Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment

An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is use...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 4; p. e0215136
Main Authors Cao, Jianfang, Wang, Min, Li, Yanfei, Zhang, Qi
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 10.04.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0215136

Cover

Abstract An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. The support vector machine (SVM) classifier is then used to perform parallel training to obtain the optimal SVM classification model, which is then tested. The Pascal VOC 2012, Caltech 256 and SUN databases are adopted to build a massive image library. The speedup, classification accuracy and training time are tested in the experiment, and the results show that a linear growth tendency is present in the speedup of the system in a cluster environment. In consideration of the hardware costs, time, performance and accuracy, the algorithm is superior to mainstream classification algorithms, such as the power mean SVM and convolutional neural network (CNN). As the number and types of images both increase, the classification accuracy rate exceeds 95%. When the number of images reaches 80,000, the training time of the proposed algorithm is only 1/5 that of traditional single-node architecture algorithms. This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data.
AbstractList An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. The support vector machine (SVM) classifier is then used to perform parallel training to obtain the optimal SVM classification model, which is then tested. The Pascal VOC 2012, Caltech 256 and SUN databases are adopted to build a massive image library. The speedup, classification accuracy and training time are tested in the experiment, and the results show that a linear growth tendency is present in the speedup of the system in a cluster environment. In consideration of the hardware costs, time, performance and accuracy, the algorithm is superior to mainstream classification algorithms, such as the power mean SVM and convolutional neural network (CNN). As the number and types of images both increase, the classification accuracy rate exceeds 95%. When the number of images reaches 80,000, the training time of the proposed algorithm is only 1/5 that of traditional single-node architecture algorithms. This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data.
An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. The support vector machine (SVM) classifier is then used to perform parallel training to obtain the optimal SVM classification model, which is then tested. The Pascal VOC 2012, Caltech 256 and SUN databases are adopted to build a massive image library. The speedup, classification accuracy and training time are tested in the experiment, and the results show that a linear growth tendency is present in the speedup of the system in a cluster environment. In consideration of the hardware costs, time, performance and accuracy, the algorithm is superior to mainstream classification algorithms, such as the power mean SVM and convolutional neural network (CNN). As the number and types of images both increase, the classification accuracy rate exceeds 95%. When the number of images reaches 80,000, the training time of the proposed algorithm is only 1/5 that of traditional single-node architecture algorithms. This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data.An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. The support vector machine (SVM) classifier is then used to perform parallel training to obtain the optimal SVM classification model, which is then tested. The Pascal VOC 2012, Caltech 256 and SUN databases are adopted to build a massive image library. The speedup, classification accuracy and training time are tested in the experiment, and the results show that a linear growth tendency is present in the speedup of the system in a cluster environment. In consideration of the hardware costs, time, performance and accuracy, the algorithm is superior to mainstream classification algorithms, such as the power mean SVM and convolutional neural network (CNN). As the number and types of images both increase, the classification accuracy rate exceeds 95%. When the number of images reaches 80,000, the training time of the proposed algorithm is only 1/5 that of traditional single-node architecture algorithms. This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data.
Audience Academic
Author Zhang, Qi
Wang, Min
Li, Yanfei
Cao, Jianfang
AuthorAffiliation University of Central Florida (UCF), UNITED STATES
1 Department of Computer Science & Technology, Xinzhou Teachers University, Xinzhou, China
2 School of Computer Science & Technology, Taiyuan University of Science and Technology, Taiyuan, China
AuthorAffiliation_xml – name: 1 Department of Computer Science & Technology, Xinzhou Teachers University, Xinzhou, China
– name: University of Central Florida (UCF), UNITED STATES
– name: 2 School of Computer Science & Technology, Taiyuan University of Science and Technology, Taiyuan, China
Author_xml – sequence: 1
  givenname: Jianfang
  orcidid: 0000-0003-3687-3738
  surname: Cao
  fullname: Cao, Jianfang
– sequence: 2
  givenname: Min
  surname: Wang
  fullname: Wang, Min
– sequence: 3
  givenname: Yanfei
  surname: Li
  fullname: Li, Yanfei
– sequence: 4
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30970014$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhousuB_6D0QKgujFjEmT9MMLYVnUHVhY8Os2pOlJmyVNapLOuvf-cDM747IjIksvWk6f903Oec9xdmCdhSx7jtESkwq_vXKzt8Isp1ReogIzTMpH2RFuSLEoC0QO7n0fZschXCHESF2WT7JDgpoKIUyPsl-rcfJuDV0e5mlyPuZrkNH5fBRy0BZyaUQIWmkponY2F6Z3XsdhzFsRkmpT6sQU9RpyBSLOHvJr0P0Q83nqksb2ubZ5HCA_F51zUzKcQwSfg11r7-wINj7NHithAjzbvU-ybx8_fD07X1xcflqdnV4sZElRXHSKKFYjWmEiKFIYMdaIWtWYYCqkajGoqqsKrDDUrKsAVItkB1VDWCFBCHKSrba-nRNXfPJ6FP6GO6H5bcH5ngsftTTAKWs7JSliuK1pS8u6UqRqCcElIQ3QNnmxrddsJ3FzLYy5M8SIbxLiu4T4JiG-Syjp3m9109yO0MnUvhdm7zL7f6weeO_WvKSsYpQmg9c7A-9-zBAiH3WQYIyw4ObAiwKljklBN2e93KK9SC1pq1xylBucn7IaN7SpyyZRy39Q6elg1DLdXelU3xO82RMkJsLP2Is5BL768vnh7OX3ffbVPXYAYeIQnJk3ixf2wRf3Z3g3vD9rnQC6BaR3IXhQD83m3V8yqePt3qeJaPN_8W81ZyU4
CitedBy_id crossref_primary_10_1142_S0219265921470113
crossref_primary_10_3233_JIFS_179686
crossref_primary_10_32628_IJSRSET24113100
crossref_primary_10_54751_revistafoco_v16n6_104
crossref_primary_10_1371_journal_pdig_0000191
crossref_primary_10_1007_s00521_020_05588_x
crossref_primary_10_1155_2021_6664569
crossref_primary_10_32628_CSEIT24103217
crossref_primary_10_1016_j_neunet_2020_07_010
crossref_primary_10_1155_2022_3413815
crossref_primary_10_1109_ACCESS_2021_3054743
crossref_primary_10_3390_sym16010046
crossref_primary_10_3390_app14083236
Cites_doi 10.1007/s10844-014-0323-6
10.1109/IE.2016.33
10.1007/s11263-015-0824-y
10.1016/j.neucom.2015.09.116
10.1016/j.ins.2017.01.025
10.1016/j.neucom.2013.02.014
10.1007/s11263-014-0700-1
10.1016/j.chroma.2015.12.007
10.1016/j.eswa.2011.09.054
10.1117/1.OE.53.6.063108
10.1023/B:VISI.0000029664.99615.94
10.1016/j.ins.2015.10.041
10.17221/238/2013-CJFS
10.3390/s120404764
10.1016/j.inffus.2017.10.006
10.1016/j.neucom.2016.02.045
10.1007/s10916-010-9624-7
10.1007/s10278-015-9857-6
10.1109/TGRS.2014.2380475
10.1186/1471-2342-13-9
10.1016/j.camwa.2013.07.015
10.1016/j.neucom.2015.01.085
10.1007/s00521-016-2709-6
10.1109/ISBI.2017.7950588
10.1080/01431161.2015.1007251
10.1080/01431161.2013.774098
10.1016/j.neucom.2011.04.044
10.1007/s12524-014-0445-x
10.1007/s11760-015-0821-1
10.1016/j.neucom.2016.02.072
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Cao et al 2019 Cao et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Cao et al 2019 Cao et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0215136
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList



MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Algorithmic image classification method
EISSN 1932-6203
ExternalDocumentID oai_doaj_org_article_45bdfc4051b84b4687f37b3316339e4b
10.1371/journal.pone.0215136
PMC6457544
A581949869
30970014
10_1371_journal_pone_0215136
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2017F06
– fundername: ;
  grantid: GH-17059
– fundername: ;
  grantid: 201701D21059
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c640t-df3f5804713a40f10559a8f81314acfb1ef7d721f1e85d7eefb0cde79352ceaa3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Oct 03 12:42:27 EDT 2025
Sun Oct 26 03:13:17 EDT 2025
Tue Sep 30 16:48:59 EDT 2025
Fri Sep 05 11:10:35 EDT 2025
Mon Oct 20 22:10:31 EDT 2025
Mon Oct 20 16:27:11 EDT 2025
Thu Oct 16 14:47:24 EDT 2025
Thu Oct 16 14:31:45 EDT 2025
Thu May 22 21:20:54 EDT 2025
Wed Feb 19 02:31:00 EST 2025
Wed Oct 01 01:51:50 EDT 2025
Thu Apr 24 23:12:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-df3f5804713a40f10559a8f81314acfb1ef7d721f1e85d7eefb0cde79352ceaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-3687-3738
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0215136
PMID 30970014
PQID 2207933246
PQPubID 23479
PageCount e0215136
ParticipantIDs doaj_primary_oai_doaj_org_article_45bdfc4051b84b4687f37b3316339e4b
unpaywall_primary_10_1371_journal_pone_0215136
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6457544
proquest_miscellaneous_2207933246
gale_infotracmisc_A581949869
gale_infotracacademiconefile_A581949869
gale_incontextgauss_ISR_A581949869
gale_incontextgauss_IOV_A581949869
gale_healthsolutions_A581949869
pubmed_primary_30970014
crossref_primary_10_1371_journal_pone_0215136
crossref_citationtrail_10_1371_journal_pone_0215136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-10
PublicationDateYYYYMMDD 2019-04-10
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Bekaddour (ref28) 2015; 43
SR Dubey (ref18) 2016; 10
ref32
AK Dhara (ref17) 2016; 29
NK Alham (ref42) 2013; 66
X Zhang (ref29) 2015; 169
J Yan (ref21) 2014; 53
ref39
S Lei (ref11) 2012; 3
ref16
M Han (ref25) 2012; 78
GL Yuan (ref36) 2010; 47
QC Zhang (ref31) 2018; 42
P Guccione (ref10) 2015; 53
A Bechini (ref35) 2016; 332
G David (ref23) 2004; 60
I Golpour (ref6) 2014; 32
PJ Du (ref2) 2012; 12
S Kothari (ref8) 2013; 13
YT Hou (ref26) 2014; 31
M Wang (ref13) 2013; 34
Y Guo (ref41) 2016; 116
B Fernando (ref4) 2014; 108
A Sezer (ref7) 2017; 28
F Mirzapour (ref20) 2015; 36
J Zhao (ref27) 2010; 53
CG Han (ref12) 2012; 29
F Fauzi (ref14) 2014; 43
Y Guo (ref33) 2016; 187
L Nanni (ref1) 2012; 39
JF Cao (ref44) 2018; 13
Y Wu (ref37) 2016; 1430
P Liu (ref22) 2017; 390
T White (ref38) 2012
E Fidalgo (ref9) 2016; 197
FS Zakeri (ref15) 2012; 36
S Zhu (ref3) 2016; 208
T White (ref34) 2012; 215
ref40
D Wang (ref43) 2011; 28
S Banerji (ref5) 2013; 117
Z Su (ref24) 2002; 13
PZ Liu (ref19) 2017; 30
MD Zeiler (ref30) 2013
References_xml – volume: 43
  start-page: 271
  year: 2014
  ident: ref14
  article-title: Image understanding and the web: a state-of-the-art review
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-014-0323-6
– ident: ref39
– ident: ref40
  doi: 10.1109/IE.2016.33
– volume: 116
  start-page: 66
  year: 2016
  ident: ref41
  article-title: A comprehensive performance evaluation of 3D local feature descriptors
  publication-title: Inter J Comput Vis
  doi: 10.1007/s11263-015-0824-y
– start-page: 818
  year: 2013
  ident: ref30
  article-title: Visualizing and understanding convolutional networks
– volume: 187
  start-page: 27
  year: 2016
  ident: ref33
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 390
  start-page: 95
  year: 2017
  ident: ref22
  article-title: Fusion of color histogram and LBP-based features for texture image retrieval and classification
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.01.025
– volume: 117
  start-page: 173
  year: 2013
  ident: ref5
  article-title: New image descriptors based on color, texture, shape, and wavelets for object and scene image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.02.014
– volume: 13
  start-page: 002001
  year: 2002
  ident: ref24
  article-title: An image retrieval relevance feedback algorithm based on the Bayesian Classifier
  publication-title: J Software
– volume: 108
  start-page: 186
  year: 2014
  ident: ref4
  article-title: Mining mid-level features for image classification
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-014-0700-1
– volume: 1430
  start-page: 80
  year: 2016
  ident: ref37
  article-title: Sample normalization methods in quantitative metabolomics
  publication-title: J Chromatography A
  doi: 10.1016/j.chroma.2015.12.007
– volume: 39
  start-page: 3634
  year: 2012
  ident: ref1
  article-title: Survey on LBP based texture descriptors for image classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.09.054
– volume: 53
  start-page: 063108
  year: 2014
  ident: ref21
  article-title: Hue-based feature detection for geometry calibration of multiprojector arrays
  publication-title: Optical Engineering
  doi: 10.1117/1.OE.53.6.063108
– volume: 60
  start-page: 91
  year: 2004
  ident: ref23
  article-title: Distinctive image features fromscal-invariant keypoints
  publication-title: International Journal in Computer Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 53
  start-page: 594
  year: 2010
  ident: ref27
  article-title: A classification of remote sensing image based on improved compound kernels of SVM
  publication-title: Russian Journal of Inorganic Chemistry
– volume: 332
  start-page: 33
  year: 2016
  ident: ref35
  article-title: A MapReduce solution for associative classification of big data
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2015.10.041
– volume: 32
  start-page: 280
  year: 2014
  ident: ref6
  article-title: Identification and classification of bulk paddy, brown, and white rice cultivars with colour features extraction using image analysis and neural network
  publication-title: CZECH J Food Sci
  doi: 10.17221/238/2013-CJFS
– volume: 12
  start-page: 4764
  year: 2012
  ident: ref2
  article-title: Multiple classifier system for remote sensing image classification: A review
  publication-title: Sensors
  doi: 10.3390/s120404764
– volume: 28
  start-page: 465
  year: 2011
  ident: ref43
  article-title: Protein structure prediction based on parallel multi-class SVM
  publication-title: Application Research of Computers
– volume: 42
  start-page: 146
  year: 2018
  ident: ref31
  article-title: A survey on deep learning for big data
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.10.006
– ident: ref32
– volume: 215
  start-page: 1
  year: 2012
  ident: ref34
  article-title: Hadoop: the definitive guide
  publication-title: O’reilly Media Inc Gravenstein Highway North
– volume: 197
  start-page: 119
  year: 2016
  ident: ref9
  article-title: Compass radius estimation for improved image classification using Edge-SIFT
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.045
– volume: 36
  start-page: 1621
  year: 2012
  ident: ref15
  article-title: Classification of benign and malignant breast masses based on shape and texture features in sonography images
  publication-title: J Med Syst
  doi: 10.1007/s10916-010-9624-7
– volume: 29
  start-page: 466
  year: 2016
  ident: ref17
  article-title: A combination of shape and texture features for classification of pulmonary nodules in lung CT images
  publication-title: J Digital Imaging
  doi: 10.1007/s10278-015-9857-6
– volume: 53
  start-page: 3615
  year: 2015
  ident: ref10
  article-title: Iterative hyperspectral image classification using spectral-spatial relational features
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2014.2380475
– volume: 13
  start-page: 9
  year: 2013
  ident: ref8
  article-title: Histological image classification using biologically interpretable shape-based features
  publication-title: BMC Med Imaging
  doi: 10.1186/1471-2342-13-9
– volume: 66
  start-page: 1920
  year: 2013
  ident: ref42
  article-title: A MapReduce-based distributed SVM ensemble for scalable image classification and annotation
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2013.07.015
– volume: 30
  start-page: 95
  year: 2017
  ident: ref19
  article-title: Fusion of color histogram and LBP-based features for texture image retrieval and classification
  publication-title: Inform Sci
– volume: 169
  start-page: 110
  year: 2015
  ident: ref29
  article-title: Image classification based on low-rank matrix recovery and Naive Bayes collaborative representation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.085
– volume: 13
  start-page: 1
  year: 2018
  ident: ref44
  article-title: Emotional modelling and classification of a large-scale collection of scene images in a cluster environment
  publication-title: PLOS ONE
– volume: 28
  start-page: 3021
  year: 2017
  ident: ref7
  article-title: Hermite-based texture feature extraction for classification of humeral head in proton density-weighted MR images
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2709-6
– ident: ref16
  doi: 10.1109/ISBI.2017.7950588
– volume: 36
  start-page: 1070
  year: 2015
  ident: ref20
  article-title: Improving hyperspectral image classification by combining spectral, texture, and shape features
  publication-title: Inter J Remote Sensing
  doi: 10.1080/01431161.2015.1007251
– volume: 34
  start-page: 4200
  year: 2013
  ident: ref13
  article-title: Remote-sensing image retrieval by combining image visual and semantic features
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2013.774098
– volume: 47
  start-page: 1663
  year: 2010
  ident: ref36
  article-title: Mean shift object tracking based on adaptive multi-features fusion
  publication-title: J Comput Res Develop
– volume: 78
  start-page: 133
  year: 2012
  ident: ref25
  article-title: Remote sensing image classification based on neural network ensemble algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.044
– volume: 43
  start-page: 671
  year: 2015
  ident: ref28
  article-title: Multi spectral satellite image ensembles classification combining k-means, LVQ and SVM classification techniques
  publication-title: Journal of the Indian Society of Remote Sensing
  doi: 10.1007/s12524-014-0445-x
– volume: 29
  start-page: 1938
  year: 2012
  ident: ref12
  article-title: CCA-based analysis and research of image semantic feature extraction
  publication-title: Application Research of Computers
– year: 2012
  ident: ref38
  article-title: Hadoop: The Definitive Guide
– volume: 31
  start-page: 957
  year: 2014
  ident: ref26
  article-title: Research of classification method for natural images based on adaptive feature-weighted K-nearest neighbors
  publication-title: Appl Res Comput
– volume: 3
  start-page: 680
  year: 2012
  ident: ref11
  article-title: Image low-level semantic feature extraction based on rough set
  publication-title: IEEE International Conference on Computer Science and Automation Engineering
– volume: 10
  start-page: 819
  year: 2016
  ident: ref18
  article-title: Apple disease classification using color, texture and shape features from images
  publication-title: Signal Image and Video Processing
  doi: 10.1007/s11760-015-0821-1
– volume: 208
  start-page: 136
  year: 2016
  ident: ref3
  article-title: Multi-view semi-supervised learning for image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.072
SSID ssj0053866
Score 2.360813
Snippet An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0215136
SubjectTerms Algorithms
Artificial neural networks
Big data
Computer and Information Sciences
Databases, Factual
Image processing equipment
Image Processing, Computer-Assisted
Neural Networks, Computer
Physical Sciences
Research and Analysis Methods
Support Vector Machine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlOdCAYOQgEO2ydpxkmNBVAUJkICi3iw_tyttk6i7oeLOD2fG8YYNHNoD13gSKTPjmc_2zGdCXhjDcwWekOgZFwnPdZYopkxidapNLoxPLS4UP34SR8f8w0l-snXVF9aE9fTAveL24XXrDcCKTJdcc1EWnhWaMcARrHJcY_RNy2qzmOpjMMxiIWKjHCuy_WiXadvUbhqyXKBk_pOIAl__v1F5Ky39XTJ5vatb9fNCLZdb-ejwFrkZgSQ96H9gl1xz9W2yG6fqir6KfNKv75Bf_caBs3TVtQi36Y-wVU_PQiGlowYRNJYMBStRtZw354v16RnFFGcpPrKqxbhIvQtEoPQi7KjSrsXuiHpOFzUFJEkhjjVNCx_skH-BbnXR3SXHh---vT1K4uULiRE8XSfWM5-XKeQupnjq8R7NSpW-zFjGlfE6c76wsHz0mStzWzjndWqsg-mez4xTit0jOzWo-wGhSsMixxZGKK05fFMV3otKC5sLq23GJ4RtLCFNZCbHCzKWMhy3FbBC6XUq0X4y2m9CkuGttmfmuET-DRp5kEVe7fAAvE1Gb5OXeduEPEUXkX2T6hAd5EEOyIpXpagm5HmQQG6NGot35qpbreT7z9-vIPT1y0joZRTyDajDqNgwAf-EnF0jyb2RJEQIMxp-tnFoiUNYVle7plvJ2Qz5EQFTg3bu9w4-6IelFdYkgHWKkeuPFDgeqRengaBc8Bx5FSdkOkySK5no4f8w0SNyA0BtOPHL0j2ysz7v3GMAjmv9JMSI3zGqcgw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALUJ4LBQxCPA5Jk7XjZI8FURUkCgKKygFFfm5XbJOou6GCAyd-ODOOd9UUIcqBW5SMLWU8nodn5jMhD7XmmQRJiNSQi4hnKo0kkzoyKlE6E9olBgPF17tiZ4-_2s_2V8jnRS9M4CDEiNN65jP5-FBXdjNwchPxirrsaZyyPF2MiBsgir0FY-KRRxzCk7E5NiCdI2siA1d9lazt7b7d-tRlmoeRGCYstNP9aaaeufKo_r_r7hPG63Rh5fm2auS3YzmdnrBa25fIj8X_dsUqX-J2rmL9_RQU5H9jyGVyMfi7dKubZZ2s2OoKWQ8aZUafBNjrp1fJz-58wxo6axuMCuhXn1Ggh77e01KNjj5WNnlhonI6ro8m84NDipbYUHxlZIPqmzrr8UrpsT_4pW2DTRzVmE4qCg4vBXVb1w1M2CJMBD3R7HeN7G2_-PB8Jwp3RERa8GQeGcdcViRgYpnkicPrPkeycEXKUi61U6l1uYEo16W2yExurVOJNha0UjbUVkp2naxWwKibhEoFsZjJtZBKcZhT5s6JkRImE0aZlA8IW4hCqQOAOt7jMS19VjCHQKrjaYmcLwPnByRajmo6AJG_0D9DKVvSIvy3fwFLX4YlL2FPGafB105VwRUXRe5YrhgD55qNLFcDcg9ltOx6aZdKrNzKwAHko0KMBuSBp0AIkAprjMaync3Kl28-noHo_bse0eNA5Gpgh5ahrwP-CSWzR7nRowRFpnuf7y92VImfsPqvsnU7K4dDhHEE1x-4c6PbYUv-sGSEpROwOnlv7_UY2P9STQ48jrrgGcI_Dki83KVnWqJb_zrgNrkAfrZPQqbJBlmdH7X2Dviyc3U3aKRfp9Wp0w
  priority: 102
  providerName: Unpaywall
Title Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
URI https://www.ncbi.nlm.nih.gov/pubmed/30970014
https://www.proquest.com/docview/2207933246
https://pubmed.ncbi.nlm.nih.gov/PMC6457544
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0215136&type=printable
https://doaj.org/article/45bdfc4051b84b4687f37b3316339e4b
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Health and Medical Complete
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB51kaAXRFkDJQwICTg4suPx2D4glFYtBamlKgSlJ2vWNFJqmySm9M4P572JE8UsouLiw8wbW377bN8j5IVSLBKgCZ7sMu6xSAaeCIXytPSliriyvsaJ4tExP-yzD4NosEYWNVtrBk7_OLXDelL9ybjz_evVWzD4N65qQxwsBnXKIjcdF8NCvk42IValWMzhiC33FcC6Oa8v0P1t5Ba5EfopbseyRqxykP6_O-6VyPXrqcqbVV6Kq0sxHq-ErIPb5Fada9LeXDm2yZrJ75Dt2pqn9FUNOf36LvkxX1swmk6rEplBv7nVfHrhzloaqjDJxlNFTpBUjIfFZDQ7v6AYBTXFJi1KdJ3UGocVSi_doiutSrxAkQ_pKKeQbFJwdUVRwgsrhGigKxft7pH-wf7nvUOvrs_gKc78madtaKPEh_AWCuZbLLWZisQmQRgwoawMjI01zDBtYJJIx8ZY6SttwCNEXWWECO-TjRw4_5BQIWEepGPFhZQM3ilia3kquY64ljpgLRIuJJGpGrwca2iMM7cjF8MkZs7TDEWZ1aJsEW85qpyDd_yDfheFvKRF6G3XUEyGWW3JGeiztgry3EAmTDKexDaMZRhCYhumhskWeYoqks3vsS4dSNaLIPliacLTFnnuKBB-I8fzPUNRTafZ-49frkH06bRB9LImsgWwQ4n6TgX8E8J6NSh3GpTgRFSj-9lCoTPswpN3uSmqadbtIoQipN3AnQdzBV_yZ2EnLRI3VL_BwGZPPjp3GOacRQi92CKdpZFcS0SP_vtTj8kWJLtuJzDwd8jGbFKZJ5BQzmSbrMeDGJ7JXoDPg3dtsrm7f3xy2nZLNG3nQ6Ctf3zSO_sJ7RKEGw
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALUJ4LBQxCPA5Jk7XjZI8FURUkCgKKygFFfm5XbJOou6GCAyd-ODOOd9UUIcqBW5SMLWU8nodn5jMhD7XmmQRJiNSQi4hnKo0kkzoyKlE6E9olBgPF17tiZ4-_2s_2V8jnRS9M4CDEiNN65jP5-FBXdjNwchPxirrsaZyyPF2MiBsgir0FY-KRRxzCk7E5NiCdI2siA1d9lazt7b7d-tRlmoeRGCYstNP9aaaeufKo_r_r7hPG63Rh5fm2auS3YzmdnrBa25fIj8X_dsUqX-J2rmL9_RQU5H9jyGVyMfi7dKubZZ2s2OoKWQ8aZUafBNjrp1fJz-58wxo6axuMCuhXn1Ggh77e01KNjj5WNnlhonI6ro8m84NDipbYUHxlZIPqmzrr8UrpsT_4pW2DTRzVmE4qCg4vBXVb1w1M2CJMBD3R7HeN7G2_-PB8Jwp3RERa8GQeGcdcViRgYpnkicPrPkeycEXKUi61U6l1uYEo16W2yExurVOJNha0UjbUVkp2naxWwKibhEoFsZjJtZBKcZhT5s6JkRImE0aZlA8IW4hCqQOAOt7jMS19VjCHQKrjaYmcLwPnByRajmo6AJG_0D9DKVvSIvy3fwFLX4YlL2FPGafB105VwRUXRe5YrhgD55qNLFcDcg9ltOx6aZdKrNzKwAHko0KMBuSBp0AIkAprjMaync3Kl28-noHo_bse0eNA5Gpgh5ahrwP-CSWzR7nRowRFpnuf7y92VImfsPqvsnU7K4dDhHEE1x-4c6PbYUv-sGSEpROwOnlv7_UY2P9STQ48jrrgGcI_Dki83KVnWqJb_zrgNrkAfrZPQqbJBlmdH7X2Dviyc3U3aKRfp9Wp0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+support+vector+machine+classification+algorithm+based+on+adaptive+feature+weight+updating+in+the+Hadoop+cluster+environment&rft.jtitle=PloS+one&rft.au=Cao%2C+Jianfang&rft.au=Wang%2C+Min&rft.au=Li%2C+Yanfei&rft.au=Zhang%2C+Qi&rft.date=2019-04-10&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=14&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pone.0215136&rft_id=info%3Apmid%2F30970014&rft.externalDocID=PMC6457544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon