Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke
This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes. All brain MRI reports from a single academic institution over a two year period were...
Saved in:
| Published in | PloS one Vol. 14; no. 2; p. e0212778 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
28.02.2019
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0212778 |
Cover
| Abstract | This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes.
All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms.
Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements.
Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS. |
|---|---|
| AbstractList | Background and purpose This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes. Materials and methods All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms. Results Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements. Conclusions Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS. Background and purposeThis project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes.Materials and methodsAll brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms.ResultsOf all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements.ConclusionsSupervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS. This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes. All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms. Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements. Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS. This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes. All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms. Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements. Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS. This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes.BACKGROUND AND PURPOSEThis project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes.All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms.MATERIALS AND METHODSAll brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms.Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements.RESULTSOf all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements.Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS.CONCLUSIONSSupervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS. |
| Audience | Academic |
| Author | Obeid, Jihad Lenert, Leslie Kim, Chulho Zhu, Vivienne |
| AuthorAffiliation | 1 Department of Neurology, Hallym University College of Medicine, Chuncheon, Korea 3 Biomedical Informatics Center, Medical University of South Carolina, Charleston, South Carolina, United States of America 4 Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America University College London, UNITED STATES 2 Medical University of South Carolina, Charleston, South Carolina, United States of America |
| AuthorAffiliation_xml | – name: 2 Medical University of South Carolina, Charleston, South Carolina, United States of America – name: University College London, UNITED STATES – name: 3 Biomedical Informatics Center, Medical University of South Carolina, Charleston, South Carolina, United States of America – name: 4 Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America – name: 1 Department of Neurology, Hallym University College of Medicine, Chuncheon, Korea |
| Author_xml | – sequence: 1 givenname: Chulho orcidid: 0000-0001-8762-8340 surname: Kim fullname: Kim, Chulho – sequence: 2 givenname: Vivienne surname: Zhu fullname: Zhu, Vivienne – sequence: 3 givenname: Jihad surname: Obeid fullname: Obeid, Jihad – sequence: 4 givenname: Leslie surname: Lenert fullname: Lenert, Leslie |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30818342$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1rFDEUhgep2A_9ByIBQfRi10xmkpnphVCKHwvVQv24DWczZ2ZTs8maZKz7781217IjgiUXCSfP-5Jz3hxnB9ZZzLKnOZ3mRZW_vnaDt2Cmq1SeUpazqqofZEd5U7CJYLQ42DsfZschXFPKi1qIR9lhQeu8Lkp2lIVPEAcPhhiw_QA9kpV3CkPQtidgW7IEtdAWiUHw9rZoeud1XCxJdES3aKPu1mTuQVvy8WpGPK6cj4HcJIaAGiISHdQCl1qREL37jo-zhx2YgE92-0n29d3bL-cfJheX72fnZxcTJUoaJ7yZ56Kqea1Y06laVXUJqYGC1ZQLRUEgKq5SIw3kUFDsGs5AgGBt13ZIVXGSzba-rYNrufJ6CX4tHWh5W3C-l-CjVgYlzwWWOW9w3kHJBAeOvFG8qigToupo8uJbr8GuYH0DxtwZ5lRuApG7QOQmELkLJOnebHWrYb7EVqVxeTCjx4xvrF7I3v2UomjKpmLJ4OXOwLsfA4Yol2mcaFJe6IYgWV5XnDUp2IQ-36I9pJa07VxyVBtcnvFKFFTUdENN_0Gl1W4iSm_vdKqPBK9GgsRE_BV7GEKQs89X92cvv43ZF3vsAsHERXBmiNrZMAaf7c_wbnh_fnECTreA8i4Ej51UOsLGJ7Wmzf8SKv8S3yvY34jqHP4 |
| CitedBy_id | crossref_primary_10_1186_s42779_023_00198_z crossref_primary_10_1109_ACCESS_2021_3119621 crossref_primary_10_1007_s13278_021_00764_w crossref_primary_10_3390_info14080454 crossref_primary_10_1007_s10618_023_00962_4 crossref_primary_10_2196_24381 crossref_primary_10_1109_ACCESS_2023_3312622 crossref_primary_10_1007_s43440_022_00445_1 crossref_primary_10_1186_s12911_021_01533_7 crossref_primary_10_1186_s12880_021_00671_8 crossref_primary_10_1142_S0218126623500883 crossref_primary_10_2196_51822 crossref_primary_10_2196_29806 crossref_primary_10_3390_jpm10040286 crossref_primary_10_1007_s10489_023_04944_3 crossref_primary_10_1186_s12911_022_02012_3 crossref_primary_10_2196_42884 crossref_primary_10_1111_jgh_15313 crossref_primary_10_1080_10255842_2024_2363946 crossref_primary_10_1007_s00330_021_08132_0 crossref_primary_10_3174_ajnr_A8102 crossref_primary_10_1161_JAHA_121_023486 crossref_primary_10_3389_fonc_2022_913806 crossref_primary_10_1007_s11547_023_01735_1 crossref_primary_10_1055_s_0041_1735178 crossref_primary_10_1109_JBHI_2020_2976931 crossref_primary_10_1186_s12911_024_02717_7 crossref_primary_10_1016_j_ijmedinf_2022_104779 crossref_primary_10_1002_brb3_1922 crossref_primary_10_1007_s00234_022_03029_1 crossref_primary_10_3390_diagnostics13071251 crossref_primary_10_17340_jkna_2021_3_2 crossref_primary_10_2196_48693 crossref_primary_10_1007_s11063_020_10279_8 crossref_primary_10_1080_15563650_2024_2408360 crossref_primary_10_2196_42477 crossref_primary_10_1016_j_sdentj_2024_11_007 crossref_primary_10_1111_csp2_13167 crossref_primary_10_3389_fpsyt_2022_946387 |
| Cites_doi | 10.1161/STROKEAHA.107.490375 10.1161/STROKEAHA.110.612358 10.1136/amiajnl-2012-001576 10.1161/STROKEAHA.117.019358 10.5853/jos.2015.17.1.38 10.1136/amiajnl-2014-002768 10.1148/radiology.217.2.r00nv24331 10.1007/s10278-014-9708-x 10.1093/aje/kwf152 10.1075/ijcl.14.1.03cul 10.1016/j.ijmedinf.2018.02.005 10.1161/STROKEAHA.117.016811 10.1111/acem.12859 10.4338/ACI-2016-08-RA-0129 10.1016/S0140-6736(12)62134-5 10.1007/s10549-016-4035-1 10.1016/j.ejrad.2017.08.014 10.1613/jair.953 10.1161/STR.0b013e318296aeca 10.1016/S0140-6736(16)31460-X 10.1007/s13534-017-0051-2 10.1371/journal.pone.0193776 10.1016/j.jbi.2017.07.012 10.1148/rg.2016150080 10.1016/j.jstrokecerebrovasdis.2017.08.028 10.32614/RJ-2014-008 10.1016/S0306-4573(01)00045-0 10.1016/0306-4573(88)90021-0 10.1016/j.jacr.2011.09.010 10.1016/j.artmed.2015.09.007 10.1016/S0140-6736(16)31012-1 10.1108/eb046814 10.1007/s10278-017-0027-x 10.1001/jama.2014.7692 10.1186/s13293-018-0170-1 10.1111/acem.12925 10.1186/s13326-016-0065-1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Public Library of Science 2019 Kim et al 2019 Kim et al |
| Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Kim et al 2019 Kim et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0212778 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Automatic classification of brain MRI reports |
| EISSN | 1932-6203 |
| ExternalDocumentID | oai_doaj_org_article_516e4159ebfa4265a5e59c57702667f0 10.1371/journal.pone.0212778 PMC6394972 A576306806 30818342 10_1371_journal_pone_0212778 |
| Genre | Validation Study Comparative Study Research Support, Non-U.S. Gov't Evaluation Study Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM109040 – fundername: NCATS NIH HHS grantid: UL1 TR001450 – fundername: ; – fundername: ; grantid: UL1 TR001450 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c640t-59b167858c29fc8c784a538328056c0a6eec5c8189a1a30ef952a6a62dfdfe0c3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Oct 03 12:52:27 EDT 2025 Sun Oct 26 04:15:41 EDT 2025 Tue Sep 30 16:33:29 EDT 2025 Fri Sep 05 14:19:31 EDT 2025 Mon Oct 20 22:00:16 EDT 2025 Mon Oct 20 16:11:26 EDT 2025 Thu Oct 16 15:13:30 EDT 2025 Thu Oct 16 15:03:16 EDT 2025 Thu May 22 21:07:36 EDT 2025 Wed Feb 19 02:31:04 EST 2025 Thu Apr 24 23:00:43 EDT 2025 Wed Oct 01 02:24:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c640t-59b167858c29fc8c784a538328056c0a6eec5c8189a1a30ef952a6a62dfdfe0c3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 Competing Interests: Drs. Kim, Zhu and Obeid have no competing interests. Dr. Lenert is a member of the Board of Directors of the ATCC. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials. |
| ORCID | 0000-0001-8762-8340 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0212778 |
| PMID | 30818342 |
| PQID | 2187529386 |
| PQPubID | 23479 |
| PageCount | e0212778 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_516e4159ebfa4265a5e59c57702667f0 unpaywall_primary_10_1371_journal_pone_0212778 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6394972 proquest_miscellaneous_2187529386 gale_infotracmisc_A576306806 gale_infotracacademiconefile_A576306806 gale_incontextgauss_ISR_A576306806 gale_incontextgauss_IOV_A576306806 gale_healthsolutions_A576306806 pubmed_primary_30818342 crossref_citationtrail_10_1371_journal_pone_0212778 crossref_primary_10_1371_journal_pone_0212778 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-28 |
| PublicationDateYYYYMMDD | 2019-02-28 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2019 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | P Kaur (ref27) 2018 N Lunardon (ref28) 2014; 6 S Hassanpour (ref35) 2016; 66 RW Grundmeier (ref39) 2016; 7 J. Culpeper (ref24) 2009; 14 BJ Kim (ref18) 2015; 17 Y Zhou (ref36) 2014; 27 K Yadav (ref45) 2016; 23 CY Hung (ref13) 2017; 2017 YY Song (ref40) 2015; 27 RL Sacco (ref19) 2013; 44 (ref2) 2016; 388 I Fragata (ref29) 2017; 48 S Lahmiri (ref44) 2018; 8 M Baldereschi (ref8) 2018; 13 C Willers (ref6) 2018; 9 J Pennington (ref48) 2014 P Piriyawat (ref30) 2002; 156 T Cai (ref11) 2016; 36 D Kleindorfer (ref32) 2008; 39 S Doan (ref41) 2016; 23 TM Therneau (ref26) 2000 PH Chen (ref16) 2018; 31 W Liu (ref42) 2010; 5 SF Sung (ref15) 2018; 112 S Koton (ref5) 2014; 312 G Salton (ref22) 1988; 24 KK Ilias Maglogiannis (ref43) 2007 NV Chawla (ref49) 2002; 16 CM Tan (ref38) 2002; 38 MS Dhamoon (ref7) 2018; 27 M Baldereschi (ref31) 2018; 13 (ref1) 2016; 388 RV Krishnamurthi (ref4) 2018; 49 A Wright (ref34) 2013; 20 P Vilela (ref9) 2017; 96 K Kreimeyer (ref10) 2017; 73 R Lacson (ref12) 2011; 8 MF Porter (ref21) 1980; 14 A Yala (ref17) 2017; 161 CM Rochefort (ref37) 2014; 22 ref25 ref20 PW Schaefer (ref46) 2000; 217 O Adeoye (ref33) 2011; 42 DL Mowery (ref14) 2016; 7 J Lilleberg (ref47) 2015 PF Brown (ref23) 1992; 18 CJ Murray (ref3) 2012; 380 |
| References_xml | – volume: 39 start-page: 924 year: 2008 ident: ref32 article-title: National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate publication-title: Stroke doi: 10.1161/STROKEAHA.107.490375 – volume: 42 start-page: 1952 year: 2011 ident: ref33 article-title: Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years publication-title: Stroke doi: 10.1161/STROKEAHA.110.612358 – volume: 20 start-page: 887 year: 2013 ident: ref34 article-title: Use of a support vector machine for categorizing free-text notes: assessment of accuracy across two institutions publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-001576 – volume: 49 start-page: 3 year: 2018 ident: ref4 article-title: Stroke incidence by major pathological type and ischemic subtypes in the Auckland regional community stroke studies: changes between 2002 and 2011 publication-title: Stroke doi: 10.1161/STROKEAHA.117.019358 – volume: 2017 start-page: 3110 year: 2017 ident: ref13 article-title: Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 17 start-page: 38 year: 2015 ident: ref18 article-title: Case characteristics, hyperacute treatment, and outcome information from the clinical research center for stroke-fifth division registry in South Korea publication-title: J Stroke doi: 10.5853/jos.2015.17.1.38 – ident: ref20 – volume: 22 start-page: 155 year: 2014 ident: ref37 article-title: A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2014-002768 – volume: 217 start-page: 331 year: 2000 ident: ref46 article-title: Diffusion-weighted MR imaging of the brain publication-title: Radiology doi: 10.1148/radiology.217.2.r00nv24331 – volume: 5 start-page: 844 year: 2010 ident: ref42 article-title: Index-based online text classification for sms spam filtering publication-title: J Comput – volume: 27 start-page: 130 year: 2015 ident: ref40 article-title: Decision tree methods: applications for classification and prediction publication-title: Shanghai Arch Psychiatry – year: 2007 ident: ref43 article-title: HCI, information retrieval and pervasive technologies – volume: 27 start-page: 730 year: 2014 ident: ref36 article-title: Automated classification of radiology reports to facilitate retrospective study in radiology publication-title: J Digit Imaging doi: 10.1007/s10278-014-9708-x – volume: 156 start-page: 1062 year: 2002 ident: ref30 article-title: Comparison of active and passive surveillance for cerebrovascular disease: The Brain Attack Surveillance in Corpus Christi (BASIC) Project publication-title: Am J Epidemiol doi: 10.1093/aje/kwf152 – volume: 14 start-page: 29 year: 2009 ident: ref24 article-title: Keyness: Words, parts-of-speech and semantic categories in the character-talk of Shakespeare’s Romeo and Juliet publication-title: Int J Corp Linguist doi: 10.1075/ijcl.14.1.03cul – start-page: 1532 year: 2014 ident: ref48 article-title: Glove: Global vectors for word representation publication-title: Proc Empir Methods Nat Lang Process – volume: 112 start-page: 149 year: 2018 ident: ref15 article-title: Applying natural language processing techniques to develop a task-specific EMR interface for timely stroke thrombolysis: a feasibility study publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2018.02.005 – volume: 48 start-page: 2091 year: 2017 ident: ref29 article-title: Early prediction of delayed ischemia and functional outcome in acute subarachnoid hemorrhage: role of diffusion tensor imaging publication-title: Stroke doi: 10.1161/STROKEAHA.117.016811 – volume: 23 start-page: 171 year: 2016 ident: ref45 article-title: Automated Outcome Classification of Computed Tomography Imaging Reports for Pediatric Traumatic Brain Injury publication-title: Acad Emerg Med doi: 10.1111/acem.12859 – volume: 7 start-page: 1051 year: 2016 ident: ref39 article-title: Identification of long bone fractures in radiology reports using natural language processing to support healthcare quality improvement publication-title: Appl Clin Inform doi: 10.4338/ACI-2016-08-RA-0129 – volume: 380 start-page: 2055 year: 2012 ident: ref3 article-title: GBD 2010: a multi-investigator collaboration for global comparative descriptive epidemiology publication-title: Lancet doi: 10.1016/S0140-6736(12)62134-5 – volume: 161 start-page: 203 year: 2017 ident: ref17 article-title: Using machine learning to parse breast pathology reports publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-016-4035-1 – volume: 96 start-page: 162 year: 2017 ident: ref9 article-title: Brain ischemia: CT and MRI techniques in acute ischemic stroke publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2017.08.014 – volume: 16 start-page: 321 year: 2002 ident: ref49 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J Artif Intell Res doi: 10.1613/jair.953 – volume: 44 start-page: 2064 year: 2013 ident: ref19 article-title: An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association publication-title: Stroke doi: 10.1161/STR.0b013e318296aeca – ident: ref25 – year: 2000 ident: ref26 article-title: An introduction to recursive partitioning using the rpart routines – volume: 388 start-page: 1603 year: 2016 ident: ref1 article-title: Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the global burden of disease study 2015 publication-title: Lancet doi: 10.1016/S0140-6736(16)31460-X – volume: 8 start-page: 29 year: 2018 ident: ref44 article-title: Performance of machine learning methods in diagnosing parkinson’s disease based on dysphonia measures publication-title: Biomed Eng Lett doi: 10.1007/s13534-017-0051-2 – volume: 13 start-page: e0193776 year: 2018 ident: ref31 article-title: Administrative data underestimate acute ischemic stroke events and thrombolysis treatments: data from a multicenter validation survey in Italy publication-title: PLoS One doi: 10.1371/journal.pone.0193776 – volume: 73 start-page: 14 year: 2017 ident: ref10 article-title: Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review publication-title: J Biomed Inform doi: 10.1016/j.jbi.2017.07.012 – volume: 36 start-page: 176 year: 2016 ident: ref11 article-title: Natural language processing technologies in radiology research and clinical applications publication-title: Radiographics doi: 10.1148/rg.2016150080 – volume: 27 start-page: 210 year: 2018 ident: ref7 article-title: Sex differences in outcomes after stroke in patients with diabetes in Ontario, Canada publication-title: J Stroke Cerebrovasc Dis doi: 10.1016/j.jstrokecerebrovasdis.2017.08.028 – volume: 6 year: 2014 ident: ref28 article-title: ROSE: A package for binary imbalanced learning publication-title: R Journal doi: 10.32614/RJ-2014-008 – volume: 38 start-page: 529 year: 2002 ident: ref38 article-title: The use of bigrams to enhance text categorization publication-title: Inform Process Manag doi: 10.1016/S0306-4573(01)00045-0 – volume: 18 start-page: 467 year: 1992 ident: ref23 article-title: Class-based n-gram models of natural language publication-title: Comput Linguist – volume: 24 start-page: 513 year: 1988 ident: ref22 article-title: Term-weighting approaches in automatic text retrieval publication-title: Inf Process Manage doi: 10.1016/0306-4573(88)90021-0 – volume: 8 start-page: 872 year: 2011 ident: ref12 article-title: Practical examples of natural language processing in radiology publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2011.09.010 – volume: 66 start-page: 29 year: 2016 ident: ref35 article-title: Information extraction from multi-institutional radiology reports publication-title: Artif Intell Med doi: 10.1016/j.artmed.2015.09.007 – volume: 388 start-page: 1459 year: 2016 ident: ref2 article-title: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015 publication-title: Lancet doi: 10.1016/S0140-6736(16)31012-1 – start-page: 23 year: 2018 ident: ref27 – volume: 14 start-page: 130 year: 1980 ident: ref21 article-title: An algorithm for suffix stripping publication-title: Program doi: 10.1108/eb046814 – volume: 31 start-page: 178 year: 2018 ident: ref16 article-title: Integrating natural language processing and machine learning algorithms to categorize oncologic response in radiology reports publication-title: J Digit Imaging doi: 10.1007/s10278-017-0027-x – start-page: 136 year: 2015 ident: ref47 article-title: Support vector machines and word2vec for text classification with semantic features publication-title: IEEE Cogn Inform Cogn Comput – volume: 312 start-page: 259 year: 2014 ident: ref5 article-title: Stroke incidence and mortality trends in US communities, 1987 to 2011 publication-title: JAMA doi: 10.1001/jama.2014.7692 – volume: 9 start-page: 11 year: 2018 ident: ref6 article-title: Sex as predictor for achieved health outcomes and received care in ischemic stroke and intracerebral hemorrhage: a register-based study publication-title: Biol Sex Differ doi: 10.1186/s13293-018-0170-1 – volume: 13 start-page: e0193776 year: 2018 ident: ref8 article-title: Administrative data underestimate acute ischemic stroke events and thrombolysis treatments: data from a multicenter validation survey in Italy publication-title: PLoS One doi: 10.1371/journal.pone.0193776 – volume: 23 start-page: 628 year: 2016 ident: ref41 article-title: Building a natural language processing tool to identify patients with high clinical suspicion for Kawasaki disease from emergency department notes publication-title: Acad Emerg Med doi: 10.1111/acem.12925 – volume: 7 start-page: 26 year: 2016 ident: ref14 article-title: Extracting a stroke phenotype risk factor from Veteran Health Administration clinical reports: an information content analysis publication-title: J Biomed Semantics doi: 10.1186/s13326-016-0065-1 |
| SSID | ssj0053866 |
| Score | 2.5459154 |
| Snippet | This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports... Background and purpose This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain... Background and purposeThis project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0212778 |
| SubjectTerms | Adult Aged Algorithms Brain - diagnostic imaging Brain Infarction - diagnostic imaging Brain research Case-Control Studies Computer and Information Sciences Data mining Decision Trees Diagnosis Diagnostic imaging Engineering and Technology Female Humans Image Interpretation, Computer-Assisted - methods Ischemia Machine learning Magnetic Resonance Imaging Male Medicine and Health Sciences Middle Aged Natural Language Processing Phenotypes Physical Sciences Radiology Random Allocation Research and Analysis Methods Retrospective Studies Stroke Support Vector Machine |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBtLwWWjAICThkm8SPxMeCqFqkFqlQ1Jvl-NGu2CarTSLUf8_Y8a42cGgPXOPxwTPjeTgz3yD0ruCGO5WxJKsoSWhZlYmqFEmYzq1H4CeU-Obkk1N-dE6_XrCLjVFfviZsgAceGLfPMm7ByQhbOQXehClmmdCsKCB54IUL2XpailUyNdhguMWcx0Y5UmT7US7TRVPbaQA192PVNhxRwOv_1ypvuKW_Sybv9_VC3fxW8_mGPzp8hB7GQBIfDAfYRvdsvYO241Vt8YeIJ_3xMWpPVQDXwKu3SbwYugPAa2FVG3wdCiotjhMk4OP8slnOuqtr3DV4Flp53Q2u_DQJfHJ2jOOPBuwfcbHSfWfxDLJkX2eP227Z_LJP0Pnhlx-fj5I4ayHRnKZdwkSVgd9ipc6F06UuSqqAiyQvIULSqeLWaqbBuwuVKZJaJ1iuuOK5ccbZVJOnaKsG7j5HWFCdGki8nMksNaYURnNXmpSZqmLUZhNEVoyXOgKR-3kYcxn-rhWQkAwslF5cMoprgpL1rsUAxHEL_Scv0zWth9EOH0C5ZFQueZtyTdBrrxFy6EldGwN5AFka8VNL-AS9DRQeSqP2tTqXqm9befzt5x2Ivp-NiN5HItcAO7SK_RFwJg_RNaLcHVGCQdCj5Tcr_ZV-yVfR1bbpWwnhXMEgviuB5tmgz2v-EI9tSGg-QcVI00cMHK_Us6uARw5BLhUF7Jyu78SdRPTif4joJXoAMawYUAZ20Va37O0exIld9SqYhD-nVGk0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoDwXChiEeBySJnFsJ8cFUbVIXVChqByQ5Th2u-o2WW0SoXLgtzNOnFVThCgHblE8jpSxPfON7fkGoeec5czIkHphFhMvTrLEk5kkHlWRtgz8JCY2OXlvynYO4veH9HANfetzYZwGIUacl1V7km8fykJvOU1uWb6i7vTUDwkP-x7-AoT8lrCcJy9axiG7M1bbBKQraJ1RgOojtH4w_Tj52p00Rx6LAuLS6f70pYG7aln9f7fd55zXxYuVV5tiIc--y_n8nNfavoF-9v_bXVY58Zs689WPC1SQ_00hN9F1h3fxpPvKBlrTxS204SxKhV852uvXt1E1lS0HCO63UPGiS2IA54plkePT9t6nxq7QBbycH5XLWX18iusSz9qMY3OGM1v0Au_t72J3HoLtXjOWqqk1nkEwb9MBcFUvyxN9Bx1sv_v8dsdzJSE8xeKg9miaheBeaaKi1KhE8SSWYLJJlACQU4FkWiuqAISkMpQk0CalkWSSRbnJjQ4UuYtGBejlPsJprIIc4kOThzrO8yTNFTNJHtA8y2iswzEi_cgL5fjSbdmOuWgPATnETZ0KhVW0cIoeI2_Va9HxhfxF_o2dVCtZy_bdvoCRFm6EBQ2ZBqCV6sxIQFRUUk1TRTmHAJpxE4zREzslRZc6u7JZYgLBJLHFVdgYPWslLONHYa8UHcmmqsTuhy-XEPq0PxB66YRMCepQ0qVxwD_ZiTiQ3BxIgt1Sg-an_QIStsle9it02VQCUCenAEMTkLnXLaiVfoilYCRxNEZ8sNQGChy2FLPjljYdsHiccujprxblpYbowb92eIiuAaxOO-KDTTSql41-BNC1zh47A_QLa3-hZA priority: 102 providerName: Unpaywall |
| Title | Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30818342 https://www.proquest.com/docview/2187529386 https://pubmed.ncbi.nlm.nih.gov/PMC6394972 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212778&type=printable https://doaj.org/article/516e4159ebfa4265a5e59c57702667f0 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cYALYnkWlmIQEnBIlcR2nBwQ6q627CK1rApFu6fIcZxuRTcpTSrov2fsuNGGh-glB3scyePHfLZnvkHoFQ_SIBMec7yEEoeGSeiIRBCHSV9pBn5CiQ5OHo6C0wn9eMEudtAmZ6tVYPnXo53OJzVZzns_v6_fw4J_Z7I2cG_TqLcoctUzlOU83EX7YKsincxhSJt3BVjd5vVSoxYn8F1ig-n-9ZeWsTKc_n_u3DdM1-9ulbdW-UKsf4j5_IbNGtxFdyzYxP16dhygHZXfQwd2OZf4jeWcfnsflSNhCDjw5v4SL-oIArBsWOQpvjZOlwrbLBNQOJ8Wy1l1dY2rAs9MuG-2xonOOIGH4zNsHyOwvujFQq4qhWegbu2Lj8tqWXxTD9BkcPLl-NSx-RgcGVC3cliUeGDbWCj9KJOh5CEVoFHih4CipCsCpSSTgAAi4QniqixivghE4KdZmilXkodoLwftPkY4otJN4XCWpZ6iaRpGqQyyMHVZmiSMKq-DyEbxsbRk5Tpnxjw2L3AcDi21CmM9XLEdrg5ymlaLmqzjP_JHekwbWU21bQqK5TS2KzdmXqAA5UQqyQTAGSaYYpFknMPpNeCZ20HP9YyI67jVZsOI-3CSIzqzSdBBL42EptvItT_PVKzKMj779HULoc_jltBrK5QVoA4pbAwF9EnTeLUkD1uSsGnIVvWLzfyNdZX2tMtVsSpjgHycAQYMQeZRPZ8b_RDNf0io30G8NdNbCmzX5LMrw1kOQJhGHFr2mjWx1RA92brHT9FtALNRTTdwiPaq5Uo9A8BYJV20yy84fMNjT38HH7po_-hkdD7umiuYrtkjoGwyOu9f_gIjL3RF |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoDwXChiEeBySJnFsJ8cFUbVIXVChqByQ5Th2u-o2WW0SoXLgtzNOnFVThCgHblE8jpSxPfON7fkGoeec5czIkHphFhMvTrLEk5kkHlWRtgz8JCY2OXlvynYO4veH9HANfetzYZwGIUacl1V7km8fykJvOU1uWb6i7vTUDwkP-x7-AoT8lrCcJy9axiG7M1bbBKQraJ1RgOojtH4w_Tj52p00Rx6LAuLS6f70pYG7aln9f7fd55zXxYuVV5tiIc--y_n8nNfavoF-9v_bXVY58Zs689WPC1SQ_00hN9F1h3fxpPvKBlrTxS204SxKhV852uvXt1E1lS0HCO63UPGiS2IA54plkePT9t6nxq7QBbycH5XLWX18iusSz9qMY3OGM1v0Au_t72J3HoLtXjOWqqk1nkEwb9MBcFUvyxN9Bx1sv_v8dsdzJSE8xeKg9miaheBeaaKi1KhE8SSWYLJJlACQU4FkWiuqAISkMpQk0CalkWSSRbnJjQ4UuYtGBejlPsJprIIc4kOThzrO8yTNFTNJHtA8y2iswzEi_cgL5fjSbdmOuWgPATnETZ0KhVW0cIoeI2_Va9HxhfxF_o2dVCtZy_bdvoCRFm6EBQ2ZBqCV6sxIQFRUUk1TRTmHAJpxE4zREzslRZc6u7JZYgLBJLHFVdgYPWslLONHYa8UHcmmqsTuhy-XEPq0PxB66YRMCepQ0qVxwD_ZiTiQ3BxIgt1Sg-an_QIStsle9it02VQCUCenAEMTkLnXLaiVfoilYCRxNEZ8sNQGChy2FLPjljYdsHiccujprxblpYbowb92eIiuAaxOO-KDTTSql41-BNC1zh47A_QLa3-hZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+language+processing+and+machine+learning+algorithm+to+identify+brain+MRI+reports+with+acute+ischemic+stroke&rft.jtitle=PloS+one&rft.au=Kim%2C+Chulho&rft.au=Zhu%2C+Vivienne&rft.au=Obeid%2C+Jihad&rft.au=Lenert%2C+Leslie&rft.date=2019-02-28&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=2&rft.spage=e0212778&rft_id=info:doi/10.1371%2Fjournal.pone.0212778&rft.externalDocID=A576306806 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |