Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is use...
Saved in:
| Published in | PloS one Vol. 14; no. 4; p. e0215136 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
10.04.2019
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0215136 |
Cover
| Abstract | An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. The support vector machine (SVM) classifier is then used to perform parallel training to obtain the optimal SVM classification model, which is then tested. The Pascal VOC 2012, Caltech 256 and SUN databases are adopted to build a massive image library. The speedup, classification accuracy and training time are tested in the experiment, and the results show that a linear growth tendency is present in the speedup of the system in a cluster environment. In consideration of the hardware costs, time, performance and accuracy, the algorithm is superior to mainstream classification algorithms, such as the power mean SVM and convolutional neural network (CNN). As the number and types of images both increase, the classification accuracy rate exceeds 95%. When the number of images reaches 80,000, the training time of the proposed algorithm is only 1/5 that of traditional single-node architecture algorithms. This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data. |
|---|---|
| AbstractList | An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. The support vector machine (SVM) classifier is then used to perform parallel training to obtain the optimal SVM classification model, which is then tested. The Pascal VOC 2012, Caltech 256 and SUN databases are adopted to build a massive image library. The speedup, classification accuracy and training time are tested in the experiment, and the results show that a linear growth tendency is present in the speedup of the system in a cluster environment. In consideration of the hardware costs, time, performance and accuracy, the algorithm is superior to mainstream classification algorithms, such as the power mean SVM and convolutional neural network (CNN). As the number and types of images both increase, the classification accuracy rate exceeds 95%. When the number of images reaches 80,000, the training time of the proposed algorithm is only 1/5 that of traditional single-node architecture algorithms. This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data. An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. The support vector machine (SVM) classifier is then used to perform parallel training to obtain the optimal SVM classification model, which is then tested. The Pascal VOC 2012, Caltech 256 and SUN databases are adopted to build a massive image library. The speedup, classification accuracy and training time are tested in the experiment, and the results show that a linear growth tendency is present in the speedup of the system in a cluster environment. In consideration of the hardware costs, time, performance and accuracy, the algorithm is superior to mainstream classification algorithms, such as the power mean SVM and convolutional neural network (CNN). As the number and types of images both increase, the classification accuracy rate exceeds 95%. When the number of images reaches 80,000, the training time of the proposed algorithm is only 1/5 that of traditional single-node architecture algorithms. This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data.An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. The support vector machine (SVM) classifier is then used to perform parallel training to obtain the optimal SVM classification model, which is then tested. The Pascal VOC 2012, Caltech 256 and SUN databases are adopted to build a massive image library. The speedup, classification accuracy and training time are tested in the experiment, and the results show that a linear growth tendency is present in the speedup of the system in a cluster environment. In consideration of the hardware costs, time, performance and accuracy, the algorithm is superior to mainstream classification algorithms, such as the power mean SVM and convolutional neural network (CNN). As the number and types of images both increase, the classification accuracy rate exceeds 95%. When the number of images reaches 80,000, the training time of the proposed algorithm is only 1/5 that of traditional single-node architecture algorithms. This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data. |
| Audience | Academic |
| Author | Zhang, Qi Wang, Min Li, Yanfei Cao, Jianfang |
| AuthorAffiliation | University of Central Florida (UCF), UNITED STATES 1 Department of Computer Science & Technology, Xinzhou Teachers University, Xinzhou, China 2 School of Computer Science & Technology, Taiyuan University of Science and Technology, Taiyuan, China |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science & Technology, Xinzhou Teachers University, Xinzhou, China – name: University of Central Florida (UCF), UNITED STATES – name: 2 School of Computer Science & Technology, Taiyuan University of Science and Technology, Taiyuan, China |
| Author_xml | – sequence: 1 givenname: Jianfang orcidid: 0000-0003-3687-3738 surname: Cao fullname: Cao, Jianfang – sequence: 2 givenname: Min surname: Wang fullname: Wang, Min – sequence: 3 givenname: Yanfei surname: Li fullname: Li, Yanfei – sequence: 4 givenname: Qi surname: Zhang fullname: Zhang, Qi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30970014$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl2L1DAUhousuB_6D0QKgujFjEmT9MMLYVnUHVhY8Os2pOlJmyVNapLOuvf-cDM747IjIksvWk6f903Oec9xdmCdhSx7jtESkwq_vXKzt8Isp1ReogIzTMpH2RFuSLEoC0QO7n0fZschXCHESF2WT7JDgpoKIUyPsl-rcfJuDV0e5mlyPuZrkNH5fBRy0BZyaUQIWmkponY2F6Z3XsdhzFsRkmpT6sQU9RpyBSLOHvJr0P0Q83nqksb2ubZ5HCA_F51zUzKcQwSfg11r7-wINj7NHithAjzbvU-ybx8_fD07X1xcflqdnV4sZElRXHSKKFYjWmEiKFIYMdaIWtWYYCqkajGoqqsKrDDUrKsAVItkB1VDWCFBCHKSrba-nRNXfPJ6FP6GO6H5bcH5ngsftTTAKWs7JSliuK1pS8u6UqRqCcElIQ3QNnmxrddsJ3FzLYy5M8SIbxLiu4T4JiG-Syjp3m9109yO0MnUvhdm7zL7f6weeO_WvKSsYpQmg9c7A-9-zBAiH3WQYIyw4ObAiwKljklBN2e93KK9SC1pq1xylBucn7IaN7SpyyZRy39Q6elg1DLdXelU3xO82RMkJsLP2Is5BL768vnh7OX3ffbVPXYAYeIQnJk3ixf2wRf3Z3g3vD9rnQC6BaR3IXhQD83m3V8yqePt3qeJaPN_8W81ZyU4 |
| CitedBy_id | crossref_primary_10_1142_S0219265921470113 crossref_primary_10_3233_JIFS_179686 crossref_primary_10_32628_IJSRSET24113100 crossref_primary_10_54751_revistafoco_v16n6_104 crossref_primary_10_1371_journal_pdig_0000191 crossref_primary_10_1007_s00521_020_05588_x crossref_primary_10_1155_2021_6664569 crossref_primary_10_32628_CSEIT24103217 crossref_primary_10_1016_j_neunet_2020_07_010 crossref_primary_10_1155_2022_3413815 crossref_primary_10_1109_ACCESS_2021_3054743 crossref_primary_10_3390_sym16010046 crossref_primary_10_3390_app14083236 |
| Cites_doi | 10.1007/s10844-014-0323-6 10.1109/IE.2016.33 10.1007/s11263-015-0824-y 10.1016/j.neucom.2015.09.116 10.1016/j.ins.2017.01.025 10.1016/j.neucom.2013.02.014 10.1007/s11263-014-0700-1 10.1016/j.chroma.2015.12.007 10.1016/j.eswa.2011.09.054 10.1117/1.OE.53.6.063108 10.1023/B:VISI.0000029664.99615.94 10.1016/j.ins.2015.10.041 10.17221/238/2013-CJFS 10.3390/s120404764 10.1016/j.inffus.2017.10.006 10.1016/j.neucom.2016.02.045 10.1007/s10916-010-9624-7 10.1007/s10278-015-9857-6 10.1109/TGRS.2014.2380475 10.1186/1471-2342-13-9 10.1016/j.camwa.2013.07.015 10.1016/j.neucom.2015.01.085 10.1007/s00521-016-2709-6 10.1109/ISBI.2017.7950588 10.1080/01431161.2015.1007251 10.1080/01431161.2013.774098 10.1016/j.neucom.2011.04.044 10.1007/s12524-014-0445-x 10.1007/s11760-015-0821-1 10.1016/j.neucom.2016.02.072 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Public Library of Science 2019 Cao et al 2019 Cao et al |
| Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Cao et al 2019 Cao et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0215136 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Algorithmic image classification method |
| EISSN | 1932-6203 |
| ExternalDocumentID | oai_doaj_org_article_45bdfc4051b84b4687f37b3316339e4b 10.1371/journal.pone.0215136 PMC6457544 A581949869 30970014 10_1371_journal_pone_0215136 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ; grantid: 2017F06 – fundername: ; grantid: GH-17059 – fundername: ; grantid: 201701D21059 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c640t-df3f5804713a40f10559a8f81314acfb1ef7d721f1e85d7eefb0cde79352ceaa3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Oct 03 12:42:27 EDT 2025 Sun Oct 26 03:13:17 EDT 2025 Tue Sep 30 16:48:59 EDT 2025 Fri Sep 05 11:10:35 EDT 2025 Mon Oct 20 22:10:31 EDT 2025 Mon Oct 20 16:27:11 EDT 2025 Thu Oct 16 14:47:24 EDT 2025 Thu Oct 16 14:31:45 EDT 2025 Thu May 22 21:20:54 EDT 2025 Wed Feb 19 02:31:00 EST 2025 Wed Oct 01 01:51:50 EDT 2025 Thu Apr 24 23:12:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c640t-df3f5804713a40f10559a8f81314acfb1ef7d721f1e85d7eefb0cde79352ceaa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-3687-3738 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0215136 |
| PMID | 30970014 |
| PQID | 2207933246 |
| PQPubID | 23479 |
| PageCount | e0215136 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_45bdfc4051b84b4687f37b3316339e4b unpaywall_primary_10_1371_journal_pone_0215136 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6457544 proquest_miscellaneous_2207933246 gale_infotracmisc_A581949869 gale_infotracacademiconefile_A581949869 gale_incontextgauss_ISR_A581949869 gale_incontextgauss_IOV_A581949869 gale_healthsolutions_A581949869 pubmed_primary_30970014 crossref_primary_10_1371_journal_pone_0215136 crossref_citationtrail_10_1371_journal_pone_0215136 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-10 |
| PublicationDateYYYYMMDD | 2019-04-10 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2019 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | A Bekaddour (ref28) 2015; 43 SR Dubey (ref18) 2016; 10 ref32 AK Dhara (ref17) 2016; 29 NK Alham (ref42) 2013; 66 X Zhang (ref29) 2015; 169 J Yan (ref21) 2014; 53 ref39 S Lei (ref11) 2012; 3 ref16 M Han (ref25) 2012; 78 GL Yuan (ref36) 2010; 47 QC Zhang (ref31) 2018; 42 P Guccione (ref10) 2015; 53 A Bechini (ref35) 2016; 332 G David (ref23) 2004; 60 I Golpour (ref6) 2014; 32 PJ Du (ref2) 2012; 12 S Kothari (ref8) 2013; 13 YT Hou (ref26) 2014; 31 M Wang (ref13) 2013; 34 Y Guo (ref41) 2016; 116 B Fernando (ref4) 2014; 108 A Sezer (ref7) 2017; 28 F Mirzapour (ref20) 2015; 36 J Zhao (ref27) 2010; 53 CG Han (ref12) 2012; 29 F Fauzi (ref14) 2014; 43 Y Guo (ref33) 2016; 187 L Nanni (ref1) 2012; 39 JF Cao (ref44) 2018; 13 Y Wu (ref37) 2016; 1430 P Liu (ref22) 2017; 390 T White (ref38) 2012 E Fidalgo (ref9) 2016; 197 FS Zakeri (ref15) 2012; 36 S Zhu (ref3) 2016; 208 T White (ref34) 2012; 215 ref40 D Wang (ref43) 2011; 28 S Banerji (ref5) 2013; 117 Z Su (ref24) 2002; 13 PZ Liu (ref19) 2017; 30 MD Zeiler (ref30) 2013 |
| References_xml | – volume: 43 start-page: 271 year: 2014 ident: ref14 article-title: Image understanding and the web: a state-of-the-art review publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-014-0323-6 – ident: ref39 – ident: ref40 doi: 10.1109/IE.2016.33 – volume: 116 start-page: 66 year: 2016 ident: ref41 article-title: A comprehensive performance evaluation of 3D local feature descriptors publication-title: Inter J Comput Vis doi: 10.1007/s11263-015-0824-y – start-page: 818 year: 2013 ident: ref30 article-title: Visualizing and understanding convolutional networks – volume: 187 start-page: 27 year: 2016 ident: ref33 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – volume: 390 start-page: 95 year: 2017 ident: ref22 article-title: Fusion of color histogram and LBP-based features for texture image retrieval and classification publication-title: Information Sciences doi: 10.1016/j.ins.2017.01.025 – volume: 117 start-page: 173 year: 2013 ident: ref5 article-title: New image descriptors based on color, texture, shape, and wavelets for object and scene image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.02.014 – volume: 13 start-page: 002001 year: 2002 ident: ref24 article-title: An image retrieval relevance feedback algorithm based on the Bayesian Classifier publication-title: J Software – volume: 108 start-page: 186 year: 2014 ident: ref4 article-title: Mining mid-level features for image classification publication-title: Int J Comput Vis doi: 10.1007/s11263-014-0700-1 – volume: 1430 start-page: 80 year: 2016 ident: ref37 article-title: Sample normalization methods in quantitative metabolomics publication-title: J Chromatography A doi: 10.1016/j.chroma.2015.12.007 – volume: 39 start-page: 3634 year: 2012 ident: ref1 article-title: Survey on LBP based texture descriptors for image classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.09.054 – volume: 53 start-page: 063108 year: 2014 ident: ref21 article-title: Hue-based feature detection for geometry calibration of multiprojector arrays publication-title: Optical Engineering doi: 10.1117/1.OE.53.6.063108 – volume: 60 start-page: 91 year: 2004 ident: ref23 article-title: Distinctive image features fromscal-invariant keypoints publication-title: International Journal in Computer Vision doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 53 start-page: 594 year: 2010 ident: ref27 article-title: A classification of remote sensing image based on improved compound kernels of SVM publication-title: Russian Journal of Inorganic Chemistry – volume: 332 start-page: 33 year: 2016 ident: ref35 article-title: A MapReduce solution for associative classification of big data publication-title: Inform Sci doi: 10.1016/j.ins.2015.10.041 – volume: 32 start-page: 280 year: 2014 ident: ref6 article-title: Identification and classification of bulk paddy, brown, and white rice cultivars with colour features extraction using image analysis and neural network publication-title: CZECH J Food Sci doi: 10.17221/238/2013-CJFS – volume: 12 start-page: 4764 year: 2012 ident: ref2 article-title: Multiple classifier system for remote sensing image classification: A review publication-title: Sensors doi: 10.3390/s120404764 – volume: 28 start-page: 465 year: 2011 ident: ref43 article-title: Protein structure prediction based on parallel multi-class SVM publication-title: Application Research of Computers – volume: 42 start-page: 146 year: 2018 ident: ref31 article-title: A survey on deep learning for big data publication-title: Information Fusion doi: 10.1016/j.inffus.2017.10.006 – ident: ref32 – volume: 215 start-page: 1 year: 2012 ident: ref34 article-title: Hadoop: the definitive guide publication-title: O’reilly Media Inc Gravenstein Highway North – volume: 197 start-page: 119 year: 2016 ident: ref9 article-title: Compass radius estimation for improved image classification using Edge-SIFT publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.045 – volume: 36 start-page: 1621 year: 2012 ident: ref15 article-title: Classification of benign and malignant breast masses based on shape and texture features in sonography images publication-title: J Med Syst doi: 10.1007/s10916-010-9624-7 – volume: 29 start-page: 466 year: 2016 ident: ref17 article-title: A combination of shape and texture features for classification of pulmonary nodules in lung CT images publication-title: J Digital Imaging doi: 10.1007/s10278-015-9857-6 – volume: 53 start-page: 3615 year: 2015 ident: ref10 article-title: Iterative hyperspectral image classification using spectral-spatial relational features publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2014.2380475 – volume: 13 start-page: 9 year: 2013 ident: ref8 article-title: Histological image classification using biologically interpretable shape-based features publication-title: BMC Med Imaging doi: 10.1186/1471-2342-13-9 – volume: 66 start-page: 1920 year: 2013 ident: ref42 article-title: A MapReduce-based distributed SVM ensemble for scalable image classification and annotation publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2013.07.015 – volume: 30 start-page: 95 year: 2017 ident: ref19 article-title: Fusion of color histogram and LBP-based features for texture image retrieval and classification publication-title: Inform Sci – volume: 169 start-page: 110 year: 2015 ident: ref29 article-title: Image classification based on low-rank matrix recovery and Naive Bayes collaborative representation publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.085 – volume: 13 start-page: 1 year: 2018 ident: ref44 article-title: Emotional modelling and classification of a large-scale collection of scene images in a cluster environment publication-title: PLOS ONE – volume: 28 start-page: 3021 year: 2017 ident: ref7 article-title: Hermite-based texture feature extraction for classification of humeral head in proton density-weighted MR images publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2709-6 – ident: ref16 doi: 10.1109/ISBI.2017.7950588 – volume: 36 start-page: 1070 year: 2015 ident: ref20 article-title: Improving hyperspectral image classification by combining spectral, texture, and shape features publication-title: Inter J Remote Sensing doi: 10.1080/01431161.2015.1007251 – volume: 34 start-page: 4200 year: 2013 ident: ref13 article-title: Remote-sensing image retrieval by combining image visual and semantic features publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2013.774098 – volume: 47 start-page: 1663 year: 2010 ident: ref36 article-title: Mean shift object tracking based on adaptive multi-features fusion publication-title: J Comput Res Develop – volume: 78 start-page: 133 year: 2012 ident: ref25 article-title: Remote sensing image classification based on neural network ensemble algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.04.044 – volume: 43 start-page: 671 year: 2015 ident: ref28 article-title: Multi spectral satellite image ensembles classification combining k-means, LVQ and SVM classification techniques publication-title: Journal of the Indian Society of Remote Sensing doi: 10.1007/s12524-014-0445-x – volume: 29 start-page: 1938 year: 2012 ident: ref12 article-title: CCA-based analysis and research of image semantic feature extraction publication-title: Application Research of Computers – year: 2012 ident: ref38 article-title: Hadoop: The Definitive Guide – volume: 31 start-page: 957 year: 2014 ident: ref26 article-title: Research of classification method for natural images based on adaptive feature-weighted K-nearest neighbors publication-title: Appl Res Comput – volume: 3 start-page: 680 year: 2012 ident: ref11 article-title: Image low-level semantic feature extraction based on rough set publication-title: IEEE International Conference on Computer Science and Automation Engineering – volume: 10 start-page: 819 year: 2016 ident: ref18 article-title: Apple disease classification using color, texture and shape features from images publication-title: Signal Image and Video Processing doi: 10.1007/s11760-015-0821-1 – volume: 208 start-page: 136 year: 2016 ident: ref3 article-title: Multi-view semi-supervised learning for image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.072 |
| SSID | ssj0053866 |
| Score | 2.360813 |
| Snippet | An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0215136 |
| SubjectTerms | Algorithms Artificial neural networks Big data Computer and Information Sciences Databases, Factual Image processing equipment Image Processing, Computer-Assisted Neural Networks, Computer Physical Sciences Research and Analysis Methods Support Vector Machine |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlOdCAYOQgEO2ydpxkmNBVAUJkICi3iw_tyttk6i7oeLOD2fG8YYNHNoD13gSKTPjmc_2zGdCXhjDcwWekOgZFwnPdZYopkxidapNLoxPLS4UP34SR8f8w0l-snXVF9aE9fTAveL24XXrDcCKTJdcc1EWnhWaMcARrHJcY_RNy2qzmOpjMMxiIWKjHCuy_WiXadvUbhqyXKBk_pOIAl__v1F5Ky39XTJ5vatb9fNCLZdb-ejwFrkZgSQ96H9gl1xz9W2yG6fqir6KfNKv75Bf_caBs3TVtQi36Y-wVU_PQiGlowYRNJYMBStRtZw354v16RnFFGcpPrKqxbhIvQtEoPQi7KjSrsXuiHpOFzUFJEkhjjVNCx_skH-BbnXR3SXHh---vT1K4uULiRE8XSfWM5-XKeQupnjq8R7NSpW-zFjGlfE6c76wsHz0mStzWzjndWqsg-mez4xTit0jOzWo-wGhSsMixxZGKK05fFMV3otKC5sLq23GJ4RtLCFNZCbHCzKWMhy3FbBC6XUq0X4y2m9CkuGttmfmuET-DRp5kEVe7fAAvE1Gb5OXeduEPEUXkX2T6hAd5EEOyIpXpagm5HmQQG6NGot35qpbreT7z9-vIPT1y0joZRTyDajDqNgwAf-EnF0jyb2RJEQIMxp-tnFoiUNYVle7plvJ2Qz5EQFTg3bu9w4-6IelFdYkgHWKkeuPFDgeqRengaBc8Bx5FSdkOkySK5no4f8w0SNyA0BtOPHL0j2ysz7v3GMAjmv9JMSI3zGqcgw priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALUJ4LBQxCPA5Jk7XjZI8FURUkCgKKygFFfm5XbJOou6GCAyd-ODOOd9UUIcqBW5SMLWU8nodn5jMhD7XmmQRJiNSQi4hnKo0kkzoyKlE6E9olBgPF17tiZ4-_2s_2V8jnRS9M4CDEiNN65jP5-FBXdjNwchPxirrsaZyyPF2MiBsgir0FY-KRRxzCk7E5NiCdI2siA1d9lazt7b7d-tRlmoeRGCYstNP9aaaeufKo_r_r7hPG63Rh5fm2auS3YzmdnrBa25fIj8X_dsUqX-J2rmL9_RQU5H9jyGVyMfi7dKubZZ2s2OoKWQ8aZUafBNjrp1fJz-58wxo6axuMCuhXn1Ggh77e01KNjj5WNnlhonI6ro8m84NDipbYUHxlZIPqmzrr8UrpsT_4pW2DTRzVmE4qCg4vBXVb1w1M2CJMBD3R7HeN7G2_-PB8Jwp3RERa8GQeGcdcViRgYpnkicPrPkeycEXKUi61U6l1uYEo16W2yExurVOJNha0UjbUVkp2naxWwKibhEoFsZjJtZBKcZhT5s6JkRImE0aZlA8IW4hCqQOAOt7jMS19VjCHQKrjaYmcLwPnByRajmo6AJG_0D9DKVvSIvy3fwFLX4YlL2FPGafB105VwRUXRe5YrhgD55qNLFcDcg9ltOx6aZdKrNzKwAHko0KMBuSBp0AIkAprjMaync3Kl28-noHo_bse0eNA5Gpgh5ahrwP-CSWzR7nRowRFpnuf7y92VImfsPqvsnU7K4dDhHEE1x-4c6PbYUv-sGSEpROwOnlv7_UY2P9STQ48jrrgGcI_Dki83KVnWqJb_zrgNrkAfrZPQqbJBlmdH7X2Dviyc3U3aKRfp9Wp0w priority: 102 providerName: Unpaywall |
| Title | Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30970014 https://www.proquest.com/docview/2207933246 https://pubmed.ncbi.nlm.nih.gov/PMC6457544 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0215136&type=printable https://doaj.org/article/45bdfc4051b84b4687f37b3316339e4b |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Health and Medical Complete customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB51kaAXRFkDJQwICTg4suPx2D4glFYtBamlKgSlJ2vWNFJqmySm9M4P572JE8UsouLiw8wbW377bN8j5IVSLBKgCZ7sMu6xSAaeCIXytPSliriyvsaJ4tExP-yzD4NosEYWNVtrBk7_OLXDelL9ybjz_evVWzD4N65qQxwsBnXKIjcdF8NCvk42IValWMzhiC33FcC6Oa8v0P1t5Ba5EfopbseyRqxykP6_O-6VyPXrqcqbVV6Kq0sxHq-ErIPb5Fada9LeXDm2yZrJ75Dt2pqn9FUNOf36LvkxX1swmk6rEplBv7nVfHrhzloaqjDJxlNFTpBUjIfFZDQ7v6AYBTXFJi1KdJ3UGocVSi_doiutSrxAkQ_pKKeQbFJwdUVRwgsrhGigKxft7pH-wf7nvUOvrs_gKc78madtaKPEh_AWCuZbLLWZisQmQRgwoawMjI01zDBtYJJIx8ZY6SttwCNEXWWECO-TjRw4_5BQIWEepGPFhZQM3ilia3kquY64ljpgLRIuJJGpGrwca2iMM7cjF8MkZs7TDEWZ1aJsEW85qpyDd_yDfheFvKRF6G3XUEyGWW3JGeiztgry3EAmTDKexDaMZRhCYhumhskWeYoqks3vsS4dSNaLIPliacLTFnnuKBB-I8fzPUNRTafZ-49frkH06bRB9LImsgWwQ4n6TgX8E8J6NSh3GpTgRFSj-9lCoTPswpN3uSmqadbtIoQipN3AnQdzBV_yZ2EnLRI3VL_BwGZPPjp3GOacRQi92CKdpZFcS0SP_vtTj8kWJLtuJzDwd8jGbFKZJ5BQzmSbrMeDGJ7JXoDPg3dtsrm7f3xy2nZLNG3nQ6Ctf3zSO_sJ7RKEGw |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALUJ4LBQxCPA5Jk7XjZI8FURUkCgKKygFFfm5XbJOou6GCAyd-ODOOd9UUIcqBW5SMLWU8nodn5jMhD7XmmQRJiNSQi4hnKo0kkzoyKlE6E9olBgPF17tiZ4-_2s_2V8jnRS9M4CDEiNN65jP5-FBXdjNwchPxirrsaZyyPF2MiBsgir0FY-KRRxzCk7E5NiCdI2siA1d9lazt7b7d-tRlmoeRGCYstNP9aaaeufKo_r_r7hPG63Rh5fm2auS3YzmdnrBa25fIj8X_dsUqX-J2rmL9_RQU5H9jyGVyMfi7dKubZZ2s2OoKWQ8aZUafBNjrp1fJz-58wxo6axuMCuhXn1Ggh77e01KNjj5WNnlhonI6ro8m84NDipbYUHxlZIPqmzrr8UrpsT_4pW2DTRzVmE4qCg4vBXVb1w1M2CJMBD3R7HeN7G2_-PB8Jwp3RERa8GQeGcdcViRgYpnkicPrPkeycEXKUi61U6l1uYEo16W2yExurVOJNha0UjbUVkp2naxWwKibhEoFsZjJtZBKcZhT5s6JkRImE0aZlA8IW4hCqQOAOt7jMS19VjCHQKrjaYmcLwPnByRajmo6AJG_0D9DKVvSIvy3fwFLX4YlL2FPGafB105VwRUXRe5YrhgD55qNLFcDcg9ltOx6aZdKrNzKwAHko0KMBuSBp0AIkAprjMaync3Kl28-noHo_bse0eNA5Gpgh5ahrwP-CSWzR7nRowRFpnuf7y92VImfsPqvsnU7K4dDhHEE1x-4c6PbYUv-sGSEpROwOnlv7_UY2P9STQ48jrrgGcI_Dki83KVnWqJb_zrgNrkAfrZPQqbJBlmdH7X2Dviyc3U3aKRfp9Wp0w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+support+vector+machine+classification+algorithm+based+on+adaptive+feature+weight+updating+in+the+Hadoop+cluster+environment&rft.jtitle=PloS+one&rft.au=Cao%2C+Jianfang&rft.au=Wang%2C+Min&rft.au=Li%2C+Yanfei&rft.au=Zhang%2C+Qi&rft.date=2019-04-10&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=14&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0215136&rft_id=info%3Apmid%2F30970014&rft.externalDocID=PMC6457544 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |