY0gjsDEKjeJics4yqxMwKnIWoUr40y4tKygyExynx00bQOHjKcRiBScVIRhlLZAi-gqjAJzK8C6vApYNNBA274tOU3HWGofnuRKd2TTSDZNZNMqYC_GS1ZdT459i98QYceF1E7bH2jXC91Lp3a5i0VFVUkBUkFmRIJxL-qrshJgIrzJ0cAWupfxjb7kyIA9HU-jdFLJxTTQ7ro1-EUxbgzYg46Lxp2QdsXgUwYsm_DXZKvTM0194TuAq0QpjD0D9nLgxMtt7fkSzztmnTxgsVtpPLTY6Q1oqkJL-XD_2z5iN2IvQwRbPmIH2_UOHqNnti2fePH7A9FeOtQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgL4k1KQUZCHEDRxo7jJEdYUSpEudBKvVmOPdlGWpLVPg70D8CZn8gvYcbJBhaqShxycfySZ8Yz4288ZuyFQ6aoUXHEts4gpue149ILH0OZeK1EJfvzjuNP-uhUfTjLzoZk0XQX5k_8XhR6siJ9RBE_ZUzKKtbX2Y1MpJpkcKqnI2CQF1oMoOWlzXbUTsjOf5lJ-W9k5AiP_pVKNKifwzvs9mA38jc9oe-ya9DeYzePB2T8Pvv2-f3HE8mb9rypQhQWpxNWDijts3lTz7uLpuVNOEGAFXeUt8Auv_IvFI-3jUblpORCW9t67gLvOB6C2en6AxnsOABfLKE_sW0c76pJV_38_mOCH3UGD9jp4buT6VE8PLIQO6TFOs5qqfLaZZnzzhI-DFWRFi4BmYCVurCplZVMcqdS8DpxTmNNmQufVTWUuU0fsr22a-Ex41kCIgOvNIUrKlei8vM1OnyFE-B8UUcs2dLAuCEDOT2EMTfBEym06clmkGyGyGZ0xF6NTRZ9-o2rKr8lwo4VKXN2KECGMoMgGl94KWoCIAUoDbkVKbq4uDVVtQCbYCcHW7YwgzivDNmRZNiqPGLPx98oiISu2Ba6TV8HVxRdxIg96rlonAltpOhnqojlO_y1M9XdP21zHpJ961RrdDMj9nrLib-ndcVKvOyZdWeA2WZhsGi2MSswBDgrtf9f3T5ht2QQKQpYPmB76-UGnqJNtq6eBWn8BSMmM0g
  priority: 102
  providerName: Springer Nature
Title SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice
URI https://link.springer.com/article/10.1186/s12933-019-0820-6
https://www.ncbi.nlm.nih.gov/pubmed/30732594
https://www.proquest.com/docview/2183057547
https://www.proquest.com/docview/2183641086
https://pubmed.ncbi.nlm.nih.gov/PMC6366096
https://gup.ub.gu.se/publication/278444
https://doaj.org/article/d8d21f00761e46e7a13409051bf1ea06
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBa9QOnL2L3euqDB2MOGVl9k2XkYIw3tSljKWBvIm5AlOTVkdpYLrHveD985sp2SLeuTQZZsofMdn6vPIeSNBlDkIDiYymPLsL0265rAMNv1jeBBFtb-juGluBjxwTge75C2vVVzgIutph32kxrNpx9-_rj9BAz_0TF8Kk4WKLMwK6jLUKAxsUv2QTAJtMWG_C6okKQiaAKbW5cdkgNEPBgEfENKuWL-2zTQfxMp19HUvyqPOml1_pA8aNRM2qtx8Yjs2PIxORg2gfQn5PfV5y_XIS3KmyJzSVsUHbLUwsdhMi3yafWrKGnhHA52QTWWOVDzW_od0_fa5FWKMtGtVaWh2kFNU5f7jn9LoH4PL6Czua0dvIWmVXZSZZSdMHySfUpG52fX_QvWNGRgGui2ZHEe8iTXcayNVhhLtlkapdq3oW9VKFIVqTAL_UTzyBrhay1gZpgEJs5y201U9IzslVVpjwiNfRvE1nCBqY1cd0FQmhyMw1QHVps094jfEkDqplo5Ns2YSme1pELW5JNAPonkk8Ij79ZLZnWpjvsmnyJV1xOxyrYbqOYT2TCtNKkJgxyDlYHlwiYqiMAchs9YlgdW-fCQ4xYTskWuRJ0TlWCeeOT1-jYwLUZiVGmrVT0HThTMSY88ryG03kkLQY8kG-Da2OrmnbK4cYXBRSQEmKQeed_C8G5b95zE2xqpGy-YrGYShiYrubASg9Ocv_jvVl-Sw9CxESYyH5O95XxlX4Gutsw6ZDcZJx2y3-sNrgZwPT27_PoNRvui33H-j47j0T-t-EAF
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDeBAkYCDqBo83Cc5FAhCi0t3V0h2Eq9uY7tbCMtybIPofIH4MwP4sfwS5hxkq0W0N562EviON7MeJ6fZwh5qoApclAcrswj42J7bTfVvnZN6mnO_Cyo4x39Ad8_Yu-Po-MN8qs9C4OwylYmWkGtK4Ux8i6qcrQtWPxq8sXFrlGYXW1baMimtYLetiXGmoMdh-bsK7hws-2Dt0DvZ0Gwtzt8s-82XQZcBYuZu1EesDhXUaS0kpggNVkSJsozgWdkwBMZyiALvFix0GjuKcVhZBD7Ospyk8YyhHkvkU0wO1LWIZs7u4MPH5d5jDjhfpNL9RPenaF2RfxS6qLqdfmKNrRNA_5n6f4L2Fxmbf-qcGq14t51cq0xZ-nrmv9ukA1T3iSX-03C_hb5_uldbxjQojwtMgsOoxj4pQaE0Ghc5OPqW1HSwgY2zIwqLKcgp2f0M8IEW5AsRd1rn5WlpsqytKIWY4-nMtCPgBfQydTUgeRC0SrrVtnvHz-78MPJzG1ydCFUuUM6ZVWae4RGnvEjoxlHFCVTKehknYMfmijfKJ3kDvFaGgjVFEbH_hxjYR2khIuabALIJpBsgjvkxfKRSV0VZN3gHSTsciAW9LYXqulINPJB6EQHfo55Ud8wbmLph-B5g8TMct9IDybZatlCNFJmJs73hEOeLG-DfMCkjyxNtajHwBcFz9Uhd2suWq4E5Tu4v8wh8Qp_rSx19U5ZnNoa5DzkHLxfh7xsOfF8WWu-xPOaWVdeMFpMBFwaLcTMCMyDM3Z__b99TK7sD_s90TsYHD4gVwO7nxBEvUU68-nCPAQ7cZ49ajYjJScXvf__AB2Zf2c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSBUXxLuBAkZCHEDRxonjJEdYWAq0FRKt1Jvl2ONtpCVZ7eMAfwDO_ER-CR7ngQJVJQ65JLZjeb7JzPibjAl5ph0orDMcobIphHi8dlgYZkIoIiM4K-N2v-PoWByc8g9n6Vl3zum6z3bvKcn2nwas0lRvJktjWxXPxWSNVgrzgIoQTVgorpJrLlCJENZTMR1ohCwXrKMyL-w2Mka-Zv9Fjua_-ZIDafpXgVFvlGY3yY3Om6SvWvHfIlegvk12jzq-_A75_vnd4UlMq_q8Kn1uFsV9VwruGzBfVHbRfKtqWvl9BVhTjdUM1Oor_YJZen2OKkXT5_uq2lDtEaWpT3HHnyLQjXcvoMsVtPu4laZNOWnKXz9-TtyFg8Fdcjp7ezI9CLujF0LtJLQJUxvzzOo01UYrZI2hzJNcRxBHoGKRq0TFZRxlmidgRKS1cC3jjJm0tFBkKrlHduqmhj1C0whYCoYLTGLkunAm0VgXBuaagTa5DUjUy0Dqri45Ho-xkD4-yYVsxSad2CSKTYqAvBi6LNuiHJc1fo2CHRpiPW1_o1nNZaee0uQmZhZpSQZcQKZYgnhKWWkZqMgNst_DQnZKvpboXaK7y7OAPB0eO_VEzkXV0GzbNm5FXeAYkPstioaZ4OfVRZ88INkIX6Opjp_U1bkvAS4SIVzwGZCXPRL_TOuSlXjegnX0gvl2Kd2t-VauQSINzfmD_xr2Cdn99GYmD98ff3xIrsdeuzCjeZ_sbFZbeOSctk352Cvmb_3OPoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SGLT2+inhibition+with+empagliflozin+improves+coronary+microvascular+function+and+cardiac+contractility+in+prediabetic+ob%2Fob+-%2F-+mice&rft.jtitle=Cardiovascular+diabetology&rft.au=Adingupu%2C+Damilola+D&rft.au=G%C3%B6pel%2C+Sven+O&rft.au=Gr%C3%B6nros%2C+Julia&rft.au=Behrendt%2C+Margareta&rft.date=2019-02-07&rft.eissn=1475-2840&rft.volume=18&rft.issue=1&rft.spage=16&rft_id=info:doi/10.1186%2Fs12933-019-0820-6&rft_id=info%3Apmid%2F30732594&rft.externalDocID=30732594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2840&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2840&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2840&client=summon