SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice
Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized...
Saved in:
Published in | Cardiovascular diabetology Vol. 18; no. 1; pp. 16 - 15 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
07.02.2019
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1475-2840 1475-2840 |
DOI | 10.1186/s12933-019-0820-6 |
Cover
Abstract | Background
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob
−/−
mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance.
Methods
Lean, ob/ob
−/−
untreated and ob/ob
−/−
treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study.
Results
Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob
−/−
animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction.
l
-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively.
Conclusions
Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob
−/−
mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure. |
---|---|
AbstractList | Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob−/− mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. Methods Lean, ob/ob−/− untreated and ob/ob−/− treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. Results Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob−/− animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. Conclusions Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob−/− mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i's promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. Lean, ob/ob untreated and ob/ob treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. L-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure. Abstract Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob−/− mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. Methods Lean, ob/ob−/− untreated and ob/ob−/− treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. Results Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob−/− animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. Conclusions Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob−/− mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure. BackgroundSodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i's promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob(-/-) mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance.MethodsLean, ob/ob(-/-) untreated and ob/ob(-/-) treated with SGLT2i were followed for 10weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study.ResultsSodium-glucose cotransporter 2 inhibitors treatment of ob/ob(-/-) animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively.ConclusionsSodium-glucose cotransporter 2 inhibitors treatment of ob/ob(-/-) mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure. Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i’s promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob −/− mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. Methods Lean, ob/ob −/− untreated and ob/ob −/− treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. Results Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob −/− animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. l -Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. Conclusions Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob −/− mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i's promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob-/- mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance.BACKGROUNDSodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i's promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob-/- mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance.Lean, ob/ob-/- untreated and ob/ob-/- treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study.METHODSLean, ob/ob-/- untreated and ob/ob-/- treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study.Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob-/- animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. L-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively.RESULTSSodium-glucose cotransporter 2 inhibitors treatment of ob/ob-/- animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. L-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively.Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob-/- mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.CONCLUSIONSSodium-glucose cotransporter 2 inhibitors treatment of ob/ob-/- mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure. |
ArticleNumber | 16 |
Author | Dahlqvist, Ulrika Göpel, Sven O. Gan, Li-Ming Sotak, Matus Grönros, Julia Adingupu, Damilola D. Miliotis, Tasso Behrendt, Margareta Jönsson-Rylander, Ann-Cathrine |
Author_xml | – sequence: 1 givenname: Damilola D. orcidid: 0000-0002-0312-2359 surname: Adingupu fullname: Adingupu, Damilola D. organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg – sequence: 2 givenname: Sven O. surname: Göpel fullname: Göpel, Sven O. email: Sven.Gopel@astrazeneca.com organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg – sequence: 3 givenname: Julia surname: Grönros fullname: Grönros, Julia organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg – sequence: 4 givenname: Margareta surname: Behrendt fullname: Behrendt, Margareta organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg – sequence: 5 givenname: Matus surname: Sotak fullname: Sotak, Matus organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg – sequence: 6 givenname: Tasso surname: Miliotis fullname: Miliotis, Tasso organization: Translational Science, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg – sequence: 7 givenname: Ulrika surname: Dahlqvist fullname: Dahlqvist, Ulrika organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg – sequence: 8 givenname: Li-Ming surname: Gan fullname: Gan, Li-Ming organization: Early Clinical Development, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Department of Cardiology, Sahlgrenska University Hospital – sequence: 9 givenname: Ann-Cathrine surname: Jönsson-Rylander fullname: Jönsson-Rylander, Ann-Cathrine organization: Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30732594$$D View this record in MEDLINE/PubMed https://gup.ub.gu.se/publication/278444$$DView record from Swedish Publication Index |
BookMark | eNp9ks1u1DAUhSNURH_gAdigSGzYhPFf7GSDhCoolUZiQVlbjnOT8Sixg520al8A1jwiT4IzGUqnEiyiRNffOff65pwmR9ZZSJKXGL3FuOCrgElJaYZwmaGCoIw_SU4wE3lGCoaOHnwfJ6chbBHCouD4WXJMkaAkL9lJ8v3LxfqKpMZuTGVG42x6Y8ZNCv2g2s40nbszNjX94N01hFQ776zyt2lvdKyooKdO-bSZrN5pla1TrXxtlI6sHb2K9c6Mt7FBOniIBxWMRqeuWrnq14-fq_jMZvA8edqoLsCL_fss-frxw9X5p2z9-eLy_P0605zhMcsbwkSj81zXWhFGMFQFLTQCgkARXiiqSEWQ0IxCzZHWPJJE4DqvGiiFomfJ5eJbO7WVgzd9vI50yshdwflWKh8n7EDWRU1wg5DgGBgHoTBlqEQ5rhoMCvHolS1e4QaGqTpwa6dBxlI7yQCSiIIxFvl3Cx_hHmoN84K6A9nhiTUb2bprySnnqJwbvtkbePdtgjDK3gQNXacsuClIggsa14SKGX39CN26ydu42h2FcpEzEalXDye6H-VPPiKAFyD-7hA8NPcIRnLOoFwyKGMG5ZxBObcWjzTajGrOR7yU6f6rJPuFxi62Bf936H-LfgNRFvTm |
CitedBy_id | crossref_primary_10_1371_journal_pone_0263481 crossref_primary_10_3389_fcvm_2022_995216 crossref_primary_10_3390_ijms22020818 crossref_primary_10_1093_cvr_cvab120 crossref_primary_10_1152_ajpheart_00603_2021 crossref_primary_10_1186_s12933_020_01174_6 crossref_primary_10_1016_j_coph_2020_08_015 crossref_primary_10_3390_antiox11122500 crossref_primary_10_3390_jcm11185377 crossref_primary_10_1016_j_jacc_2019_11_031 crossref_primary_10_1186_s12933_024_02504_8 crossref_primary_10_2174_1570161119999201102213214 crossref_primary_10_3390_antiox13010016 crossref_primary_10_1016_j_metabol_2021_154710 crossref_primary_10_1016_j_jchf_2021_05_019 crossref_primary_10_1186_s12933_020_01042_3 crossref_primary_10_1186_s12933_020_01004_9 crossref_primary_10_3389_fphar_2020_561494 crossref_primary_10_1186_s12933_021_01252_3 crossref_primary_10_1186_s12933_024_02491_w crossref_primary_10_1093_eurheartj_ehz730 crossref_primary_10_1016_j_intimp_2023_110072 crossref_primary_10_3390_immuno5010011 crossref_primary_10_1080_10408363_2021_1993439 crossref_primary_10_3390_jcm13195911 crossref_primary_10_3390_ijms25116218 crossref_primary_10_3389_fphar_2025_1523727 crossref_primary_10_1177_2040622320974833 crossref_primary_10_1186_s12933_020_0990_2 crossref_primary_10_1016_j_taap_2020_115153 crossref_primary_10_1080_07853890_2024_2304667 crossref_primary_10_2174_1568026623666221213085917 crossref_primary_10_1186_s12933_020_01028_1 crossref_primary_10_1016_j_ejphar_2023_175531 crossref_primary_10_1002_ehf2_14435 crossref_primary_10_1016_j_cardfail_2025_01_008 crossref_primary_10_3390_biomedicines13030728 crossref_primary_10_1016_j_ejphar_2021_174081 crossref_primary_10_1016_j_jacc_2021_07_042 crossref_primary_10_1016_j_phrs_2020_104870 crossref_primary_10_1016_j_hfc_2022_03_007 crossref_primary_10_3389_fcvm_2023_1111721 crossref_primary_10_3390_biomedicines9101356 crossref_primary_10_1007_s11094_025_03284_5 crossref_primary_10_1016_j_biopha_2023_115686 crossref_primary_10_12677_ACM_2022_1291171 crossref_primary_10_1093_cvr_cvad157 crossref_primary_10_1093_ndt_gfz230 crossref_primary_10_2174_1389450124666230907115831 crossref_primary_10_1093_cvr_cvaa323 crossref_primary_10_1016_j_cbi_2024_111229 crossref_primary_10_1360_SSV_2021_0311 crossref_primary_10_1016_j_ejphar_2022_175342 crossref_primary_10_1016_j_carrev_2024_09_010 crossref_primary_10_1186_s12933_024_02466_x crossref_primary_10_3389_fcvm_2023_1291450 crossref_primary_10_3390_ijms25147628 crossref_primary_10_3389_fendo_2024_1359255 crossref_primary_10_1186_s12933_019_0980_4 crossref_primary_10_3390_biomedicines10092274 crossref_primary_10_1159_000504694 crossref_primary_10_2337_dc21_1765 crossref_primary_10_1016_j_jjcc_2024_02_002 crossref_primary_10_3390_metabo13060736 crossref_primary_10_2174_1871525719666210809121016 crossref_primary_10_3390_biomedicines13030744 crossref_primary_10_3390_life13061256 crossref_primary_10_14797_mdcvj_1120 crossref_primary_10_2147_DDDT_S269514 crossref_primary_10_1111_micc_12656 crossref_primary_10_3390_ijms23042336 crossref_primary_10_3389_fmed_2021_712671 crossref_primary_10_3390_jcdd12030090 crossref_primary_10_1016_j_lfs_2020_118974 crossref_primary_10_1111_jdi_14199 crossref_primary_10_1186_s12933_020_01040_5 crossref_primary_10_7759_cureus_63796 crossref_primary_10_3389_fcell_2023_1278166 crossref_primary_10_1007_s11239_023_02862_2 crossref_primary_10_3389_fendo_2023_1115619 crossref_primary_10_1016_j_ahjo_2022_100187 crossref_primary_10_3390_ijms23073651 crossref_primary_10_1097_CRD_0000000000000638 crossref_primary_10_1002_jcp_31264 crossref_primary_10_3390_biomedicines13020409 crossref_primary_10_1016_j_ajpc_2025_100928 crossref_primary_10_1186_s12933_020_00997_7 crossref_primary_10_1007_s10741_020_10041_1 crossref_primary_10_1093_cvr_cvaa064 crossref_primary_10_1002_clc_24158 crossref_primary_10_1111_micc_12825 crossref_primary_10_3389_fphar_2020_00042 crossref_primary_10_1111_ijcp_14794 crossref_primary_10_1002_ejhf_1902 crossref_primary_10_1016_j_pharmthera_2021_107832 crossref_primary_10_1007_s10741_021_10096_8 crossref_primary_10_1016_j_biopha_2023_115011 crossref_primary_10_1016_j_tips_2022_04_005 crossref_primary_10_1161_JAHA_123_030975 crossref_primary_10_3390_ijms22168786 crossref_primary_10_5551_jat_RV17064 crossref_primary_10_1016_j_amjmed_2024_04_035 crossref_primary_10_1186_s12933_021_01380_w crossref_primary_10_1186_s12933_022_01532_6 crossref_primary_10_1002_ejhf_1732 crossref_primary_10_1186_s12933_020_01041_4 crossref_primary_10_2337_db20_0921 crossref_primary_10_1007_s12265_022_10220_5 crossref_primary_10_2147_DDDT_S371506 crossref_primary_10_1134_S0022093024070159 crossref_primary_10_3390_biom12020278 crossref_primary_10_3390_metabo13020295 crossref_primary_10_1016_j_atherosclerosis_2024_117560 crossref_primary_10_1186_s12933_023_01816_5 crossref_primary_10_1007_s12928_023_00924_z crossref_primary_10_1186_s12933_023_01855_y crossref_primary_10_1186_s12933_022_01607_4 crossref_primary_10_1093_cvr_cvae047 crossref_primary_10_1055_s_0040_1721388 crossref_primary_10_1155_2022_8861911 crossref_primary_10_3390_cells10102699 crossref_primary_10_1093_ehjcvp_pvad053 crossref_primary_10_1093_cvr_cvaa002 crossref_primary_10_1186_s12933_019_0889_y crossref_primary_10_1007_s10863_024_10020_3 crossref_primary_10_1186_s12876_023_03085_8 crossref_primary_10_3390_life13020443 crossref_primary_10_1007_s40200_023_01305_2 crossref_primary_10_12677_acm_2024_1482233 |
Cites_doi | 10.1016/j.ejphar.2017.05.019 10.1016/j.jtcvs.2009.12.031 10.1371/journal.pone.0151511 10.1161/CIRCHEARTFAILURE.115.002560 10.1007/s00210-015-1134-1 10.1152/ajprenal.2000.278.3.F339 10.1016/j.redox.2017.06.009 10.1016/j.metabol.2016.01.001 10.1186/s12933-017-0511-0 10.1111/j.1749-6632.1999.tb07798.x 10.1007/s12265-013-9497-5 10.1016/j.amjcard.2005.07.126 10.1177/1479164115610057 10.1371/journal.pone.0030555 10.1177/1479164114559852 10.1258/acb.2009.009196 10.1186/s12944-017-0443-4 10.1007/s40265-014-0337-y 10.1097/MOL.0b013e3283541cfc 10.4158/EP14489.OR 10.2337/dc15-2688 10.1038/srep31214 10.2337/dc16-0330 10.1161/CIRCULATIONAHA.111.050427 10.1089/neu.1995.12.325 10.1161/JAHA.116.004875 10.4291/wjgp.v8.i2.51 10.1371/journal.pone.0130648 10.1007/978-90-481-3271-3_20 10.1073/pnas.1705845114 10.21037/atm.2016.10.36 10.1093/eurheartj/ehy531 10.1007/s00125-016-4158-2 10.1007/s10741-017-9665-9 10.1007/s10557-017-6734-1 10.1016/j.jacc.2007.06.027 10.1093/eurheartj/ehx721 10.1177/1535370216654227 10.1186/s12933-018-0750-8 10.3390/ijms160612230 10.2337/dc16-0041 10.2337/db16-0049 10.1186/s12933-018-0708-x 10.1096/fasebj.9.8.7768357 10.1177/1474651410377832 10.1172/JCI70704 10.1056/NEJMoa1611925 10.1016/j.ebiom.2017.05.028 10.1186/s12933-017-0510-1 10.1371/journal.pone.0176511 10.1111/dom.12881 10.1161/01.CIR.0000089189.70578.E2 10.1186/s12933-014-0148-1 10.2337/db16-0733 10.1172/JCI72227 10.1161/01.HYP.0000154082.72286.2a 10.1186/s12933-017-0621-8 10.1677/joe.1.06241 10.1111/jdi.12370 10.1152/ajpendo.00055.2017 10.1186/s13098-016-0169-x 10.1186/s12933-016-0489-z 10.1016/j.jacbts.2017.07.003 10.1016/S0272-6386(99)70442-7 10.1056/NEJMoa1504720 10.1152/physiolgenomics.00194.2006 10.1161/hc4401.098293 10.1148/radiol.2015150035 10.1016/j.niox.2006.12.001 10.1016/j.amepre.2013.04.017 10.3803/EnM.2017.32.2.171 10.2337/diabetes.53.9.2366 10.1210/en.2005-0938 10.1186/s12933-017-0564-0 10.2337/db07-1472 10.3810/pgm.2013.05.2667 10.1002/hep.20701 10.1111/ijcp.12675 10.1038/nm.3828 10.1007/s00125-006-0229-0 10.1056/NEJMoa1812389 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTPV AOWAS F1U DOA |
DOI | 10.1186/s12933-019-0820-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Göteborgs universitet DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1475-2840 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_d8d21f00761e46e7a13409051bf1ea06 oai_gup_ub_gu_se_278444 PMC6366096 30732594 10_1186_s12933_019_0820_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 29B 2WC 53G 5GY 5VS 6J9 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM 2VQ 4.4 ADTPV AHSBF AOWAS C1A F1U H13 IPNFZ RIG |
ID | FETCH-LOGICAL-c641t-5f247fc55cdca2421eb838c0e20ea268a3a2b207c43ed60cc65cd271d5bfe97a3 |
IEDL.DBID | M48 |
ISSN | 1475-2840 |
IngestDate | Wed Aug 27 01:25:49 EDT 2025 Tue Sep 09 23:59:21 EDT 2025 Thu Aug 21 14:03:04 EDT 2025 Thu Sep 04 23:45:07 EDT 2025 Fri Jul 25 20:03:25 EDT 2025 Mon Jul 21 05:50:58 EDT 2025 Tue Jul 01 04:19:49 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Sat Sep 06 07:24:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Endothelial Coronary Microvascular Prediabetes SGLT2 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c641t-5f247fc55cdca2421eb838c0e20ea268a3a2b207c43ed60cc65cd271d5bfe97a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0312-2359 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12933-019-0820-6 |
PMID | 30732594 |
PQID | 2183057547 |
PQPubID | 42570 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d8d21f00761e46e7a13409051bf1ea06 swepub_primary_oai_gup_ub_gu_se_278444 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6366096 proquest_miscellaneous_2183641086 proquest_journals_2183057547 pubmed_primary_30732594 crossref_primary_10_1186_s12933_019_0820_6 crossref_citationtrail_10_1186_s12933_019_0820_6 springer_journals_10_1186_s12933_019_0820_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-07 |
PublicationDateYYYYMMDD | 2019-02-07 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cardiovascular diabetology |
PublicationTitleAbbrev | Cardiovasc Diabetol |
PublicationTitleAlternate | Cardiovasc Diabetol |
PublicationYear | 2019 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | HU Westergren (820_CR36) 2017; 12 P Lindström (820_CR39) 2010; 654 E Ferrannini (820_CR9) 2014; 124 M Pfeifer (820_CR28) 2017; 16 L Xu (820_CR71) 2017; 20 NH Buus (820_CR53) 2001; 104 K Sato (820_CR14) 1995; 9 R Patil (820_CR3) 2017; 8 B Brannick (820_CR43) 2016; 241 B Zinman (820_CR5) 2015; 373 L-M Gan (820_CR37) 2013; 6 AR Aroor (820_CR22) 2018; 17 E Ferrannini (820_CR80) 2016 SY Li (820_CR50) 2006; 49 DM Lee (820_CR21) 2018; 17 MC Michel (820_CR31) 2015; 388 SJ Shah (820_CR34) 2018; 39 TF Luscher (820_CR1) 2003; 108 L Hansen (820_CR10) 2014; 20 S-A Cha (820_CR69) 2017; 16 EA Ashikhmina (820_CR42) 2010; 140 F Dong (820_CR41) 2006; 188 HU Westergren (820_CR40) 2015; 10 SL Kristensen (820_CR44) 2016; 9 H Al Jobori (820_CR77) 2017; 19 NJ Byrne (820_CR56) 2017; 2 JM Hazlehurst (820_CR46) 2016; 65 P Meneton (820_CR70) 2000; 278 M-Y Wang (820_CR55) 2017; 114 JS Gottdiener (820_CR59) 2006; 97 MR Salazar (820_CR2) 2016; 13 M Joubert (820_CR25) 2017; 66 AJ Scheen (820_CR17) 2015; 75 LM Gan (820_CR51) 2017; 6 WF Keane (820_CR72) 1999; 33 H Ibsen (820_CR73) 2005; 45 A Merovci (820_CR11) 2014; 124 B Lin (820_CR24) 2014; 13 E Ferrannini (820_CR68) 2014; 124 LJ Williams (820_CR57) 2017; 32 T Jojima (820_CR64) 2016; 8 SA Brunton (820_CR18) 2015; 69 B Neal (820_CR6) 2017; 377 VR Taqueti (820_CR33) 2018; 39 VL Murthy (820_CR52) 2011; 124 G Daniele (820_CR13) 2016; 39 RJ MacIsaac (820_CR79) 2016; 4 DE Kleiner (820_CR47) 2005; 41 K Yamada (820_CR12) 2015; 6 E Ellis (820_CR82) 1995; 12 SD Wiviott (820_CR7) 2019; 380 J Buchanan (820_CR49) 2005; 146 JC Marini (820_CR61) 2017; 313 X Zhuo (820_CR4) 2013; 45 N Hammoudi (820_CR32) 2017; 31 A Tahara (820_CR20) 2017; 809 A Kaplan (820_CR26) 2018; 23 S Blackwell (820_CR60) 2010; 47 C Bonner (820_CR45) 2015; 21 RM Salek (820_CR74) 2007; 29 A Solini (820_CR29) 2017; 16 RL Widya (820_CR67) 2016; 279 S Steven (820_CR23) 2017; 13 F Briand (820_CR78) 2016 JH Han (820_CR81) 2017; 60 AS Wierzbicki (820_CR66) 2012; 23 M Abdul-Ghani (820_CR58) 2016; 39 S Han (820_CR15) 2008; 57 J Habibi (820_CR54) 2017; 16 F Shigiyama (820_CR30) 2017; 16 C Ott (820_CR27) 2017; 16 L Cortigiani (820_CR35) 2007; 50 MG Pedersen (820_CR76) 2016; 6 CJ Bailey (820_CR8) 2010; 10 A Ptaszynska (820_CR75) 2013; 125 RM Saraiva (820_CR63) 2007; 16 Y Liang (820_CR16) 2012; 7 SJH Brinkmann (820_CR62) 2015; 16 C Komiya (820_CR65) 2016; 11 SE Inzucchi (820_CR19) 2015; 12 E Shafrir (820_CR38) 1999; 892 PK Mazumder (820_CR48) 2004; 53 |
References_xml | – volume: 809 start-page: 163 year: 2017 ident: 820_CR20 publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2017.05.019 – volume: 140 start-page: 1300 issue: 6 year: 2010 ident: 820_CR42 publication-title: J Thorac Cardiovasc Surg doi: 10.1016/j.jtcvs.2009.12.031 – volume: 11 start-page: e0151511 issue: 3 year: 2016 ident: 820_CR65 publication-title: PLoS ONE doi: 10.1371/journal.pone.0151511 – volume: 9 start-page: e002560 issue: 1 year: 2016 ident: 820_CR44 publication-title: Circ Heart Fail doi: 10.1161/CIRCHEARTFAILURE.115.002560 – volume: 388 start-page: 801 issue: 8 year: 2015 ident: 820_CR31 publication-title: Naunyn-Schmiedeberg’s Arch Pharmacol doi: 10.1007/s00210-015-1134-1 – volume: 278 start-page: F339 issue: 3 year: 2000 ident: 820_CR70 publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.2000.278.3.F339 – volume: 13 start-page: 370 year: 2017 ident: 820_CR23 publication-title: Redox Biol doi: 10.1016/j.redox.2017.06.009 – volume: 65 start-page: 1096 issue: 8 year: 2016 ident: 820_CR46 publication-title: Metabolism doi: 10.1016/j.metabol.2016.01.001 – volume: 16 start-page: 29 issue: 1 year: 2017 ident: 820_CR28 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-017-0511-0 – volume: 892 start-page: 223 year: 1999 ident: 820_CR38 publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1999.tb07798.x – volume: 6 start-page: 715 issue: 5 year: 2013 ident: 820_CR37 publication-title: J Cardiovasc Transl Res doi: 10.1007/s12265-013-9497-5 – volume: 97 start-page: 83 issue: 1 year: 2006 ident: 820_CR59 publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2005.07.126 – volume: 13 start-page: 157 issue: 2 year: 2016 ident: 820_CR2 publication-title: Diabetes Vasc Dis Res doi: 10.1177/1479164115610057 – volume: 7 start-page: e30555 issue: 2 year: 2012 ident: 820_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0030555 – volume: 12 start-page: 90 issue: 2 year: 2015 ident: 820_CR19 publication-title: Diabetes Vasc Dis Res doi: 10.1177/1479164114559852 – volume: 47 start-page: 17 issue: Pt 1 year: 2010 ident: 820_CR60 publication-title: Ann Clin Biochem doi: 10.1258/acb.2009.009196 – volume: 16 start-page: 58 issue: 1 year: 2017 ident: 820_CR69 publication-title: Lipids Health Dis doi: 10.1186/s12944-017-0443-4 – volume: 75 start-page: 33 issue: 1 year: 2015 ident: 820_CR17 publication-title: Drugs doi: 10.1007/s40265-014-0337-y – volume: 23 start-page: 345 issue: 4 year: 2012 ident: 820_CR66 publication-title: Curr Opin Lipidol doi: 10.1097/MOL.0b013e3283541cfc – volume: 20 start-page: 1187 issue: 11 year: 2014 ident: 820_CR10 publication-title: Endocr Pract doi: 10.4158/EP14489.OR – volume: 39 start-page: 2036 issue: 11 year: 2016 ident: 820_CR13 publication-title: Diabetes Care doi: 10.2337/dc15-2688 – volume: 6 start-page: 31214 year: 2016 ident: 820_CR76 publication-title: Sci Rep doi: 10.1038/srep31214 – year: 2016 ident: 820_CR80 publication-title: Diabetes Care doi: 10.2337/dc16-0330 – volume: 124 start-page: 2215 issue: 20 year: 2011 ident: 820_CR52 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.050427 – volume: 12 start-page: 325 year: 1995 ident: 820_CR82 publication-title: J Neurotrauma doi: 10.1089/neu.1995.12.325 – volume: 6 start-page: e004875 issue: 4 year: 2017 ident: 820_CR51 publication-title: J Am Heart Assoc doi: 10.1161/JAHA.116.004875 – volume: 8 start-page: 51 issue: 2 year: 2017 ident: 820_CR3 publication-title: World J Gastrointest Pathophysiol doi: 10.4291/wjgp.v8.i2.51 – volume: 10 start-page: e0130648 issue: 6 year: 2015 ident: 820_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0130648 – volume: 654 start-page: 463 year: 2010 ident: 820_CR39 publication-title: Adv Exp Med Biol doi: 10.1007/978-90-481-3271-3_20 – volume: 114 start-page: 6611 issue: 25 year: 2017 ident: 820_CR55 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1705845114 – volume: 4 start-page: 409 issue: 20 year: 2016 ident: 820_CR79 publication-title: Ann Transl Med doi: 10.21037/atm.2016.10.36 – volume: 39 start-page: 3439 issue: 37 year: 2018 ident: 820_CR34 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehy531 – volume: 60 start-page: 364 issue: 2 year: 2017 ident: 820_CR81 publication-title: Diabetologia doi: 10.1007/s00125-016-4158-2 – volume: 23 start-page: 419 issue: 3 year: 2018 ident: 820_CR26 publication-title: Heart Fail Rev doi: 10.1007/s10741-017-9665-9 – volume: 31 start-page: 233 issue: 3 year: 2017 ident: 820_CR32 publication-title: Cardiovasc Drugs Ther doi: 10.1007/s10557-017-6734-1 – volume: 50 start-page: 1354 issue: 14 year: 2007 ident: 820_CR35 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2007.06.027 – volume: 39 start-page: 840 issue: 10 year: 2018 ident: 820_CR33 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehx721 – volume: 241 start-page: 1323 issue: 12 year: 2016 ident: 820_CR43 publication-title: Exp Biol Med doi: 10.1177/1535370216654227 – volume: 17 start-page: 108 issue: 1 year: 2018 ident: 820_CR22 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-018-0750-8 – volume: 16 start-page: 12230 issue: 6 year: 2015 ident: 820_CR62 publication-title: Int J Mol Sci doi: 10.3390/ijms160612230 – volume: 39 start-page: 717 issue: 5 year: 2016 ident: 820_CR58 publication-title: Diabetes Care doi: 10.2337/dc16-0041 – year: 2016 ident: 820_CR78 publication-title: Diabetes doi: 10.2337/db16-0049 – volume: 17 start-page: 62 issue: 1 year: 2018 ident: 820_CR21 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-018-0708-x – volume: 9 start-page: 651 issue: 8 year: 1995 ident: 820_CR14 publication-title: FASEB J doi: 10.1096/fasebj.9.8.7768357 – volume: 10 start-page: 193 issue: 4 year: 2010 ident: 820_CR8 publication-title: Br J Diabetes Vasc Dis doi: 10.1177/1474651410377832 – volume: 124 start-page: 509 issue: 2 year: 2014 ident: 820_CR11 publication-title: J Clin Invest doi: 10.1172/JCI70704 – volume: 377 start-page: 644 issue: 7 year: 2017 ident: 820_CR6 publication-title: N Engl J Med doi: 10.1056/NEJMoa1611925 – volume: 20 start-page: 137 year: 2017 ident: 820_CR71 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.05.028 – volume: 16 start-page: 26 issue: 1 year: 2017 ident: 820_CR27 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-017-0510-1 – volume: 12 start-page: e0176511 issue: 4 year: 2017 ident: 820_CR36 publication-title: PLoS ONE doi: 10.1371/journal.pone.0176511 – volume: 19 start-page: 809 issue: 6 year: 2017 ident: 820_CR77 publication-title: Diabetes Obes Metab doi: 10.1111/dom.12881 – volume: 108 start-page: 1655 issue: 13 year: 2003 ident: 820_CR1 publication-title: Circulation doi: 10.1161/01.CIR.0000089189.70578.E2 – volume: 13 start-page: 148 issue: 1 year: 2014 ident: 820_CR24 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-014-0148-1 – volume: 66 start-page: 1030 issue: 4 year: 2017 ident: 820_CR25 publication-title: Diabetes doi: 10.2337/db16-0733 – volume: 124 start-page: 499 issue: 2 year: 2014 ident: 820_CR9 publication-title: J Clin Invest doi: 10.1172/JCI72227 – volume: 45 start-page: 198 issue: 2 year: 2005 ident: 820_CR73 publication-title: Hypertension doi: 10.1161/01.HYP.0000154082.72286.2a – volume: 16 start-page: 138 issue: 1 year: 2017 ident: 820_CR29 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-017-0621-8 – volume: 188 start-page: 25 issue: 1 year: 2006 ident: 820_CR41 publication-title: J Endocrinol doi: 10.1677/joe.1.06241 – volume: 6 start-page: 699 issue: 6 year: 2015 ident: 820_CR12 publication-title: J Diabetes Invest doi: 10.1111/jdi.12370 – volume: 313 start-page: E233 issue: 2 year: 2017 ident: 820_CR61 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00055.2017 – volume: 8 start-page: 45 year: 2016 ident: 820_CR64 publication-title: Diabetol Metab Syndr doi: 10.1186/s13098-016-0169-x – volume: 16 start-page: 9 issue: 1 year: 2017 ident: 820_CR54 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-016-0489-z – volume: 2 start-page: 347 issue: 4 year: 2017 ident: 820_CR56 publication-title: JACC Basic Transl Sci doi: 10.1016/j.jacbts.2017.07.003 – volume: 33 start-page: 1004 issue: 5 year: 1999 ident: 820_CR72 publication-title: Am J Kidney Dis doi: 10.1016/S0272-6386(99)70442-7 – volume: 373 start-page: 2117 issue: 22 year: 2015 ident: 820_CR5 publication-title: N Engl J Med doi: 10.1056/NEJMoa1504720 – volume: 29 start-page: 99 issue: 2 year: 2007 ident: 820_CR74 publication-title: Physiol Genom doi: 10.1152/physiolgenomics.00194.2006 – volume: 104 start-page: 2305 issue: 19 year: 2001 ident: 820_CR53 publication-title: Circulation doi: 10.1161/hc4401.098293 – volume: 279 start-page: 443 issue: 2 year: 2016 ident: 820_CR67 publication-title: Radiology doi: 10.1148/radiol.2015150035 – volume: 16 start-page: 331 issue: 3 year: 2007 ident: 820_CR63 publication-title: Nitric Oxide doi: 10.1016/j.niox.2006.12.001 – volume: 124 start-page: 499 issue: 2 year: 2014 ident: 820_CR68 publication-title: J Clin Invest doi: 10.1172/JCI72227 – volume: 45 start-page: 253 issue: 3 year: 2013 ident: 820_CR4 publication-title: Am J Prev Med doi: 10.1016/j.amepre.2013.04.017 – volume: 32 start-page: 171 issue: 2 year: 2017 ident: 820_CR57 publication-title: Endocrinol Metab doi: 10.3803/EnM.2017.32.2.171 – volume: 53 start-page: 2366 issue: 9 year: 2004 ident: 820_CR48 publication-title: Diabetes doi: 10.2337/diabetes.53.9.2366 – volume: 146 start-page: 5341 issue: 12 year: 2005 ident: 820_CR49 publication-title: Endocrinology doi: 10.1210/en.2005-0938 – volume: 16 start-page: 84 issue: 1 year: 2017 ident: 820_CR30 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-017-0564-0 – volume: 57 start-page: 1723 issue: 6 year: 2008 ident: 820_CR15 publication-title: Diabetes doi: 10.2337/db07-1472 – volume: 125 start-page: 181 issue: 3 year: 2013 ident: 820_CR75 publication-title: Postgrad Med doi: 10.3810/pgm.2013.05.2667 – volume: 41 start-page: 1313 issue: 6 year: 2005 ident: 820_CR47 publication-title: Hepatology doi: 10.1002/hep.20701 – volume: 69 start-page: 1071 issue: 10 year: 2015 ident: 820_CR18 publication-title: Int J Clin Pract doi: 10.1111/ijcp.12675 – volume: 21 start-page: 512 issue: 5 year: 2015 ident: 820_CR45 publication-title: Nat Med doi: 10.1038/nm.3828 – volume: 49 start-page: 1434 issue: 6 year: 2006 ident: 820_CR50 publication-title: Diabetologia doi: 10.1007/s00125-006-0229-0 – volume: 380 start-page: 347 issue: 4 year: 2019 ident: 820_CR7 publication-title: N Engl J Med doi: 10.1056/NEJMoa1812389 |
SSID | ssj0017861 |
Score | 2.5416431 |
Snippet | Background
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization... Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to... Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization... BackgroundSodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization... Abstract Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16 |
SubjectTerms | Alanine Alanine transaminase Angiology Animals Antidiabetics Arginine Benzhydryl Compounds - pharmacology Biomarkers - blood Biomarkers - urine Blood glucose Body weight Cardiology Cardiovascular System & Cardiology Cholesterol Clinical Medicine Coronary Coronary artery disease Coronary Artery Disease - etiology Coronary Artery Disease - metabolism Coronary Artery Disease - physiopathology Coronary Artery Disease - prevention & control Coronary Circulation - drug effects cotransporter 2 inhibitor dapagliflozin Diabetes Diabetes mellitus Diabetic Angiopathies - etiology Diabetic Angiopathies - metabolism Diabetic Angiopathies - physiopathology Diabetic Angiopathies - prevention & control Diabetic Cardiomyopathies - etiology Diabetic Cardiomyopathies - metabolism Diabetic Cardiomyopathies - physiopathology Diabetic Cardiomyopathies - prevention & control diabetic complications Disease Models, Animal Doppler effect Endocrinology & Metabolism Endothelial Energy Metabolism - drug effects Fatty liver fatty liver-disease flow reserve Flow velocity Food intake Glucagon Glucose Glucosides - pharmacology Heart failure Hypertension Hypoglycemia Hypotheses Insulin Insulin resistance Ketones Klinisk medicin Leptin Liver Liver diseases Male Medicine Medicine & Public Health Metabolic syndrome Metabolism Mice, Inbred C57BL Microcirculation - drug effects Microvascular Microvasculature mouse Muscle contraction Myocardial Contraction - drug effects nitric-oxide synthase Obesity - complications Obesity - metabolism Original Investigation Prediabetes Prediabetic State - complications Prediabetic State - drug therapy Prediabetic State - metabolism SGLT2 Sodium Sodium-glucose cotransporter Sodium-Glucose Transporter 2 - metabolism Sodium-Glucose Transporter 2 Inhibitors - pharmacology Steatosis Studies Translation Ultrasound Ventricular Function, Left - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQD4gL4p9AQUZCHEDRxonjJEdAlApRLrRSb5ZjT7aRtslqfw70BcqZR-RJmLGTwAIqFw45JHFiy_NNZsbzZczYc4ugaNBwxKbJIabttePKCRdDlTglRZ2G9Y6jT-rwRH44zU9_2eqLOGGhPHCYuJkrXSoaShgJkAoKIzIMSRBKdSPAhGLbeD4GU0P-oCiVGHKYolSzNVk14g1VMZm8WO1YIV-s_28e5p9EySlb-ltlUW-NDm6xm4MbyV-H4d9m16C7w64fDYnyu-zy8_uPxylvu7O29qQsTguuHFD554u2WfQXbcdbv6AAa26pjIFZfeHnRM8byamcbJ5_1nSOWw8lyz23nf6GIP8dO-DLFYQF3Nbyvp719fev32Z40MvgHjs5eHf89jAe9lyILYpmE-dNKovG5rl11lC6GOoyK20CaQImVaXJTFqnSWFlBk4l1ipsmRbC5XUDVWGy-2yv6zt4yHiegMjBSUXsRWkrtIWuwfivtAKsK5uIJaMMtB0KktO-GAvtA5NS6SA2jWLTJDatIvZyemQZqnFc1fgNCXZqSIW0_QWElx7gpf8Fr4jtj7DQg3avNbmV5OfKImLPptuol5RsMR3029AGZxQjxog9CCiaRkLfVQw7ZcSKHXztDHX3Ttee-drfKlMKo86IvRqR-HNYV8zEiwDWnQ7m26XGS_OtXoOm_LOUj_7HlD1mN1KvaURr3md7m9UWnqDntqmfeiX9AQudQoY priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj5RAEO7omhgvxveiq2kT40FDhoamgZNR47oxrhd3k7l1mu5ilmSEcR4H_QN69if6S6xqHhvUzGEu0EBDvau-qWLsmUWmqNBwhKZKIaTx2mHhhAuhiJySooy7fMfpJ3VyLj_M03mfcNv0sMpBJ3pF7VpLOfIZmXLyLWT2avU1pKlRVF3tR2hcZdd86zLk52w-Blwiy5XoK5kiV7MN2TZCDxUhGb5QTWyRb9n_Pz_zX7jkWDP9q7-ot0nHt9jN3pnkrzvq32ZXoLnDrp_25fK77Mfn9x_PYl43F3XpoVmc0q4cUAUslnW1bL_XDa99WgE23FIzA7P-xr8QSG-AqHKyfP5a0zhuPUNZ7hHu9J8I8uLxAXy1hi6NW1velrO2_P3z1wx_dDO4x86P3529PQn7yQuhRQJtw7SKZVbZNLXOGioaQ5knuY0gjsDEKjeJics4yqxMwKnIWoUr40y4tKygyExynx00bQOHjKcRiBScVIRhlLZAi-gqjAJzK8C6vApYNNBA274tOU3HWGofnuRKd2TTSDZNZNMqYC_GS1ZdT459i98QYceF1E7bH2jXC91Lp3a5i0VFVUkBUkFmRIJxL-qrshJgIrzJ0cAWupfxjb7kyIA9HU-jdFLJxTTQ7ro1-EUxbgzYg46Lxp2QdsXgUwYsm_DXZKvTM0194TuAq0QpjD0D9nLgxMtt7fkSzztmnTxgsVtpPLTY6Q1oqkJL-XD_2z5iN2IvQwRbPmIH2_UOHqNnti2fePH7A9FeOtQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgL4k1KQUZCHEDRxo7jJEdYUSpEudBKvVmOPdlGWpLVPg70D8CZn8gvYcbJBhaqShxycfySZ8Yz4288ZuyFQ6aoUXHEts4gpue149ILH0OZeK1EJfvzjuNP-uhUfTjLzoZk0XQX5k_8XhR6siJ9RBE_ZUzKKtbX2Y1MpJpkcKqnI2CQF1oMoOWlzXbUTsjOf5lJ-W9k5AiP_pVKNKifwzvs9mA38jc9oe-ya9DeYzePB2T8Pvv2-f3HE8mb9rypQhQWpxNWDijts3lTz7uLpuVNOEGAFXeUt8Auv_IvFI-3jUblpORCW9t67gLvOB6C2en6AxnsOABfLKE_sW0c76pJV_38_mOCH3UGD9jp4buT6VE8PLIQO6TFOs5qqfLaZZnzzhI-DFWRFi4BmYCVurCplZVMcqdS8DpxTmNNmQufVTWUuU0fsr22a-Ex41kCIgOvNIUrKlei8vM1OnyFE-B8UUcs2dLAuCEDOT2EMTfBEym06clmkGyGyGZ0xF6NTRZ9-o2rKr8lwo4VKXN2KECGMoMgGl94KWoCIAUoDbkVKbq4uDVVtQCbYCcHW7YwgzivDNmRZNiqPGLPx98oiISu2Ba6TV8HVxRdxIg96rlonAltpOhnqojlO_y1M9XdP21zHpJ961RrdDMj9nrLib-ndcVKvOyZdWeA2WZhsGi2MSswBDgrtf9f3T5ht2QQKQpYPmB76-UGnqJNtq6eBWn8BSMmM0g priority: 102 providerName: Springer Nature |
Title | SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice |
URI | https://link.springer.com/article/10.1186/s12933-019-0820-6 https://www.ncbi.nlm.nih.gov/pubmed/30732594 https://www.proquest.com/docview/2183057547 https://www.proquest.com/docview/2183641086 https://pubmed.ncbi.nlm.nih.gov/PMC6366096 https://gup.ub.gu.se/publication/278444 https://doaj.org/article/d8d21f00761e46e7a13409051bf1ea06 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBa9QOnL2L3euqDB2MOGVl9k2XkYIw3tSljKWBvIm5AlOTVkdpYLrHveD985sp2SLeuTQZZsofMdn6vPIeSNBlDkIDiYymPLsL0265rAMNv1jeBBFtb-juGluBjxwTge75C2vVVzgIutph32kxrNpx9-_rj9BAz_0TF8Kk4WKLMwK6jLUKAxsUv2QTAJtMWG_C6okKQiaAKbW5cdkgNEPBgEfENKuWL-2zTQfxMp19HUvyqPOml1_pA8aNRM2qtx8Yjs2PIxORg2gfQn5PfV5y_XIS3KmyJzSVsUHbLUwsdhMi3yafWrKGnhHA52QTWWOVDzW_od0_fa5FWKMtGtVaWh2kFNU5f7jn9LoH4PL6Czua0dvIWmVXZSZZSdMHySfUpG52fX_QvWNGRgGui2ZHEe8iTXcayNVhhLtlkapdq3oW9VKFIVqTAL_UTzyBrhay1gZpgEJs5y201U9IzslVVpjwiNfRvE1nCBqY1cd0FQmhyMw1QHVps094jfEkDqplo5Ns2YSme1pELW5JNAPonkk8Ij79ZLZnWpjvsmnyJV1xOxyrYbqOYT2TCtNKkJgxyDlYHlwiYqiMAchs9YlgdW-fCQ4xYTskWuRJ0TlWCeeOT1-jYwLUZiVGmrVT0HThTMSY88ryG03kkLQY8kG-Da2OrmnbK4cYXBRSQEmKQeed_C8G5b95zE2xqpGy-YrGYShiYrubASg9Ocv_jvVl-Sw9CxESYyH5O95XxlX4Gutsw6ZDcZJx2y3-sNrgZwPT27_PoNRvui33H-j47j0T-t-EAF |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDeBAkYCDqBo83Cc5FAhCi0t3V0h2Eq9uY7tbCMtybIPofIH4MwP4sfwS5hxkq0W0N562EviON7MeJ6fZwh5qoApclAcrswj42J7bTfVvnZN6mnO_Cyo4x39Ad8_Yu-Po-MN8qs9C4OwylYmWkGtK4Ux8i6qcrQtWPxq8sXFrlGYXW1baMimtYLetiXGmoMdh-bsK7hws-2Dt0DvZ0Gwtzt8s-82XQZcBYuZu1EesDhXUaS0kpggNVkSJsozgWdkwBMZyiALvFix0GjuKcVhZBD7Ospyk8YyhHkvkU0wO1LWIZs7u4MPH5d5jDjhfpNL9RPenaF2RfxS6qLqdfmKNrRNA_5n6f4L2Fxmbf-qcGq14t51cq0xZ-nrmv9ukA1T3iSX-03C_hb5_uldbxjQojwtMgsOoxj4pQaE0Ghc5OPqW1HSwgY2zIwqLKcgp2f0M8IEW5AsRd1rn5WlpsqytKIWY4-nMtCPgBfQydTUgeRC0SrrVtnvHz-78MPJzG1ydCFUuUM6ZVWae4RGnvEjoxlHFCVTKehknYMfmijfKJ3kDvFaGgjVFEbH_hxjYR2khIuabALIJpBsgjvkxfKRSV0VZN3gHSTsciAW9LYXqulINPJB6EQHfo55Ud8wbmLph-B5g8TMct9IDybZatlCNFJmJs73hEOeLG-DfMCkjyxNtajHwBcFz9Uhd2suWq4E5Tu4v8wh8Qp_rSx19U5ZnNoa5DzkHLxfh7xsOfF8WWu-xPOaWVdeMFpMBFwaLcTMCMyDM3Z__b99TK7sD_s90TsYHD4gVwO7nxBEvUU68-nCPAQ7cZ49ajYjJScXvf__AB2Zf2c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSBUXxLuBAkZCHEDRxonjJEdYWAq0FRKt1Jvl2ONtpCVZ7eMAfwDO_ER-CR7ngQJVJQ65JLZjeb7JzPibjAl5ph0orDMcobIphHi8dlgYZkIoIiM4K-N2v-PoWByc8g9n6Vl3zum6z3bvKcn2nwas0lRvJktjWxXPxWSNVgrzgIoQTVgorpJrLlCJENZTMR1ohCwXrKMyL-w2Mka-Zv9Fjua_-ZIDafpXgVFvlGY3yY3Om6SvWvHfIlegvk12jzq-_A75_vnd4UlMq_q8Kn1uFsV9VwruGzBfVHbRfKtqWvl9BVhTjdUM1Oor_YJZen2OKkXT5_uq2lDtEaWpT3HHnyLQjXcvoMsVtPu4laZNOWnKXz9-TtyFg8Fdcjp7ezI9CLujF0LtJLQJUxvzzOo01UYrZI2hzJNcRxBHoGKRq0TFZRxlmidgRKS1cC3jjJm0tFBkKrlHduqmhj1C0whYCoYLTGLkunAm0VgXBuaagTa5DUjUy0Dqri45Ho-xkD4-yYVsxSad2CSKTYqAvBi6LNuiHJc1fo2CHRpiPW1_o1nNZaee0uQmZhZpSQZcQKZYgnhKWWkZqMgNst_DQnZKvpboXaK7y7OAPB0eO_VEzkXV0GzbNm5FXeAYkPstioaZ4OfVRZ88INkIX6Opjp_U1bkvAS4SIVzwGZCXPRL_TOuSlXjegnX0gvl2Kd2t-VauQSINzfmD_xr2Cdn99GYmD98ff3xIrsdeuzCjeZ_sbFZbeOSctk352Cvmb_3OPoY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SGLT2+inhibition+with+empagliflozin+improves+coronary+microvascular+function+and+cardiac+contractility+in+prediabetic+ob%2Fob+-%2F-+mice&rft.jtitle=Cardiovascular+diabetology&rft.au=Adingupu%2C+Damilola+D&rft.au=G%C3%B6pel%2C+Sven+O&rft.au=Gr%C3%B6nros%2C+Julia&rft.au=Behrendt%2C+Margareta&rft.date=2019-02-07&rft.eissn=1475-2840&rft.volume=18&rft.issue=1&rft.spage=16&rft_id=info:doi/10.1186%2Fs12933-019-0820-6&rft_id=info%3Apmid%2F30732594&rft.externalDocID=30732594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2840&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2840&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2840&client=summon |