Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke

This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes. All brain MRI reports from a single academic institution over a two year period were...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 2; p. e0212778
Main Authors Kim, Chulho, Zhu, Vivienne, Obeid, Jihad, Lenert, Leslie
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 28.02.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0212778

Cover

Abstract This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes. All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms. Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements. Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS.
AbstractList Background and purpose This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes. Materials and methods All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms. Results Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements. Conclusions Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS.
Background and purposeThis project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes.Materials and methodsAll brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms.ResultsOf all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements.ConclusionsSupervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS.
This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes. All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms. Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements. Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS.
This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes. All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms. Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements. Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS.
This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes.BACKGROUND AND PURPOSEThis project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports into acute ischemic stroke (AIS) and non-AIS phenotypes.All brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms.MATERIALS AND METHODSAll brain MRI reports from a single academic institution over a two year period were randomly divided into 2 groups for ML: training (70%) and testing (30%). Using "quanteda" NLP package, all text data were parsed into tokens to create the data frequency matrix. Ten-fold cross-validation was applied for bias correction of the training set. Labeling for AIS was performed manually, identifying clinical notes. We applied binary logistic regression, naïve Bayesian classification, single decision tree, and support vector machine for the binary classifiers, and we assessed performance of the algorithms by F1-measure. We also assessed how n-grams or term frequency-inverse document frequency weighting affected the performance of the algorithms.Of all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements.RESULTSOf all 3,204 brain MRI documents, 432 (14.3%) were labeled as AIS. AIS documents were longer in character length than those of non-AIS (median [interquartile range]; 551 [377-681] vs. 309 [164-396]). Of all ML algorithms, single decision tree had the highest F1-measure (93.2) and accuracy (98.0%). Adding bigrams to the ML model improved F1-mesaure of naïve Bayesian classification, but not in others, and term frequency-inverse document frequency weighting to data frequency matrix did not show any additional performance improvements.Supervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS.CONCLUSIONSSupervised ML based NLP algorithms are useful for automatic classification of brain MRI reports for identification of AIS patients. Single decision tree was the best classifier to identify brain MRI reports with AIS.
Audience Academic
Author Obeid, Jihad
Lenert, Leslie
Kim, Chulho
Zhu, Vivienne
AuthorAffiliation 1 Department of Neurology, Hallym University College of Medicine, Chuncheon, Korea
3 Biomedical Informatics Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
4 Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
University College London, UNITED STATES
2 Medical University of South Carolina, Charleston, South Carolina, United States of America
AuthorAffiliation_xml – name: 2 Medical University of South Carolina, Charleston, South Carolina, United States of America
– name: University College London, UNITED STATES
– name: 3 Biomedical Informatics Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
– name: 4 Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
– name: 1 Department of Neurology, Hallym University College of Medicine, Chuncheon, Korea
Author_xml – sequence: 1
  givenname: Chulho
  orcidid: 0000-0001-8762-8340
  surname: Kim
  fullname: Kim, Chulho
– sequence: 2
  givenname: Vivienne
  surname: Zhu
  fullname: Zhu, Vivienne
– sequence: 3
  givenname: Jihad
  surname: Obeid
  fullname: Obeid, Jihad
– sequence: 4
  givenname: Leslie
  surname: Lenert
  fullname: Lenert, Leslie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30818342$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2A_9ByIBQfRi10xmkpnphVCKHwvVQv24DWczZ2ZTs8maZKz7781217IjgiUXCSfP-5Jz3hxnB9ZZzLKnOZ3mRZW_vnaDt2Cmq1SeUpazqqofZEd5U7CJYLQ42DsfZschXFPKi1qIR9lhQeu8Lkp2lIVPEAcPhhiw_QA9kpV3CkPQtidgW7IEtdAWiUHw9rZoeud1XCxJdES3aKPu1mTuQVvy8WpGPK6cj4HcJIaAGiISHdQCl1qREL37jo-zhx2YgE92-0n29d3bL-cfJheX72fnZxcTJUoaJ7yZ56Kqea1Y06laVXUJqYGC1ZQLRUEgKq5SIw3kUFDsGs5AgGBt13ZIVXGSzba-rYNrufJ6CX4tHWh5W3C-l-CjVgYlzwWWOW9w3kHJBAeOvFG8qigToupo8uJbr8GuYH0DxtwZ5lRuApG7QOQmELkLJOnebHWrYb7EVqVxeTCjx4xvrF7I3v2UomjKpmLJ4OXOwLsfA4Yol2mcaFJe6IYgWV5XnDUp2IQ-36I9pJa07VxyVBtcnvFKFFTUdENN_0Gl1W4iSm_vdKqPBK9GgsRE_BV7GEKQs89X92cvv43ZF3vsAsHERXBmiNrZMAaf7c_wbnh_fnECTreA8i4Ej51UOsLGJ7Wmzf8SKv8S3yvY34jqHP4
CitedBy_id crossref_primary_10_1186_s42779_023_00198_z
crossref_primary_10_1109_ACCESS_2021_3119621
crossref_primary_10_1007_s13278_021_00764_w
crossref_primary_10_3390_info14080454
crossref_primary_10_1007_s10618_023_00962_4
crossref_primary_10_2196_24381
crossref_primary_10_1109_ACCESS_2023_3312622
crossref_primary_10_1007_s43440_022_00445_1
crossref_primary_10_1186_s12911_021_01533_7
crossref_primary_10_1186_s12880_021_00671_8
crossref_primary_10_1142_S0218126623500883
crossref_primary_10_2196_51822
crossref_primary_10_2196_29806
crossref_primary_10_3390_jpm10040286
crossref_primary_10_1007_s10489_023_04944_3
crossref_primary_10_1186_s12911_022_02012_3
crossref_primary_10_2196_42884
crossref_primary_10_1111_jgh_15313
crossref_primary_10_1080_10255842_2024_2363946
crossref_primary_10_1007_s00330_021_08132_0
crossref_primary_10_3174_ajnr_A8102
crossref_primary_10_1161_JAHA_121_023486
crossref_primary_10_3389_fonc_2022_913806
crossref_primary_10_1007_s11547_023_01735_1
crossref_primary_10_1055_s_0041_1735178
crossref_primary_10_1109_JBHI_2020_2976931
crossref_primary_10_1186_s12911_024_02717_7
crossref_primary_10_1016_j_ijmedinf_2022_104779
crossref_primary_10_1002_brb3_1922
crossref_primary_10_1007_s00234_022_03029_1
crossref_primary_10_3390_diagnostics13071251
crossref_primary_10_17340_jkna_2021_3_2
crossref_primary_10_2196_48693
crossref_primary_10_1007_s11063_020_10279_8
crossref_primary_10_1080_15563650_2024_2408360
crossref_primary_10_2196_42477
crossref_primary_10_1016_j_sdentj_2024_11_007
crossref_primary_10_1111_csp2_13167
crossref_primary_10_3389_fpsyt_2022_946387
Cites_doi 10.1161/STROKEAHA.107.490375
10.1161/STROKEAHA.110.612358
10.1136/amiajnl-2012-001576
10.1161/STROKEAHA.117.019358
10.5853/jos.2015.17.1.38
10.1136/amiajnl-2014-002768
10.1148/radiology.217.2.r00nv24331
10.1007/s10278-014-9708-x
10.1093/aje/kwf152
10.1075/ijcl.14.1.03cul
10.1016/j.ijmedinf.2018.02.005
10.1161/STROKEAHA.117.016811
10.1111/acem.12859
10.4338/ACI-2016-08-RA-0129
10.1016/S0140-6736(12)62134-5
10.1007/s10549-016-4035-1
10.1016/j.ejrad.2017.08.014
10.1613/jair.953
10.1161/STR.0b013e318296aeca
10.1016/S0140-6736(16)31460-X
10.1007/s13534-017-0051-2
10.1371/journal.pone.0193776
10.1016/j.jbi.2017.07.012
10.1148/rg.2016150080
10.1016/j.jstrokecerebrovasdis.2017.08.028
10.32614/RJ-2014-008
10.1016/S0306-4573(01)00045-0
10.1016/0306-4573(88)90021-0
10.1016/j.jacr.2011.09.010
10.1016/j.artmed.2015.09.007
10.1016/S0140-6736(16)31012-1
10.1108/eb046814
10.1007/s10278-017-0027-x
10.1001/jama.2014.7692
10.1186/s13293-018-0170-1
10.1111/acem.12925
10.1186/s13326-016-0065-1
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Kim et al 2019 Kim et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Kim et al 2019 Kim et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0212778
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Automatic classification of brain MRI reports
EISSN 1932-6203
ExternalDocumentID oai_doaj_org_article_516e4159ebfa4265a5e59c57702667f0
10.1371/journal.pone.0212778
PMC6394972
A576306806
30818342
10_1371_journal_pone_0212778
Genre Validation Study
Comparative Study
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM109040
– fundername: NCATS NIH HHS
  grantid: UL1 TR001450
– fundername: ;
– fundername: ;
  grantid: UL1 TR001450
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c640t-59b167858c29fc8c784a538328056c0a6eec5c8189a1a30ef952a6a62dfdfe0c3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Oct 03 12:52:27 EDT 2025
Sun Oct 26 04:15:41 EDT 2025
Tue Sep 30 16:33:29 EDT 2025
Fri Sep 05 14:19:31 EDT 2025
Mon Oct 20 22:00:16 EDT 2025
Mon Oct 20 16:11:26 EDT 2025
Thu Oct 16 15:13:30 EDT 2025
Thu Oct 16 15:03:16 EDT 2025
Thu May 22 21:07:36 EDT 2025
Wed Feb 19 02:31:04 EST 2025
Thu Apr 24 23:00:43 EDT 2025
Wed Oct 01 02:24:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-59b167858c29fc8c784a538328056c0a6eec5c8189a1a30ef952a6a62dfdfe0c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
Competing Interests: Drs. Kim, Zhu and Obeid have no competing interests. Dr. Lenert is a member of the Board of Directors of the ATCC. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.
ORCID 0000-0001-8762-8340
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0212778
PMID 30818342
PQID 2187529386
PQPubID 23479
PageCount e0212778
ParticipantIDs doaj_primary_oai_doaj_org_article_516e4159ebfa4265a5e59c57702667f0
unpaywall_primary_10_1371_journal_pone_0212778
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6394972
proquest_miscellaneous_2187529386
gale_infotracmisc_A576306806
gale_infotracacademiconefile_A576306806
gale_incontextgauss_ISR_A576306806
gale_incontextgauss_IOV_A576306806
gale_healthsolutions_A576306806
pubmed_primary_30818342
crossref_citationtrail_10_1371_journal_pone_0212778
crossref_primary_10_1371_journal_pone_0212778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-28
PublicationDateYYYYMMDD 2019-02-28
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P Kaur (ref27) 2018
N Lunardon (ref28) 2014; 6
S Hassanpour (ref35) 2016; 66
RW Grundmeier (ref39) 2016; 7
J. Culpeper (ref24) 2009; 14
BJ Kim (ref18) 2015; 17
Y Zhou (ref36) 2014; 27
K Yadav (ref45) 2016; 23
CY Hung (ref13) 2017; 2017
YY Song (ref40) 2015; 27
RL Sacco (ref19) 2013; 44
(ref2) 2016; 388
I Fragata (ref29) 2017; 48
S Lahmiri (ref44) 2018; 8
M Baldereschi (ref8) 2018; 13
C Willers (ref6) 2018; 9
J Pennington (ref48) 2014
P Piriyawat (ref30) 2002; 156
T Cai (ref11) 2016; 36
D Kleindorfer (ref32) 2008; 39
S Doan (ref41) 2016; 23
TM Therneau (ref26) 2000
PH Chen (ref16) 2018; 31
W Liu (ref42) 2010; 5
SF Sung (ref15) 2018; 112
S Koton (ref5) 2014; 312
G Salton (ref22) 1988; 24
KK Ilias Maglogiannis (ref43) 2007
NV Chawla (ref49) 2002; 16
CM Tan (ref38) 2002; 38
MS Dhamoon (ref7) 2018; 27
M Baldereschi (ref31) 2018; 13
(ref1) 2016; 388
RV Krishnamurthi (ref4) 2018; 49
A Wright (ref34) 2013; 20
P Vilela (ref9) 2017; 96
K Kreimeyer (ref10) 2017; 73
R Lacson (ref12) 2011; 8
MF Porter (ref21) 1980; 14
A Yala (ref17) 2017; 161
CM Rochefort (ref37) 2014; 22
ref25
ref20
PW Schaefer (ref46) 2000; 217
O Adeoye (ref33) 2011; 42
DL Mowery (ref14) 2016; 7
J Lilleberg (ref47) 2015
PF Brown (ref23) 1992; 18
CJ Murray (ref3) 2012; 380
References_xml – volume: 39
  start-page: 924
  year: 2008
  ident: ref32
  article-title: National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.490375
– volume: 42
  start-page: 1952
  year: 2011
  ident: ref33
  article-title: Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.612358
– volume: 20
  start-page: 887
  year: 2013
  ident: ref34
  article-title: Use of a support vector machine for categorizing free-text notes: assessment of accuracy across two institutions
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-001576
– volume: 49
  start-page: 3
  year: 2018
  ident: ref4
  article-title: Stroke incidence by major pathological type and ischemic subtypes in the Auckland regional community stroke studies: changes between 2002 and 2011
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.019358
– volume: 2017
  start-page: 3110
  year: 2017
  ident: ref13
  article-title: Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 17
  start-page: 38
  year: 2015
  ident: ref18
  article-title: Case characteristics, hyperacute treatment, and outcome information from the clinical research center for stroke-fifth division registry in South Korea
  publication-title: J Stroke
  doi: 10.5853/jos.2015.17.1.38
– ident: ref20
– volume: 22
  start-page: 155
  year: 2014
  ident: ref37
  article-title: A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2014-002768
– volume: 217
  start-page: 331
  year: 2000
  ident: ref46
  article-title: Diffusion-weighted MR imaging of the brain
  publication-title: Radiology
  doi: 10.1148/radiology.217.2.r00nv24331
– volume: 5
  start-page: 844
  year: 2010
  ident: ref42
  article-title: Index-based online text classification for sms spam filtering
  publication-title: J Comput
– volume: 27
  start-page: 130
  year: 2015
  ident: ref40
  article-title: Decision tree methods: applications for classification and prediction
  publication-title: Shanghai Arch Psychiatry
– year: 2007
  ident: ref43
  article-title: HCI, information retrieval and pervasive technologies
– volume: 27
  start-page: 730
  year: 2014
  ident: ref36
  article-title: Automated classification of radiology reports to facilitate retrospective study in radiology
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-014-9708-x
– volume: 156
  start-page: 1062
  year: 2002
  ident: ref30
  article-title: Comparison of active and passive surveillance for cerebrovascular disease: The Brain Attack Surveillance in Corpus Christi (BASIC) Project
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwf152
– volume: 14
  start-page: 29
  year: 2009
  ident: ref24
  article-title: Keyness: Words, parts-of-speech and semantic categories in the character-talk of Shakespeare’s Romeo and Juliet
  publication-title: Int J Corp Linguist
  doi: 10.1075/ijcl.14.1.03cul
– start-page: 1532
  year: 2014
  ident: ref48
  article-title: Glove: Global vectors for word representation
  publication-title: Proc Empir Methods Nat Lang Process
– volume: 112
  start-page: 149
  year: 2018
  ident: ref15
  article-title: Applying natural language processing techniques to develop a task-specific EMR interface for timely stroke thrombolysis: a feasibility study
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2018.02.005
– volume: 48
  start-page: 2091
  year: 2017
  ident: ref29
  article-title: Early prediction of delayed ischemia and functional outcome in acute subarachnoid hemorrhage: role of diffusion tensor imaging
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.016811
– volume: 23
  start-page: 171
  year: 2016
  ident: ref45
  article-title: Automated Outcome Classification of Computed Tomography Imaging Reports for Pediatric Traumatic Brain Injury
  publication-title: Acad Emerg Med
  doi: 10.1111/acem.12859
– volume: 7
  start-page: 1051
  year: 2016
  ident: ref39
  article-title: Identification of long bone fractures in radiology reports using natural language processing to support healthcare quality improvement
  publication-title: Appl Clin Inform
  doi: 10.4338/ACI-2016-08-RA-0129
– volume: 380
  start-page: 2055
  year: 2012
  ident: ref3
  article-title: GBD 2010: a multi-investigator collaboration for global comparative descriptive epidemiology
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)62134-5
– volume: 161
  start-page: 203
  year: 2017
  ident: ref17
  article-title: Using machine learning to parse breast pathology reports
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-016-4035-1
– volume: 96
  start-page: 162
  year: 2017
  ident: ref9
  article-title: Brain ischemia: CT and MRI techniques in acute ischemic stroke
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2017.08.014
– volume: 16
  start-page: 321
  year: 2002
  ident: ref49
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 44
  start-page: 2064
  year: 2013
  ident: ref19
  article-title: An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association
  publication-title: Stroke
  doi: 10.1161/STR.0b013e318296aeca
– ident: ref25
– year: 2000
  ident: ref26
  article-title: An introduction to recursive partitioning using the rpart routines
– volume: 388
  start-page: 1603
  year: 2016
  ident: ref1
  article-title: Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the global burden of disease study 2015
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)31460-X
– volume: 8
  start-page: 29
  year: 2018
  ident: ref44
  article-title: Performance of machine learning methods in diagnosing parkinson’s disease based on dysphonia measures
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-017-0051-2
– volume: 13
  start-page: e0193776
  year: 2018
  ident: ref31
  article-title: Administrative data underestimate acute ischemic stroke events and thrombolysis treatments: data from a multicenter validation survey in Italy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0193776
– volume: 73
  start-page: 14
  year: 2017
  ident: ref10
  article-title: Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.07.012
– volume: 36
  start-page: 176
  year: 2016
  ident: ref11
  article-title: Natural language processing technologies in radiology research and clinical applications
  publication-title: Radiographics
  doi: 10.1148/rg.2016150080
– volume: 27
  start-page: 210
  year: 2018
  ident: ref7
  article-title: Sex differences in outcomes after stroke in patients with diabetes in Ontario, Canada
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/j.jstrokecerebrovasdis.2017.08.028
– volume: 6
  year: 2014
  ident: ref28
  article-title: ROSE: A package for binary imbalanced learning
  publication-title: R Journal
  doi: 10.32614/RJ-2014-008
– volume: 38
  start-page: 529
  year: 2002
  ident: ref38
  article-title: The use of bigrams to enhance text categorization
  publication-title: Inform Process Manag
  doi: 10.1016/S0306-4573(01)00045-0
– volume: 18
  start-page: 467
  year: 1992
  ident: ref23
  article-title: Class-based n-gram models of natural language
  publication-title: Comput Linguist
– volume: 24
  start-page: 513
  year: 1988
  ident: ref22
  article-title: Term-weighting approaches in automatic text retrieval
  publication-title: Inf Process Manage
  doi: 10.1016/0306-4573(88)90021-0
– volume: 8
  start-page: 872
  year: 2011
  ident: ref12
  article-title: Practical examples of natural language processing in radiology
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2011.09.010
– volume: 66
  start-page: 29
  year: 2016
  ident: ref35
  article-title: Information extraction from multi-institutional radiology reports
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2015.09.007
– volume: 388
  start-page: 1459
  year: 2016
  ident: ref2
  article-title: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)31012-1
– start-page: 23
  year: 2018
  ident: ref27
– volume: 14
  start-page: 130
  year: 1980
  ident: ref21
  article-title: An algorithm for suffix stripping
  publication-title: Program
  doi: 10.1108/eb046814
– volume: 31
  start-page: 178
  year: 2018
  ident: ref16
  article-title: Integrating natural language processing and machine learning algorithms to categorize oncologic response in radiology reports
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-0027-x
– start-page: 136
  year: 2015
  ident: ref47
  article-title: Support vector machines and word2vec for text classification with semantic features
  publication-title: IEEE Cogn Inform Cogn Comput
– volume: 312
  start-page: 259
  year: 2014
  ident: ref5
  article-title: Stroke incidence and mortality trends in US communities, 1987 to 2011
  publication-title: JAMA
  doi: 10.1001/jama.2014.7692
– volume: 9
  start-page: 11
  year: 2018
  ident: ref6
  article-title: Sex as predictor for achieved health outcomes and received care in ischemic stroke and intracerebral hemorrhage: a register-based study
  publication-title: Biol Sex Differ
  doi: 10.1186/s13293-018-0170-1
– volume: 13
  start-page: e0193776
  year: 2018
  ident: ref8
  article-title: Administrative data underestimate acute ischemic stroke events and thrombolysis treatments: data from a multicenter validation survey in Italy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0193776
– volume: 23
  start-page: 628
  year: 2016
  ident: ref41
  article-title: Building a natural language processing tool to identify patients with high clinical suspicion for Kawasaki disease from emergency department notes
  publication-title: Acad Emerg Med
  doi: 10.1111/acem.12925
– volume: 7
  start-page: 26
  year: 2016
  ident: ref14
  article-title: Extracting a stroke phenotype risk factor from Veteran Health Administration clinical reports: an information content analysis
  publication-title: J Biomed Semantics
  doi: 10.1186/s13326-016-0065-1
SSID ssj0053866
Score 2.5459154
Snippet This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain MRI radiology reports...
Background and purpose This project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain...
Background and purposeThis project assessed performance of natural language processing (NLP) and machine learning (ML) algorithms for classification of brain...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0212778
SubjectTerms Adult
Aged
Algorithms
Brain - diagnostic imaging
Brain Infarction - diagnostic imaging
Brain research
Case-Control Studies
Computer and Information Sciences
Data mining
Decision Trees
Diagnosis
Diagnostic imaging
Engineering and Technology
Female
Humans
Image Interpretation, Computer-Assisted - methods
Ischemia
Machine learning
Magnetic Resonance Imaging
Male
Medicine and Health Sciences
Middle Aged
Natural Language Processing
Phenotypes
Physical Sciences
Radiology
Random Allocation
Research and Analysis Methods
Retrospective Studies
Stroke
Support Vector Machine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBtLwWWjAICThkm8SPxMeCqFqkFqlQ1Jvl-NGu2CarTSLUf8_Y8a42cGgPXOPxwTPjeTgz3yD0ruCGO5WxJKsoSWhZlYmqFEmYzq1H4CeU-Obkk1N-dE6_XrCLjVFfviZsgAceGLfPMm7ByQhbOQXehClmmdCsKCB54IUL2XpailUyNdhguMWcx0Y5UmT7US7TRVPbaQA192PVNhxRwOv_1ypvuKW_Sybv9_VC3fxW8_mGPzp8hB7GQBIfDAfYRvdsvYO241Vt8YeIJ_3xMWpPVQDXwKu3SbwYugPAa2FVG3wdCiotjhMk4OP8slnOuqtr3DV4Flp53Q2u_DQJfHJ2jOOPBuwfcbHSfWfxDLJkX2eP227Z_LJP0Pnhlx-fj5I4ayHRnKZdwkSVgd9ipc6F06UuSqqAiyQvIULSqeLWaqbBuwuVKZJaJ1iuuOK5ccbZVJOnaKsG7j5HWFCdGki8nMksNaYURnNXmpSZqmLUZhNEVoyXOgKR-3kYcxn-rhWQkAwslF5cMoprgpL1rsUAxHEL_Scv0zWth9EOH0C5ZFQueZtyTdBrrxFy6EldGwN5AFka8VNL-AS9DRQeSqP2tTqXqm9befzt5x2Ivp-NiN5HItcAO7SK_RFwJg_RNaLcHVGCQdCj5Tcr_ZV-yVfR1bbpWwnhXMEgviuB5tmgz2v-EI9tSGg-QcVI00cMHK_Us6uARw5BLhUF7Jyu78SdRPTif4joJXoAMawYUAZ20Va37O0exIld9SqYhD-nVGk0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoDwXChiEeBySJnFsJ8cFUbVIXVChqByQ5Th2u-o2WW0SoXLgtzNOnFVThCgHblE8jpSxPfON7fkGoeec5czIkHphFhMvTrLEk5kkHlWRtgz8JCY2OXlvynYO4veH9HANfetzYZwGIUacl1V7km8fykJvOU1uWb6i7vTUDwkP-x7-AoT8lrCcJy9axiG7M1bbBKQraJ1RgOojtH4w_Tj52p00Rx6LAuLS6f70pYG7aln9f7fd55zXxYuVV5tiIc--y_n8nNfavoF-9v_bXVY58Zs689WPC1SQ_00hN9F1h3fxpPvKBlrTxS204SxKhV852uvXt1E1lS0HCO63UPGiS2IA54plkePT9t6nxq7QBbycH5XLWX18iusSz9qMY3OGM1v0Au_t72J3HoLtXjOWqqk1nkEwb9MBcFUvyxN9Bx1sv_v8dsdzJSE8xeKg9miaheBeaaKi1KhE8SSWYLJJlACQU4FkWiuqAISkMpQk0CalkWSSRbnJjQ4UuYtGBejlPsJprIIc4kOThzrO8yTNFTNJHtA8y2iswzEi_cgL5fjSbdmOuWgPATnETZ0KhVW0cIoeI2_Va9HxhfxF_o2dVCtZy_bdvoCRFm6EBQ2ZBqCV6sxIQFRUUk1TRTmHAJpxE4zREzslRZc6u7JZYgLBJLHFVdgYPWslLONHYa8UHcmmqsTuhy-XEPq0PxB66YRMCepQ0qVxwD_ZiTiQ3BxIgt1Sg-an_QIStsle9it02VQCUCenAEMTkLnXLaiVfoilYCRxNEZ8sNQGChy2FLPjljYdsHiccujprxblpYbowb92eIiuAaxOO-KDTTSql41-BNC1zh47A_QLa3-hZA
  priority: 102
  providerName: Unpaywall
Title Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke
URI https://www.ncbi.nlm.nih.gov/pubmed/30818342
https://www.proquest.com/docview/2187529386
https://pubmed.ncbi.nlm.nih.gov/PMC6394972
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212778&type=printable
https://doaj.org/article/516e4159ebfa4265a5e59c57702667f0
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Health & Medical Collection (via ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cYALYnkWlmIQEnBIlcR2nBwQ6q627CK1rApFu6fIcZxuRTcpTSrov2fsuNGGh-glB3scyePHfLZnvkHoFQ_SIBMec7yEEoeGSeiIRBCHSV9pBn5CiQ5OHo6C0wn9eMEudtAmZ6tVYPnXo53OJzVZzns_v6_fw4J_Z7I2cG_TqLcoctUzlOU83EX7YKsincxhSJt3BVjd5vVSoxYn8F1ig-n-9ZeWsTKc_n_u3DdM1-9ulbdW-UKsf4j5_IbNGtxFdyzYxP16dhygHZXfQwd2OZf4jeWcfnsflSNhCDjw5v4SL-oIArBsWOQpvjZOlwrbLBNQOJ8Wy1l1dY2rAs9MuG-2xonOOIGH4zNsHyOwvujFQq4qhWegbu2Lj8tqWXxTD9BkcPLl-NSx-RgcGVC3cliUeGDbWCj9KJOh5CEVoFHih4CipCsCpSSTgAAi4QniqixivghE4KdZmilXkodoLwftPkY4otJN4XCWpZ6iaRpGqQyyMHVZmiSMKq-DyEbxsbRk5Tpnxjw2L3AcDi21CmM9XLEdrg5ymlaLmqzjP_JHekwbWU21bQqK5TS2KzdmXqAA5UQqyQTAGSaYYpFknMPpNeCZ20HP9YyI67jVZsOI-3CSIzqzSdBBL42EptvItT_PVKzKMj779HULoc_jltBrK5QVoA4pbAwF9EnTeLUkD1uSsGnIVvWLzfyNdZX2tMtVsSpjgHycAQYMQeZRPZ8b_RDNf0io30G8NdNbCmzX5LMrw1kOQJhGHFr2mjWx1RA92brHT9FtALNRTTdwiPaq5Uo9A8BYJV20yy84fMNjT38HH7po_-hkdD7umiuYrtkjoGwyOu9f_gIjL3RF
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoDwXChiEeBySJnFsJ8cFUbVIXVChqByQ5Th2u-o2WW0SoXLgtzNOnFVThCgHblE8jpSxPfON7fkGoeec5czIkHphFhMvTrLEk5kkHlWRtgz8JCY2OXlvynYO4veH9HANfetzYZwGIUacl1V7km8fykJvOU1uWb6i7vTUDwkP-x7-AoT8lrCcJy9axiG7M1bbBKQraJ1RgOojtH4w_Tj52p00Rx6LAuLS6f70pYG7aln9f7fd55zXxYuVV5tiIc--y_n8nNfavoF-9v_bXVY58Zs689WPC1SQ_00hN9F1h3fxpPvKBlrTxS204SxKhV852uvXt1E1lS0HCO63UPGiS2IA54plkePT9t6nxq7QBbycH5XLWX18iusSz9qMY3OGM1v0Au_t72J3HoLtXjOWqqk1nkEwb9MBcFUvyxN9Bx1sv_v8dsdzJSE8xeKg9miaheBeaaKi1KhE8SSWYLJJlACQU4FkWiuqAISkMpQk0CalkWSSRbnJjQ4UuYtGBejlPsJprIIc4kOThzrO8yTNFTNJHtA8y2iswzEi_cgL5fjSbdmOuWgPATnETZ0KhVW0cIoeI2_Va9HxhfxF_o2dVCtZy_bdvoCRFm6EBQ2ZBqCV6sxIQFRUUk1TRTmHAJpxE4zREzslRZc6u7JZYgLBJLHFVdgYPWslLONHYa8UHcmmqsTuhy-XEPq0PxB66YRMCepQ0qVxwD_ZiTiQ3BxIgt1Sg-an_QIStsle9it02VQCUCenAEMTkLnXLaiVfoilYCRxNEZ8sNQGChy2FLPjljYdsHiccujprxblpYbowb92eIiuAaxOO-KDTTSql41-BNC1zh47A_QLa3-hZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+language+processing+and+machine+learning+algorithm+to+identify+brain+MRI+reports+with+acute+ischemic+stroke&rft.jtitle=PloS+one&rft.au=Kim%2C+Chulho&rft.au=Zhu%2C+Vivienne&rft.au=Obeid%2C+Jihad&rft.au=Lenert%2C+Leslie&rft.date=2019-02-28&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=2&rft.spage=e0212778&rft_id=info:doi/10.1371%2Fjournal.pone.0212778&rft.externalDocID=A576306806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon