Functional convergence of structurally distinct thioesterases from cyanobacteria and plants involved in phylloquinone biosynthesis
The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4‐dihydroxy‐2‐naphthoyl‐CoA (DHNA‐CoA) to release 1,4‐dihydroxy‐2‐naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog‐fold thioesterases that catalyze this react...
Saved in:
Published in | Acta crystallographica. Section D, Biological crystallography. Vol. 69; no. 10; pp. 1876 - 1888 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
5 Abbey Square, Chester, Cheshire CH1 2HU, England
International Union of Crystallography
01.10.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1399-0047 0907-4449 1399-0047 |
DOI | 10.1107/S0907444913015771 |
Cover
Abstract | The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4‐dihydroxy‐2‐naphthoyl‐CoA (DHNA‐CoA) to release 1,4‐dihydroxy‐2‐naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog‐fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog‐fold DHNA‐CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA‐CoA, similar to the 4‐hydroxybenzoyl‐CoA (4‐HBA‐CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4‐HBA‐CoA thioesterases, the DHNA‐CoA thioesterases contain either an active‐site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate‐bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA‐CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent‐exposed. Considered in light of the related 4‐HBA‐CoA thioesterases, these structures indicate that hotdog‐fold thioesterases using either an active‐site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes. |
---|---|
AbstractList | The crystal structures of two 1,4-dihydroxy-2-naphthoyl-CoA thioesterases of plant and cyanobacterial origin that are involved in the biosynthesis of phylloquinone are presented. The divergent structures of these two functionally similar enzymes indicate convergent evolution.
The synthesis of phylloquinone (vitamin K
1
) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium
Synechocystis
(Slr0204) and the flowering plant
Arabidopsis thaliana
(AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from
Pseudomonas
and
Arthrobacter
. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes. The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes. [PUBLICATION ABSTRACT] The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes. The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes. The synthesis of phylloquinone (vitamin K 1 ) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter . Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes. |
Author | Madzelan, Peter Basset, Gilles Furt, Fabienne Rizzo, Robert C. Allen, William J. Widhalm, Joshua R. Wilson, Mark A. |
Author_xml | – sequence: 1 givenname: Fabienne surname: Furt fullname: Furt, Fabienne – sequence: 2 givenname: William J. surname: Allen fullname: Allen, William J. – sequence: 3 givenname: Joshua R. surname: Widhalm fullname: Widhalm, Joshua R. – sequence: 4 givenname: Peter surname: Madzelan fullname: Madzelan, Peter – sequence: 5 givenname: Robert C. surname: Rizzo fullname: Rizzo, Robert C. – sequence: 6 givenname: Gilles surname: Basset fullname: Basset, Gilles – sequence: 7 givenname: Mark A. surname: Wilson fullname: Wilson, Mark A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24100308$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhiNURD_gB3BBlrhwWZiJnTi5IFUtLUgFDnys4GI5jt118dqLnSzkyi_Hy7ZVKRJw8sh-n1fzema_2PHB66J4iPAUEfizd9ACZ4y1SAErzvFOsYe0bWcAjO_cqHeL_ZQuAKAsKb9X7JYMASg0e8WPk9GrwQYvHVHBr3U8115pEgxJQxzVMEbp3ER6mwablWRY2KDToKNMOhETw5KoSfrQSZUvrSTS92TlpB8SsX4d3Fr3uSCrxeRc-DraTQbS2ZAmPyx0sul-cddIl_SDy_Og-HDy4v3Ry9nZ29NXR4dnM1UzoLPO1G2jUDasVxylxsZw2ZlWY0dbmi9KU7W0qRWYnBJ6hdhVlGtT9wx5Z-hB8Xzruxq7pe6V9kPOJlbRLmWcRJBW_P7i7UKch7WgvC1r2mSDJ5cGMQfJnyCWNintclgdxiSQ1awCrBv8DymjDHhNeZY-viW9CGPM8_ilggZzuI3q0c3mr7u-mmQW8K1AxZBS1EYoO8jNZHMW6wSC2OyM-GNnMom3yCvzvzHNlvlmnZ7-DYjDT8fH8woqmtHZFs0bpb9fozJ-ETWnvBLzN6eiYh_nvMTP4jX9CUrt5Z8 |
CitedBy_id | crossref_primary_10_1002_pro_4263 crossref_primary_10_1016_j_pbi_2015_05_005 crossref_primary_10_1080_09168451_2018_1433020 crossref_primary_10_1002_ajb2_1216 crossref_primary_10_1016_j_plipres_2020_101036 crossref_primary_10_1111_tpj_13352 crossref_primary_10_1093_nar_gkac937 |
Cites_doi | 10.1107/S090744490705024X 10.1107/S0907444996012255 10.1126/science.1218231 10.1002/pro.417 10.1002/jcc.10128 10.1107/S0907444904019158 10.1021/bi0262303 10.1186/1471-2105-5-109 10.1107/S0907444911001314 10.1016/j.jmb.2007.05.022 10.1016/S0969-2126(96)00030-5 10.1107/S0907444909042073 10.1021/bi301059m 10.1107/S0907444909052925 10.1002/jcc.21814 10.1107/S0021889803006721 10.1074/jbc.M809669200 10.1016/B978-0-12-385853-5.00001-5 10.1107/S0907444904026460 10.1107/S0021889807021206 10.1089/ars.2012.4521 10.1021/bi801879z 10.1074/jbc.M110.147934 10.1038/76776 10.1107/S0907444910045749 10.1002/jcc.20035 10.1038/355472a0 10.1021/bi00139a025 10.1016/S0076-6879(97)76066-X 10.1093/bioinformatics/bti770 10.1093/nar/gkq1072 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P 10.1107/S0907444900014736 10.1128/JB.00141-13 10.1074/jbc.273.50.33572 10.1107/S0907444903021784 10.1021/bi2013917 10.1074/jbc.M308198200 10.1002/prot.21123 10.1261/rna.1563609 10.1111/j.1365-313X.2012.04972.x 10.1016/j.str.2005.03.010 10.1073/pnas.0900738106 10.1128/MMBR.45.2.316-354.1981 10.1074/jbc.M203904200 |
ContentType | Journal Article |
Copyright | International Union of Crystallography, 2013 International Union of Crystallography 2013 2013 |
Copyright_xml | – notice: International Union of Crystallography, 2013 – notice: International Union of Crystallography 2013 2013 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7SP 7SR 7TK 7U5 8BQ 8FD H8D JG9 L7M 7X8 M7N 5PM |
DOI | 10.1107/S0907444913015771 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Aerospace Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE CrossRef Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Functional convergence of thioesterases |
EISSN | 1399-0047 |
EndPage | 1888 |
ExternalDocumentID | PMC3792638 3094792361 24100308 10_1107_S0907444913015771 AYDDW5053 ark_67375_WNG_54VW721Z_M |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: 8P41GM103543 – fundername: NIGMS NIH HHS grantid: R24 GM111072 – fundername: NCI NIH HHS grantid: Y1-CO-1020 – fundername: NIGMS NIH HHS grantid: Y1-GM-1104 – fundername: NIGMS NIH HHS grantid: P41 GM103543 – fundername: NCRR NIH HHS grantid: 5P41RR007707 – fundername: NIGMS NIH HHS grantid: R01 GM083669 – fundername: NIGMS NIH HHS grantid: R01 GM092999 – fundername: NCRR NIH HHS grantid: P41 RR007707 |
GroupedDBID | --- -ET -~X .3N .GA .Y3 05W 0R~ 10A 1OC 23M 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAMMB AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADMGS ADNMO ADOZA AEFGJ AEIGN AEIMD AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBC EBS EJD EMB F00 F01 F04 F5P G-S G.N GODZA GX1 H.T H.X HGLYW HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCJ RNS ROL RX1 SJN SUPJJ TN5 TUS UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WYISQ XG1 ZZTAW ~02 ~IA ~WT 186 1Y6 31~ 6TJ 8WZ A6W ABDBF ABEML ACUHS AI. AIQQE BTSUX CAG COF EAD EAP EBD EMK EMOBN EST ESX FEDTE HF~ HVGLF MVM NEJ PALCI RIWAO RJQFR SV3 VH1 ZCG AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7QP 7SP 7SR 7TK 7U5 8BQ 8FD H8D JG9 L7M 7X8 M7N 5PM |
ID | FETCH-LOGICAL-c6403-bf698c1a84dc71ae18f7abf9e1b3931ae2f59386c0f2230dc11b537ef6d417bf3 |
IEDL.DBID | DR2 |
ISSN | 1399-0047 0907-4449 |
IngestDate | Thu Aug 21 18:19:49 EDT 2025 Thu Sep 04 23:51:13 EDT 2025 Fri Sep 05 05:07:51 EDT 2025 Fri Jul 25 12:27:32 EDT 2025 Thu Apr 03 07:05:22 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Tue Jul 01 01:28:09 EDT 2025 Sun Sep 21 06:15:08 EDT 2025 Sun Sep 21 06:20:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Arabidopsis thaliana hotdog fold phylloquinone Synechocystis vitamin K thioesterases |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6403-bf698c1a84dc71ae18f7abf9e1b3931ae2f59386c0f2230dc11b537ef6d417bf3 |
Notes | ArticleID:AYDDW5053 istex:82CBB023A23781BF418BB7D412726213ABEE637A ark:/67375/WNG-54VW721Z-M ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.iucr.org/d/issues/2013/10/00/dw5053/dw5053.pdf |
PMID | 24100308 |
PQID | 1440819317 |
PQPubID | 1036389 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3792638 proquest_miscellaneous_1464501681 proquest_miscellaneous_1443407637 proquest_journals_1440819317 pubmed_primary_24100308 crossref_citationtrail_10_1107_S0907444913015771 crossref_primary_10_1107_S0907444913015771 wiley_primary_10_1107_S0907444913015771_AYDDW5053 istex_primary_ark_67375_WNG_54VW721Z_M |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2013 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: October 2013 |
PublicationDecade | 2010 |
PublicationPlace | 5 Abbey Square, Chester, Cheshire CH1 2HU, England |
PublicationPlace_xml | – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England – name: United States – name: Chester |
PublicationTitle | Acta crystallographica. Section D, Biological crystallography. |
PublicationTitleAlternate | Acta Cryst. D |
PublicationYear | 2013 |
Publisher | International Union of Crystallography Wiley Subscription Services, Inc |
Publisher_xml | – name: International Union of Crystallography – name: Wiley Subscription Services, Inc |
References | dw5053_bb35 Emsley (dw5053_bb17) 2004; 60 Wang (dw5053_bb43) 2004; 25 Widhalm (dw5053_bb45) 2009; 106 Sengupta (dw5053_bb36) 2005; 13 Wada (dw5053_bb42) 1976; 9 Cantu (dw5053_bb6) 2011; 39 Chen (dw5053_bb11) 2013; 195 Holyoak (dw5053_bb20) 2003; 59 Kotaka (dw5053_bb24) 2009; 284 Oostende (dw5053_bb41) 2011; 59 Song (dw5053_bb37) 2012; 51 Jakalian (dw5053_bb23) 2002; 23 Fenn (dw5053_bb18) 2003; 36 Zhuang (dw5053_bb48) 2002; 41 Cao (dw5053_bb8) 2009; 48 Otwinowski (dw5053_bb33) 1997; 276 Cantu (dw5053_bb7) 2010; 19 Li (dw5053_bb30) 2000; 7 Benning (dw5053_bb4) 1998; 273 Lang (dw5053_bb28) 2009; 15 Thoden (dw5053_bb40) 2003; 278 dw5053_bb19 dw5053_bb16 Chen (dw5053_bb14) 2010; 66 Murshudov (dw5053_bb32) 1997; 53 Collins (dw5053_bb13) 1981; 45 Balius (dw5053_bb3) 2011; 32 Brünger (dw5053_bb5) 1992; 355 Winn (dw5053_bb46) 2001; 57 Hornak (dw5053_bb21) 2006; 65 Leesong (dw5053_bb29) 1996; 4 Winn (dw5053_bb12) 2011; 67 Chang (dw5053_bb10) 1992; 31 Thoden (dw5053_bb39) 2002; 277 Diederichs (dw5053_bb15) 2012; 336 Zhuang (dw5053_bb47) 2012; 51 Jakalian (dw5053_bb22) 2000; 21 Adams (dw5053_bb1) 2010; 66 Krissinel (dw5053_bb26) 2007; 372 Arnold (dw5053_bb2) 2006; 22 McCoy (dw5053_bb31) 2007; 40 dw5053_bb9 Lakshminarasimhan (dw5053_bb27) 2010; 285 Terwilliger (dw5053_bb38) 2008; 64 Krissinel (dw5053_bb25) 2004; 60 Murshudov (dw5053_bb49) 2011; 67 Roos (dw5053_bb34) 2013; 18 Widhalm (dw5053_bb44) 2012; 71 |
References_xml | – ident: dw5053_bb19 – ident: dw5053_bb9 – volume: 64 start-page: 61 year: 2008 ident: dw5053_bb38 publication-title: Acta Cryst. D doi: 10.1107/S090744490705024X – volume: 53 start-page: 240 year: 1997 ident: dw5053_bb32 publication-title: Acta Cryst. D doi: 10.1107/S0907444996012255 – volume: 336 start-page: 1030 year: 2012 ident: dw5053_bb15 publication-title: Science doi: 10.1126/science.1218231 – volume: 19 start-page: 1281 year: 2010 ident: dw5053_bb7 publication-title: Protein Sci. doi: 10.1002/pro.417 – volume: 23 start-page: 1623 year: 2002 ident: dw5053_bb23 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10128 – volume: 60 start-page: 2126 year: 2004 ident: dw5053_bb17 publication-title: Acta Cryst. D doi: 10.1107/S0907444904019158 – volume: 41 start-page: 11152 year: 2002 ident: dw5053_bb48 publication-title: Biochemistry doi: 10.1021/bi0262303 – ident: dw5053_bb35 – ident: dw5053_bb16 doi: 10.1186/1471-2105-5-109 – volume: 67 start-page: 355 year: 2011 ident: dw5053_bb49 publication-title: Acta Cryst. D doi: 10.1107/S0907444911001314 – volume: 372 start-page: 774 year: 2007 ident: dw5053_bb26 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 4 start-page: 253 year: 1996 ident: dw5053_bb29 publication-title: Structure doi: 10.1016/S0969-2126(96)00030-5 – volume: 66 start-page: 12 year: 2010 ident: dw5053_bb14 publication-title: Acta Cryst. D doi: 10.1107/S0907444909042073 – volume: 51 start-page: 7000 year: 2012 ident: dw5053_bb37 publication-title: Biochemistry doi: 10.1021/bi301059m – volume: 66 start-page: 213 year: 2010 ident: dw5053_bb1 publication-title: Acta Cryst. D doi: 10.1107/S0907444909052925 – volume: 32 start-page: 2273 year: 2011 ident: dw5053_bb3 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21814 – volume: 36 start-page: 944 year: 2003 ident: dw5053_bb18 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889803006721 – volume: 284 start-page: 15739 year: 2009 ident: dw5053_bb24 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809669200 – volume: 59 start-page: 229 year: 2011 ident: dw5053_bb41 publication-title: Adv. Bot. Res. doi: 10.1016/B978-0-12-385853-5.00001-5 – volume: 60 start-page: 2256 year: 2004 ident: dw5053_bb25 publication-title: Acta Cryst. D doi: 10.1107/S0907444904026460 – volume: 40 start-page: 658 year: 2007 ident: dw5053_bb31 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889807021206 – volume: 18 start-page: 94 year: 2013 ident: dw5053_bb34 publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4521 – volume: 48 start-page: 1293 year: 2009 ident: dw5053_bb8 publication-title: Biochemistry doi: 10.1021/bi801879z – volume: 285 start-page: 29651 year: 2010 ident: dw5053_bb27 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.147934 – volume: 7 start-page: 555 year: 2000 ident: dw5053_bb30 publication-title: Nature Struct. Biol. doi: 10.1038/76776 – volume: 67 start-page: 235 year: 2011 ident: dw5053_bb12 publication-title: Acta Cryst. D doi: 10.1107/S0907444910045749 – volume: 25 start-page: 1157 year: 2004 ident: dw5053_bb43 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 – volume: 355 start-page: 472 year: 1992 ident: dw5053_bb5 publication-title: Nature (London) doi: 10.1038/355472a0 – volume: 31 start-page: 5605 year: 1992 ident: dw5053_bb10 publication-title: Biochemistry doi: 10.1021/bi00139a025 – volume: 276 start-page: 307 year: 1997 ident: dw5053_bb33 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)76066-X – volume: 22 start-page: 195 year: 2006 ident: dw5053_bb2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti770 – volume: 39 start-page: D342 year: 2011 ident: dw5053_bb6 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1072 – volume: 21 start-page: 132 year: 2000 ident: dw5053_bb22 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P – volume: 57 start-page: 122 year: 2001 ident: dw5053_bb46 publication-title: Acta Cryst. D doi: 10.1107/S0907444900014736 – volume: 195 start-page: 2768 year: 2013 ident: dw5053_bb11 publication-title: J. Bacteriol. doi: 10.1128/JB.00141-13 – volume: 273 start-page: 33572 year: 1998 ident: dw5053_bb4 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.50.33572 – volume: 59 start-page: 2356 year: 2003 ident: dw5053_bb20 publication-title: Acta Cryst. D doi: 10.1107/S0907444903021784 – volume: 51 start-page: 786 year: 2012 ident: dw5053_bb47 publication-title: Biochemistry doi: 10.1021/bi2013917 – volume: 278 start-page: 43709 year: 2003 ident: dw5053_bb40 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308198200 – volume: 9 start-page: 1 year: 1976 ident: dw5053_bb42 publication-title: Adv. Biophys. – volume: 65 start-page: 712 year: 2006 ident: dw5053_bb21 publication-title: Proteins doi: 10.1002/prot.21123 – volume: 15 start-page: 1219 year: 2009 ident: dw5053_bb28 publication-title: RNA doi: 10.1261/rna.1563609 – volume: 71 start-page: 205 year: 2012 ident: dw5053_bb44 publication-title: Plant J. doi: 10.1111/j.1365-313X.2012.04972.x – volume: 13 start-page: 849 year: 2005 ident: dw5053_bb36 publication-title: Structure doi: 10.1016/j.str.2005.03.010 – volume: 106 start-page: 5599 year: 2009 ident: dw5053_bb45 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0900738106 – volume: 45 start-page: 316 year: 1981 ident: dw5053_bb13 publication-title: Microbiol. Rev. doi: 10.1128/MMBR.45.2.316-354.1981 – volume: 277 start-page: 27468 year: 2002 ident: dw5053_bb39 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M203904200 |
SSID | ssj0002237 |
Score | 2.1088269 |
Snippet | The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4‐dihydroxy‐2‐naphthoyl‐CoA (DHNA‐CoA) to... The synthesis of phylloquinone (vitamin K 1 ) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to... The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to... The crystal structures of two 1,4-dihydroxy-2-naphthoyl-CoA thioesterases of plant and cyanobacterial origin that are involved in the biosynthesis of... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1876 |
SubjectTerms | Arabidopsis - enzymology Arabidopsis thaliana Arthrobacter Aspartic Acid - metabolism Catalytic Domain Convergence Crystallography, X-Ray Cyanobacteria Enzymes Glutamic Acid - metabolism hotdog fold Hydro-Lyases - chemistry Hydro-Lyases - metabolism Naphthols - chemistry Naphthoquinones - chemistry phylloquinone Protein Binding Protein Folding Protein Multimerization Pseudomonas Research Papers Synechocystis Synechocystis - enzymology thioesterases Thiolester Hydrolases - chemistry vitamin K Vitamin K 1 - chemistry Vitamin K 1 - metabolism |
Title | Functional convergence of structurally distinct thioesterases from cyanobacteria and plants involved in phylloquinone biosynthesis |
URI | https://api.istex.fr/ark:/67375/WNG-54VW721Z-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS0907444913015771 https://www.ncbi.nlm.nih.gov/pubmed/24100308 https://www.proquest.com/docview/1440819317 https://www.proquest.com/docview/1443407637 https://www.proquest.com/docview/1464501681 https://pubmed.ncbi.nlm.nih.gov/PMC3792638 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5QAceGyhBAoyEuoBKSVeJ3ZyXO2yVEjtAVG2cIniR9SoIanIFrEc-eWMnQddFhUJbqtkkk3syTef7fE3AC_GiTKa0dAXEiEQKbXyY0lzPzERRiTNJNV2Qv_omB-ehG9Po9MtmPZ7YVp9iGHCzX4ZDq_tB57JrgpJ0C4z2nFdGCaIwjQSbh85Zdzq58_e_ZKQwvDnCqwwu9s-CEW3son3eLVxh7XYdMM287c_Ec_N_MmrvNYFpvld0P0rtfko5weXS3mgvv-m9vif73wP7nTElUxaT7sPW6Yawc6kwkH75xXZJy6V1M3Rj-DmtC8jN4LbVxQPd-DHHONoO_1IXMK72_tpSJ2TVsnWqoCUK6It9KAlWZ4VtRNzwGjbELsZhqhVViEKOZXpjGSVJhelzeYhRYVY-9Vo_EHQe8oSW7So6soQWdTNqkKu2xTNAziZv34_PfS7MhC-4mHAfJnzJFY0i0OtBM0MjXORyTwxVLKE4YFxHiUs5irIsbMDrSiVERMm5zqkQubsIWzb_3oEJIs1M7FC4NHcln1PuF3nFAnem2mEJw-C3gFS1Wmk21IdZerGSoFIN3rAg5fDJRetQMh1xvvOqwbL7Mu5zawTUbo4fpNG4YcFjsg_pUce7PVul3ag0qR2HR4JHDI-D54Pp7E77RpPVpn60tkwHKNzdq0NDyOk-jE-z27rycMDIaFzEkYeiDUfHwysHPn6mao4c7LkTCRjRHMPqHPhv7dGOvk4my2QgrPH_3DNE7g1tqVJXGLlHmyjk5qnSBCX8plDgJ_xS1oi |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V7aFw4JHyMBRYJNQDkltv1vbax6ghBGhyQC0pXCzvw6rV4FQkRYQjv5yZdWIagooEt8geb-zd2Zlvd2a_AXjRTrU1goe-VGgCEVJrP1G88FMboUcyQnFDG_qDYdw_Cd-eRqcb0F2ehan5IZoNN5oZzl7TBKcN6XqWB3WckRZ2YZiiGeaRpIPkWy5OR9Do_S8SKXSArsSKoPP2QSgXsU1s5GCtiRXvtEUd_e1P0HM9g_IqsnWuqXcb7PKj6oyU8_3LmdrX33_je_zfr74DtxbYlXVqZbsLG7ZqwU6nwnX75znbYy6b1G3Tt2D7cFlJrgU3r5Ae7sCPHrrSegeSuZx3d_zTsknBajJbIgIZz5kh64OSbHZWThyfAzrcKaPzMEzP8woNkSOazlleGXYxpoQeVlZobr9agz8YKtB4jF1aVpPKMlVOpvMK4e60nN6Dk96r48O-v6gE4es4DISvijhNNM-T0GjJc8uTQuaqSC1XIhV4oV1EqUhiHRQ42oHRnKtISFvEJuRSFeI-bNJ_PQSWJ0bYRKPtMTFVfk9jCnXKFNsWBi2UB8FSAzK9oEmnah3jzC2XApmtjYAHL5tHLmqOkOuE95xaNZL5l3NKrpNRNhq-zqLwwwgX5Z-ygQe7S73LFnZlmlEoHjEcgj4Pnje3cTgpzJNXdnLpZAQu02NxrQxOFET7Cb7Pg1qVmxdCTOdYjDyQK0reCBAj-eqdqjxzzORCpm006B5wp8N_742s87HbHSEKF4_-4ZlnsN0_HhxlR2-G7x7DjTZVKnF5lruwiQprnyBenKmnzhz8BH02XkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9Nm8THAx8dsMAAI6E9IGXEtRMnj1VLGR-rEGJ08BLFH9GiZWlFO0R55C_n7KRhpWhI8FYlFzexz3e_s8-_A3jaTZTRjHJfSDSBCKmVH0ua-4kJ0SNpJqm2C_qHo-jgiL8-Do83oL88C1PzQ7QLbnZmOHttJ_hU5_UkD-ptRhvXcZ6gFaahsOfIt3iE7tIio_e_OKTQ_7kKK8wetw-4aLY2sZHna02sOKct28_f_oQ81xMoLwJb55mGN0Evv6lOSDndP5_LffX9N7rH__zoW3CjQa6kV6vabdgwVQe2exVG7WcLskdcLqlbpO_A1f6yjlwHrl-gPNyGH0N0pPX6I3EZ7-7wpyGTnNRUtpYGpFwQbW0PSpL5STFxbA7obmfEnoYhapFVaIYczXRGskqTaWnTeUhRobH9ajT-IKg-ZYk9WlSTyhBZTGaLCsHurJjdgaPhiw_9A7-pA-GriAfMl3mUxIpmMddK0MzQOBeZzBNDJUsYXujmYcLiSAU5DnagFaUyZMLkkeZUyJzdhU37XztAslgzEyu0PDqydd-TyG50igTbZhrtkwfBUgFS1ZCk21odZeqCpUCkayPgwbP2kWnNEHKZ8J7TqlYy-3JqU-tEmI5HL9OQfxxjSP45PfRgd6l2aWNVZqndiEcEh5DPgyftbRxOu8mTVWZy7mQYBukRu1Qm4iFi_Rjf516tye0LIaJzHEYeiBUdbwUsH_nqnao4cbzkTCRdNOceUKfCf--NtPdpMBgjBmf3_-GZx3Dl3WCYvn01evMArnVtmRKXZLkLm6iv5iGCxbl85IzBTwsyXO8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+convergence+of+structurally+distinct+thioesterases+from+cyanobacteria+and+plants+involved+in+phylloquinone+biosynthesis&rft.jtitle=Acta+crystallographica.+Section+D%2C+Biological+crystallography.&rft.au=Furt%2C+Fabienne&rft.au=Allen%2C+William+J.&rft.au=Widhalm%2C+Joshua+R.&rft.au=Madzelan%2C+Peter&rft.date=2013-10-01&rft.pub=International+Union+of+Crystallography&rft.issn=0907-4449&rft.eissn=1399-0047&rft.volume=69&rft.issue=Pt+10&rft.spage=1876&rft.epage=1888&rft_id=info:doi/10.1107%2FS0907444913015771&rft_id=info%3Apmid%2F24100308&rft.externalDocID=PMC3792638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1399-0047&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1399-0047&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1399-0047&client=summon |