Path optimization of taxi carpooling
The problem that passengers are hard to take taxis while empty driving rate is high widely exists under the traditional taxi operation mode. The implementation of taxi carpooling mode can alleviate the problem in a certain extent. The objective of this study is to optimize the taxi carpooling path....
Saved in:
Published in | PloS one Vol. 13; no. 8; p. e0203221 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
30.08.2018
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0203221 |
Cover
Abstract | The problem that passengers are hard to take taxis while empty driving rate is high widely exists under the traditional taxi operation mode. The implementation of taxi carpooling mode can alleviate the problem in a certain extent. The objective of this study is to optimize the taxi carpooling path. Firstly, the taxi carpooling path optimization model with single objective and its extended model with multiple objectives are built respectively. Then, the single objective path optimization model of taxi carpooling is solved based on the improved single objective genetic algorithm, and the multiple-objective path optimization model of taxi carpooling is solved based on the improved multiple-objective genetic algorithm. Finally, a case study is carried out based on a road network with 24 nodes. The case study results show the path optimization models and algorithms of taxi carpooling proposed in the paper can quickly get the taxi carpooling path, and can increase the income of taxi driver while reduce the cost for passengers. |
---|---|
AbstractList | The problem that passengers are hard to take taxis while empty driving rate is high widely exists under the traditional taxi operation mode. The implementation of taxi carpooling mode can alleviate the problem in a certain extent. The objective of this study is to optimize the taxi carpooling path. Firstly, the taxi carpooling path optimization model with single objective and its extended model with multiple objectives are built respectively. Then, the single objective path optimization model of taxi carpooling is solved based on the improved single objective genetic algorithm, and the multiple-objective path optimization model of taxi carpooling is solved based on the improved multiple-objective genetic algorithm. Finally, a case study is carried out based on a road network with 24 nodes. The case study results show the path optimization models and algorithms of taxi carpooling proposed in the paper can quickly get the taxi carpooling path, and can increase the income of taxi driver while reduce the cost for passengers.The problem that passengers are hard to take taxis while empty driving rate is high widely exists under the traditional taxi operation mode. The implementation of taxi carpooling mode can alleviate the problem in a certain extent. The objective of this study is to optimize the taxi carpooling path. Firstly, the taxi carpooling path optimization model with single objective and its extended model with multiple objectives are built respectively. Then, the single objective path optimization model of taxi carpooling is solved based on the improved single objective genetic algorithm, and the multiple-objective path optimization model of taxi carpooling is solved based on the improved multiple-objective genetic algorithm. Finally, a case study is carried out based on a road network with 24 nodes. The case study results show the path optimization models and algorithms of taxi carpooling proposed in the paper can quickly get the taxi carpooling path, and can increase the income of taxi driver while reduce the cost for passengers. The problem that passengers are hard to take taxis while empty driving rate is high widely exists under the traditional taxi operation mode. The implementation of taxi carpooling mode can alleviate the problem in a certain extent. The objective of this study is to optimize the taxi carpooling path. Firstly, the taxi carpooling path optimization model with single objective and its extended model with multiple objectives are built respectively. Then, the single objective path optimization model of taxi carpooling is solved based on the improved single objective genetic algorithm, and the multiple-objective path optimization model of taxi carpooling is solved based on the improved multiple-objective genetic algorithm. Finally, a case study is carried out based on a road network with 24 nodes. The case study results show the path optimization models and algorithms of taxi carpooling proposed in the paper can quickly get the taxi carpooling path, and can increase the income of taxi driver while reduce the cost for passengers. |
Audience | Academic |
Author | Ma, Changxi Zhang, Wei He, Ruichun |
AuthorAffiliation | School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou, China Beihang University, CHINA |
AuthorAffiliation_xml | – name: School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou, China – name: Beihang University, CHINA |
Author_xml | – sequence: 1 givenname: Changxi orcidid: 0000-0002-0250-5462 surname: Ma fullname: Ma, Changxi – sequence: 2 givenname: Ruichun surname: He fullname: He, Ruichun – sequence: 3 givenname: Wei surname: Zhang fullname: Zhang, Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30161199$$D View this record in MEDLINE/PubMed |
BookMark | eNqNktuL1DAUxoOsuBf9D0QGFNGHGZO0aRMfhGXxMrCw4u01nObSyZBpuk0qq3-9mZ1xmYqI5CHJye_7COd8p-ioC51B6DHBC1LU5NU6jEMHftHn8gJTXFBK7qETIgo6r_L16OB8jE5jXGPMCl5VD9BxgUlFiBAn6NlHSKtZ6JPbuJ-QXOhmwc4S3LiZgqEPwbuufYjuW_DRPNrvZ-jru7dfLj7ML6_eLy_OL-eqKnGaC8IbXfBasQK0tlyBsg3XjGMLWllNeEkFJwJAY8tFTQxuCFcFIyWriKmKM7Tc-eoAa9kPbgPDDxnAydtCGFoJQ3LKG2kbKHRTaVNpKLE1XDFBRSOIpZo1pc5eb3Ze_dhsjFamSwP4ien0pXMr2YbvMjemxiXNBi_2BkO4Hk1McuOiMt5DZ8IYJcWC14xzKjL6dIe2kL_mOhuyo9ri8pyxuhaiJDxTi79QeWmzcSpP0bpcnwheTgSZSeYmtTDGKJefP_0_e_Vtyj4_YFcGfFrF4Mft9OMUfHLYw7vm_Y5PBsodoIYQ42DsHUKw3KZU7lMqtymV-5Rm2es_ZMql2_Dljjj_b_EvgGLu7A |
CitedBy_id | crossref_primary_10_3390_su15139859 crossref_primary_10_1016_j_physa_2019_122423 crossref_primary_10_1016_j_physa_2019_122348 crossref_primary_10_1155_2018_2916391 crossref_primary_10_1177_1687814019839906 crossref_primary_10_1177_1687814018819406 crossref_primary_10_1016_j_physa_2019_123759 crossref_primary_10_1177_1687814018815369 crossref_primary_10_1371_journal_pone_0213106 crossref_primary_10_1109_ACCESS_2019_2959654 crossref_primary_10_1155_2020_6147974 crossref_primary_10_1109_ACCESS_2019_2932013 crossref_primary_10_1109_ACCESS_2019_2956783 crossref_primary_10_1155_2019_3521793 crossref_primary_10_1061_JTEPBS_0000317 crossref_primary_10_1109_ACCESS_2023_3269958 crossref_primary_10_3390_su11205768 crossref_primary_10_1142_S0217984920502668 crossref_primary_10_1155_2020_8854068 crossref_primary_10_1016_j_physleta_2019_03_019 crossref_primary_10_1142_S0217984921502389 crossref_primary_10_3390_app11177996 crossref_primary_10_1155_2022_1846681 crossref_primary_10_3390_su11102730 crossref_primary_10_1109_ACCESS_2018_2881290 crossref_primary_10_3390_ijerph16132308 crossref_primary_10_1016_j_amc_2021_126079 crossref_primary_10_1007_s10732_022_09491_7 crossref_primary_10_1080_23249935_2019_1692959 crossref_primary_10_1109_ACCESS_2019_2914864 crossref_primary_10_1177_1687814020902351 crossref_primary_10_1155_2020_5261580 crossref_primary_10_1155_2020_9628957 crossref_primary_10_3390_su10124714 crossref_primary_10_1108_EC_04_2020_0230 crossref_primary_10_3390_su12030799 crossref_primary_10_3390_su16177845 crossref_primary_10_1016_j_physa_2019_02_038 crossref_primary_10_1016_j_physa_2020_125023 crossref_primary_10_1016_j_physa_2021_126694 crossref_primary_10_1108_EC_07_2019_0297 crossref_primary_10_1016_j_physa_2019_03_030 crossref_primary_10_1016_j_physa_2019_122033 crossref_primary_10_1109_TITS_2019_2905579 crossref_primary_10_1145_3501295 crossref_primary_10_3390_su12010054 crossref_primary_10_1016_j_cie_2020_107080 crossref_primary_10_1155_2021_8471683 crossref_primary_10_3390_ijerph16050870 crossref_primary_10_3390_su13020902 crossref_primary_10_1177_1687814018818337 crossref_primary_10_1016_j_trd_2019_08_027 crossref_primary_10_1177_1687814019897216 crossref_primary_10_1016_j_physa_2019_121915 crossref_primary_10_1016_j_eswa_2022_118646 crossref_primary_10_1016_j_physa_2019_02_024 crossref_primary_10_1080_21680566_2022_2092231 crossref_primary_10_1108_EC_10_2019_0441 crossref_primary_10_52547_jgit_9_3_59 crossref_primary_10_1016_j_asoc_2019_105493 crossref_primary_10_1016_j_physa_2019_03_024 crossref_primary_10_1016_j_physa_2020_125295 crossref_primary_10_1155_2019_3867874 crossref_primary_10_1142_S0217984919502233 crossref_primary_10_1371_journal_pone_0221872 crossref_primary_10_1177_1687814019842498 crossref_primary_10_1007_s11280_022_01026_1 crossref_primary_10_1016_j_physa_2019_122362 crossref_primary_10_1016_j_physa_2019_122774 crossref_primary_10_1109_TVT_2019_2962334 crossref_primary_10_1016_j_physa_2019_122377 crossref_primary_10_1155_2020_1840975 crossref_primary_10_3390_su12020620 crossref_primary_10_1109_ACCESS_2019_2941280 crossref_primary_10_1155_2022_9815133 crossref_primary_10_1016_j_physa_2019_122216 crossref_primary_10_1016_j_physa_2022_127225 crossref_primary_10_1080_00207233_2023_2217006 crossref_primary_10_3233_ADR_230149 crossref_primary_10_1155_2018_9841498 crossref_primary_10_1016_j_aap_2020_105640 crossref_primary_10_1080_23249935_2018_1558306 crossref_primary_10_1155_2020_4079617 crossref_primary_10_1016_j_physleta_2019_01_011 crossref_primary_10_1108_EC_05_2020_0286 crossref_primary_10_3390_math9222897 crossref_primary_10_1016_j_ijtst_2024_10_004 crossref_primary_10_3390_ijerph17041259 crossref_primary_10_1109_ACCESS_2019_2924320 crossref_primary_10_1016_j_physa_2019_03_099 crossref_primary_10_1016_j_trc_2018_09_016 crossref_primary_10_1016_j_trc_2019_07_005 crossref_primary_10_1016_j_physa_2019_03_051 |
Cites_doi | 10.1016/j.physa.2018.04.073 10.1016/j.physa.2017.11.114 10.1016/j.jclepro.2017.01.001 10.1016/j.asoc.2017.02.025 10.1016/j.trc.2013.12.012 10.1016/j.trc.2013.07.010 10.1007/s11116-011-9354-9 10.7763/IJSSH.2013.V3.201 10.1111/mice.12251 10.1109/4235.996017 10.4236/jtts.2012.22011 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Public Library of Science 2018 Ma et al 2018 Ma et al |
Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Ma et al 2018 Ma et al |
DBID | AAYXX CITATION NPM IOV ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0203221 |
DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale in Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Statistics |
DocumentTitleAlternate | Path optimization of taxi carpooling |
EISSN | 1932-6203 |
ExternalDocumentID | oai_doaj_org_article_fba3db6de6da40fe8c5929b91f2d5b4d PMC6117042 A557799418 30161199 10_1371_journal_pone_0203221 |
Genre | Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c640t-918bd387c53addf8cacfb8d580fadcfd18429819aad0f8971e0b18c3514561e63 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Thu Aug 21 18:08:56 EDT 2025 Mon Sep 08 11:04:49 EDT 2025 Tue Jun 17 21:08:42 EDT 2025 Tue Jun 10 20:28:36 EDT 2025 Fri Jun 27 03:34:34 EDT 2025 Fri Jun 27 04:57:06 EDT 2025 Thu May 22 21:21:33 EDT 2025 Mon Jul 21 06:06:24 EDT 2025 Tue Jul 01 02:58:36 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-918bd387c53addf8cacfb8d580fadcfd18429819aad0f8971e0b18c3514561e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-0250-5462 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0203221 |
PMID | 30161199 |
PQID | 2098758829 |
PQPubID | 23479 |
PageCount | e0203221 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fba3db6de6da40fe8c5929b91f2d5b4d pubmedcentral_primary_oai_pubmedcentral_nih_gov_6117042 proquest_miscellaneous_2098758829 gale_infotracmisc_A557799418 gale_infotracacademiconefile_A557799418 gale_incontextgauss_ISR_A557799418 gale_incontextgauss_IOV_A557799418 gale_healthsolutions_A557799418 pubmed_primary_30161199 crossref_primary_10_1371_journal_pone_0203221 crossref_citationtrail_10_1371_journal_pone_0203221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-30 |
PublicationDateYYYYMMDD | 2018-08-30 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2018 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | MD Pedro (ref1) 2012; 13 HP Zhou (ref6) 2011; 8 XL Ma (ref15) 2013; 36 LZ Wang (ref8) 2012 YT Chen (ref11) 2013; 3 R Manzini (ref13) 2012; 2 JJ Tang (ref17) 2018; 506 ZB He (ref18) 2017; 32 TH Chang (ref4) 2004; 2 S Yan (ref10) 2012; 39 XD Zou (ref5) 2002; 19 Y Wang (ref21) 2017; 144 SA Ardekani (ref2) 1986; 1103 H Morisugi (ref3) 1997; 2 J Cheng (ref9) 2013; 37 T Kammerdiener (ref14) 2011; 26 Y Wang (ref22) 2017; 56 JJ Tang (ref16) 2018; 493 K Deb (ref20) 2002; 6 X Yang (ref23) 2018 ZB He (ref19) 2013; 32 RJ Guo (ref7) 2011; 32 S Galland (ref12) 2014; C |
References_xml | – volume: 1103 start-page: 33 year: 1986 ident: ref2 article-title: A taxicab fare policy formula based on fuel consumption consumption observation publication-title: Transportation Research Record – volume: 8 start-page: 20 issue: 1 year: 2011 ident: ref6 article-title: The route choice and rate optimization model of taxi pooling publication-title: Journal of Changsha University of Science and Technology – volume: 506 start-page: 566 year: 2018 ident: ref17 article-title: Inferring driving trajectories based on probabilistic model from large scale taxi GPS data publication-title: Physica A doi: 10.1016/j.physa.2018.04.073 – volume: 2 start-page: 1547 issue: 5 year: 1997 ident: ref3 article-title: Fare level and fleet optimization of taxi and bus optimization in yogyakarta indonesia publication-title: Journal of Easter Asia Society for Transportation Studies – volume: 493 start-page: 430 year: 2018 ident: ref16 article-title: Taxi trips distribution modeling based on entropy-maximizing theory: a case study in harbin city—China publication-title: Physica A doi: 10.1016/j.physa.2017.11.114 – volume: 32 start-page: 28 issue: 4 year: 2011 ident: ref7 article-title: Shortcut optimization of taxi pooling based on matrix iteration method publication-title: Journal of Dalian Jiaotong University – volume: 26 start-page: 95 issue: 4 year: 2011 ident: ref14 article-title: Classification of ride-sharing partners based on multiple constraints publication-title: Journal of Computing Sciences in Colleges – volume: 32 start-page: 89 issue: 4 year: 2013 ident: ref19 article-title: A traffic condition based route guidance strategy for a single destination road network publication-title: Transportation Research Part C: Emerging Technologies – year: 2018 ident: ref23 article-title: An energy-efficient rescheduling approach under delay perturbations for metro systems publication-title: Transportmetrica B: Transport Dynamics – volume: 144 start-page: 203 year: 2017 ident: ref21 article-title: Profit distribution in collaborative multiple centers vehicle routing problem publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.01.001 – volume: 2 start-page: 1335 issue: 1 year: 2004 ident: ref4 article-title: Optimal taxi market control operated with a flexible initial fare policy publication-title: Networking, Sensing and Control – volume: 56 start-page: 143 year: 2017 ident: ref22 article-title: Cooperation and profit allocation in two-echelon logistics joint distribution network optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.02.025 – volume: C start-page: 83 year: 2014 ident: ref12 article-title: Multi-agent simulation of individual mobility behavior in carpooling publication-title: Transportation Research Part doi: 10.1016/j.trc.2013.12.012 – year: 2012 ident: ref8 article-title: Discussion on static and dynamic sharing mode of taxis in big cities publication-title: Master Dissertation of Changsha University of Science&Technology – volume: 36 start-page: 1 year: 2013 ident: ref15 article-title: Mining smart card data for transit riders’ travel patterns publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2013.07.010 – volume: 39 start-page: 723 issue: 3 year: 2012 ident: ref10 article-title: Solution methods for the taxi pooling problem publication-title: Transportation doi: 10.1007/s11116-011-9354-9 – volume: 37 start-page: 187 issue: 1 year: 2013 ident: ref9 article-title: Research on dynamic taxi carpooling model based on genetic algorithm publication-title: Journal of Wuhan University of Technology (Transportation Science & Engineering) – volume: 3 start-page: 87 issue: 2 year: 2013 ident: ref11 article-title: Improve the carpooling applications with using a social community based travel cost reduction mechanism publication-title: International Journal of Social Science and Humanity doi: 10.7763/IJSSH.2013.V3.201 – volume: 32 start-page: 252 issue: 3 year: 2017 ident: ref18 article-title: Mapping to cells: a simple method to extract traffic dynamics from probe vehicle data publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12251 – volume: 19 start-page: 82 issue: 4 year: 2002 ident: ref5 article-title: Optimal path algorithm for road network with traffic capacity limits publication-title: Journal of Highway and Transportation Research Development – volume: 6 start-page: 182 issue: 2 year: 2002 ident: ref20 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE Trans on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 13 start-page: 319 issue: 1 year: 2012 ident: ref1 article-title: Reducing the environmental impact of taxi operation: the taxi-sharing use case publication-title: International Conference on Its Telecommunications – volume: 2 start-page: 85 issue: 2 year: 2012 ident: ref13 article-title: A decision support system for the car pooling problem publication-title: Journal of Transportation Technologies doi: 10.4236/jtts.2012.22011 |
SSID | ssj0053866 |
Score | 2.5688355 |
Snippet | The problem that passengers are hard to take taxis while empty driving rate is high widely exists under the traditional taxi operation mode. The implementation... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0203221 |
SubjectTerms | Algorithms Biology and Life Sciences Economic aspects Engineering and Technology Physical Sciences Research and Analysis Methods Social Sciences Statistics Taxicab drivers Taxicabs |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RkoEFAl4JDWiR-xjwVRFQ6AgKLeLNsTt5UgqdhdiZ_P-LGrjTiUA9d4IiWf55mMvyFkH5iSoAdoOEDXcIlqbJ3rm0CFDS10QYTUbfFRnpzyD2fibGvUV-wJy_TAGbjD4CwDJ2GQYDkNg_ICI7rTbehAOA7R-1JN18VU9sFoxVKWg3Ksbw_LvhxcTeNwkIaGd-0sECW-_r-98lZYmrdMbsWg49vkVkke66P80LvkxjDeIbvFPBf1q8Ih_fou2f-MmV09oT_4WQ5a1lOol_b3ZR3_uExxVM_5PXJ6_O7b25OmDERovOR0iY5JOQS394KhWwrKWx-cAqFosOADYLXWaQzx1gINSvftQF2rfGzWxzRpkOw-2RkRgoekDkwBAKMdaMGdsFg3MRc7SqXHFMbyirA1OsYXtvA4tOKHSb_Aeqwa8jubiKkpmFak2dx1ldkyrpF_E4HfyEau63QBNcAUDTDXaUBFnsVtM_ng6MZizZEQfa81b1VFXiSJyHcxxoaac7taLMz7T9__Qejrl5nQyyIUJoQDNyAfYsB3ijxaM8m9mSRarZ8tP18rmYlLsdVtHKbVwqA2Yw2JhY-uyIOsdBt8WEzQW40r_UwdZwDOV8bLi0QaLuOIId49-h-IPyY3MW9U6dM63SM7y1-r4QnmZkv3NJnhH948O28 priority: 102 providerName: Directory of Open Access Journals |
Title | Path optimization of taxi carpooling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30161199 https://www.proquest.com/docview/2098758829 https://pubmed.ncbi.nlm.nih.gov/PMC6117042 https://doaj.org/article/fba3db6de6da40fe8c5929b91f2d5b4d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkK9IMozUJaAKgGHrPKwHeeAUFt1KRxKVVi0N8uO46VSSco-pPLvGTtOaAQIxCWHeHzI5xn7m3geAHs640wXlY6I1mlEGKqxVCqPTEylSXRqqHHRFifseErez-hsA7qerR7A5W9dO9tParq4GF99-_4GDf6169qQJ92k8WVTV2PXEtxmlm-5GyMbzEf6ewW0bsZ8At2fZm7DzczyoLYc7M-zypX0_3XjvnZyDaMqrx1Tk9twy_PLcL9ViB3YqOo7sOMteBm-9GWmX92FvVMkf2GDW8ZXn4sZNiZcyavz0F7KNLabz_weTCdHnw6PI98zISoZiVe4d3GF-OclzXDnMryUpVFcUx4bqUuj0aFLC2QBUurY8CJPqlglvLTx_MikKpbdh80a0XgIocm41jqLU11QoqhE1ypTNuiUlchyJAkg69ARpS8obvtaXAh3S5ajY9F-s7DwCg9vAFE_67ItqPEX-QMLfC9ry2G7F81iLrx1CaNkphXTFdOSxKbiJUXap4rEpJoqogN4apdNtLmlvVGLfUrzvChIwgN47iRsSYzaxtzM5Xq5FO8-fP4HoY9nA6EXXsg0CAcuQJvngN9kS20NJHcHkmjY5WD4Wadkwg7ZaLi6atZLkcYFupnoGxUBPGiVrsen090A8oE6DgAcjtTnX1xdcWa7EJH00X_PfAzbyCe5--Ue78LmarGuniBnW6kR3MhnOT75YWKfk7cj2Do4Ojk9G7m_ICNnpj8AI-JJHQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+optimization+of+taxi+carpooling&rft.jtitle=PloS+one&rft.au=Ma%2C+Changxi&rft.au=He%2C+Ruichun&rft.au=Zhang%2C+Wei&rft.date=2018-08-30&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=13&rft.issue=8&rft_id=info:doi/10.1371%2Fjournal.pone.0203221&rft_id=info%3Apmid%2F30161199&rft.externalDocID=PMC6117042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |