Data-Driven Evolutionary Algorithm Based on Inductive Graph Neural Networks for Multimodal Multi-Objective Optimization

In multimodal multi-objective optimization problems (MMOPs), multiple solutions on different Pareto optimal solution sets (PSs) are mapped to the same point on the Pareto front. Considering these different solutions can provide users with richer decisions, the search of multiple PSs is crucial when...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation p. 1
Main Authors Dang, Qianlong, Liu, Qiqi, Yang, Shuai, He, Xiaoyu
Format Journal Article
LanguageEnglish
Published IEEE 10.02.2025
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2025.3541046

Cover

Abstract In multimodal multi-objective optimization problems (MMOPs), multiple solutions on different Pareto optimal solution sets (PSs) are mapped to the same point on the Pareto front. Considering these different solutions can provide users with richer decisions, the search of multiple PSs is crucial when solving MMOPs. To this end, many multimodal multi-objective evolutionary algorithms (MMOEAs) often employ intricate mechanisms to maintain the diversity of the offspring in mating selection, but ignore to learn PSs. In this paper, a data-driven evolutionary algorithm based on inductive graph neural networks (DEA-IGNN) is proposed to solve MMOPs, which successfully learns the PSs topology by the graph structure to generate offspring with good performance. Specifically, a graph topology construction method based on Euclidean distance in the decision space is designed. It determines the neighborhood by calculating the Euclidean distance of individuals in the decision space and establishes the topological relationships to construct the graphs representing of population distribution. On this basis, a model based on inductive graph neural networks is constructed to assist offspring reproduction, which can learn unknown nodes by sampling and aggregating existing information. Moreover, a data-driven reproduction strategy is proposed to predict offspring with the good diversity and convergence, which uses the traditional variation operators to generate training data and adopts these data to train the model. The proposed DEA-IGNN is implemented and compared with eleven competitive MMOEAs on three test suites and a practical problem. The experimental results show that DEA-IGNN has good performance.
AbstractList In multimodal multi-objective optimization problems (MMOPs), multiple solutions on different Pareto optimal solution sets (PSs) are mapped to the same point on the Pareto front. Considering these different solutions can provide users with richer decisions, the search of multiple PSs is crucial when solving MMOPs. To this end, many multimodal multi-objective evolutionary algorithms (MMOEAs) often employ intricate mechanisms to maintain the diversity of the offspring in mating selection, but ignore to learn PSs. In this paper, a data-driven evolutionary algorithm based on inductive graph neural networks (DEA-IGNN) is proposed to solve MMOPs, which successfully learns the PSs topology by the graph structure to generate offspring with good performance. Specifically, a graph topology construction method based on Euclidean distance in the decision space is designed. It determines the neighborhood by calculating the Euclidean distance of individuals in the decision space and establishes the topological relationships to construct the graphs representing of population distribution. On this basis, a model based on inductive graph neural networks is constructed to assist offspring reproduction, which can learn unknown nodes by sampling and aggregating existing information. Moreover, a data-driven reproduction strategy is proposed to predict offspring with the good diversity and convergence, which uses the traditional variation operators to generate training data and adopts these data to train the model. The proposed DEA-IGNN is implemented and compared with eleven competitive MMOEAs on three test suites and a practical problem. The experimental results show that DEA-IGNN has good performance.
Author Liu, Qiqi
Dang, Qianlong
Yang, Shuai
He, Xiaoyu
Author_xml – sequence: 1
  givenname: Qianlong
  orcidid: 0000-0001-9295-1361
  surname: Dang
  fullname: Dang, Qianlong
  organization: College of Science, and Joint Laboratory of Algorithm and Simulation for Low Altitude Aircraft, Northwest A and F University, Yangling, China
– sequence: 2
  givenname: Qiqi
  orcidid: 0000-0003-1587-5515
  surname: Liu
  fullname: Liu, Qiqi
  organization: Trustworthy and General AI Lab, School of Engineering, Westlake University, Hangzhou, China
– sequence: 3
  givenname: Shuai
  orcidid: 0000-0002-1837-0515
  surname: Yang
  fullname: Yang, Shuai
  organization: School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, China
– sequence: 4
  givenname: Xiaoyu
  orcidid: 0000-0003-4460-2460
  surname: He
  fullname: He, Xiaoyu
  organization: School of Software Engineering, Sun Yat-sen University, Guangzhou, China
BookMark eNpNUF1PwjAUbQwmAvoDTHzoHxi267a2jwiIJOheiPFt6fohxbGSboPor7cTHnw6J_eec0_uGYFB7WoNwD1GE4wRf9ws3meTGMXphKQJRkl2BYaYJzhCKM4GgSPGI0rZxw0YNc0OIZykmA_BaS5aEc29PeoaLo6u6lrrauG_4bT6dN622z18Eo1W0NVwVatOtkEKl14ctvBNd15UAdqT818NNM7D165q7d6pMP-jUV7u9NmUH8LG_og-4RZcG1E1-u6CY7B5XmxmL9E6X65m03UkM8IjgwylVCohS0E5JxSn3GRKM0WV4axMYkOFREKXSJYsTTlJFdaEKB4LpjAjY4DPZ6V3TeO1KQ7e7sN7BUZFX1zRF1f0xRWX4oLn4eyxWut_ekZ5EhJ-AZZQbyg
CODEN ITEVF5
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2025.3541046
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
Institute of Electrical and Electronics Engineers Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1
ExternalDocumentID 10_1109_TEVC_2025_3541046
10879459
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62306008
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
HZ~
IEGSK
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
VH1
ID FETCH-LOGICAL-c639-f0f777cdacba79937159f6de8d7df98b42f7ac0aeb0cb855935d1e33d92a8d183
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Wed Oct 01 06:54:29 EDT 2025
Wed Aug 27 01:52:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c639-f0f777cdacba79937159f6de8d7df98b42f7ac0aeb0cb855935d1e33d92a8d183
ORCID 0000-0001-9295-1361
0000-0003-1587-5515
0000-0002-1837-0515
0000-0003-4460-2460
PageCount 1
ParticipantIDs crossref_primary_10_1109_TEVC_2025_3541046
ieee_primary_10879459
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250210
PublicationDateYYYYMMDD 2025-02-10
PublicationDate_xml – month: 2
  year: 2025
  text: 20250210
  day: 10
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
Score 2.4606054
Snippet In multimodal multi-objective optimization problems (MMOPs), multiple solutions on different Pareto optimal solution sets (PSs) are mapped to the same point on...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Data models
data-driven evolutionary algorithm
Euclidean distance
Evolutionary computation
Graph neural networks
inductive graph neural networks
Multimodal multi-objective optimization
Network topology
Optimization
Pareto optimization
PSs topology
Topology
Training
Title Data-Driven Evolutionary Algorithm Based on Inductive Graph Neural Networks for Multimodal Multi-Objective Optimization
URI https://ieeexplore.ieee.org/document/10879459
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJzhQKEWUTT5wQnJxtsY5li5USLSXgnqLvLK2QSUFwdczdlJUkJC4WVaiWJ7x-E1meQidUsVZoI0klv2NhB7lJOFGEBGEwoS-T0PHsXQ9bA1uwqtJNCmL1V0tjNbaJZ_pph26WL7K5ML-KoMTzkB9omQdrcesVRRrfYcMbJ-UIps-AcjIJmUI06PJ-bh32wFX0I-aQRTaoOaPS2iFVcVdKv0qGi6XU-SSPDUXuWjKz1-dGv-93m20VcJL3C70YQet6VkNVZfUDbg8yTW0udKHcBe9d3nOSXduLR_uvZXayOcfuP18l80f8vspvoDrTuFshi3ZhzOS-NI2u8a2vQd8cljkk79iQMHYlfVOMwXzbkhG4rGwrHgENmpaFn_W0bjfG3cGpGRkIBKQDDHUxHEsFZeCxxbYABYyLaWZipVJmAh9E3NJuRZUCga-ShApTweBSnzOFBiPPVSZZTO9jzBPfFAHxqTR4KMYX8jA09xwygEzBSJuoLOlhNKXou9G6vwVmqRWnKkVZ1qKs4HqdvNXHiz2_eCP-UO0YV-3ydcePUKVfL7Qx4AtcnHidOoLOx_OJQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a2wF2WGEMbePLB05ILk7iLM6x21o66LJLQL1F_mQD2qAu3TT--j07KSpISLtZVpRYfs_Pv5f38QN4x4wUiXWaevY3yiMmaS6doirhyvE4ZjxwLJ0XR-Mv_NM0nXbF6qEWxlobks9s3w9DLN_Ueul_leEJF6g-af4ItlLOedqWa_0JGvhOKW0-fY6gUUy7IGbE8g_l8OsJOoNx2k9S7sOaf11Da7wq4VoZ9aBYLajNJvnRXzaqr3__06vxwSt-CjsdwCSDViOewYad70JvRd5AurO8C9trnQifw-2pbCQ9XXjbR4Y3nT7KxR0Z_PxWL66ayxk5xgvPkHpOPN1HMJPko293TXyDD_xk0WaUXxPEwSQU9s5qg_NhSC_U99a2kgu0UrOu_HMPytGwPBnTjpOBasQy1DGXZZk2UiuZeWiDaMgdGStMZlwuFI9dJjWTVjGtBHorSWoimyQmj6UwaD5ewOa8ntt9IDKPUSGE0M6il-JipZPISieZRNSUqOwA3q8kVP1qO29UwWNheeXFWXlxVp04D2DPb_7ag-2-H_5n_i08Hpfnk2pyVnx-CU_8q3wqdsRewWazWNrXiDQa9Sbo1z0t-9Fy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Evolutionary+Algorithm+Based+on+Inductive+Graph+Neural+Networks+for+Multimodal+Multi-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Dang%2C+Qianlong&rft.au=Liu%2C+Qiqi&rft.au=Yang%2C+Shuai&rft.au=He%2C+Xiaoyu&rft.date=2025-02-10&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2025.3541046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2025_3541046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon