DAGBagM: learning directed acyclic graphs of mixed variables with an application to identify protein biomarkers for treatment response in ovarian cancer

Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measuremen...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 23; no. 1; pp. 321 - 19
Main Authors Chowdhury, Shrabanti, Wang, Ru, Yu, Qing, Huntoon, Catherine J., Karnitz, Larry M., Kaufmann, Scott H., Gygi, Steven P., Birrer, Michael J., Paulovich, Amanda G., Peng, Jie, Wang, Pei
Format Journal Article
LanguageEnglish
Published London BioMed Central 05.08.2022
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-022-04864-y

Cover

Abstract Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. Results In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Conclusions Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .
AbstractList Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. Results In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Conclusions Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .
Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. Results In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Conclusions Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM.
Abstract Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. Results In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Conclusions Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .
Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM.
Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements.BACKGROUNDApplying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements.In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges.RESULTSIn this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges.Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .CONCLUSIONSThrough extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .
Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .
Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. Results In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. Conclusions Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at Keywords: Proteomics, Sensitive and resistant/refractory, Hill climbing, Bootstrap aggregation
ArticleNumber 321
Audience Academic
Author Karnitz, Larry M.
Gygi, Steven P.
Yu, Qing
Peng, Jie
Birrer, Michael J.
Huntoon, Catherine J.
Chowdhury, Shrabanti
Paulovich, Amanda G.
Wang, Ru
Wang, Pei
Kaufmann, Scott H.
Author_xml – sequence: 1
  givenname: Shrabanti
  surname: Chowdhury
  fullname: Chowdhury, Shrabanti
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
– sequence: 2
  givenname: Ru
  surname: Wang
  fullname: Wang, Ru
  organization: Department of Statistics, University of California
– sequence: 3
  givenname: Qing
  surname: Yu
  fullname: Yu, Qing
  organization: Department of Cell Biology, Harvard Medical School
– sequence: 4
  givenname: Catherine J.
  surname: Huntoon
  fullname: Huntoon, Catherine J.
  organization: Division of Oncology Research and Department of Oncology, Mayo Clinic
– sequence: 5
  givenname: Larry M.
  surname: Karnitz
  fullname: Karnitz, Larry M.
  organization: Division of Oncology Research and Department of Oncology, Mayo Clinic
– sequence: 6
  givenname: Scott H.
  surname: Kaufmann
  fullname: Kaufmann, Scott H.
  organization: Division of Oncology Research, Mayo Clinic
– sequence: 7
  givenname: Steven P.
  surname: Gygi
  fullname: Gygi, Steven P.
  organization: Department of Cell Biology, Harvard Medical School
– sequence: 8
  givenname: Michael J.
  surname: Birrer
  fullname: Birrer, Michael J.
  organization: Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences
– sequence: 9
  givenname: Amanda G.
  surname: Paulovich
  fullname: Paulovich, Amanda G.
  organization: Clinical Research Division, Fred Hutchinson Cancer Center
– sequence: 10
  givenname: Jie
  surname: Peng
  fullname: Peng, Jie
  email: jiepeng@ucdavis.edu
  organization: Department of Statistics, University of California
– sequence: 11
  givenname: Pei
  surname: Wang
  fullname: Wang, Pei
  email: pei.wang@mssm.edu
  organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35931981$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURNuBF2CBLLGBRYp_4sRhUWkoUEYqQuJnbd04TsYlsYPtKZ034XFxZ0rbqVDlha3r7xxfX53DbM86q7PsOcFHhIjyTSBU8DrHlOa4EGWRrx9lB6SoSE4J5nt3zvvZYQjnGJNKYP4k22e8ZqQW5CD7835--g76z2_RoMFbY3vUGq9V1C0CtVaDUaj3MC0Dch0azWWqX4A30Aw6oN8mLhFYBNOUQIjGWRQdMq220XRrNHkXtbGoMW4E_1P7gDrnUfQa4pgY5HWYnA0aJchtfC1SYJX2T7PHHQxBP7veZ9mPjx--n3zKz76cLk7mZ7kqCxJz1jSCd3VLG0wLgYFzReq6bXRFVdOxgtCSlcBJQ0paNIKBqJiqgDNNy4qBZrNssfVtHZzLyZvU6Fo6MHJTcL6X4KNRg5aUYiVYw4gCWhS8bQoBgmPCRMkFFm3yOt56Tatm1K1KP_Qw7Jju3lizlL27kDXjBUudzrJX1wbe_VrpEOVogtLDAFa7VZC0rOsK87Ql9OU99NytvE2jkrTCrCp5ydgt1UP6gLGdS--qK1M5r4ggXJS0StTRf6i0Wj0alULXmVTfEbzeESQm6svYwyoEufj2dZd9cXcoN9P4l8EE0C2gvAvB6-4GIVheBV1ugy5T0OUm6HKdROKeSJm4CWBq3QwPS9lWGtI7ttf-dnIPqP4COyASKg
CitedBy_id crossref_primary_10_1038_s41526_024_00375_7
crossref_primary_10_1016_j_cell_2023_07_004
crossref_primary_10_1007_s13369_024_09492_7
crossref_primary_10_1093_bib_bbaf085
Cites_doi 10.18632/oncotarget.19962
10.3389/fgene.2020.00008
10.18637/jss.v047.i11
10.1214/aos/1176344136
10.1093/bioinformatics/17.suppl_1.S215
10.1214/009053606000000281
10.1093/biomet/asm018
10.1038/ncb3124
10.1016/j.xcrm.2020.100004
10.1371/journal.pbio.1001301
10.1126/science.1081900
10.21236/ADA581657
10.1016/j.cell.2016.05.069
10.1080/01621459.2016.1142880
10.1371/journal.pone.0120213
10.1089/106652700750050961
10.1016/j.xcrm.2021.100471
10.7551/mitpress/1754.001.0001
10.1038/s41390-018-0071-3
10.1007/s41060-017-0085-7
10.1016/j.gpb.2016.11.005
10.1111/biom.12467
10.1073/pnas.0933416100
10.18637/jss.v035.i03
10.1016/B978-1-55860-332-5.50035-3
10.1007/s10994-006-6889-7
10.3233/CBM-2011-0212
10.1007/s12032-017-0960-z
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-022-04864-y
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 19
ExternalDocumentID oai_doaj_org_article_220c83b31ca2445db48a85013865808d
PMC9354326
A718158627
35931981
10_1186_s12859_022_04864_y
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Cancer Institute
  grantid: U01 CA214114, U24 CA210993
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: National Science Foundation
  grantid: DMS-1915894
– fundername: NCI NIH HHS
  grantid: P50 CA136393
– fundername: NCI NIH HHS
  grantid: U01 CA214114, U24 CA210993
– fundername: NCI NIH HHS
  grantid: U01 CA214114
– fundername: NCI NIH HHS
  grantid: U24 CA271114
– fundername: NCI NIH HHS
  grantid: U24 CA210993
– fundername: ;
  grantid: DMS-1915894
– fundername: ;
  grantid: U01 CA214114, U24 CA210993
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c641t-3bb85f9d2b02480a55c199dbe72cbf3412636a51b1624b83a873c7a53e2673ae3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:25:57 EDT 2025
Thu Aug 21 18:29:50 EDT 2025
Thu Sep 04 23:38:58 EDT 2025
Fri Jul 25 10:51:33 EDT 2025
Tue Jun 17 21:37:21 EDT 2025
Tue Jun 10 20:07:46 EDT 2025
Fri Jun 27 05:02:02 EDT 2025
Sat Sep 06 06:29:44 EDT 2025
Tue Jul 01 03:38:35 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Sat Sep 06 07:27:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hill climbing
Bootstrap aggregation
Sensitive and resistant/refractory
Proteomics
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-3bb85f9d2b02480a55c199dbe72cbf3412636a51b1624b83a873c7a53e2673ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-022-04864-y
PMID 35931981
PQID 2703765633
PQPubID 44065
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_220c83b31ca2445db48a85013865808d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9354326
proquest_miscellaneous_2699705269
proquest_journals_2703765633
gale_infotracmisc_A718158627
gale_infotracacademiconefile_A718158627
gale_incontextgauss_ISR_A718158627
pubmed_primary_35931981
crossref_primary_10_1186_s12859_022_04864_y
crossref_citationtrail_10_1186_s12859_022_04864_y
springer_journals_10_1186_s12859_022_04864_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-05
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References LM Phan (4864_CR24) 2014; 11
B Andrews (4864_CR19) 2018; 6
4864_CR20
H Zhang (4864_CR3) 2016; 166
G Schwarz (4864_CR38) 1978; 6
M Scutari (4864_CR18) 2010; 35
M Kalisch (4864_CR23) 2012; 47
E Perrier (4864_CR40) 2008; 9
J Tegner (4864_CR36) 2003; 100
N Friedman (4864_CR9) 2000; 7
G Csardi (4864_CR28) 2006; 1695
W Zhong (4864_CR21) 2020; 11
L Breiman (4864_CR22) 1996; 24
V Asvatourian (4864_CR16) 2018; 18
K Sachs (4864_CR12) 2005; 308
J Zhu (4864_CR15) 2012; 10
T Gardner (4864_CR35) 2003; 301
J Pearl (4864_CR10) 2000
4864_CR29
N Meinshausen (4864_CR33) 2006; 34
4864_CR4
M Kalisch (4864_CR5) 2007; 8
DM Chickering (4864_CR39) 2002; 3
D Huang (4864_CR26) 2021; 2
4864_CR8
P Spirtes (4864_CR6) 2001
C Ott (4864_CR30) 2015; 10
TC Williams (4864_CR17) 2018; 84
D Peõer (4864_CR11) 2001; 17
S Russell (4864_CR37) 2010
J McDermott (4864_CR2) 2020; 1
B Oronsky (4864_CR27) 2017; 34
WH Sung (4864_CR13) 2016; 111
WH Sung (4864_CR14) 2016; 72
J Huang (4864_CR1) 2010; 8
M Yuan (4864_CR34) 2007; 94
I Tsamardinos (4864_CR7) 2006; 65
LK Boroughs (4864_CR25) 2016; 17
HFM Kamel (4864_CR32) 2017; 15
F Sotgia (4864_CR31) 2017; 8
References_xml – volume: 1695
  start-page: 1
  year: 2006
  ident: 4864_CR28
  publication-title: InterJ Complex Syst
– volume-title: Causality: models, reasoning and inference
  year: 2000
  ident: 4864_CR10
– volume: 8
  start-page: 67117
  issue: 40
  year: 2017
  ident: 4864_CR31
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19962
– volume: 11
  start-page: 8
  year: 2020
  ident: 4864_CR21
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00008
– volume: 47
  start-page: 1
  issue: 11
  year: 2012
  ident: 4864_CR23
  publication-title: J Stat Softw
  doi: 10.18637/jss.v047.i11
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 4864_CR38
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 17
  start-page: S215
  issue: Suppl 1
  year: 2001
  ident: 4864_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.suppl_1.S215
– volume: 34
  start-page: 1436
  issue: 3
  year: 2006
  ident: 4864_CR33
  publication-title: Ann Stat.
  doi: 10.1214/009053606000000281
– volume: 94
  start-page: 19
  issue: 1
  year: 2007
  ident: 4864_CR34
  publication-title: Biometrika
  doi: 10.1093/biomet/asm018
– volume: 17
  start-page: 351
  issue: 4
  year: 2016
  ident: 4864_CR25
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3124
– volume: 1
  start-page: 100004
  issue: 1
  year: 2020
  ident: 4864_CR2
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2020.100004
– volume: 10
  start-page: e1001301
  issue: 4
  year: 2012
  ident: 4864_CR15
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001301
– volume: 301
  start-page: 102
  issue: 5629
  year: 2003
  ident: 4864_CR35
  publication-title: Science
  doi: 10.1126/science.1081900
– volume: 3
  start-page: 507
  year: 2002
  ident: 4864_CR39
  publication-title: J Mach Learn Res
– ident: 4864_CR29
  doi: 10.21236/ADA581657
– volume: 18
  start-page: 1
  issue: 67
  year: 2018
  ident: 4864_CR16
  publication-title: BMC Med Res Methodol
– volume: 166
  start-page: 755
  issue: 3
  year: 2016
  ident: 4864_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.069
– volume: 111
  start-page: 1004
  issue: 515
  year: 2016
  ident: 4864_CR13
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2016.1142880
– volume: 8
  start-page: 613
  year: 2007
  ident: 4864_CR5
  publication-title: J Mach Learn Res
– volume: 10
  start-page: e0120213
  issue: 3
  year: 2015
  ident: 4864_CR30
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0120213
– ident: 4864_CR8
– volume: 7
  start-page: 601
  issue: 3–4
  year: 2000
  ident: 4864_CR9
  publication-title: J Comput Biol
  doi: 10.1089/106652700750050961
– volume: 2
  start-page: 100471
  issue: 12
  year: 2021
  ident: 4864_CR26
  publication-title: Cell Rep Med.
  doi: 10.1016/j.xcrm.2021.100471
– volume-title: Causation, prediction, and search
  year: 2001
  ident: 4864_CR6
  doi: 10.7551/mitpress/1754.001.0001
– volume: 84
  start-page: 487
  year: 2018
  ident: 4864_CR17
  publication-title: Pediatr Res
  doi: 10.1038/s41390-018-0071-3
– volume: 6
  start-page: 3
  issue: 1
  year: 2018
  ident: 4864_CR19
  publication-title: Int J Data Sci Anal
  doi: 10.1007/s41060-017-0085-7
– volume-title: Artificial intelligence: a modern approach
  year: 2010
  ident: 4864_CR37
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 4864_CR22
  publication-title: Mach Learn
– volume: 15
  start-page: 220
  year: 2017
  ident: 4864_CR32
  publication-title: Genomics Proteomics Bioinform
  doi: 10.1016/j.gpb.2016.11.005
– volume: 72
  start-page: 791
  issue: 3
  year: 2016
  ident: 4864_CR14
  publication-title: Biometrics
  doi: 10.1111/biom.12467
– volume: 11
  start-page: 1
  issue: 1
  year: 2014
  ident: 4864_CR24
  publication-title: Cancer Biol Med
– volume: 100
  start-page: 5944
  issue: 10
  year: 2003
  ident: 4864_CR36
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0933416100
– volume: 35
  start-page: 1
  issue: 3
  year: 2010
  ident: 4864_CR18
  publication-title: J Stat Softw.
  doi: 10.18637/jss.v035.i03
– ident: 4864_CR4
  doi: 10.1016/B978-1-55860-332-5.50035-3
– ident: 4864_CR20
– volume: 65
  start-page: 31
  issue: 1
  year: 2006
  ident: 4864_CR7
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6889-7
– volume: 8
  start-page: 231
  year: 2010
  ident: 4864_CR1
  publication-title: Cancer Biomark
  doi: 10.3233/CBM-2011-0212
– volume: 34
  start-page: 103
  issue: 6
  year: 2017
  ident: 4864_CR27
  publication-title: Med Oncol
  doi: 10.1007/s12032-017-0960-z
– volume: 9
  start-page: 2251
  issue: 2
  year: 2008
  ident: 4864_CR40
  publication-title: J Mach Learn Res
– volume: 308
  start-page: 523
  issue: 5721
  year: 2005
  ident: 4864_CR12
  publication-title: Sci Signal
SSID ssj0017805
Score 2.437257
Snippet Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases....
Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there...
Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases....
Abstract Background Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 321
SubjectTerms Algorithms
Bioinformatics
Biomarkers
Biomedical and Life Sciences
Bootstrap aggregation
Cancer
Cancer therapies
Care and treatment
Causality
Child
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer Simulation
Confounding Factors, Epidemiologic
Continuity (mathematics)
Development and progression
Diagnosis
Experiments
Female
Graph theory
Hill climbing
Humans
Identification and classification
Learning
Life Sciences
Methods
Microarrays
Nodes
Oncology, Experimental
Ovarian cancer
Ovarian Neoplasms - drug therapy
Ovarian Neoplasms - genetics
Performance evaluation
Proteins
Proteomics
Random variables
Sensitive and resistant/refractory
Simulation
Tumor markers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI7QSkhcEG8KCwoIiQNU2zbNi9sssCxIywFYaW9RkqZDpaVF0xnE_BN-LnbaGaaLgAvXxKla27Gdxv5MyBOueS1YmYEEvEzLorapU8KlTitrCyaC8licfPJeHJ-W78742U6rL8wJG-CBB8YdFPAQxRzLvQVPxCtXKqs43q-B78xUhdY309nmMDXeHyBS_6ZERomDPkecthQz1xFirkzXEzcU0fp_t8k7TuliwuSFW9PojI6ukatjFElnw9tfJ5dCe4NcHvpKrm-SH69mbw7t_OQFHZtCzOngukJFrV_788bTiFTd066mX5rvMP4NDs1YRtVT_DVLbUt37rbpsqNNLOmt1zRCOzQtxcp9TO5Z9BQiX7pNWaeLIe82UCDq4nNb6lG7FrfI6dHrTy-P07EFQ-pFmS9T5pzita4Kh9hnmeXc51pXLsjCuxo8YCGYsDx3uShKp5hVknlpOQuFkMwGdpvstV0b7hIalLSO80pAiFV66WxZKy14XcOAqLxISL6RiPEjPjm2yTg38ZyihBmkaECKJkrRrBPybLvm64DO8VfqQxT0lhKRteMA6JsZ9c38S98S8hjVxCB2RovJOXO76nvz9uMHMwM_n3M4IsqEPB2J6g6-wdux1gE4gXBbE8r9CSVsbj-d3mijGY1Lbwqw0hLicMYS8mg7jSsxYa4N3QpohNYSsXx0Qu4Myrv9bsY1GF6VJ0RO1HrCmOlM23yO0OOa8RIC_oQ832yAX6_1Z8bf-x-Mv0-uFHEDqzTj-2RvuViFBxAQLt3DuPd_Aqs1Wt8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdGJyReEN8EBjIIiQeI1sSx4yAh1MLGQFqFBpP2ZtmOUyqNZDQtov8Jfy53zseWIfZqX6LY9-n47neEvOAZLwRLxsABm4ZJXOjQSGFCk0mtYyactFicfDgTB8fJ5xN-skVmXS0MplV2NtEb6ryy-I98NwbRTCH4YOzd2c8Qu0bh7WrXQkO3rRXytx5i7BrZBpPMxyOyPd2bfTnq7xUQwb8rnZFit44Qvy3EjHaEnkvCzcA9eRT_f231BWd1OZHy0m2qd1L7t8jNNrqkk0YcbpMtV94h15t-k5u75M-Hycepnh--oW2ziDltXJrLqbYbe7qw1CNY17Qq6I_Fbxj_BYdpLK-qKf6ypbqkF-686aqiC1_qW2yoh3xYlBQr-jHpZ1lTiIhpn8pOl00-rqNAVPn3ltSi1C3vkeP9vW_vD8K2NUNoRRKtQmaM5EWWxwYx0caacxtlWW5cGltTgGeMBROaRyYScWIk0zJlNtWcuVikTDt2n4zKqnQPCXUy1YbzXEDoldjU6KSQmeBFAQMityIgUccRZVvccmyfcar8-UUK1XBRAReV56LaBORV_8xZg9pxJfUUGd1TIuK2H6iWc9UqsIpBmCUzLLIaIiKem0RqyfGeF2K4scwD8hzFRCGmRolJO3O9rmv16euRmoD_jzgcHdOAvGyJigrWYHVbAwE7gTBcA8qdASUovR1Od9KoWqNTq3MVCcizfhqfxES60lVroBFZliLGTxaQB43w9utmPAODLKOApAOxHmzMcKZcfPeQ5BnjCRwEAvK6U4Dzz_r_xj-6ehWPyY3Yq6YMx3yHjFbLtXsCIeDKPG31-i8PGlps
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgERIXxJvAggxC4gARTRy_uHULy4K0HICV9mbZjlMqLQlqWkT_CT-XGScNzfKQuNrjKPE8nZn5TMgTrnklWDEBDniZFnllU6eES51W1uZMBOWxOfn4vTg6Kd6d8tMeJgd7YXbz95kSL9oMEdZSrDlHcLgi3VwklzgYXpTmmZgNGQPE5t82xfxx3cjxRHz-363wjhs6XyJ5Lk8a3c_hNXK1jxvptGP0dXIh1DfI5e4myc1N8uPV9M2BnR-_pP01EHPaOatQUus3_mzhacSmbmlT0S-L7zD-DY7J2DjVUvwZS21Nd7LZdNXQRWzirTY0gjksaoq9-ljOs2wpxLp0KFKny67SNlAgauJza-pRnpa3yMnh60-zo7S_dCH1oshWKXNO8UqXuUO0s4nl3Gdaly7I3LsKfF4umLA8c5nIC6eYVZJ5aTkLuZDMBnab7NVNHe4SGpS0jvNSQFBVeOlsUSkteFXBgCi9SEi25YjxPSI5XoxxZuLJRAnTcdEAF03kotkk5Nmw5muHx_FP6gNk9ECJWNpxAETM9KppchBTxRzLvIVYh5euUFZxzOBCdDZRZUIeo5gYRMuosRxnbtdta95-_GCm4NkzDodCmZCnPVHVwDd423c3wE4gwNaIcn9ECersx9NbaTS9OWlNDnZZQuTNWEIeDdO4Ekvk6tCsgUZoLRG9RyfkTie8w3czrsHUqiwhciTWo40Zz9SLzxFsXDNeQIifkOdbBfj1Wn_f-Hv_R36fXMmjqqp0wvfJ3mq5Dg8g2Fu5h1HLfwIl3k1U
  priority: 102
  providerName: Springer Nature
Title DAGBagM: learning directed acyclic graphs of mixed variables with an application to identify protein biomarkers for treatment response in ovarian cancer
URI https://link.springer.com/article/10.1186/s12859-022-04864-y
https://www.ncbi.nlm.nih.gov/pubmed/35931981
https://www.proquest.com/docview/2703765633
https://www.proquest.com/docview/2699705269
https://pubmed.ncbi.nlm.nih.gov/PMC9354326
https://doaj.org/article/220c83b31ca2445db48a85013865808d
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELf2ISReEN8ERmUQEg8QaOL4I0gItWXdQNqEBpX2ZtlOUiqVBJIWLf8Jfy5nJ-mWMfYSKfYlin139l189zuEXtCYZoxEQ-CA4X4UZsrXgmlfx0KpkLBUGJucfHTMDmfR51N6uoW6ckftBFZXuna2ntSsXL45-1V_AIV_7xResLdVYFHYfBuXbgHkIr_eRrvuvMiG8kXnpwoWv99lG_HAB1eHdkk0V76jt1E5PP9_V-0L29blkMpL56puu5reRrdaOxOPGsG4g7bS_C660VSerO-hPx9HB2M1P3qH27IRc9xsbmmClanNcmGww7KucJHhH4szaP8NbrVNtKqw_XmLVY4vnH7jVYEXLuk3q7EDf1jk2Ob22_CfssJgG-NNUDsum8jcFANR4d6bY2Plr7yPZtP9b5NDvy3S4BsWBSufaC1oFiehtuhoQ0WpCeI40SkPjc5gjwwZYYoGOmBhpAVRghPDFSVpyDhRKXmAdvIiTx8hnAquNKUJAyMsMlyrKBMxo1kGDSwxzENBxxFpWgRzW0hjKZ0nI5hsuCiBi9JxUdYeerV55meD33Et9dgyekNpsbddQ1HOZavKMgSxFkSTwCiwjWiiI6EEtSe-YM0NReKh51ZMpEXXyG34zlytq0p--noiR2AJBBScSO6hly1RVsAYjGqzIWAmLCBXj3KvRwnqb_rdnTTKTntkCOs4B0udEA8923TbJ21IXZ4Wa6Bhccwt2k_soYeN8G7GTWgMS7MIPMR7Yt2bmH5PvvjuwMljQiNwCTz0ulOA88_6_8Q_vn6QT9DN0Kmm8Id0D-2synX6FIzBlR6gbX7K4SqmBwO0O94__nICdxM2GbjfKwO3AvwFWWVeHA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAgaBOEDUTRw7DlKFdmlLSx9CpZV6M7aTLCuVpGy2wP4Tfg2_jRkn2TZF9NZrPIliz9P2zDeEvOAJzwWL-sABG_tRmGvfSGF8k0itQyYyabE4eWdXbBxEHw_54QL509bCYFplaxOdoU5Li2fkyyGIZgzBB2Pvjr_72DUKb1fbFhq6aa2QrjiIsaawYyub_YQtXLWyuQr8fhmG62v77zf8psuAb0UUTH1mjOR5koYG4b36mnMbJElqsji0JgcjHwomNA9MIMLISKZlzGysOctCETOdMfjuFbIY4QFKjywO13Y_7c3vMbBjQFuqI8VyFSBenI8Z9Ah1F_mzjjt0XQP-9Q1nnOP5xM1zt7fOKa7fJDeaaJYOavG7RRay4ja5Wve3nN0hv1cHH4Z6tPOWNs0pRrR2oVlKtZ3Zo7GlDjG7omVOv41_wfMfsHnHcq6K4hEx1QU9c8dOpyUdu9LifEYdxMS4oIgggElGk4pCBE7nqfN0Uuf_ZhSISvfdglqU8sldcnApTLpHekVZZA8IzWSsDeepgFAvsrHRUS4TwfMcHojUCo8ELUeUbXDSsV3HkXL7JSlUzUUFXFSOi2rmkdfzd45rlJALqYfI6DklIny7B-VkpBqDoUJQHskMC6yGCIynJpJacrxXhpixL1OPPEcxUYjhUWCS0EifVJXa_LynBhBvBBy2qrFHXjVEeQlzsLqpuYCVQNivDuVShxKMjO0Ot9KoGiNXqVOV9Miz-TC-iYl7RVaeAI1IkhgxhRKP3K-Fdz5vxhNwADLwSNwR687CdEeK8VcHgZ6AtsHGwyNvWgU4_a3_L_zDi2fxlFzb2N_ZVtubu1uPyPXQqan0-3yJ9KaTk-wxhJ9T86TRcUq-XLZZ-QtwHZY_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgE4gXxDcZAwxC4gGiNXHsOLx1jLIVNiHGpL1ZthOXSlsyNS2i_wl_LndOGprxIfFqn6PEd-c75-5-R8gLnnEnWDIADtg0TGKnQyOFCU0mtY6ZKKTF4uTDI7F_koxP-elaFb_Pdl-FJJuaBkRpKuc7F7lrVFyKnTpC3LUQM9ERMi4Jl1fJJoxkcP3aHA7Hx-MukoCY_atimT-u7Bkkj9v_--m8Zp4up05eip96szS6RW62_iQdNgJwm1wpyjvkWtNhcnmX_Ngbvt_Vk8M3tG0PMaGNEStyqu3Snk0t9ZjVNa0cPZ9-h_FvcH3Ggqqa4k9aqku6FuWm84pOfXGvW1IP8jAtKdbwY5rPrKbgA9MueZ3OmgzcggJR5Z9bUotyNrtHTkbvvrzdD9tmDKEVSTQPmTGSuyyPDaKgDTTnNsqy3BRpbI0DWxgLJjSPTCTixEimZcpsqjkrYpEyXbD7ZKOsyuIhoYVMteE8F-BsJTY1OnEyE9w5GBC5FQGJVhxRtkUqx4YZZ8rfWKRQDRcVcFF5LqplQF51ay4anI5_Uu8ioztKxNj2A9VsolqVVTGIr2SGRVaDD8Rzk0gtOUZ2wWsbyDwgz1FMFKJolJimM9GLulYHx5_VECx-xOGymAbkZUvkKvgGq9uqB9gJBN7qUW73KEHNbX96JY2qPWZqFcN5nYJHzlhAnnXTuBJT58qiWgCNALVAVJ8sIA8a4e2-m_EMjmAZBSTtiXVvY_oz5fSrByHPGE_A9Q_I65UC_Hqtv2_81v-RPyXXP-2N1MeDow-PyI3Ya60MB3ybbMxni-Ix-INz86RV-Z8buloB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DAGBagM%3A+learning+directed+acyclic+graphs+of+mixed+variables+with+an+application+to+identify+protein+biomarkers+for+treatment+response+in+ovarian+cancer&rft.jtitle=BMC+bioinformatics&rft.au=Chowdhury%2C+Shrabanti&rft.au=Wang%2C+Ru&rft.au=Yu%2C+Qing&rft.au=Huntoon%2C+Catherine+J&rft.date=2022-08-05&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-022-04864-y&rft.externalDocID=A718158627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon