Functional convergence of structurally distinct thioesterases from cyanobacteria and plants involved in phylloquinone biosynthesis

The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4‐dihydroxy‐2‐naphthoyl‐CoA (DHNA‐CoA) to release 1,4‐dihydroxy‐2‐naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog‐fold thioesterases that catalyze this react...

Full description

Saved in:
Bibliographic Details
Published inActa crystallographica. Section D, Biological crystallography. Vol. 69; no. 10; pp. 1876 - 1888
Main Authors Furt, Fabienne, Allen, William J., Widhalm, Joshua R., Madzelan, Peter, Rizzo, Robert C., Basset, Gilles, Wilson, Mark A.
Format Journal Article
LanguageEnglish
Published 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.10.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1399-0047
0907-4449
1399-0047
DOI10.1107/S0907444913015771

Cover

Abstract The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4‐dihydroxy‐2‐naphthoyl‐CoA (DHNA‐CoA) to release 1,4‐dihydroxy‐2‐naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog‐fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog‐fold DHNA‐CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA‐CoA, similar to the 4‐hydroxybenzoyl‐CoA (4‐HBA‐CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4‐HBA‐CoA thioesterases, the DHNA‐CoA thioesterases contain either an active‐site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate‐bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA‐CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent‐exposed. Considered in light of the related 4‐HBA‐CoA thioesterases, these structures indicate that hotdog‐fold thioesterases using either an active‐site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.
AbstractList The crystal structures of two 1,4-dihydroxy-2-naphthoyl-CoA thioesterases of plant and cyanobacterial origin that are involved in the biosynthesis of phylloquinone are presented. The divergent structures of these two functionally similar enzymes indicate convergent evolution. The synthesis of phylloquinone (vitamin K 1 ) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-di­hydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thio­esterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-­hydroxybenzoyl-CoA (4-HBA-CoA) thio­esterases from Pseudomonas and Arthrobacter . Like the 4-­HBA-CoA thio­esterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-­HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.
The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes. [PUBLICATION ABSTRACT]
The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.
The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter. Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.
The synthesis of phylloquinone (vitamin K 1 ) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to release 1,4-dihydroxy-2-naphthoate (DHNA). Cyanobacteria and plants contain distantly related hotdog-fold thioesterases that catalyze this reaction, although the structural basis of these convergent enzymatic activities is unknown. To investigate this, the crystal structures of hotdog-fold DHNA-CoA thioesterases from the cyanobacterium Synechocystis (Slr0204) and the flowering plant Arabidopsis thaliana (AtDHNAT1) were determined. These enzymes form distinct homotetramers and use different active sites to catalyze hydrolysis of DHNA-CoA, similar to the 4-hydroxybenzoyl-CoA (4-HBA-CoA) thioesterases from Pseudomonas and Arthrobacter . Like the 4-HBA-CoA thioesterases, the DHNA-CoA thioesterases contain either an active-site aspartate (Slr0204) or glutamate (AtDHNAT1) that are predicted to be catalytically important. Computational modeling of the substrate-bound forms of both enzymes indicates the residues that are likely to be involved in substrate binding and catalysis. Both enzymes are selective for DHNA-CoA as a substrate, but this selectivity is achieved using divergent predicted binding strategies. The Slr0204 binding pocket is predominantly hydrophobic and closely conforms to DHNA, while that of AtDHNAT1 is more polar and solvent-exposed. Considered in light of the related 4-HBA-CoA thioesterases, these structures indicate that hotdog-fold thioesterases using either an active-site aspartate or glutamate diverged into distinct clades prior to the evolution of strong substrate specificity in these enzymes.
Author Madzelan, Peter
Basset, Gilles
Furt, Fabienne
Rizzo, Robert C.
Allen, William J.
Widhalm, Joshua R.
Wilson, Mark A.
Author_xml – sequence: 1
  givenname: Fabienne
  surname: Furt
  fullname: Furt, Fabienne
– sequence: 2
  givenname: William J.
  surname: Allen
  fullname: Allen, William J.
– sequence: 3
  givenname: Joshua R.
  surname: Widhalm
  fullname: Widhalm, Joshua R.
– sequence: 4
  givenname: Peter
  surname: Madzelan
  fullname: Madzelan, Peter
– sequence: 5
  givenname: Robert C.
  surname: Rizzo
  fullname: Rizzo, Robert C.
– sequence: 6
  givenname: Gilles
  surname: Basset
  fullname: Basset, Gilles
– sequence: 7
  givenname: Mark A.
  surname: Wilson
  fullname: Wilson, Mark A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24100308$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gB3BBlrhwWZiJnTi5IFUtLUgFDnys4GI5jt118dqLnSzkyi_Hy7ZVKRJw8sh-n1fzema_2PHB66J4iPAUEfizd9ACZ4y1SAErzvFOsYe0bWcAjO_cqHeL_ZQuAKAsKb9X7JYMASg0e8WPk9GrwQYvHVHBr3U8115pEgxJQxzVMEbp3ER6mwablWRY2KDToKNMOhETw5KoSfrQSZUvrSTS92TlpB8SsX4d3Fr3uSCrxeRc-DraTQbS2ZAmPyx0sul-cddIl_SDy_Og-HDy4v3Ry9nZ29NXR4dnM1UzoLPO1G2jUDasVxylxsZw2ZlWY0dbmi9KU7W0qRWYnBJ6hdhVlGtT9wx5Z-hB8Xzruxq7pe6V9kPOJlbRLmWcRJBW_P7i7UKch7WgvC1r2mSDJ5cGMQfJnyCWNintclgdxiSQ1awCrBv8DymjDHhNeZY-viW9CGPM8_ilggZzuI3q0c3mr7u-mmQW8K1AxZBS1EYoO8jNZHMW6wSC2OyM-GNnMom3yCvzvzHNlvlmnZ7-DYjDT8fH8woqmtHZFs0bpb9fozJ-ETWnvBLzN6eiYh_nvMTP4jX9CUrt5Z8
CitedBy_id crossref_primary_10_1002_pro_4263
crossref_primary_10_1016_j_pbi_2015_05_005
crossref_primary_10_1080_09168451_2018_1433020
crossref_primary_10_1002_ajb2_1216
crossref_primary_10_1016_j_plipres_2020_101036
crossref_primary_10_1111_tpj_13352
crossref_primary_10_1093_nar_gkac937
Cites_doi 10.1107/S090744490705024X
10.1107/S0907444996012255
10.1126/science.1218231
10.1002/pro.417
10.1002/jcc.10128
10.1107/S0907444904019158
10.1021/bi0262303
10.1186/1471-2105-5-109
10.1107/S0907444911001314
10.1016/j.jmb.2007.05.022
10.1016/S0969-2126(96)00030-5
10.1107/S0907444909042073
10.1021/bi301059m
10.1107/S0907444909052925
10.1002/jcc.21814
10.1107/S0021889803006721
10.1074/jbc.M809669200
10.1016/B978-0-12-385853-5.00001-5
10.1107/S0907444904026460
10.1107/S0021889807021206
10.1089/ars.2012.4521
10.1021/bi801879z
10.1074/jbc.M110.147934
10.1038/76776
10.1107/S0907444910045749
10.1002/jcc.20035
10.1038/355472a0
10.1021/bi00139a025
10.1016/S0076-6879(97)76066-X
10.1093/bioinformatics/bti770
10.1093/nar/gkq1072
10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
10.1107/S0907444900014736
10.1128/JB.00141-13
10.1074/jbc.273.50.33572
10.1107/S0907444903021784
10.1021/bi2013917
10.1074/jbc.M308198200
10.1002/prot.21123
10.1261/rna.1563609
10.1111/j.1365-313X.2012.04972.x
10.1016/j.str.2005.03.010
10.1073/pnas.0900738106
10.1128/MMBR.45.2.316-354.1981
10.1074/jbc.M203904200
ContentType Journal Article
Copyright International Union of Crystallography, 2013
International Union of Crystallography 2013 2013
Copyright_xml – notice: International Union of Crystallography, 2013
– notice: International Union of Crystallography 2013 2013
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7SP
7SR
7TK
7U5
8BQ
8FD
H8D
JG9
L7M
7X8
M7N
5PM
DOI 10.1107/S0907444913015771
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Aerospace Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
MEDLINE
CrossRef
Algology Mycology and Protozoology Abstracts (Microbiology C)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
DocumentTitleAlternate Functional convergence of thioesterases
EISSN 1399-0047
EndPage 1888
ExternalDocumentID PMC3792638
3094792361
24100308
10_1107_S0907444913015771
AYDDW5053
ark_67375_WNG_54VW721Z_M
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: 8P41GM103543
– fundername: NIGMS NIH HHS
  grantid: R24 GM111072
– fundername: NCI NIH HHS
  grantid: Y1-CO-1020
– fundername: NIGMS NIH HHS
  grantid: Y1-GM-1104
– fundername: NIGMS NIH HHS
  grantid: P41 GM103543
– fundername: NCRR NIH HHS
  grantid: 5P41RR007707
– fundername: NIGMS NIH HHS
  grantid: R01 GM083669
– fundername: NIGMS NIH HHS
  grantid: R01 GM092999
– fundername: NCRR NIH HHS
  grantid: P41 RR007707
GroupedDBID ---
-ET
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAMMB
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBC
EBS
EJD
EMB
F00
F01
F04
F5P
G-S
G.N
GODZA
GX1
H.T
H.X
HGLYW
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCJ
RNS
ROL
RX1
SJN
SUPJJ
TN5
TUS
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WYISQ
XG1
ZZTAW
~02
~IA
~WT
186
1Y6
31~
6TJ
8WZ
A6W
ABDBF
ABEML
ACUHS
AI.
AIQQE
BTSUX
CAG
COF
EAD
EAP
EBD
EMK
EMOBN
EST
ESX
FEDTE
HF~
HVGLF
MVM
NEJ
PALCI
RIWAO
RJQFR
SV3
VH1
ZCG
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7SP
7SR
7TK
7U5
8BQ
8FD
H8D
JG9
L7M
7X8
M7N
5PM
ID FETCH-LOGICAL-c6403-bf698c1a84dc71ae18f7abf9e1b3931ae2f59386c0f2230dc11b537ef6d417bf3
IEDL.DBID DR2
ISSN 1399-0047
0907-4449
IngestDate Thu Aug 21 18:19:49 EDT 2025
Thu Sep 04 23:51:13 EDT 2025
Fri Sep 05 05:07:51 EDT 2025
Fri Jul 25 12:27:32 EDT 2025
Thu Apr 03 07:05:22 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Tue Jul 01 01:28:09 EDT 2025
Sun Sep 21 06:15:08 EDT 2025
Sun Sep 21 06:20:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Arabidopsis thaliana
hotdog fold
phylloquinone
Synechocystis
vitamin K
thioesterases
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6403-bf698c1a84dc71ae18f7abf9e1b3931ae2f59386c0f2230dc11b537ef6d417bf3
Notes ArticleID:AYDDW5053
istex:82CBB023A23781BF418BB7D412726213ABEE637A
ark:/67375/WNG-54VW721Z-M
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.iucr.org/d/issues/2013/10/00/dw5053/dw5053.pdf
PMID 24100308
PQID 1440819317
PQPubID 1036389
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3792638
proquest_miscellaneous_1464501681
proquest_miscellaneous_1443407637
proquest_journals_1440819317
pubmed_primary_24100308
crossref_citationtrail_10_1107_S0907444913015771
crossref_primary_10_1107_S0907444913015771
wiley_primary_10_1107_S0907444913015771_AYDDW5053
istex_primary_ark_67375_WNG_54VW721Z_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2013
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: October 2013
PublicationDecade 2010
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: United States
– name: Chester
PublicationTitle Acta crystallographica. Section D, Biological crystallography.
PublicationTitleAlternate Acta Cryst. D
PublicationYear 2013
Publisher International Union of Crystallography
Wiley Subscription Services, Inc
Publisher_xml – name: International Union of Crystallography
– name: Wiley Subscription Services, Inc
References dw5053_bb35
Emsley (dw5053_bb17) 2004; 60
Wang (dw5053_bb43) 2004; 25
Widhalm (dw5053_bb45) 2009; 106
Sengupta (dw5053_bb36) 2005; 13
Wada (dw5053_bb42) 1976; 9
Cantu (dw5053_bb6) 2011; 39
Chen (dw5053_bb11) 2013; 195
Holyoak (dw5053_bb20) 2003; 59
Kotaka (dw5053_bb24) 2009; 284
Oostende (dw5053_bb41) 2011; 59
Song (dw5053_bb37) 2012; 51
Jakalian (dw5053_bb23) 2002; 23
Fenn (dw5053_bb18) 2003; 36
Zhuang (dw5053_bb48) 2002; 41
Cao (dw5053_bb8) 2009; 48
Otwinowski (dw5053_bb33) 1997; 276
Cantu (dw5053_bb7) 2010; 19
Li (dw5053_bb30) 2000; 7
Benning (dw5053_bb4) 1998; 273
Lang (dw5053_bb28) 2009; 15
Thoden (dw5053_bb40) 2003; 278
dw5053_bb19
dw5053_bb16
Chen (dw5053_bb14) 2010; 66
Murshudov (dw5053_bb32) 1997; 53
Collins (dw5053_bb13) 1981; 45
Balius (dw5053_bb3) 2011; 32
Brünger (dw5053_bb5) 1992; 355
Winn (dw5053_bb46) 2001; 57
Hornak (dw5053_bb21) 2006; 65
Leesong (dw5053_bb29) 1996; 4
Winn (dw5053_bb12) 2011; 67
Chang (dw5053_bb10) 1992; 31
Thoden (dw5053_bb39) 2002; 277
Diederichs (dw5053_bb15) 2012; 336
Zhuang (dw5053_bb47) 2012; 51
Jakalian (dw5053_bb22) 2000; 21
Adams (dw5053_bb1) 2010; 66
Krissinel (dw5053_bb26) 2007; 372
Arnold (dw5053_bb2) 2006; 22
McCoy (dw5053_bb31) 2007; 40
dw5053_bb9
Lakshminarasimhan (dw5053_bb27) 2010; 285
Terwilliger (dw5053_bb38) 2008; 64
Krissinel (dw5053_bb25) 2004; 60
Murshudov (dw5053_bb49) 2011; 67
Roos (dw5053_bb34) 2013; 18
Widhalm (dw5053_bb44) 2012; 71
References_xml – ident: dw5053_bb19
– ident: dw5053_bb9
– volume: 64
  start-page: 61
  year: 2008
  ident: dw5053_bb38
  publication-title: Acta Cryst. D
  doi: 10.1107/S090744490705024X
– volume: 53
  start-page: 240
  year: 1997
  ident: dw5053_bb32
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444996012255
– volume: 336
  start-page: 1030
  year: 2012
  ident: dw5053_bb15
  publication-title: Science
  doi: 10.1126/science.1218231
– volume: 19
  start-page: 1281
  year: 2010
  ident: dw5053_bb7
  publication-title: Protein Sci.
  doi: 10.1002/pro.417
– volume: 23
  start-page: 1623
  year: 2002
  ident: dw5053_bb23
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10128
– volume: 60
  start-page: 2126
  year: 2004
  ident: dw5053_bb17
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444904019158
– volume: 41
  start-page: 11152
  year: 2002
  ident: dw5053_bb48
  publication-title: Biochemistry
  doi: 10.1021/bi0262303
– ident: dw5053_bb35
– ident: dw5053_bb16
  doi: 10.1186/1471-2105-5-109
– volume: 67
  start-page: 355
  year: 2011
  ident: dw5053_bb49
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444911001314
– volume: 372
  start-page: 774
  year: 2007
  ident: dw5053_bb26
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
– volume: 4
  start-page: 253
  year: 1996
  ident: dw5053_bb29
  publication-title: Structure
  doi: 10.1016/S0969-2126(96)00030-5
– volume: 66
  start-page: 12
  year: 2010
  ident: dw5053_bb14
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444909042073
– volume: 51
  start-page: 7000
  year: 2012
  ident: dw5053_bb37
  publication-title: Biochemistry
  doi: 10.1021/bi301059m
– volume: 66
  start-page: 213
  year: 2010
  ident: dw5053_bb1
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444909052925
– volume: 32
  start-page: 2273
  year: 2011
  ident: dw5053_bb3
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21814
– volume: 36
  start-page: 944
  year: 2003
  ident: dw5053_bb18
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889803006721
– volume: 284
  start-page: 15739
  year: 2009
  ident: dw5053_bb24
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M809669200
– volume: 59
  start-page: 229
  year: 2011
  ident: dw5053_bb41
  publication-title: Adv. Bot. Res.
  doi: 10.1016/B978-0-12-385853-5.00001-5
– volume: 60
  start-page: 2256
  year: 2004
  ident: dw5053_bb25
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444904026460
– volume: 40
  start-page: 658
  year: 2007
  ident: dw5053_bb31
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889807021206
– volume: 18
  start-page: 94
  year: 2013
  ident: dw5053_bb34
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.4521
– volume: 48
  start-page: 1293
  year: 2009
  ident: dw5053_bb8
  publication-title: Biochemistry
  doi: 10.1021/bi801879z
– volume: 285
  start-page: 29651
  year: 2010
  ident: dw5053_bb27
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.147934
– volume: 7
  start-page: 555
  year: 2000
  ident: dw5053_bb30
  publication-title: Nature Struct. Biol.
  doi: 10.1038/76776
– volume: 67
  start-page: 235
  year: 2011
  ident: dw5053_bb12
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444910045749
– volume: 25
  start-page: 1157
  year: 2004
  ident: dw5053_bb43
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 355
  start-page: 472
  year: 1992
  ident: dw5053_bb5
  publication-title: Nature (London)
  doi: 10.1038/355472a0
– volume: 31
  start-page: 5605
  year: 1992
  ident: dw5053_bb10
  publication-title: Biochemistry
  doi: 10.1021/bi00139a025
– volume: 276
  start-page: 307
  year: 1997
  ident: dw5053_bb33
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 22
  start-page: 195
  year: 2006
  ident: dw5053_bb2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti770
– volume: 39
  start-page: D342
  year: 2011
  ident: dw5053_bb6
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1072
– volume: 21
  start-page: 132
  year: 2000
  ident: dw5053_bb22
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
– volume: 57
  start-page: 122
  year: 2001
  ident: dw5053_bb46
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444900014736
– volume: 195
  start-page: 2768
  year: 2013
  ident: dw5053_bb11
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00141-13
– volume: 273
  start-page: 33572
  year: 1998
  ident: dw5053_bb4
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.50.33572
– volume: 59
  start-page: 2356
  year: 2003
  ident: dw5053_bb20
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444903021784
– volume: 51
  start-page: 786
  year: 2012
  ident: dw5053_bb47
  publication-title: Biochemistry
  doi: 10.1021/bi2013917
– volume: 278
  start-page: 43709
  year: 2003
  ident: dw5053_bb40
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308198200
– volume: 9
  start-page: 1
  year: 1976
  ident: dw5053_bb42
  publication-title: Adv. Biophys.
– volume: 65
  start-page: 712
  year: 2006
  ident: dw5053_bb21
  publication-title: Proteins
  doi: 10.1002/prot.21123
– volume: 15
  start-page: 1219
  year: 2009
  ident: dw5053_bb28
  publication-title: RNA
  doi: 10.1261/rna.1563609
– volume: 71
  start-page: 205
  year: 2012
  ident: dw5053_bb44
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2012.04972.x
– volume: 13
  start-page: 849
  year: 2005
  ident: dw5053_bb36
  publication-title: Structure
  doi: 10.1016/j.str.2005.03.010
– volume: 106
  start-page: 5599
  year: 2009
  ident: dw5053_bb45
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0900738106
– volume: 45
  start-page: 316
  year: 1981
  ident: dw5053_bb13
  publication-title: Microbiol. Rev.
  doi: 10.1128/MMBR.45.2.316-354.1981
– volume: 277
  start-page: 27468
  year: 2002
  ident: dw5053_bb39
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M203904200
SSID ssj0002237
Score 2.1088269
Snippet The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4‐dihydroxy‐2‐naphthoyl‐CoA (DHNA‐CoA) to...
The synthesis of phylloquinone (vitamin K 1 ) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to...
The synthesis of phylloquinone (vitamin K1) in photosynthetic organisms requires a thioesterase that hydrolyzes 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) to...
The crystal structures of two 1,4-dihydroxy-2-naphthoyl-CoA thioesterases of plant and cyanobacterial origin that are involved in the biosynthesis of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1876
SubjectTerms Arabidopsis - enzymology
Arabidopsis thaliana
Arthrobacter
Aspartic Acid - metabolism
Catalytic Domain
Convergence
Crystallography, X-Ray
Cyanobacteria
Enzymes
Glutamic Acid - metabolism
hotdog fold
Hydro-Lyases - chemistry
Hydro-Lyases - metabolism
Naphthols - chemistry
Naphthoquinones - chemistry
phylloquinone
Protein Binding
Protein Folding
Protein Multimerization
Pseudomonas
Research Papers
Synechocystis
Synechocystis - enzymology
thioesterases
Thiolester Hydrolases - chemistry
vitamin K
Vitamin K 1 - chemistry
Vitamin K 1 - metabolism
Title Functional convergence of structurally distinct thioesterases from cyanobacteria and plants involved in phylloquinone biosynthesis
URI https://api.istex.fr/ark:/67375/WNG-54VW721Z-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS0907444913015771
https://www.ncbi.nlm.nih.gov/pubmed/24100308
https://www.proquest.com/docview/1440819317
https://www.proquest.com/docview/1443407637
https://www.proquest.com/docview/1464501681
https://pubmed.ncbi.nlm.nih.gov/PMC3792638
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5QAceGyhBAoyEuoBKSVeJ3ZyXO2yVEjtAVG2cIniR9SoIanIFrEc-eWMnQddFhUJbqtkkk3syTef7fE3AC_GiTKa0dAXEiEQKbXyY0lzPzERRiTNJNV2Qv_omB-ehG9Po9MtmPZ7YVp9iGHCzX4ZDq_tB57JrgpJ0C4z2nFdGCaIwjQSbh85Zdzq58_e_ZKQwvDnCqwwu9s-CEW3son3eLVxh7XYdMM287c_Ec_N_MmrvNYFpvld0P0rtfko5weXS3mgvv-m9vif73wP7nTElUxaT7sPW6Yawc6kwkH75xXZJy6V1M3Rj-DmtC8jN4LbVxQPd-DHHONoO_1IXMK72_tpSJ2TVsnWqoCUK6It9KAlWZ4VtRNzwGjbELsZhqhVViEKOZXpjGSVJhelzeYhRYVY-9Vo_EHQe8oSW7So6soQWdTNqkKu2xTNAziZv34_PfS7MhC-4mHAfJnzJFY0i0OtBM0MjXORyTwxVLKE4YFxHiUs5irIsbMDrSiVERMm5zqkQubsIWzb_3oEJIs1M7FC4NHcln1PuF3nFAnem2mEJw-C3gFS1Wmk21IdZerGSoFIN3rAg5fDJRetQMh1xvvOqwbL7Mu5zawTUbo4fpNG4YcFjsg_pUce7PVul3ag0qR2HR4JHDI-D54Pp7E77RpPVpn60tkwHKNzdq0NDyOk-jE-z27rycMDIaFzEkYeiDUfHwysHPn6mao4c7LkTCRjRHMPqHPhv7dGOvk4my2QgrPH_3DNE7g1tqVJXGLlHmyjk5qnSBCX8plDgJ_xS1oi
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5V7aFw4JHyMBRYJNQDkltv1vbax6ghBGhyQC0pXCzvw6rV4FQkRYQjv5yZdWIagooEt8geb-zd2Zlvd2a_AXjRTrU1goe-VGgCEVJrP1G88FMboUcyQnFDG_qDYdw_Cd-eRqcb0F2ehan5IZoNN5oZzl7TBKcN6XqWB3WckRZ2YZiiGeaRpIPkWy5OR9Do_S8SKXSArsSKoPP2QSgXsU1s5GCtiRXvtEUd_e1P0HM9g_IqsnWuqXcb7PKj6oyU8_3LmdrX33_je_zfr74DtxbYlXVqZbsLG7ZqwU6nwnX75znbYy6b1G3Tt2D7cFlJrgU3r5Ae7sCPHrrSegeSuZx3d_zTsknBajJbIgIZz5kh64OSbHZWThyfAzrcKaPzMEzP8woNkSOazlleGXYxpoQeVlZobr9agz8YKtB4jF1aVpPKMlVOpvMK4e60nN6Dk96r48O-v6gE4es4DISvijhNNM-T0GjJc8uTQuaqSC1XIhV4oV1EqUhiHRQ42oHRnKtISFvEJuRSFeI-bNJ_PQSWJ0bYRKPtMTFVfk9jCnXKFNsWBi2UB8FSAzK9oEmnah3jzC2XApmtjYAHL5tHLmqOkOuE95xaNZL5l3NKrpNRNhq-zqLwwwgX5Z-ygQe7S73LFnZlmlEoHjEcgj4Pnje3cTgpzJNXdnLpZAQu02NxrQxOFET7Cb7Pg1qVmxdCTOdYjDyQK0reCBAj-eqdqjxzzORCpm006B5wp8N_742s87HbHSEKF4_-4ZlnsN0_HhxlR2-G7x7DjTZVKnF5lruwiQprnyBenKmnzhz8BH02XkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9Nm8THAx8dsMAAI6E9IGXEtRMnj1VLGR-rEGJ08BLFH9GiZWlFO0R55C_n7KRhpWhI8FYlFzexz3e_s8-_A3jaTZTRjHJfSDSBCKmVH0ua-4kJ0SNpJqm2C_qHo-jgiL8-Do83oL88C1PzQ7QLbnZmOHttJ_hU5_UkD-ptRhvXcZ6gFaahsOfIt3iE7tIio_e_OKTQ_7kKK8wetw-4aLY2sZHna02sOKct28_f_oQ81xMoLwJb55mGN0Evv6lOSDndP5_LffX9N7rH__zoW3CjQa6kV6vabdgwVQe2exVG7WcLskdcLqlbpO_A1f6yjlwHrl-gPNyGH0N0pPX6I3EZ7-7wpyGTnNRUtpYGpFwQbW0PSpL5STFxbA7obmfEnoYhapFVaIYczXRGskqTaWnTeUhRobH9ajT-IKg-ZYk9WlSTyhBZTGaLCsHurJjdgaPhiw_9A7-pA-GriAfMl3mUxIpmMddK0MzQOBeZzBNDJUsYXujmYcLiSAU5DnagFaUyZMLkkeZUyJzdhU37XztAslgzEyu0PDqydd-TyG50igTbZhrtkwfBUgFS1ZCk21odZeqCpUCkayPgwbP2kWnNEHKZ8J7TqlYy-3JqU-tEmI5HL9OQfxxjSP45PfRgd6l2aWNVZqndiEcEh5DPgyftbRxOu8mTVWZy7mQYBukRu1Qm4iFi_Rjf516tye0LIaJzHEYeiBUdbwUsH_nqnao4cbzkTCRdNOceUKfCf--NtPdpMBgjBmf3_-GZx3Dl3WCYvn01evMArnVtmRKXZLkLm6iv5iGCxbl85IzBTwsyXO8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+convergence+of+structurally+distinct+thioesterases+from+cyanobacteria+and+plants+involved+in+phylloquinone+biosynthesis&rft.jtitle=Acta+crystallographica.+Section+D%2C+Biological+crystallography.&rft.au=Furt%2C+Fabienne&rft.au=Allen%2C+William+J.&rft.au=Widhalm%2C+Joshua+R.&rft.au=Madzelan%2C+Peter&rft.date=2013-10-01&rft.pub=International+Union+of+Crystallography&rft.issn=0907-4449&rft.eissn=1399-0047&rft.volume=69&rft.issue=Pt+10&rft.spage=1876&rft.epage=1888&rft_id=info:doi/10.1107%2FS0907444913015771&rft_id=info%3Apmid%2F24100308&rft.externalDocID=PMC3792638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1399-0047&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1399-0047&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1399-0047&client=summon