Intergenerational genomic DNA methylation patterns in mouse hybrid strains

Background DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While the variation of DNA methylation among individuals has been partially characterized, the degree to which methylation patterns are preserved acro...

Full description

Saved in:
Bibliographic Details
Published inGenome biology Vol. 15; no. 5; p. R68
Main Authors Orozco, Luz D, Rubbi, Liudmilla, Martin, Lisa J, Fang, Fang, Hormozdiari, Farhad, Che, Nam, Smith, Andrew D, Lusis, Aldons J, Pellegrini, Matteo
Format Journal Article
LanguageEnglish
Published London BioMed Central 30.04.2014
Subjects
Online AccessGet full text
ISSN1474-760X
1465-6906
1474-760X
1465-6914
DOI10.1186/gb-2014-15-5-r68

Cover

Abstract Background DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While the variation of DNA methylation among individuals has been partially characterized, the degree to which methylation patterns are preserved across generations is still poorly understood. To determine the extent of methylation differences between two generations of mice we examined DNA methylation patterns in the livers of eight parental and F1 mice from C57BL/6J and DBA/2J mouse strains using bisulfite sequencing. Results We find a large proportion of reproducible methylation differences between C57BL/6J and DBA/2J chromosomes in CpGs, which are highly heritable between parent and F1 mice. We also find sex differences in methylation levels in 396 genes, and 11% of these are differentially expressed between females and males. Using a recently developed approach to identify allelically methylated regions independently of genotypic differences, we identify 112 novel putative imprinted genes and microRNAs, and validate imprinting at the RNA level in 10 of these genes. Conclusions The majority of DNA methylation differences among individuals are associated with genetic differences, and a much smaller proportion of these epigenetic differences are due to sex, imprinting or stochastic intergenerational effects. Epigenetic differences can be a determining factor in heritable traits and should be considered in association studies for molecular and clinical traits, as we observed that methylation differences in the mouse model are highly heritable and can have functional consequences on molecular traits such as gene expression.
AbstractList DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While the variation of DNA methylation among individuals has been partially characterized, the degree to which methylation patterns are preserved across generations is still poorly understood. To determine the extent of methylation differences between two generations of mice we examined DNA methylation patterns in the livers of eight parental and F1 mice from C57BL/6J and DBA/2J mouse strains using bisulfite sequencing. We find a large proportion of reproducible methylation differences between C57BL/6J and DBA/2J chromosomes in CpGs, which are highly heritable between parent and F1 mice. We also find sex differences in methylation levels in 396 genes, and 11% of these are differentially expressed between females and males. Using a recently developed approach to identify allelically methylated regions independently of genotypic differences, we identify 112 novel putative imprinted genes and microRNAs, and validate imprinting at the RNA level in 10 of these genes. The majority of DNA methylation differences among individuals are associated with genetic differences, and a much smaller proportion of these epigenetic differences are due to sex, imprinting or stochastic intergenerational effects. Epigenetic differences can be a determining factor in heritable traits and should be considered in association studies for molecular and clinical traits, as we observed that methylation differences in the mouse model are highly heritable and can have functional consequences on molecular traits such as gene expression.
Background DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While the variation of DNA methylation among individuals has been partially characterized, the degree to which methylation patterns are preserved across generations is still poorly understood. To determine the extent of methylation differences between two generations of mice we examined DNA methylation patterns in the livers of eight parental and F1 mice from C57BL/6J and DBA/2J mouse strains using bisulfite sequencing. Results We find a large proportion of reproducible methylation differences between C57BL/6J and DBA/2J chromosomes in CpGs, which are highly heritable between parent and F1 mice. We also find sex differences in methylation levels in 396 genes, and 11% of these are differentially expressed between females and males. Using a recently developed approach to identify allelically methylated regions independently of genotypic differences, we identify 112 novel putative imprinted genes and microRNAs, and validate imprinting at the RNA level in 10 of these genes. Conclusions The majority of DNA methylation differences among individuals are associated with genetic differences, and a much smaller proportion of these epigenetic differences are due to sex, imprinting or stochastic intergenerational effects. Epigenetic differences can be a determining factor in heritable traits and should be considered in association studies for molecular and clinical traits, as we observed that methylation differences in the mouse model are highly heritable and can have functional consequences on molecular traits such as gene expression.
DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While the variation of DNA methylation among individuals has been partially characterized, the degree to which methylation patterns are preserved across generations is still poorly understood. To determine the extent of methylation differences between two generations of mice we examined DNA methylation patterns in the livers of eight parental and F1 mice from C57BL/6J and DBA/2J mouse strains using bisulfite sequencing.BACKGROUNDDNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While the variation of DNA methylation among individuals has been partially characterized, the degree to which methylation patterns are preserved across generations is still poorly understood. To determine the extent of methylation differences between two generations of mice we examined DNA methylation patterns in the livers of eight parental and F1 mice from C57BL/6J and DBA/2J mouse strains using bisulfite sequencing.We find a large proportion of reproducible methylation differences between C57BL/6J and DBA/2J chromosomes in CpGs, which are highly heritable between parent and F1 mice. We also find sex differences in methylation levels in 396 genes, and 11% of these are differentially expressed between females and males. Using a recently developed approach to identify allelically methylated regions independently of genotypic differences, we identify 112 novel putative imprinted genes and microRNAs, and validate imprinting at the RNA level in 10 of these genes.RESULTSWe find a large proportion of reproducible methylation differences between C57BL/6J and DBA/2J chromosomes in CpGs, which are highly heritable between parent and F1 mice. We also find sex differences in methylation levels in 396 genes, and 11% of these are differentially expressed between females and males. Using a recently developed approach to identify allelically methylated regions independently of genotypic differences, we identify 112 novel putative imprinted genes and microRNAs, and validate imprinting at the RNA level in 10 of these genes.The majority of DNA methylation differences among individuals are associated with genetic differences, and a much smaller proportion of these epigenetic differences are due to sex, imprinting or stochastic intergenerational effects. Epigenetic differences can be a determining factor in heritable traits and should be considered in association studies for molecular and clinical traits, as we observed that methylation differences in the mouse model are highly heritable and can have functional consequences on molecular traits such as gene expression.CONCLUSIONSThe majority of DNA methylation differences among individuals are associated with genetic differences, and a much smaller proportion of these epigenetic differences are due to sex, imprinting or stochastic intergenerational effects. Epigenetic differences can be a determining factor in heritable traits and should be considered in association studies for molecular and clinical traits, as we observed that methylation differences in the mouse model are highly heritable and can have functional consequences on molecular traits such as gene expression.
Background: DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While the variation of DNA methylation among individuals has been partially characterized, the degree to which methylation patterns are preserved across generations is still poorly understood. To determine the extent of methylation differences between two generations of mice we examined DNA methylation patterns in the livers of eight parental and F1 mice from C57BL/6J and DBA/2J mouse strains using bisulfite sequencing. Results: We find a large proportion of reproducible methylation differences between C57BL/6J and DBA/2J chromosomes in CpGs, which are highly heritable between parent and F1 mice. We also find sex differences in methylation levels in 396 genes, and 11% of these are differentially expressed between females and males. Using a recently developed approach to identify allelically methylated regions independently of genotypic differences, we identify 112 novel putative imprinted genes and microRNAs, and validate imprinting at the RNA level in 10 of these genes. Conclusions: The majority of DNA methylation differences among individuals are associated with genetic differences, and a much smaller proportion of these epigenetic differences are due to sex, imprinting or stochastic intergenerational effects. Epigenetic differences can be a determining factor in heritable traits and should be considered in association studies for molecular and clinical traits, as we observed that methylation differences in the mouse model are highly heritable and can have functional consequences on molecular traits such as gene expression.
ArticleNumber R68
Author Smith, Andrew D
Martin, Lisa J
Fang, Fang
Orozco, Luz D
Lusis, Aldons J
Rubbi, Liudmilla
Che, Nam
Hormozdiari, Farhad
Pellegrini, Matteo
AuthorAffiliation 1 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
2 Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
4 Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA
3 Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
AuthorAffiliation_xml – name: 2 Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
– name: 1 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
– name: 3 Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
– name: 4 Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA
Author_xml – sequence: 1
  givenname: Luz D
  surname: Orozco
  fullname: Orozco, Luz D
  organization: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles
– sequence: 2
  givenname: Liudmilla
  surname: Rubbi
  fullname: Rubbi, Liudmilla
  organization: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles
– sequence: 3
  givenname: Lisa J
  surname: Martin
  fullname: Martin, Lisa J
  organization: Department of Medicine, University of California Los Angeles
– sequence: 4
  givenname: Fang
  surname: Fang
  fullname: Fang, Fang
  organization: Molecular and Computational Biology, University of Southern California
– sequence: 5
  givenname: Farhad
  surname: Hormozdiari
  fullname: Hormozdiari, Farhad
  organization: Department of Computer Science, University of California Los Angeles
– sequence: 6
  givenname: Nam
  surname: Che
  fullname: Che, Nam
  organization: Department of Medicine, University of California Los Angeles
– sequence: 7
  givenname: Andrew D
  surname: Smith
  fullname: Smith, Andrew D
  organization: Molecular and Computational Biology, University of Southern California
– sequence: 8
  givenname: Aldons J
  surname: Lusis
  fullname: Lusis, Aldons J
  organization: Department of Medicine, University of California Los Angeles
– sequence: 9
  givenname: Matteo
  surname: Pellegrini
  fullname: Pellegrini, Matteo
  email: matteop@mcdb.ucla.edu
  organization: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24887417$$D View this record in MEDLINE/PubMed
BookMark eNqNkklvFDEQhS0URBa4c0J95NLg6vF6QYrCligKF5C4Wba7psdRtz3YPUjz7_FkEhQiATnZVn3vucrPx-QgpoiEvAT6BkCJt4NrOwqsBd7yNgv1hBwBk6yVgn4_uLc_JMelXFMKmnXiGTnsmFKSgTwiF-dxxjxgxGznkKIdm3pIU_DN-6vTZsJ5tR1vKs3azhWNpQmxmdKmYLPauhz6pszZhliek6dLOxZ8cbuekG8fP3w9-9xefvl0fnZ62Xqx0HPbg-595zwCSkmltopJXHrQ2vHOYp1LOekXWkEveiF5L7Wq9YVwFoCiW5yQd3vf9cZN2HuM9f7RrHOYbN6aZIP5sxLDygzpp2FUCkFVNXh9a5DTjw2W2UyheBxHG7HOZTpaX0ppUPy_KHDORW1d6EegjFEQHduhr-5P8Lv1u1gqIPaAz6mUjEvjw3yTwu6pRwPU7PI3gzO7_Ku34abmX4X0gfDO-x8S2EtKReOA2VynTa4fofxd8wtKicSm
CitedBy_id crossref_primary_10_1186_s12864_017_4350_x
crossref_primary_10_1016_j_drudis_2021_03_001
crossref_primary_10_1080_10253890_2018_1532991
crossref_primary_10_1016_j_cmet_2015_04_025
crossref_primary_10_1194_jlr_R066944
crossref_primary_10_1095_biolreprod_115_135780
crossref_primary_10_1016_j_pbiomolbio_2015_03_002
crossref_primary_10_1371_journal_pone_0193496
crossref_primary_10_3389_fcell_2022_902857
crossref_primary_10_1017_S0029665116000823
crossref_primary_10_1080_1828051X_2023_2247003
crossref_primary_10_1093_hmg_ddy093
crossref_primary_10_3390_cells9061436
crossref_primary_10_1186_s13058_017_0866_x
crossref_primary_10_1080_15592294_2015_1084462
crossref_primary_10_1016_j_tig_2020_06_019
crossref_primary_10_1093_nargab_lqac096
crossref_primary_10_1096_fj_201601169R
crossref_primary_10_1371_journal_pgen_1007766
crossref_primary_10_3389_fgene_2014_00341
crossref_primary_10_1007_s11906_021_01132_x
crossref_primary_10_3389_fphar_2018_00702
crossref_primary_10_1186_s13072_020_00379_z
Cites_doi 10.1016/0092-8674(88)90546-6
10.1038/15490
10.1111/j.1471-4159.2004.02375.x
10.1007/978-1-61779-089-8_16
10.1093/nar/30.1.207
10.1152/physiolgenomics.00110.2009
10.1101/gr.229102. Article published online before print in May 2002
10.1093/bfgp/elq016
10.1016/j.molcel.2012.10.016
10.1073/pnas.1002720107
10.1101/gr.095562.109
10.1038/35002622
10.1093/hmg/dds310
10.1002/gene.10168
10.1016/j.cell.2011.12.035
10.1111/1467-9868.00346
10.1002/elps.200500703
10.1038/nbt.2487
10.1038/nature09798
10.1038/nbt.1630
10.1038/nature10413
10.1186/gb-2011-12-1-r10
10.1101/gad.2037511
10.1186/1471-2105-11-203
10.1534/genetics.112.149054
10.1038/nature08514
10.1073/pnas.1209297109
10.1073/pnas.84.14.4816
10.1073/pnas.1201310109
ContentType Journal Article
Copyright Orozco et al.; licensee BioMed Central Ltd. 2014
Copyright © 2014 Orozco et al.; licensee BioMed Central Ltd. 2014 Orozco et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Orozco et al.; licensee BioMed Central Ltd. 2014
– notice: Copyright © 2014 Orozco et al.; licensee BioMed Central Ltd. 2014 Orozco et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1186/gb-2014-15-5-r68
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Genetics Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
1465-6914
EndPage R68
ExternalDocumentID PMC4076608
24887417
10_1186_gb_2014_15_5_r68
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: T32 HG002536
– fundername: NIAMS NIH HHS
  grantid: T32 AR059033
– fundername: NIGMS NIH HHS
  grantid: GM095656-01A1
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
AAFWJ
AAHBH
AAJSJ
AASML
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFPKN
AHBYD
AHSBF
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C6C
EBD
EBLON
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
IAO
IGS
IHR
ISR
ITC
KPI
ROL
RPM
RSV
SJN
SOJ
SV3
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
2WC
7TM
8FD
AENEX
CS3
E3Z
EJD
F5P
FR3
HZ~
KQ8
O5R
O5S
O9-
OK1
P64
RBZ
RC3
SBL
TR2
WOQ
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c639t-d19dc2bce1e77079a847efc199b52ae1188b7c3981d6d675d798efc36ba110eb3
IEDL.DBID C6C
ISSN 1474-760X
1465-6906
IngestDate Thu Aug 21 14:03:16 EDT 2025
Thu Sep 04 21:20:42 EDT 2025
Fri Sep 05 02:40:17 EDT 2025
Fri Jul 11 12:37:59 EDT 2025
Thu Apr 03 06:53:28 EDT 2025
Tue Jul 01 03:10:36 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Sat Sep 06 07:24:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Average Methylation Level
Bisulfite Sequencing
Reduce Representation Bisulfite Sequencing
Methylation Level
Imprint Gene
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c639t-d19dc2bce1e77079a847efc199b52ae1188b7c3981d6d675d798efc36ba110eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1186/gb-2014-15-5-r68
PMID 24887417
PQID 1544016249
PQPubID 23462
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4076608
proquest_miscellaneous_2000189185
proquest_miscellaneous_1555619969
proquest_miscellaneous_1544016249
pubmed_primary_24887417
crossref_citationtrail_10_1186_gb_2014_15_5_r68
crossref_primary_10_1186_gb_2014_15_5_r68
springer_journals_10_1186_gb_2014_15_5_r68
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140430
PublicationDateYYYYMMDD 2014-04-30
PublicationDate_xml – month: 4
  year: 2014
  text: 20140430
  day: 30
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2014
Publisher BioMed Central
Publisher_xml – name: BioMed Central
References S Feng (3267_CR5) 2010; 107
DG Jo (3267_CR21) 2004; 88
F Fang (3267_CR20) 2012; 109
WJ Kent (3267_CR27) 2002; 12
R Lister (3267_CR3) 2009; 462
J Mattow (3267_CR19) 2006; 27
S Feng (3267_CR26) 2011; 733
S Lagarrigue (3267_CR17) 2013; 193
HD Morgan (3267_CR10) 1999; 23
E Schilling (3267_CR11) 2009; 19
RK Chodavarapu (3267_CR14) 2012; 109
OS Birk (3267_CR15) 2000; 403
JD Storey (3267_CR28) 2002; 64
JT Bell (3267_CR22) 2011; 12
CY McLean (3267_CR29) 2010; 28
W Xie (3267_CR4) 2012; 148
AM Deaton (3267_CR7) 2011; 25
R Lister (3267_CR6) 2011; 471
AJ Silva (3267_CR8) 1988; 54
R Edgar (3267_CR25) 2002; 30
DM Gatti (3267_CR16) 2010; 42
C Hemenway (3267_CR18) 1987; 84
G Hannum (3267_CR1) 2013; 49
N Lane (3267_CR9) 2003; 35
A Henckel (3267_CR24) 2010; 9
Y Liu (3267_CR2) 2013; 31
PY Chen (3267_CR12) 2010; 11
TM Keane (3267_CR13) 2011; 477
C Dombret (3267_CR23) 2012; 21
22523239 - Proc Natl Acad Sci U S A. 2012 May 8;109(19):7332-7
21251332 - Genome Biol. 2011;12(1):R10
22778444 - Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12040-5
3474627 - Proc Natl Acad Sci U S A. 1987 Jul;84(14):4816-20
21289626 - Nature. 2011 Mar 3;471(7336):68-73
21431774 - Methods Mol Biol. 2011;733:223-38
16532517 - Electrophoresis. 2006 Apr;27(8):1683-91
21921910 - Nature. 2011 Sep 15;477(7364):289-94
23177740 - Mol Cell. 2013 Jan 24;49(2):359-67
12045153 - Genome Res. 2002 Jun;12(6):996-1006
2898978 - Cell. 1988 Jul 15;54(2):145-52
11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10
23410828 - Genetics. 2013 Apr;193(4):1107-15
20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94
12533790 - Genesis. 2003 Feb;35(2):88-93
20591836 - Brief Funct Genomics. 2010 Jul;9(4):304-14
19687144 - Genome Res. 2009 Nov;19(11):2028-35
21576262 - Genes Dev. 2011 May 15;25(10):1010-22
23334450 - Nat Biotechnol. 2013 Feb;31(2):142-7
20436461 - Nat Biotechnol. 2010 May;28(5):495-501
14720210 - J Neurochem. 2004 Feb;88(3):604-11
20551147 - Physiol Genomics. 2010 Aug;42(3):456-68
10706291 - Nature. 2000 Feb 24;403(6772):909-13
19829295 - Nature. 2009 Nov 19;462(7271):315-22
10545949 - Nat Genet. 1999 Nov;23(3):314-8
20416082 - BMC Bioinformatics. 2010;11:203
22865874 - Hum Mol Genet. 2012 Nov 1;21(21):4703-17
22341451 - Cell. 2012 Feb 17;148(4):816-31
References_xml – volume: 54
  start-page: 145
  year: 1988
  ident: 3267_CR8
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90546-6
– volume: 23
  start-page: 314
  year: 1999
  ident: 3267_CR10
  publication-title: Nat Genet
  doi: 10.1038/15490
– volume: 88
  start-page: 604
  year: 2004
  ident: 3267_CR21
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2004.02375.x
– volume: 733
  start-page: 223
  year: 2011
  ident: 3267_CR26
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-61779-089-8_16
– volume: 30
  start-page: 207
  year: 2002
  ident: 3267_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.207
– volume: 42
  start-page: 456
  year: 2010
  ident: 3267_CR16
  publication-title: Physiol Genomics
  doi: 10.1152/physiolgenomics.00110.2009
– volume: 12
  start-page: 996
  year: 2002
  ident: 3267_CR27
  publication-title: Genome Res
  doi: 10.1101/gr.229102. Article published online before print in May 2002
– volume: 9
  start-page: 304
  year: 2010
  ident: 3267_CR24
  publication-title: Brief Funct Genomics
  doi: 10.1093/bfgp/elq016
– volume: 49
  start-page: 359
  year: 2013
  ident: 3267_CR1
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.10.016
– volume: 107
  start-page: 8689
  year: 2010
  ident: 3267_CR5
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1002720107
– volume: 19
  start-page: 2028
  year: 2009
  ident: 3267_CR11
  publication-title: Genome Res
  doi: 10.1101/gr.095562.109
– volume: 403
  start-page: 909
  year: 2000
  ident: 3267_CR15
  publication-title: Nature
  doi: 10.1038/35002622
– volume: 21
  start-page: 4703
  year: 2012
  ident: 3267_CR23
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/dds310
– volume: 35
  start-page: 88
  year: 2003
  ident: 3267_CR9
  publication-title: Genesis
  doi: 10.1002/gene.10168
– volume: 148
  start-page: 816
  year: 2012
  ident: 3267_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2011.12.035
– volume: 64
  start-page: 479
  year: 2002
  ident: 3267_CR28
  publication-title: J Roy Stat Soc B
  doi: 10.1111/1467-9868.00346
– volume: 27
  start-page: 1683
  year: 2006
  ident: 3267_CR19
  publication-title: Electrophoresis
  doi: 10.1002/elps.200500703
– volume: 31
  start-page: 142
  year: 2013
  ident: 3267_CR2
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2487
– volume: 471
  start-page: 68
  year: 2011
  ident: 3267_CR6
  publication-title: Nature
  doi: 10.1038/nature09798
– volume: 28
  start-page: 495
  year: 2010
  ident: 3267_CR29
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1630
– volume: 477
  start-page: 289
  year: 2011
  ident: 3267_CR13
  publication-title: Nature
  doi: 10.1038/nature10413
– volume: 12
  start-page: R10
  year: 2011
  ident: 3267_CR22
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-1-r10
– volume: 25
  start-page: 1010
  year: 2011
  ident: 3267_CR7
  publication-title: Genes Dev
  doi: 10.1101/gad.2037511
– volume: 11
  start-page: 203
  year: 2010
  ident: 3267_CR12
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-11-203
– volume: 193
  start-page: 1107
  year: 2013
  ident: 3267_CR17
  publication-title: Genetics
  doi: 10.1534/genetics.112.149054
– volume: 462
  start-page: 315
  year: 2009
  ident: 3267_CR3
  publication-title: Nature
  doi: 10.1038/nature08514
– volume: 109
  start-page: 12040
  year: 2012
  ident: 3267_CR14
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1209297109
– volume: 84
  start-page: 4816
  year: 1987
  ident: 3267_CR18
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.84.14.4816
– volume: 109
  start-page: 7332
  year: 2012
  ident: 3267_CR20
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1201310109
– reference: 20436461 - Nat Biotechnol. 2010 May;28(5):495-501
– reference: 10545949 - Nat Genet. 1999 Nov;23(3):314-8
– reference: 14720210 - J Neurochem. 2004 Feb;88(3):604-11
– reference: 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10
– reference: 12045153 - Genome Res. 2002 Jun;12(6):996-1006
– reference: 20416082 - BMC Bioinformatics. 2010;11:203
– reference: 23177740 - Mol Cell. 2013 Jan 24;49(2):359-67
– reference: 3474627 - Proc Natl Acad Sci U S A. 1987 Jul;84(14):4816-20
– reference: 21431774 - Methods Mol Biol. 2011;733:223-38
– reference: 23410828 - Genetics. 2013 Apr;193(4):1107-15
– reference: 20591836 - Brief Funct Genomics. 2010 Jul;9(4):304-14
– reference: 19829295 - Nature. 2009 Nov 19;462(7271):315-22
– reference: 22865874 - Hum Mol Genet. 2012 Nov 1;21(21):4703-17
– reference: 21921910 - Nature. 2011 Sep 15;477(7364):289-94
– reference: 21289626 - Nature. 2011 Mar 3;471(7336):68-73
– reference: 2898978 - Cell. 1988 Jul 15;54(2):145-52
– reference: 12533790 - Genesis. 2003 Feb;35(2):88-93
– reference: 21251332 - Genome Biol. 2011;12(1):R10
– reference: 20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94
– reference: 10706291 - Nature. 2000 Feb 24;403(6772):909-13
– reference: 20551147 - Physiol Genomics. 2010 Aug;42(3):456-68
– reference: 16532517 - Electrophoresis. 2006 Apr;27(8):1683-91
– reference: 22341451 - Cell. 2012 Feb 17;148(4):816-31
– reference: 23334450 - Nat Biotechnol. 2013 Feb;31(2):142-7
– reference: 21576262 - Genes Dev. 2011 May 15;25(10):1010-22
– reference: 22778444 - Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12040-5
– reference: 22523239 - Proc Natl Acad Sci U S A. 2012 May 8;109(19):7332-7
– reference: 19687144 - Genome Res. 2009 Nov;19(11):2028-35
SSID ssj0019426
ssj0017866
Score 2.2668605
Snippet Background DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While the...
DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While the variation...
Background: DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While...
BACKGROUND: DNA methylation is a contributing factor to both rare and common human diseases, and plays a major role in development and gene silencing. While...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage R68
SubjectTerms Animal Genetics and Genomics
animal models
Animals
Bioinformatics
Biomedical and Life Sciences
chromosomes
Chromosomes, Mammalian
Crosses, Genetic
DNA
DNA Methylation
epigenetics
Evolutionary Biology
Female
females
gender differences
gene expression
gene silencing
genes
genetic traits
genetic variation
Genome
Genomic Imprinting
human diseases
Human Genetics
Hybridization, Genetic
hybrids
Life Sciences
liver
Liver - metabolism
Male
males
Mice
Mice, Inbred C57BL
Mice, Inbred DBA
Microbial Genetics and Genomics
microRNA
MicroRNAs - metabolism
Molecular Sequence Data
Plant Genetics and Genomics
Sequence Analysis, DNA - methods
Sex Characteristics
Title Intergenerational genomic DNA methylation patterns in mouse hybrid strains
URI https://link.springer.com/article/10.1186/gb-2014-15-5-r68
https://www.ncbi.nlm.nih.gov/pubmed/24887417
https://www.proquest.com/docview/1544016249
https://www.proquest.com/docview/1555619969
https://www.proquest.com/docview/2000189185
https://pubmed.ncbi.nlm.nih.gov/PMC4076608
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UY-LF-BYfpCZeNNlAF9ptj4gSQiIHIwnx0vQFkuhKAA_8e6fdhYgoiZe9dLppZ2Z3Xu03CF2TxIFZsTyysTEQoAgdgV2vgi5rsB6K6r71Cf3HDmt1a-0e7eX5Dn8X5nv9nnBWHmiQI6lFhEY0GjO-ibbgVRWvyw3WWNQLBBiaeRHyl1nLRmfFk1w9EPmjKhqMTXMP7eZeIq5nYt1HGy49QNtZ38jZIWqHPN4gIEZnuTzssVbfhwbfd-rYd4WeZWfc8CjgZ6YTPEyxj_Idfp35S1p4EppDTI5Qt_nw3GhFeVOEyIAzMY0sEdbE2jjiEo9up8C8uL4hQmgaKwfb5zoxVQF-KLMQDdhEcBivMq3A0kPofIwK6UfqThHmVPW1oJXYVVzN6kQYxXhseV_VlDGWFVF5zjVpcsRwv7Y3GSIHzuRAS89nSaikEvhcRDeLGaMMLWMN7dVcEBJU2tcpVOqAEdIDBIEnCoHhOhrf1xOCtTU0_hYS4QI8kiI6yQS8WFUMPy5wppIiSpZEvyDwsNvLI-nwNcBvQwjMWAXWfztXEpl_95M_N3v2H-JztBO0N9SsLlBhOv50l-D6THUpaH0pJA7g-XT38gWTLwNe
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB48EH0Rb-sZwReFxWbbZJNHqUq9-qTgW8jVA3QVWx_6751kt8V6FHzOLCQzk_1mMsk3AMc08wgrTiQutRYTFGkSxPUa-rJB9NDMtF040L9v8eZj_eaJPZXnHeEtzNf6PRX8rGPQjrSeUJaw5J2LWZgPdcvAkt_gjXG9QCLQjIqQv3w1CTo_IsmfFyK_VUUj2FytwHIZJZLzwqyrMOPzNVgo-kYO1-EmnuN1ImN0cZZHAtfqS8-Si9Y5CV2hh8UdN_IW-TPzPunlJGT5nnSH4ZEW6cfmEP0NeLy6fGg0k7IpQmIxmBgkjkpnU2M99Vlgt9MIL75tqZSGpdrj8oXJbE1iHModZgMukwLHa9xoRHpMnTdhLn_N_TYQwXTbSFZNfdXXncmk1VykTrR1XVvreAXORlpTtmQMD3N7VjFzEFx1jAp6VpQpplDPFTgZf_FWsGVMkT0aGUKhS4c6hc49KkIFgiCMRDExnCYT-npisjZFJrxCokJiRFKBrcLA41ml-OPCYCqrQDZh-rFAoN2eHMl73Ui_jSkw51Wc_-nISVS57_t_LnbnP8KHsNh8uL9Td9et211Yip4c61d7MDd4__D7GAYNzEHcAZ-6EwRJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB4al4ReStu8tq-okEsCi71rSysdjVPjJq3JIYHchF5rG9qN8boH__uOtA9w0xh61gikmZFmRjP6BuA8yRyaFctjmxqDAYrQMdr1PuqyRuuhqM6tf9D_MWWT-8H1A32oH9zKptq9SUlWfxo8SlOx7i5tXh1xzrozjdJNBnFCYxqvGN-Dlx6py5f0jdiozSIIND9NavIfs7ZN0RP_8mmZ5F-50mCCxm_gde07kmEl7LfwwhXvYL_qJrk5hOvwujcLONLVCx_xCKy_FoZcTYfE94reVJVvZBlQNYuSLAriY39H5hv_dYuUoWVEeQT34693o0lct0qIDboY69gmwppUG5e4zGPeKTQ6LjeJEJqmyuH2uc5MX6B3yizGCDYTHMf7TCu0_xhQH0OneCzcKRBOVa4F7aWu5wZWZ8IoxlPLczVQxlgWQbfhmjQ1jrhf208Z4gnO5ExLz2eZUEkl8jmCi3bGssLQ2EH7pRGEREX32QtVOGSE9LBB6J9iuLiLxnf7xBBuB43_m5RwgX5KBCeVgNtVpXidoYuVRZBtib4l8GDc2yPFYh5AuTEwZqyH679slETWt0H57Gbf_w_xGRzcXo3l92_Tmw_wKihySGp9hM569dt9Qt9orT-HA_AHAOIMmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intergenerational+genomic+DNA+methylation+patterns+in+mouse+hybrid+strains&rft.jtitle=GenomeBiology.com&rft.au=Orozco%2C+Luz+D&rft.au=Rubbi%2C+Liudmilla&rft.au=Martin%2C+Lisa+J&rft.au=Fang%2C+Fang&rft.date=2014-04-30&rft.pub=BioMed+Central&rft.issn=1465-6906&rft.eissn=1465-6914&rft.volume=15&rft.issue=5&rft.spage=R68&rft.epage=R68&rft_id=info:doi/10.1186%2Fgb-2014-15-5-r68&rft_id=info%3Apmid%2F24887417&rft.externalDocID=PMC4076608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon