DAGBagM: learning directed acyclic graphs of mixed variables with an application to identify protein biomarkers for treatment response in ovarian cancer
Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measuremen...
Saved in:
Published in | BMC bioinformatics Vol. 23; no. 1; pp. 321 - 19 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
05.08.2022
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-022-04864-y |
Cover
Abstract | Background
Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements.
Results
In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges.
Conclusions
Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at
https://github.com/jie108/dagbagM
. |
---|---|
AbstractList | Background
Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements.
Results
In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges.
Conclusions
Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at
https://github.com/jie108/dagbagM
. Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. Results In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Conclusions Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM. Abstract Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. Results In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Conclusions Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM . Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM. Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements.BACKGROUNDApplying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements.In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges.RESULTSIn this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges.Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .CONCLUSIONSThrough extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM . Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM . Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. Results In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Conclusions Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at Keywords: Proteomics, Sensitive and resistant/refractory, Hill climbing, Bootstrap aggregation |
ArticleNumber | 321 |
Audience | Academic |
Author | Karnitz, Larry M. Gygi, Steven P. Yu, Qing Peng, Jie Birrer, Michael J. Huntoon, Catherine J. Chowdhury, Shrabanti Paulovich, Amanda G. Wang, Ru Wang, Pei Kaufmann, Scott H. |
Author_xml | – sequence: 1 givenname: Shrabanti surname: Chowdhury fullname: Chowdhury, Shrabanti organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai – sequence: 2 givenname: Ru surname: Wang fullname: Wang, Ru organization: Department of Statistics, University of California – sequence: 3 givenname: Qing surname: Yu fullname: Yu, Qing organization: Department of Cell Biology, Harvard Medical School – sequence: 4 givenname: Catherine J. surname: Huntoon fullname: Huntoon, Catherine J. organization: Division of Oncology Research and Department of Oncology, Mayo Clinic – sequence: 5 givenname: Larry M. surname: Karnitz fullname: Karnitz, Larry M. organization: Division of Oncology Research and Department of Oncology, Mayo Clinic – sequence: 6 givenname: Scott H. surname: Kaufmann fullname: Kaufmann, Scott H. organization: Division of Oncology Research, Mayo Clinic – sequence: 7 givenname: Steven P. surname: Gygi fullname: Gygi, Steven P. organization: Department of Cell Biology, Harvard Medical School – sequence: 8 givenname: Michael J. surname: Birrer fullname: Birrer, Michael J. organization: Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences – sequence: 9 givenname: Amanda G. surname: Paulovich fullname: Paulovich, Amanda G. organization: Clinical Research Division, Fred Hutchinson Cancer Center – sequence: 10 givenname: Jie surname: Peng fullname: Peng, Jie email: jiepeng@ucdavis.edu organization: Department of Statistics, University of California – sequence: 11 givenname: Pei surname: Wang fullname: Wang, Pei email: pei.wang@mssm.edu organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35931981$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNURNuBF2CBLLGBRYp_4sRhUWkoUEYqQuJnbd04TsYlsYPtKZ034XFxZ0rbqVDlha3r7xxfX53DbM86q7PsOcFHhIjyTSBU8DrHlOa4EGWRrx9lB6SoSE4J5nt3zvvZYQjnGJNKYP4k22e8ZqQW5CD7835--g76z2_RoMFbY3vUGq9V1C0CtVaDUaj3MC0Dch0azWWqX4A30Aw6oN8mLhFYBNOUQIjGWRQdMq220XRrNHkXtbGoMW4E_1P7gDrnUfQa4pgY5HWYnA0aJchtfC1SYJX2T7PHHQxBP7veZ9mPjx--n3zKz76cLk7mZ7kqCxJz1jSCd3VLG0wLgYFzReq6bXRFVdOxgtCSlcBJQ0paNIKBqJiqgDNNy4qBZrNssfVtHZzLyZvU6Fo6MHJTcL6X4KNRg5aUYiVYw4gCWhS8bQoBgmPCRMkFFm3yOt56Tatm1K1KP_Qw7Jju3lizlL27kDXjBUudzrJX1wbe_VrpEOVogtLDAFa7VZC0rOsK87Ql9OU99NytvE2jkrTCrCp5ydgt1UP6gLGdS--qK1M5r4ggXJS0StTRf6i0Wj0alULXmVTfEbzeESQm6svYwyoEufj2dZd9cXcoN9P4l8EE0C2gvAvB6-4GIVheBV1ugy5T0OUm6HKdROKeSJm4CWBq3QwPS9lWGtI7ttf-dnIPqP4COyASKg |
CitedBy_id | crossref_primary_10_1038_s41526_024_00375_7 crossref_primary_10_1016_j_cell_2023_07_004 crossref_primary_10_1007_s13369_024_09492_7 crossref_primary_10_1093_bib_bbaf085 |
Cites_doi | 10.18632/oncotarget.19962 10.3389/fgene.2020.00008 10.18637/jss.v047.i11 10.1214/aos/1176344136 10.1093/bioinformatics/17.suppl_1.S215 10.1214/009053606000000281 10.1093/biomet/asm018 10.1038/ncb3124 10.1016/j.xcrm.2020.100004 10.1371/journal.pbio.1001301 10.1126/science.1081900 10.21236/ADA581657 10.1016/j.cell.2016.05.069 10.1080/01621459.2016.1142880 10.1371/journal.pone.0120213 10.1089/106652700750050961 10.1016/j.xcrm.2021.100471 10.7551/mitpress/1754.001.0001 10.1038/s41390-018-0071-3 10.1007/s41060-017-0085-7 10.1016/j.gpb.2016.11.005 10.1111/biom.12467 10.1073/pnas.0933416100 10.18637/jss.v035.i03 10.1016/B978-1-55860-332-5.50035-3 10.1007/s10994-006-6889-7 10.3233/CBM-2011-0212 10.1007/s12032-017-0960-z |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12859-022-04864-y |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_220c83b31ca2445db48a85013865808d PMC9354326 A718158627 35931981 10_1186_s12859_022_04864_y |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: National Cancer Institute grantid: U01 CA214114, U24 CA210993 funderid: http://dx.doi.org/10.13039/100000054 – fundername: National Science Foundation grantid: DMS-1915894 – fundername: NCI NIH HHS grantid: P50 CA136393 – fundername: NCI NIH HHS grantid: U01 CA214114, U24 CA210993 – fundername: NCI NIH HHS grantid: U01 CA214114 – fundername: NCI NIH HHS grantid: U24 CA271114 – fundername: NCI NIH HHS grantid: U24 CA210993 – fundername: ; grantid: DMS-1915894 – fundername: ; grantid: U01 CA214114, U24 CA210993 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c641t-3bb85f9d2b02480a55c199dbe72cbf3412636a51b1624b83a873c7a53e2673ae3 |
IEDL.DBID | M48 |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:25:57 EDT 2025 Thu Aug 21 18:29:50 EDT 2025 Thu Sep 04 23:38:58 EDT 2025 Fri Jul 25 10:51:33 EDT 2025 Tue Jun 17 21:37:21 EDT 2025 Tue Jun 10 20:07:46 EDT 2025 Fri Jun 27 05:02:02 EDT 2025 Sat Sep 06 06:29:44 EDT 2025 Tue Jul 01 03:38:35 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 Sat Sep 06 07:27:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hill climbing Bootstrap aggregation Sensitive and resistant/refractory Proteomics |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c641t-3bb85f9d2b02480a55c199dbe72cbf3412636a51b1624b83a873c7a53e2673ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-022-04864-y |
PMID | 35931981 |
PQID | 2703765633 |
PQPubID | 44065 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_220c83b31ca2445db48a85013865808d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9354326 proquest_miscellaneous_2699705269 proquest_journals_2703765633 gale_infotracmisc_A718158627 gale_infotracacademiconefile_A718158627 gale_incontextgauss_ISR_A718158627 pubmed_primary_35931981 crossref_primary_10_1186_s12859_022_04864_y crossref_citationtrail_10_1186_s12859_022_04864_y springer_journals_10_1186_s12859_022_04864_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-05 |
PublicationDateYYYYMMDD | 2022-08-05 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC bioinformatics |
PublicationTitleAbbrev | BMC Bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2022 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | LM Phan (4864_CR24) 2014; 11 B Andrews (4864_CR19) 2018; 6 4864_CR20 H Zhang (4864_CR3) 2016; 166 G Schwarz (4864_CR38) 1978; 6 M Scutari (4864_CR18) 2010; 35 M Kalisch (4864_CR23) 2012; 47 E Perrier (4864_CR40) 2008; 9 J Tegner (4864_CR36) 2003; 100 N Friedman (4864_CR9) 2000; 7 G Csardi (4864_CR28) 2006; 1695 W Zhong (4864_CR21) 2020; 11 L Breiman (4864_CR22) 1996; 24 V Asvatourian (4864_CR16) 2018; 18 K Sachs (4864_CR12) 2005; 308 J Zhu (4864_CR15) 2012; 10 T Gardner (4864_CR35) 2003; 301 J Pearl (4864_CR10) 2000 4864_CR29 N Meinshausen (4864_CR33) 2006; 34 4864_CR4 M Kalisch (4864_CR5) 2007; 8 DM Chickering (4864_CR39) 2002; 3 D Huang (4864_CR26) 2021; 2 4864_CR8 P Spirtes (4864_CR6) 2001 C Ott (4864_CR30) 2015; 10 TC Williams (4864_CR17) 2018; 84 D Peõer (4864_CR11) 2001; 17 S Russell (4864_CR37) 2010 J McDermott (4864_CR2) 2020; 1 B Oronsky (4864_CR27) 2017; 34 WH Sung (4864_CR13) 2016; 111 WH Sung (4864_CR14) 2016; 72 J Huang (4864_CR1) 2010; 8 M Yuan (4864_CR34) 2007; 94 I Tsamardinos (4864_CR7) 2006; 65 LK Boroughs (4864_CR25) 2016; 17 HFM Kamel (4864_CR32) 2017; 15 F Sotgia (4864_CR31) 2017; 8 |
References_xml | – volume: 1695 start-page: 1 year: 2006 ident: 4864_CR28 publication-title: InterJ Complex Syst – volume-title: Causality: models, reasoning and inference year: 2000 ident: 4864_CR10 – volume: 8 start-page: 67117 issue: 40 year: 2017 ident: 4864_CR31 publication-title: Oncotarget doi: 10.18632/oncotarget.19962 – volume: 11 start-page: 8 year: 2020 ident: 4864_CR21 publication-title: Front Genet doi: 10.3389/fgene.2020.00008 – volume: 47 start-page: 1 issue: 11 year: 2012 ident: 4864_CR23 publication-title: J Stat Softw doi: 10.18637/jss.v047.i11 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 4864_CR38 publication-title: Ann Stat doi: 10.1214/aos/1176344136 – volume: 17 start-page: S215 issue: Suppl 1 year: 2001 ident: 4864_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.suppl_1.S215 – volume: 34 start-page: 1436 issue: 3 year: 2006 ident: 4864_CR33 publication-title: Ann Stat. doi: 10.1214/009053606000000281 – volume: 94 start-page: 19 issue: 1 year: 2007 ident: 4864_CR34 publication-title: Biometrika doi: 10.1093/biomet/asm018 – volume: 17 start-page: 351 issue: 4 year: 2016 ident: 4864_CR25 publication-title: Nat Cell Biol doi: 10.1038/ncb3124 – volume: 1 start-page: 100004 issue: 1 year: 2020 ident: 4864_CR2 publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2020.100004 – volume: 10 start-page: e1001301 issue: 4 year: 2012 ident: 4864_CR15 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001301 – volume: 301 start-page: 102 issue: 5629 year: 2003 ident: 4864_CR35 publication-title: Science doi: 10.1126/science.1081900 – volume: 3 start-page: 507 year: 2002 ident: 4864_CR39 publication-title: J Mach Learn Res – ident: 4864_CR29 doi: 10.21236/ADA581657 – volume: 18 start-page: 1 issue: 67 year: 2018 ident: 4864_CR16 publication-title: BMC Med Res Methodol – volume: 166 start-page: 755 issue: 3 year: 2016 ident: 4864_CR3 publication-title: Cell doi: 10.1016/j.cell.2016.05.069 – volume: 111 start-page: 1004 issue: 515 year: 2016 ident: 4864_CR13 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2016.1142880 – volume: 8 start-page: 613 year: 2007 ident: 4864_CR5 publication-title: J Mach Learn Res – volume: 10 start-page: e0120213 issue: 3 year: 2015 ident: 4864_CR30 publication-title: PLoS ONE doi: 10.1371/journal.pone.0120213 – ident: 4864_CR8 – volume: 7 start-page: 601 issue: 3–4 year: 2000 ident: 4864_CR9 publication-title: J Comput Biol doi: 10.1089/106652700750050961 – volume: 2 start-page: 100471 issue: 12 year: 2021 ident: 4864_CR26 publication-title: Cell Rep Med. doi: 10.1016/j.xcrm.2021.100471 – volume-title: Causation, prediction, and search year: 2001 ident: 4864_CR6 doi: 10.7551/mitpress/1754.001.0001 – volume: 84 start-page: 487 year: 2018 ident: 4864_CR17 publication-title: Pediatr Res doi: 10.1038/s41390-018-0071-3 – volume: 6 start-page: 3 issue: 1 year: 2018 ident: 4864_CR19 publication-title: Int J Data Sci Anal doi: 10.1007/s41060-017-0085-7 – volume-title: Artificial intelligence: a modern approach year: 2010 ident: 4864_CR37 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 4864_CR22 publication-title: Mach Learn – volume: 15 start-page: 220 year: 2017 ident: 4864_CR32 publication-title: Genomics Proteomics Bioinform doi: 10.1016/j.gpb.2016.11.005 – volume: 72 start-page: 791 issue: 3 year: 2016 ident: 4864_CR14 publication-title: Biometrics doi: 10.1111/biom.12467 – volume: 11 start-page: 1 issue: 1 year: 2014 ident: 4864_CR24 publication-title: Cancer Biol Med – volume: 100 start-page: 5944 issue: 10 year: 2003 ident: 4864_CR36 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0933416100 – volume: 35 start-page: 1 issue: 3 year: 2010 ident: 4864_CR18 publication-title: J Stat Softw. doi: 10.18637/jss.v035.i03 – ident: 4864_CR4 doi: 10.1016/B978-1-55860-332-5.50035-3 – ident: 4864_CR20 – volume: 65 start-page: 31 issue: 1 year: 2006 ident: 4864_CR7 publication-title: Mach Learn doi: 10.1007/s10994-006-6889-7 – volume: 8 start-page: 231 year: 2010 ident: 4864_CR1 publication-title: Cancer Biomark doi: 10.3233/CBM-2011-0212 – volume: 34 start-page: 103 issue: 6 year: 2017 ident: 4864_CR27 publication-title: Med Oncol doi: 10.1007/s12032-017-0960-z – volume: 9 start-page: 2251 issue: 2 year: 2008 ident: 4864_CR40 publication-title: J Mach Learn Res – volume: 308 start-page: 523 issue: 5721 year: 2005 ident: 4864_CR12 publication-title: Sci Signal |
SSID | ssj0017805 |
Score | 2.437257 |
Snippet | Background
Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases.... Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there... Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases.... Abstract Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 321 |
SubjectTerms | Algorithms Bioinformatics Biomarkers Biomedical and Life Sciences Bootstrap aggregation Cancer Cancer therapies Care and treatment Causality Child Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer Simulation Confounding Factors, Epidemiologic Continuity (mathematics) Development and progression Diagnosis Experiments Female Graph theory Hill climbing Humans Identification and classification Learning Life Sciences Methods Microarrays Nodes Oncology, Experimental Ovarian cancer Ovarian Neoplasms - drug therapy Ovarian Neoplasms - genetics Performance evaluation Proteins Proteomics Random variables Sensitive and resistant/refractory Simulation Tumor markers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI7QSkhcEG8KCwoIiQNU2zbNi9sssCxIywFYaW9RkqZDpaVF0xnE_BN-LnbaGaaLgAvXxKla27Gdxv5MyBOueS1YmYEEvEzLorapU8KlTitrCyaC8licfPJeHJ-W78742U6rL8wJG-CBB8YdFPAQxRzLvQVPxCtXKqs43q-B78xUhdY309nmMDXeHyBS_6ZERomDPkecthQz1xFirkzXEzcU0fp_t8k7TuliwuSFW9PojI6ukatjFElnw9tfJ5dCe4NcHvpKrm-SH69mbw7t_OQFHZtCzOngukJFrV_788bTiFTd066mX5rvMP4NDs1YRtVT_DVLbUt37rbpsqNNLOmt1zRCOzQtxcp9TO5Z9BQiX7pNWaeLIe82UCDq4nNb6lG7FrfI6dHrTy-P07EFQ-pFmS9T5pzita4Kh9hnmeXc51pXLsjCuxo8YCGYsDx3uShKp5hVknlpOQuFkMwGdpvstV0b7hIalLSO80pAiFV66WxZKy14XcOAqLxISL6RiPEjPjm2yTg38ZyihBmkaECKJkrRrBPybLvm64DO8VfqQxT0lhKRteMA6JsZ9c38S98S8hjVxCB2RovJOXO76nvz9uMHMwM_n3M4IsqEPB2J6g6-wdux1gE4gXBbE8r9CSVsbj-d3mijGY1Lbwqw0hLicMYS8mg7jSsxYa4N3QpohNYSsXx0Qu4Myrv9bsY1GF6VJ0RO1HrCmOlM23yO0OOa8RIC_oQ832yAX6_1Z8bf-x-Mv0-uFHEDqzTj-2RvuViFBxAQLt3DuPd_Aqs1Wt8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdGJyReEN8EBjIIiQeI1sSx4yAh1MLGQFqFBpP2ZtmOUyqNZDQtov8Jfy53zseWIfZqX6LY9-n47neEvOAZLwRLxsABm4ZJXOjQSGFCk0mtYyactFicfDgTB8fJ5xN-skVmXS0MplV2NtEb6ryy-I98NwbRTCH4YOzd2c8Qu0bh7WrXQkO3rRXytx5i7BrZBpPMxyOyPd2bfTnq7xUQwb8rnZFit44Qvy3EjHaEnkvCzcA9eRT_f231BWd1OZHy0m2qd1L7t8jNNrqkk0YcbpMtV94h15t-k5u75M-Hycepnh--oW2ziDltXJrLqbYbe7qw1CNY17Qq6I_Fbxj_BYdpLK-qKf6ypbqkF-686aqiC1_qW2yoh3xYlBQr-jHpZ1lTiIhpn8pOl00-rqNAVPn3ltSi1C3vkeP9vW_vD8K2NUNoRRKtQmaM5EWWxwYx0caacxtlWW5cGltTgGeMBROaRyYScWIk0zJlNtWcuVikTDt2n4zKqnQPCXUy1YbzXEDoldjU6KSQmeBFAQMityIgUccRZVvccmyfcar8-UUK1XBRAReV56LaBORV_8xZg9pxJfUUGd1TIuK2H6iWc9UqsIpBmCUzLLIaIiKem0RqyfGeF2K4scwD8hzFRCGmRolJO3O9rmv16euRmoD_jzgcHdOAvGyJigrWYHVbAwE7gTBcA8qdASUovR1Od9KoWqNTq3MVCcizfhqfxES60lVroBFZliLGTxaQB43w9utmPAODLKOApAOxHmzMcKZcfPeQ5BnjCRwEAvK6U4Dzz_r_xj-6ehWPyY3Yq6YMx3yHjFbLtXsCIeDKPG31-i8PGlps priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgERIXxJvAggxC4gARTRy_uHULy4K0HICV9mbZjlMqLQlqWkT_CT-XGScNzfKQuNrjKPE8nZn5TMgTrnklWDEBDniZFnllU6eES51W1uZMBOWxOfn4vTg6Kd6d8tMeJgd7YXbz95kSL9oMEdZSrDlHcLgi3VwklzgYXpTmmZgNGQPE5t82xfxx3cjxRHz-363wjhs6XyJ5Lk8a3c_hNXK1jxvptGP0dXIh1DfI5e4myc1N8uPV9M2BnR-_pP01EHPaOatQUus3_mzhacSmbmlT0S-L7zD-DY7J2DjVUvwZS21Nd7LZdNXQRWzirTY0gjksaoq9-ljOs2wpxLp0KFKny67SNlAgauJza-pRnpa3yMnh60-zo7S_dCH1oshWKXNO8UqXuUO0s4nl3Gdaly7I3LsKfF4umLA8c5nIC6eYVZJ5aTkLuZDMBnab7NVNHe4SGpS0jvNSQFBVeOlsUSkteFXBgCi9SEi25YjxPSI5XoxxZuLJRAnTcdEAF03kotkk5Nmw5muHx_FP6gNk9ECJWNpxAETM9KppchBTxRzLvIVYh5euUFZxzOBCdDZRZUIeo5gYRMuosRxnbtdta95-_GCm4NkzDodCmZCnPVHVwDd423c3wE4gwNaIcn9ECersx9NbaTS9OWlNDnZZQuTNWEIeDdO4Ekvk6tCsgUZoLRG9RyfkTie8w3czrsHUqiwhciTWo40Zz9SLzxFsXDNeQIifkOdbBfj1Wn_f-Hv_R36fXMmjqqp0wvfJ3mq5Dg8g2Fu5h1HLfwIl3k1U priority: 102 providerName: Springer Nature |
Title | DAGBagM: learning directed acyclic graphs of mixed variables with an application to identify protein biomarkers for treatment response in ovarian cancer |
URI | https://link.springer.com/article/10.1186/s12859-022-04864-y https://www.ncbi.nlm.nih.gov/pubmed/35931981 https://www.proquest.com/docview/2703765633 https://www.proquest.com/docview/2699705269 https://pubmed.ncbi.nlm.nih.gov/PMC9354326 https://doaj.org/article/220c83b31ca2445db48a85013865808d |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELf2ISReEN8ERmUQEg8QaOL4I0gItWXdQNqEBpX2ZtlOUiqVBJIWLf8Jfy5nJ-mWMfYSKfYlin139l189zuEXtCYZoxEQ-CA4X4UZsrXgmlfx0KpkLBUGJucfHTMDmfR51N6uoW6ckftBFZXuna2ntSsXL45-1V_AIV_7xResLdVYFHYfBuXbgHkIr_eRrvuvMiG8kXnpwoWv99lG_HAB1eHdkk0V76jt1E5PP9_V-0L29blkMpL56puu5reRrdaOxOPGsG4g7bS_C660VSerO-hPx9HB2M1P3qH27IRc9xsbmmClanNcmGww7KucJHhH4szaP8NbrVNtKqw_XmLVY4vnH7jVYEXLuk3q7EDf1jk2Ob22_CfssJgG-NNUDsum8jcFANR4d6bY2Plr7yPZtP9b5NDvy3S4BsWBSufaC1oFiehtuhoQ0WpCeI40SkPjc5gjwwZYYoGOmBhpAVRghPDFSVpyDhRKXmAdvIiTx8hnAquNKUJAyMsMlyrKBMxo1kGDSwxzENBxxFpWgRzW0hjKZ0nI5hsuCiBi9JxUdYeerV55meD33Et9dgyekNpsbddQ1HOZavKMgSxFkSTwCiwjWiiI6EEtSe-YM0NReKh51ZMpEXXyG34zlytq0p--noiR2AJBBScSO6hly1RVsAYjGqzIWAmLCBXj3KvRwnqb_rdnTTKTntkCOs4B0udEA8923TbJ21IXZ4Wa6Bhccwt2k_soYeN8G7GTWgMS7MIPMR7Yt2bmH5PvvjuwMljQiNwCTz0ulOA88_6_8Q_vn6QT9DN0Kmm8Id0D-2synX6FIzBlR6gbX7K4SqmBwO0O94__nICdxM2GbjfKwO3AvwFWWVeHA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAgaBOEDUTRw7DlKFdmlLSx9CpZV6M7aTLCuVpGy2wP4Tfg2_jRkn2TZF9NZrPIliz9P2zDeEvOAJzwWL-sABG_tRmGvfSGF8k0itQyYyabE4eWdXbBxEHw_54QL509bCYFplaxOdoU5Li2fkyyGIZgzBB2Pvjr_72DUKb1fbFhq6aa2QrjiIsaawYyub_YQtXLWyuQr8fhmG62v77zf8psuAb0UUTH1mjOR5koYG4b36mnMbJElqsji0JgcjHwomNA9MIMLISKZlzGysOctCETOdMfjuFbIY4QFKjywO13Y_7c3vMbBjQFuqI8VyFSBenI8Z9Ah1F_mzjjt0XQP-9Q1nnOP5xM1zt7fOKa7fJDeaaJYOavG7RRay4ja5Wve3nN0hv1cHH4Z6tPOWNs0pRrR2oVlKtZ3Zo7GlDjG7omVOv41_wfMfsHnHcq6K4hEx1QU9c8dOpyUdu9LifEYdxMS4oIgggElGk4pCBE7nqfN0Uuf_ZhSISvfdglqU8sldcnApTLpHekVZZA8IzWSsDeepgFAvsrHRUS4TwfMcHojUCo8ELUeUbXDSsV3HkXL7JSlUzUUFXFSOi2rmkdfzd45rlJALqYfI6DklIny7B-VkpBqDoUJQHskMC6yGCIynJpJacrxXhpixL1OPPEcxUYjhUWCS0EifVJXa_LynBhBvBBy2qrFHXjVEeQlzsLqpuYCVQNivDuVShxKMjO0Ot9KoGiNXqVOV9Miz-TC-iYl7RVaeAI1IkhgxhRKP3K-Fdz5vxhNwADLwSNwR687CdEeK8VcHgZ6AtsHGwyNvWgU4_a3_L_zDi2fxlFzb2N_ZVtubu1uPyPXQqan0-3yJ9KaTk-wxhJ9T86TRcUq-XLZZ-QtwHZY_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgE4gXxDcZAwxC4gGiNXHsOLx1jLIVNiHGpL1ZthOXSlsyNS2i_wl_LndOGprxIfFqn6PEd-c75-5-R8gLnnEnWDIADtg0TGKnQyOFCU0mtY6ZKKTF4uTDI7F_koxP-elaFb_Pdl-FJJuaBkRpKuc7F7lrVFyKnTpC3LUQM9ERMi4Jl1fJJoxkcP3aHA7Hx-MukoCY_atimT-u7Bkkj9v_--m8Zp4up05eip96szS6RW62_iQdNgJwm1wpyjvkWtNhcnmX_Ngbvt_Vk8M3tG0PMaGNEStyqu3Snk0t9ZjVNa0cPZ9-h_FvcH3Ggqqa4k9aqku6FuWm84pOfXGvW1IP8jAtKdbwY5rPrKbgA9MueZ3OmgzcggJR5Z9bUotyNrtHTkbvvrzdD9tmDKEVSTQPmTGSuyyPDaKgDTTnNsqy3BRpbI0DWxgLJjSPTCTixEimZcpsqjkrYpEyXbD7ZKOsyuIhoYVMteE8F-BsJTY1OnEyE9w5GBC5FQGJVhxRtkUqx4YZZ8rfWKRQDRcVcFF5LqplQF51ay4anI5_Uu8ioztKxNj2A9VsolqVVTGIr2SGRVaDD8Rzk0gtOUZ2wWsbyDwgz1FMFKJolJimM9GLulYHx5_VECx-xOGymAbkZUvkKvgGq9uqB9gJBN7qUW73KEHNbX96JY2qPWZqFcN5nYJHzlhAnnXTuBJT58qiWgCNALVAVJ8sIA8a4e2-m_EMjmAZBSTtiXVvY_oz5fSrByHPGE_A9Q_I65UC_Hqtv2_81v-RPyXXP-2N1MeDow-PyI3Ya60MB3ybbMxni-Ix-INz86RV-Z8buloB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DAGBagM%3A+learning+directed+acyclic+graphs+of+mixed+variables+with+an+application+to+identify+protein+biomarkers+for+treatment+response+in+ovarian+cancer&rft.jtitle=BMC+bioinformatics&rft.au=Chowdhury%2C+Shrabanti&rft.au=Wang%2C+Ru&rft.au=Yu%2C+Qing&rft.au=Huntoon%2C+Catherine+J&rft.date=2022-08-05&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-022-04864-y&rft.externalDocID=A718158627 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |