Data-Driven Evolutionary Algorithm Based on Inductive Graph Neural Networks for Multimodal Multi-Objective Optimization
In multimodal multi-objective optimization problems (MMOPs), multiple solutions on different Pareto optimal solution sets (PSs) are mapped to the same point on the Pareto front. Considering these different solutions can provide users with richer decisions, the search of multiple PSs is crucial when...
Saved in:
| Published in | IEEE transactions on evolutionary computation p. 1 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
10.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1089-778X 1941-0026 |
| DOI | 10.1109/TEVC.2025.3541046 |
Cover
| Abstract | In multimodal multi-objective optimization problems (MMOPs), multiple solutions on different Pareto optimal solution sets (PSs) are mapped to the same point on the Pareto front. Considering these different solutions can provide users with richer decisions, the search of multiple PSs is crucial when solving MMOPs. To this end, many multimodal multi-objective evolutionary algorithms (MMOEAs) often employ intricate mechanisms to maintain the diversity of the offspring in mating selection, but ignore to learn PSs. In this paper, a data-driven evolutionary algorithm based on inductive graph neural networks (DEA-IGNN) is proposed to solve MMOPs, which successfully learns the PSs topology by the graph structure to generate offspring with good performance. Specifically, a graph topology construction method based on Euclidean distance in the decision space is designed. It determines the neighborhood by calculating the Euclidean distance of individuals in the decision space and establishes the topological relationships to construct the graphs representing of population distribution. On this basis, a model based on inductive graph neural networks is constructed to assist offspring reproduction, which can learn unknown nodes by sampling and aggregating existing information. Moreover, a data-driven reproduction strategy is proposed to predict offspring with the good diversity and convergence, which uses the traditional variation operators to generate training data and adopts these data to train the model. The proposed DEA-IGNN is implemented and compared with eleven competitive MMOEAs on three test suites and a practical problem. The experimental results show that DEA-IGNN has good performance. |
|---|---|
| AbstractList | In multimodal multi-objective optimization problems (MMOPs), multiple solutions on different Pareto optimal solution sets (PSs) are mapped to the same point on the Pareto front. Considering these different solutions can provide users with richer decisions, the search of multiple PSs is crucial when solving MMOPs. To this end, many multimodal multi-objective evolutionary algorithms (MMOEAs) often employ intricate mechanisms to maintain the diversity of the offspring in mating selection, but ignore to learn PSs. In this paper, a data-driven evolutionary algorithm based on inductive graph neural networks (DEA-IGNN) is proposed to solve MMOPs, which successfully learns the PSs topology by the graph structure to generate offspring with good performance. Specifically, a graph topology construction method based on Euclidean distance in the decision space is designed. It determines the neighborhood by calculating the Euclidean distance of individuals in the decision space and establishes the topological relationships to construct the graphs representing of population distribution. On this basis, a model based on inductive graph neural networks is constructed to assist offspring reproduction, which can learn unknown nodes by sampling and aggregating existing information. Moreover, a data-driven reproduction strategy is proposed to predict offspring with the good diversity and convergence, which uses the traditional variation operators to generate training data and adopts these data to train the model. The proposed DEA-IGNN is implemented and compared with eleven competitive MMOEAs on three test suites and a practical problem. The experimental results show that DEA-IGNN has good performance. |
| Author | Liu, Qiqi Dang, Qianlong Yang, Shuai He, Xiaoyu |
| Author_xml | – sequence: 1 givenname: Qianlong orcidid: 0000-0001-9295-1361 surname: Dang fullname: Dang, Qianlong organization: College of Science, and Joint Laboratory of Algorithm and Simulation for Low Altitude Aircraft, Northwest A and F University, Yangling, China – sequence: 2 givenname: Qiqi orcidid: 0000-0003-1587-5515 surname: Liu fullname: Liu, Qiqi organization: Trustworthy and General AI Lab, School of Engineering, Westlake University, Hangzhou, China – sequence: 3 givenname: Shuai orcidid: 0000-0002-1837-0515 surname: Yang fullname: Yang, Shuai organization: School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, China – sequence: 4 givenname: Xiaoyu orcidid: 0000-0003-4460-2460 surname: He fullname: He, Xiaoyu organization: School of Software Engineering, Sun Yat-sen University, Guangzhou, China |
| BookMark | eNpNUF1PwjAUbQwmAvoDTHzoHxi267a2jwiIJOheiPFt6fohxbGSboPor7cTHnw6J_eec0_uGYFB7WoNwD1GE4wRf9ws3meTGMXphKQJRkl2BYaYJzhCKM4GgSPGI0rZxw0YNc0OIZykmA_BaS5aEc29PeoaLo6u6lrrauG_4bT6dN622z18Eo1W0NVwVatOtkEKl14ctvBNd15UAdqT818NNM7D165q7d6pMP-jUV7u9NmUH8LG_og-4RZcG1E1-u6CY7B5XmxmL9E6X65m03UkM8IjgwylVCohS0E5JxSn3GRKM0WV4axMYkOFREKXSJYsTTlJFdaEKB4LpjAjY4DPZ6V3TeO1KQ7e7sN7BUZFX1zRF1f0xRWX4oLn4eyxWut_ekZ5EhJ-AZZQbyg |
| CODEN | ITEVF5 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2025.3541046 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present Institute of Electrical and Electronics Engineers Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TEVC_2025_3541046 10879459 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62306008 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS HZ~ IEGSK IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IFJZH VH1 |
| ID | FETCH-LOGICAL-c639-f0f777cdacba79937159f6de8d7df98b42f7ac0aeb0cb855935d1e33d92a8d183 |
| IEDL.DBID | RIE |
| ISSN | 1089-778X |
| IngestDate | Wed Oct 01 06:54:29 EDT 2025 Wed Aug 27 01:52:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c639-f0f777cdacba79937159f6de8d7df98b42f7ac0aeb0cb855935d1e33d92a8d183 |
| ORCID | 0000-0001-9295-1361 0000-0003-1587-5515 0000-0002-1837-0515 0000-0003-4460-2460 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2025_3541046 ieee_primary_10879459 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250210 |
| PublicationDateYYYYMMDD | 2025-02-10 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250210 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0014519 |
| Score | 2.4606054 |
| Snippet | In multimodal multi-objective optimization problems (MMOPs), multiple solutions on different Pareto optimal solution sets (PSs) are mapped to the same point on... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Data models data-driven evolutionary algorithm Euclidean distance Evolutionary computation Graph neural networks inductive graph neural networks Multimodal multi-objective optimization Network topology Optimization Pareto optimization PSs topology Topology Training |
| Title | Data-Driven Evolutionary Algorithm Based on Inductive Graph Neural Networks for Multimodal Multi-Objective Optimization |
| URI | https://ieeexplore.ieee.org/document/10879459 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJzhQKEWUTT5wQnJxtsY5li5USLSXgnqLvLK2QSUFwdczdlJUkJC4WVaiWJ7x-E1meQidUsVZoI0klv2NhB7lJOFGEBGEwoS-T0PHsXQ9bA1uwqtJNCmL1V0tjNbaJZ_pph26WL7K5ML-KoMTzkB9omQdrcesVRRrfYcMbJ-UIps-AcjIJmUI06PJ-bh32wFX0I-aQRTaoOaPS2iFVcVdKv0qGi6XU-SSPDUXuWjKz1-dGv-93m20VcJL3C70YQet6VkNVZfUDbg8yTW0udKHcBe9d3nOSXduLR_uvZXayOcfuP18l80f8vspvoDrTuFshi3ZhzOS-NI2u8a2vQd8cljkk79iQMHYlfVOMwXzbkhG4rGwrHgENmpaFn_W0bjfG3cGpGRkIBKQDDHUxHEsFZeCxxbYABYyLaWZipVJmAh9E3NJuRZUCga-ShApTweBSnzOFBiPPVSZZTO9jzBPfFAHxqTR4KMYX8jA09xwygEzBSJuoLOlhNKXou9G6vwVmqRWnKkVZ1qKs4HqdvNXHiz2_eCP-UO0YV-3ydcePUKVfL7Qx4AtcnHidOoLOx_OJQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a2wF2WGEMbePLB05ILk7iLM6x21o66LJLQL1F_mQD2qAu3TT--j07KSpISLtZVpRYfs_Pv5f38QN4x4wUiXWaevY3yiMmaS6doirhyvE4ZjxwLJ0XR-Mv_NM0nXbF6qEWxlobks9s3w9DLN_Ueul_leEJF6g-af4ItlLOedqWa_0JGvhOKW0-fY6gUUy7IGbE8g_l8OsJOoNx2k9S7sOaf11Da7wq4VoZ9aBYLajNJvnRXzaqr3__06vxwSt-CjsdwCSDViOewYad70JvRd5AurO8C9trnQifw-2pbCQ9XXjbR4Y3nT7KxR0Z_PxWL66ayxk5xgvPkHpOPN1HMJPko293TXyDD_xk0WaUXxPEwSQU9s5qg_NhSC_U99a2kgu0UrOu_HMPytGwPBnTjpOBasQy1DGXZZk2UiuZeWiDaMgdGStMZlwuFI9dJjWTVjGtBHorSWoimyQmj6UwaD5ewOa8ntt9IDKPUSGE0M6il-JipZPISieZRNSUqOwA3q8kVP1qO29UwWNheeXFWXlxVp04D2DPb_7ag-2-H_5n_i08Hpfnk2pyVnx-CU_8q3wqdsRewWazWNrXiDQa9Sbo1z0t-9Fy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Evolutionary+Algorithm+Based+on+Inductive+Graph+Neural+Networks+for+Multimodal+Multi-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Dang%2C+Qianlong&rft.au=Liu%2C+Qiqi&rft.au=Yang%2C+Shuai&rft.au=He%2C+Xiaoyu&rft.date=2025-02-10&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2025.3541046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2025_3541046 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |