Effects of dietary docosahexaenoic acid connecting phospholipids on the learning ability and fatty acid composition of the brain

The effects of dietary docosahexaenoic acid (DHA, C22:6n-3) connecting phospholipids on the learning ability and fatty acid composition of the brain were investigated in hypercholesterolemic mice. ICR mice were subjected to a very low level of n-3 fatty acids through two generations. At 4 wk of age,...

Full description

Saved in:
Bibliographic Details
Published inJournal of Nutritional Science and Vitaminology Vol. 55; no. 4; pp. 374 - 380
Main Authors Hiratsuka, S.(Shizuoka-ken. Research Inst. of Fishery, Yaizu (Japan)), Koizumi, K, Ooba, T, Yokogoshi, H
Format Journal Article
LanguageEnglish
Published Tokyo Center for Academic Publications Japan 01.08.2009
Subjects
Online AccessGet full text
ISSN0301-4800
1881-7742
DOI10.3177/jnsv.55.374

Cover

Abstract The effects of dietary docosahexaenoic acid (DHA, C22:6n-3) connecting phospholipids on the learning ability and fatty acid composition of the brain were investigated in hypercholesterolemic mice. ICR mice were subjected to a very low level of n-3 fatty acids through two generations. At 4 wk of age, the Fsub(1) generation, n-3 fatty acid deficient male mice were provided with an experimental diet containing four kinds of lipids (safflower oil: Saf, DHA connecting triacylglycerols: DHA-TG, DHA connecting phospholipids: DHA-PL, soybean phospholipids: Soy-PL) for 5 wk. Another group of ICR mice were obtained and fed a commercial diet (CE-2, CLEA Japan, Inc.) as a control. The learning and memory abilities of the mice were evaluated by the modified avoidance procedure. The learning and memory ability level was significantly higher in mice fed the DHA-PL diet than in those fed the Saf and Soy-PL diets, and was the same level as the control. The DHA levels of phosphatidylethanolamine in the brain were significantly higher in the mice fed the two types of DHA-containing diets than in those fed the Saf and Soy-PL diets and was not significantly different between DHA-TG and DHA-PL. The dimethylacetal levels in the brain were significantly higher in the mice fed the DHA-PL diet than in those fed the Saf and DHA-TG diets. These results suggest that the dietary DHA connecting phospholipids have the effect of improving memory learning, and may be related to the both the DHA and plasmalogen levels in the brain.
AbstractList The effects of dietary docosahexaenoic acid (DHA, C22:6n-3) connecting phospholipids on the learning ability and fatty acid composition of the brain were investigated in hypercholesterolemic mice. ICR mice were subjected to a very low level of n-3 fatty acids through two generations. At 4 wk of age, the F(1) generation, n-3 fatty acid deficient male mice were provided with an experimental diet containing four kinds of lipids (safflower oil: Saf, DHA connecting triacylglycerols: DHA-TG, DHA connecting phospholipids: DHA-PL, soybean phospholipids: Soy-PL) for 5 wk. Another group of ICR mice were obtained and fed a commercial diet (CE-2, CLEA Japan, Inc.) as a control. The learning and memory abilities of the mice were evaluated by the modified avoidance procedure. The learning and memory ability level was significantly higher in mice fed the DHA-PL diet than in those fed the Saf and Soy-PL diets, and was the same level as the control. The DHA levels of phosphatidylethanolamine in the brain were significantly higher in the mice fed the two types of DHA-containing diets than in those fed the Saf and Soy-PL diets and was not significantly different between DHA-TG and DHA-PL. The dimethylacetal levels in the brain were significantly higher in the mice fed the DHA-PL diet than in those fed the Saf and DHA-TG diets. These results suggest that the dietary DHA connecting phospholipids have the effect of improving memory learning, and may be related to the both the DHA and plasmalogen levels in the brain.
The effects of dietary docosahexaenoic acid (DHA, C22:6n-3) connecting phospholipids on the learning ability and fatty acid composition of the brain were investigated in hypercholesterolemic mice. ICR mice were subjected to a very low level of n-3 fatty acids through two generations. At 4 wk of age, the F1 generation, n-3 fatty acid deficient male mice were provided with an experimental diet containing four kinds of lipids (safflower oil: Saf, DHA connecting triacylglycerols: DHA-TG, DHA connecting phospholipids: DHA-PL, soybean phospholipids: Soy-PL) for 5 wk. Another group of ICR mice were obtained and fed a commercial diet (CE-2, CLEA Japan, Inc.) as a control. The learning and memory abilities of the mice were evaluated by the modified avoidance procedure. The learning and memory ability level was significantly higher in mice fed the DHA-PL diet than in those fed the Saf and Soy-PL diets, and was the same level as the control. The DHA levels of phosphatidylethanolamine in the brain were significantly higher in the mice fed the two types of DHA-containing diets than in those fed the Saf and Soy-PL diets and was not significantly different between DHA-TG and DHA-PL. The dimethylacetal levels in the brain were significantly higher in the mice fed the DHA-PL diet than in those fed the Saf and DHA-TG diets. These results suggest that the dietary DHA connecting phospholipids have the effect of improving memory learning, and may be related to the both the DHA and plasmalogen levels in the brain.
Summary The effects of dietary docosahexaenoic acid (DHA, C22:6n-3) connecting phospholipids on the learning ability and fatty acid composition of the brain were investigated in hypercholesterolemic mice. ICR mice were subjected to a very low level of n-3 fatty acids through two generations. At 4 wk of age, the F sub(1) generation, n-3 fatty acid deficient male mice were provided with an experimental diet containing four kinds of lipids (safflower oil: Saf, DHA connecting triacylglycerols: DHA-TG, DHA connecting phospholipids: DHA-PL, soybean phospholipids: Soy-PL) for 5 wk. Another group of ICR mice were obtained and fed a commercial diet (CE-2, CLEA Japan, Inc.) as a control. The learning and memory abilities of the mice were evaluated by the modified avoidance procedure. The learning and memory ability level was significantly higher in mice fed the DHA-PL diet than in those fed the Saf and Soy-PL diets, and was the same level as the control. The DHA levels of phosphatidylethanolamine in the brain were significantly higher in the mice fed the two types of DHA-containing diets than in those fed the Saf and Soy- PL diets and was not significantly different between DHA-TG and DHA-PL. The dimethylacetal levels in the brain were significantly higher in the mice fed the DHA-PL diet than in those fed the Saf and DHA-TG diets. These results suggest that the dietary DHA connecting phospholipids have the effect of improving memory learning, and may be related to the both the DHA and plasmalogen levels in the brain.
The effects of dietary docosahexaenoic acid (DHA, C22:6n-3) connecting phospholipids on the learning ability and fatty acid composition of the brain were investigated in hypercholesterolemic mice. ICR mice were subjected to a very low level of n-3 fatty acids through two generations. At 4 wk of age, the Fsub(1) generation, n-3 fatty acid deficient male mice were provided with an experimental diet containing four kinds of lipids (safflower oil: Saf, DHA connecting triacylglycerols: DHA-TG, DHA connecting phospholipids: DHA-PL, soybean phospholipids: Soy-PL) for 5 wk. Another group of ICR mice were obtained and fed a commercial diet (CE-2, CLEA Japan, Inc.) as a control. The learning and memory abilities of the mice were evaluated by the modified avoidance procedure. The learning and memory ability level was significantly higher in mice fed the DHA-PL diet than in those fed the Saf and Soy-PL diets, and was the same level as the control. The DHA levels of phosphatidylethanolamine in the brain were significantly higher in the mice fed the two types of DHA-containing diets than in those fed the Saf and Soy-PL diets and was not significantly different between DHA-TG and DHA-PL. The dimethylacetal levels in the brain were significantly higher in the mice fed the DHA-PL diet than in those fed the Saf and DHA-TG diets. These results suggest that the dietary DHA connecting phospholipids have the effect of improving memory learning, and may be related to the both the DHA and plasmalogen levels in the brain.
Author Koizumi, K
Hiratsuka, S.(Shizuoka-ken. Research Inst. of Fishery, Yaizu (Japan))
Yokogoshi, H
Ooba, T
Author_xml – sequence: 1
  fullname: Hiratsuka, S.(Shizuoka-ken. Research Inst. of Fishery, Yaizu (Japan))
– sequence: 2
  fullname: Koizumi, K
– sequence: 3
  fullname: Ooba, T
– sequence: 4
  fullname: Yokogoshi, H
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22591967$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19763040$$D View this record in MEDLINE/PubMed
BookMark eNp1kc2P0zAQxS20iO0WTpxBucAFpYxjO3FuoNXuAloJDnCOJo7dukrtYLuIvfGn4yilSEgc_CHN772x31yRC-edJuQ5hQ2jTfN27-KPjRAb1vBHZEWlpGXT8OqCrIABLbkEuCRXMe4BeCu5fEIuadvUDDisyK8bY7RKsfCmGKxOGB6KwSsfcad_onbeqgKVHQrlncugddti2vmY12gnO2ShK9JOF6PG4OYq9na06aFANxQG03xb9IfJR5ts5nOvWdIHtO4peWxwjPrZ6VyTb7c3X68_lPef7z5ev78vVc1kKhUIxfOLRSWxprrVrAegvZGqV23NjABgFRMDNLKnzcBazird67aGmnMpGFuT14vvFPz3o46pO9io9Dii0_4Yu4rmdHi2WpOXJ_DYH_TQTcEecirdn8wy8OoEYFQ4moBO2Xjmqkq0tK2bzL1ZOBV8jEGbv1bQzZPr5sl1QnR5cpmm_9DKJpzjSjmm8T-ad4tmHxNu9dkfQ7Jq1GeWL1uWnEtqh6HTLlu8WCwM-g63IX_k05cKoAUQAir2G1sTvZc
CitedBy_id crossref_primary_10_1016_j_bbi_2018_07_025
crossref_primary_10_1007_s12562_023_01738_x
crossref_primary_10_1186_1743_7075_10_23
crossref_primary_10_1016_j_jff_2016_04_034
crossref_primary_10_2331_suisan_WA2522
crossref_primary_10_5650_jos_62_883
crossref_primary_10_1016_j_neuint_2013_10_015
crossref_primary_10_1016_j_jfca_2020_103668
crossref_primary_10_1007_s12562_014_0847_2
crossref_primary_10_1016_j_jnutbio_2018_05_009
crossref_primary_10_1007_s11745_013_3791_5
crossref_primary_10_1111_1541_4337_12510
crossref_primary_10_1039_C7FO01342F
crossref_primary_10_1007_s11745_016_4139_8
crossref_primary_10_1093_advances_nmz135
crossref_primary_10_1016_j_jff_2020_103948
crossref_primary_10_3390_ijms222111826
crossref_primary_10_1186_1476_511X_12_109
crossref_primary_10_1016_j_algal_2019_101473
crossref_primary_10_1111_1750_3841_14044
crossref_primary_10_1007_s11745_010_3398_z
crossref_primary_10_1007_s11802_018_3444_7
crossref_primary_10_1002_ejlt_201300407
crossref_primary_10_1007_s12010_016_2379_y
crossref_primary_10_1016_j_foodres_2024_114049
crossref_primary_10_1186_1476_511X_10_101
crossref_primary_10_1016_j_tifs_2018_08_010
crossref_primary_10_1111_1541_4337_12543
crossref_primary_10_1016_j_plefa_2016_09_003
crossref_primary_10_1016_j_nut_2012_07_020
crossref_primary_10_1039_C8FO00643A
crossref_primary_10_1016_j_eurpsy_2011_05_004
crossref_primary_10_1002_mnfr_201700637
crossref_primary_10_1186_1476_511X_10_182
crossref_primary_10_5650_jos_60_109
crossref_primary_10_4327_jsnfs_63_227
crossref_primary_10_3389_fphar_2019_01022
Cites_doi 10.1073/pnas.88.23.10540
10.1016/S0163-7827(01)00003-0
10.1093/oxfordjournals.aje.a009915
10.1093/jn/135.3.549
10.3177/jnsv.52.266
10.1046/j.1471-4159.1997.68052061.x
10.1152/ajpregu.1994.267.5.R1273
10.1042/bj3230807
10.1016/S0006-291X(03)00157-8
10.1271/bbb1961.54.1829
10.1016/S0167-4943(01)00105-4
10.5650/jos.52.89
10.1016/S0047-6374(97)00169-3
10.1016/S0021-9258(18)70226-3
10.1016/S0306-4522(99)00107-4
10.1194/jlr.P700023-JLR200
10.5650/jos1996.46.383
10.1024/0300-9831.70.5.251
10.1111/j.1444-2906.2004.00885.x
10.1111/j.1349-7006.2001.tb01146.x
10.1016/S0022-2275(20)32220-3
10.1093/jn/105.11.1363
10.1111/j.1471-4159.1992.tb08353.x
10.1016/S0021-9150(00)00523-2
10.3177/jnsv.53.253
10.1007/s11745-003-1183-9
10.5650/jos1996.49.59
10.1007/BF02535269
10.3177/jnsv.52.451
10.1194/jlr.M200340-JLR200
10.3177/jnsv.54.501
10.1016/S0167-4943(96)00772-8
10.1007/s11745-001-0695-7
10.1016/S0304-3940(98)00147-5
10.1016/0891-5849(95)02058-6
10.1042/bst0260243
ContentType Journal Article
Copyright 2009 by the Center for Academic Publications Japan
2015 INIST-CNRS
Copyright_xml – notice: 2009 by the Center for Academic Publications Japan
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
DOI 10.3177/jnsv.55.374
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
DatabaseTitleList MEDLINE

Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1881-7742
EndPage 380
ExternalDocumentID 19763040
22591967
10_3177_jnsv_55_374
article_jnsv_55_4_55_4_374_article_char_en
JP2009005502
Genre Journal Article
GroupedDBID ---
-~X
.55
.GJ
2WC
3O-
53G
5GY
5RE
AAWTL
AAYJJ
ADBBV
AENEX
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
F5P
FBQ
JSF
JSH
KQ8
OK1
RJT
RZJ
TKC
TR2
VH1
X7J
X7M
ZGI
ZXP
AAFWJ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
ID FETCH-LOGICAL-c638t-c05c4040528a61e9e3b001bf8cbc963f5003235d078b17d39432ebe9606448533
ISSN 0301-4800
IngestDate Fri Jul 11 16:05:54 EDT 2025
Sat Nov 02 12:28:31 EDT 2024
Mon Jul 21 09:14:38 EDT 2025
Tue Jul 01 01:41:04 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Wed Sep 03 06:30:48 EDT 2025
Thu Apr 03 09:45:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords learning ability
Central nervous system
Phospholipid
fatty acid
Lipids
Docosahexaenoic acid
n-3 fatty acid
Fatty acids
Encephalon
Learning
Vertebrata
Acquisition process
Mammalia
Plasmalogen
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c638t-c05c4040528a61e9e3b001bf8cbc963f5003235d078b17d39432ebe9606448533
Notes S20
2009005502
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jnsv/55/4/55_4_374/_article/-char/en
PMID 19763040
PQID 21049496
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_21049496
pubmed_primary_19763040
pascalfrancis_primary_22591967
crossref_primary_10_3177_jnsv_55_374
crossref_citationtrail_10_3177_jnsv_55_374
jstage_primary_article_jnsv_55_4_55_4_374_article_char_en
fao_agris_JP2009005502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: Japan
PublicationTitle Journal of Nutritional Science and Vitaminology
PublicationTitleAlternate J Nutr Sci Vitaminol
PublicationYear 2009
Publisher Center for Academic Publications Japan
Publisher_xml – name: Center for Academic Publications Japan
References 12) Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B. 1997. An assessment of oxidative damage to proteins, lipids and DNA in brain from patients with Alzheimer's disease. J Neurochem 68: 2061-2068.
18) Hiratsuka S, Kitagawa T, Matsue Y, Hashidume M, Wada S. 2004. Lipid class and fatty acid composition of phospholipids from the gonads of skipjack tuna. Fish Sci 70: 903-909.
24) Xiao Y, Wang L, Xu RJ, Chen ZY. 2006. DHA depletion in rat brain is associated with impairment on spatial learning and memory. Biomed Environ Sci 19: 474-480.
35) Maeba R, Ueta N. 2003. Ethanolamine plasmalogen and cholesterol reduce the total membrane oxidizability measured by the oxygen uptake method. Biochem Biophys Res Commun 302: 265-270.
4) Morizawa K, Tomobe Y, Tsuchida M, Nakano Y, Hibino H, Tanaka Y. 2000. Dietary oils and phospholipids containing n-3 highly unsaturated fatty acids suppress 2,4-dinitro-1-fluorobenzene-induced contact dermatitis in mice. J Jpn Oil Chem Soc 49: 59-65.
36) Reiss D, Beyer K, Engelmann B. 1997. Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem J 323: 807-814.
3) Ikemoto A, Ohishi M, Sato Y, Hata N, Misawa Y, Fujii Y, Okuyama H. 2001. Reversibility of n-3 fatty acid deficiency-induced alterations of learning behavior in the rat: level of n-6 fatty acids as another critical factor. J Lipid Res 42: 1655-1663.
13) Ceballos PI, Merad BM, Nicole A, Thevenin M, Hellier G, Legrain S, Berr C. 1996. Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer' type—place of the extracellular glutathione peroxidase. Free Radic Biol Med 20: 579-587.
31) Tanaka Y, Ohkubo T, Fukuda N, Hibino H. 2003. Effect of molecular forms on distribution of docosahexaenoic acid into organs in mice. J Oleo Sci 52: 89-97.
27) Stewart CN, Coursin DB, Bhagavan HN. 1975. Avoidance behavior in vitamin B-6-deficient rats. J Nutr 105: 1363-1370.
9) Brosche T. 1997. Plasmalogen phospholipids—facts and theses to their antioxidative qualities. Arch Gerontol Geriatr 25: 73-81.
28) Ou HP, Wang MF, Yang SC, Yamamoto S, Wang CR. 2007. Effect of Monascus-fermented products on learning and memory in the SAMP8 mice. J Nutr Sci Vitaminol 53: 253-260.
21) Shirai N, Higuchi T, Suzuki H. 2006. Effect of lipids extracted from a salted herring roe food product on maze-behavior in mice. J Nutr Sci Vitaminol 52: 451-456.
22) Gamoh S, Hashimoto M, Sugiura K, Hossain MS, Hata N, Misawa Y, Masumura S. 1999. Chronic administration of docosahexaenoic improves reference memory-related learning ability in young rats. Neuroscience 93: 237-241.
33) Nagan N, Zoeller RA. 2001. Plasmalogens: Biosynthesis and functions. Prog Lipid Res 40: 199-229.
38) Nishimura M, Wakisaka T, Hara H. 2003. Ingestion of plasmalogen markedly increased plasmalogen levels of blood plasma in rats. Lipids 38: 1227-1235.
11) Perkings AJ, Hendrie HC, Callahan CM, Gao S, Unverzagt FW, Xu Y, Hail KS, Hui S. 1999. Association of antioxidants with memory in a multiethnic elderly sample using the third national health and nutrition examination survey. Am J Epidemiol 150: 37.
8) Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PWK, Heath D, Yamazaki Y, Flax J, Krenitsky KF, Sparks DL, Lerner A, Friedland RP, Kudo T, Kamino K, Morihara T, Takeda M, Wood PL. 2007. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer's disease and dementia. J Lipid Res 48: 2485-2498.
19) Yu QT, Liu BN, Zhang JY, Huang ZH. 1989. Location of double bonds in fatty acids of fish oil and rat testis lipids. Gas chromatography-mass spectrometry of the oxazoline derivatives. Lipids 24: 79-83.
5) Hosokawa M, Sato A, Ishigamori H, Kohno H, Tanaka H, Takahashi K. 2001. Synergistic effects of highly unsaturated fatty acid-containing phosphatidylethanolamine on differentiation of human leukemia HL-60 cells by dibutyryl cyclic adenosine monophosphate. Jpn J Cancer Res 92: 666-672.
14) Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR. 1991. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88: 10540-10543.
37) Farooqui AA, Horrocks L. 1998. Plasmalogen-selective phospholipase A2 and its involvement in Alzheimer's disease. Biochem Soc Trans 26: 243-246.
10) Brosche T. 2001. Plasmalogen levels in serum from patients with impaired carbohydrate or lipid metabolism and elderly subjects with normal metabolic values. Arch Gerontol Geriatr 32: 283-294.
6) Tochizawa K, Hosokawa M, Kurihara H, Kohno H, Odashima S, Takahashi K. 1997. Effect of phospholipids containing docosahexaenoic acid on differentiation and growth of HL-60 human promyelocytic leukemia cells. J Oleo Sci 46: 382-390.
20) Lim SY, Suzuki H. 2000. Effect of dietary docosahexaenoic acid and phosphatidylcholine on maze behavior and fatty acid composition of plasma and brain lipids in mice. Int J Vitam Nutr Res 70: 251-259.
26) Ching YC, Hosoda K, Tsai CJ, Yamamoto S, Wang MF. 2006. Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence-accelerated mice. J Nutr Sci Vitaminol 52: 266-273.
32) Song JH, Miyazawa T. 2001. Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil. Atherosclerosis 155: 9-18.
1) Nordoy A, Marchioili R, Arnesen H, Videbaek J. 2001. n-3 polyunsaturated fatty acids and cardiovascular diseases. Lipids 36: S127-129.
2) Yonekubo A, Honda S, Hagiwara M, Okano M, Yamamoto Y. 1990. The effects of dietary fish oil on the serum lipids and tissue fatty acid composition of rats. Agric Biol Chem 54: 1829-1833.
25) Suzuki H, Park SJ, Tamura M, Ando S. 1998. Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: a comparison of sardine oil diet with palm oil diet. Mech Ageing Dev 101: 119-128.
7) Hiratsuka S, Ishihara K, Kitagawa T, Wada S, Yokogoshi H. 2008. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of brain in mice. J Nutr Sci Vitaminol 54: 501-506.
29) Thies F, Delachambre MC, Bentejac M, Lagarde M, Lecerf J. 1992. Unsaturated fatty acids esterified in 2-acyl-1-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J Neurochem 59: 1110-1116.
17) Bartlett GR. 1959. Phosphorus assay in column chromatography. J Biol Chem 234: 466-468.
30) Thies F, Pillon C, Moliere P, Lagarde M, Lecerf J. 1994. Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain. Am J Physiol 267: R1273-1279.
16) Hanson SWF, Olley J. 1963. Application of the Bligh and Dyer method of lipid extraction to tissue homogenates. J Biochem 89: 101-102.
34) Maeba R, Ueta N. 2003. Ethanolamine plasmalogens prevent the oxidation of cholesterol by reducing the oxidizability of cholesterol in phospholipid bilayers. J Lipid Res 44: 164-171.
23) Hashimoto M, Tanabe Y, Fujii Y, Kikuta T, Shibata H, Shido O. 2005. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid β-infused rats. J Nutr 135: 549-555.
15) Hossain MS, Hashimoto M, Masumura S. 1998. Influence of docosahexaenoic acid on cerebral lipid peroxide level in ages rats with and without hypercholesterolemia. Neurosci Lett 244: 157-160.
22
24
25
26
28
29
HASHIMOTO M (23) 2005; 135
(37) 1998; 26
(12) 1997; 68
(36) 1997; 323
30
TANAKA Y (31) 2003; 52
10
32
11
33
34
13
35
14
15
16
38
17
18
19
(27) 1975; 105
1
IKEMOTO A (3) 2001; 42
4
HOSOKAWA M (5) 2001; 92
6
7
8
9
YONEKUBO A (2) 1990; 54
20
21
References_xml – reference: 30) Thies F, Pillon C, Moliere P, Lagarde M, Lecerf J. 1994. Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain. Am J Physiol 267: R1273-1279.
– reference: 31) Tanaka Y, Ohkubo T, Fukuda N, Hibino H. 2003. Effect of molecular forms on distribution of docosahexaenoic acid into organs in mice. J Oleo Sci 52: 89-97.
– reference: 7) Hiratsuka S, Ishihara K, Kitagawa T, Wada S, Yokogoshi H. 2008. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of brain in mice. J Nutr Sci Vitaminol 54: 501-506.
– reference: 11) Perkings AJ, Hendrie HC, Callahan CM, Gao S, Unverzagt FW, Xu Y, Hail KS, Hui S. 1999. Association of antioxidants with memory in a multiethnic elderly sample using the third national health and nutrition examination survey. Am J Epidemiol 150: 37.
– reference: 32) Song JH, Miyazawa T. 2001. Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil. Atherosclerosis 155: 9-18.
– reference: 20) Lim SY, Suzuki H. 2000. Effect of dietary docosahexaenoic acid and phosphatidylcholine on maze behavior and fatty acid composition of plasma and brain lipids in mice. Int J Vitam Nutr Res 70: 251-259.
– reference: 35) Maeba R, Ueta N. 2003. Ethanolamine plasmalogen and cholesterol reduce the total membrane oxidizability measured by the oxygen uptake method. Biochem Biophys Res Commun 302: 265-270.
– reference: 16) Hanson SWF, Olley J. 1963. Application of the Bligh and Dyer method of lipid extraction to tissue homogenates. J Biochem 89: 101-102.
– reference: 23) Hashimoto M, Tanabe Y, Fujii Y, Kikuta T, Shibata H, Shido O. 2005. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid β-infused rats. J Nutr 135: 549-555.
– reference: 13) Ceballos PI, Merad BM, Nicole A, Thevenin M, Hellier G, Legrain S, Berr C. 1996. Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer' type—place of the extracellular glutathione peroxidase. Free Radic Biol Med 20: 579-587.
– reference: 22) Gamoh S, Hashimoto M, Sugiura K, Hossain MS, Hata N, Misawa Y, Masumura S. 1999. Chronic administration of docosahexaenoic improves reference memory-related learning ability in young rats. Neuroscience 93: 237-241.
– reference: 36) Reiss D, Beyer K, Engelmann B. 1997. Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem J 323: 807-814.
– reference: 3) Ikemoto A, Ohishi M, Sato Y, Hata N, Misawa Y, Fujii Y, Okuyama H. 2001. Reversibility of n-3 fatty acid deficiency-induced alterations of learning behavior in the rat: level of n-6 fatty acids as another critical factor. J Lipid Res 42: 1655-1663.
– reference: 2) Yonekubo A, Honda S, Hagiwara M, Okano M, Yamamoto Y. 1990. The effects of dietary fish oil on the serum lipids and tissue fatty acid composition of rats. Agric Biol Chem 54: 1829-1833.
– reference: 21) Shirai N, Higuchi T, Suzuki H. 2006. Effect of lipids extracted from a salted herring roe food product on maze-behavior in mice. J Nutr Sci Vitaminol 52: 451-456.
– reference: 26) Ching YC, Hosoda K, Tsai CJ, Yamamoto S, Wang MF. 2006. Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence-accelerated mice. J Nutr Sci Vitaminol 52: 266-273.
– reference: 10) Brosche T. 2001. Plasmalogen levels in serum from patients with impaired carbohydrate or lipid metabolism and elderly subjects with normal metabolic values. Arch Gerontol Geriatr 32: 283-294.
– reference: 25) Suzuki H, Park SJ, Tamura M, Ando S. 1998. Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: a comparison of sardine oil diet with palm oil diet. Mech Ageing Dev 101: 119-128.
– reference: 28) Ou HP, Wang MF, Yang SC, Yamamoto S, Wang CR. 2007. Effect of Monascus-fermented products on learning and memory in the SAMP8 mice. J Nutr Sci Vitaminol 53: 253-260.
– reference: 17) Bartlett GR. 1959. Phosphorus assay in column chromatography. J Biol Chem 234: 466-468.
– reference: 24) Xiao Y, Wang L, Xu RJ, Chen ZY. 2006. DHA depletion in rat brain is associated with impairment on spatial learning and memory. Biomed Environ Sci 19: 474-480.
– reference: 12) Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B. 1997. An assessment of oxidative damage to proteins, lipids and DNA in brain from patients with Alzheimer's disease. J Neurochem 68: 2061-2068.
– reference: 33) Nagan N, Zoeller RA. 2001. Plasmalogens: Biosynthesis and functions. Prog Lipid Res 40: 199-229.
– reference: 38) Nishimura M, Wakisaka T, Hara H. 2003. Ingestion of plasmalogen markedly increased plasmalogen levels of blood plasma in rats. Lipids 38: 1227-1235.
– reference: 27) Stewart CN, Coursin DB, Bhagavan HN. 1975. Avoidance behavior in vitamin B-6-deficient rats. J Nutr 105: 1363-1370.
– reference: 5) Hosokawa M, Sato A, Ishigamori H, Kohno H, Tanaka H, Takahashi K. 2001. Synergistic effects of highly unsaturated fatty acid-containing phosphatidylethanolamine on differentiation of human leukemia HL-60 cells by dibutyryl cyclic adenosine monophosphate. Jpn J Cancer Res 92: 666-672.
– reference: 9) Brosche T. 1997. Plasmalogen phospholipids—facts and theses to their antioxidative qualities. Arch Gerontol Geriatr 25: 73-81.
– reference: 14) Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR. 1991. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88: 10540-10543.
– reference: 15) Hossain MS, Hashimoto M, Masumura S. 1998. Influence of docosahexaenoic acid on cerebral lipid peroxide level in ages rats with and without hypercholesterolemia. Neurosci Lett 244: 157-160.
– reference: 4) Morizawa K, Tomobe Y, Tsuchida M, Nakano Y, Hibino H, Tanaka Y. 2000. Dietary oils and phospholipids containing n-3 highly unsaturated fatty acids suppress 2,4-dinitro-1-fluorobenzene-induced contact dermatitis in mice. J Jpn Oil Chem Soc 49: 59-65.
– reference: 6) Tochizawa K, Hosokawa M, Kurihara H, Kohno H, Odashima S, Takahashi K. 1997. Effect of phospholipids containing docosahexaenoic acid on differentiation and growth of HL-60 human promyelocytic leukemia cells. J Oleo Sci 46: 382-390.
– reference: 19) Yu QT, Liu BN, Zhang JY, Huang ZH. 1989. Location of double bonds in fatty acids of fish oil and rat testis lipids. Gas chromatography-mass spectrometry of the oxazoline derivatives. Lipids 24: 79-83.
– reference: 34) Maeba R, Ueta N. 2003. Ethanolamine plasmalogens prevent the oxidation of cholesterol by reducing the oxidizability of cholesterol in phospholipid bilayers. J Lipid Res 44: 164-171.
– reference: 1) Nordoy A, Marchioili R, Arnesen H, Videbaek J. 2001. n-3 polyunsaturated fatty acids and cardiovascular diseases. Lipids 36: S127-129.
– reference: 37) Farooqui AA, Horrocks L. 1998. Plasmalogen-selective phospholipase A2 and its involvement in Alzheimer's disease. Biochem Soc Trans 26: 243-246.
– reference: 18) Hiratsuka S, Kitagawa T, Matsue Y, Hashidume M, Wada S. 2004. Lipid class and fatty acid composition of phospholipids from the gonads of skipjack tuna. Fish Sci 70: 903-909.
– reference: 8) Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PWK, Heath D, Yamazaki Y, Flax J, Krenitsky KF, Sparks DL, Lerner A, Friedland RP, Kudo T, Kamino K, Morihara T, Takeda M, Wood PL. 2007. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer's disease and dementia. J Lipid Res 48: 2485-2498.
– reference: 29) Thies F, Delachambre MC, Bentejac M, Lagarde M, Lecerf J. 1992. Unsaturated fatty acids esterified in 2-acyl-1-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J Neurochem 59: 1110-1116.
– ident: 14
  doi: 10.1073/pnas.88.23.10540
– ident: 33
  doi: 10.1016/S0163-7827(01)00003-0
– ident: 11
  doi: 10.1093/oxfordjournals.aje.a009915
– volume: 135
  start-page: 549
  issn: 0022-3166
  issue: 3
  year: 2005
  ident: 23
  doi: 10.1093/jn/135.3.549
– ident: 26
  doi: 10.3177/jnsv.52.266
– volume: 68
  start-page: 2061
  issn: 0022-3042
  issue: 5
  year: 1997
  ident: 12
  doi: 10.1046/j.1471-4159.1997.68052061.x
– ident: 30
  doi: 10.1152/ajpregu.1994.267.5.R1273
– volume: 323
  start-page: 807
  issn: 0264-6021
  issue: 3
  year: 1997
  ident: 36
  doi: 10.1042/bj3230807
– ident: 16
– ident: 35
  doi: 10.1016/S0006-291X(03)00157-8
– volume: 54
  start-page: 1829
  issn: 0002-1369
  issue: 7
  year: 1990
  ident: 2
  doi: 10.1271/bbb1961.54.1829
– ident: 10
  doi: 10.1016/S0167-4943(01)00105-4
– volume: 52
  start-page: 89
  issn: 1345-8957
  issue: 2
  year: 2003
  ident: 31
  doi: 10.5650/jos.52.89
– ident: 25
  doi: 10.1016/S0047-6374(97)00169-3
– ident: 24
– ident: 17
  doi: 10.1016/S0021-9258(18)70226-3
– ident: 22
  doi: 10.1016/S0306-4522(99)00107-4
– ident: 8
  doi: 10.1194/jlr.P700023-JLR200
– ident: 6
  doi: 10.5650/jos1996.46.383
– ident: 20
  doi: 10.1024/0300-9831.70.5.251
– ident: 18
  doi: 10.1111/j.1444-2906.2004.00885.x
– volume: 92
  start-page: 666
  issn: 0910-5050
  issue: 6
  year: 2001
  ident: 5
  doi: 10.1111/j.1349-7006.2001.tb01146.x
– volume: 42
  start-page: 1655
  issn: 0022-2275
  issue: 10
  year: 2001
  ident: 3
  doi: 10.1016/S0022-2275(20)32220-3
– volume: 105
  start-page: 1363
  issn: 0022-3166
  issue: 11
  year: 1975
  ident: 27
  doi: 10.1093/jn/105.11.1363
– ident: 29
  doi: 10.1111/j.1471-4159.1992.tb08353.x
– ident: 32
  doi: 10.1016/S0021-9150(00)00523-2
– ident: 28
  doi: 10.3177/jnsv.53.253
– ident: 38
  doi: 10.1007/s11745-003-1183-9
– ident: 4
  doi: 10.5650/jos1996.49.59
– ident: 19
  doi: 10.1007/BF02535269
– ident: 21
  doi: 10.3177/jnsv.52.451
– ident: 34
  doi: 10.1194/jlr.M200340-JLR200
– ident: 7
  doi: 10.3177/jnsv.54.501
– ident: 9
  doi: 10.1016/S0167-4943(96)00772-8
– ident: 1
  doi: 10.1007/s11745-001-0695-7
– ident: 15
  doi: 10.1016/S0304-3940(98)00147-5
– ident: 13
  doi: 10.1016/0891-5849(95)02058-6
– volume: 26
  start-page: 243
  issn: 0300-5127
  issue: 2
  year: 1998
  ident: 37
  doi: 10.1042/bst0260243
SSID ssj0049848
Score 2.0293999
Snippet The effects of dietary docosahexaenoic acid (DHA, C22:6n-3) connecting phospholipids on the learning ability and fatty acid composition of the brain were...
Summary The effects of dietary docosahexaenoic acid (DHA, C22:6n-3) connecting phospholipids on the learning ability and fatty acid composition of the brain...
SourceID proquest
pubmed
pascalfrancis
crossref
jstage
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 374
SubjectTerms Acetals - metabolism
ACIDE DOCOSAHEXAENOIQUE
ACIDE GRAS
ACIDO DOCOSAHEXAENOICO
ACIDOS GRASOS
ANIMAL LEARNING
Animals
APPRENTISSAGE ANIMAL
APRENDIZAJE ANIMAL
Behavior, Animal - drug effects
Biological and medical sciences
BRAIN
Brain Chemistry - drug effects
Carthamus tinctorius - chemistry
CEREBRO
Diet
Dietary Fats - administration & dosage
DOCOSAHEXAENOIC ACID
Docosahexaenoic Acids - pharmacology
ENCEPHALE
fatty acid
FATTY ACIDS
Feeding. Feeding behavior
Female
FOSFOLIPIDOS
Fundamental and applied biological sciences. Psychology
Glycine max - chemistry
Learning - drug effects
learning ability
Male
Memory - drug effects
MICE
Mice, Inbred ICR
PHOSPHATIDE
Phosphatidylethanolamines - metabolism
phospholipid
PHOSPHOLIPIDS
Phospholipids - metabolism
Phospholipids - pharmacology
Plant Oils - pharmacology
plasmalogen
RATON
SOURIS
Triglycerides - pharmacology
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Title Effects of dietary docosahexaenoic acid connecting phospholipids on the learning ability and fatty acid composition of the brain
URI https://www.jstage.jst.go.jp/article/jnsv/55/4/55_4_374/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/19763040
https://www.proquest.com/docview/21049496
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Nutritional Science and Vitaminology, 2009, Vol.55(4), pp.374-380
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1881-7742
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0049848
  issn: 0301-4800
  databaseCode: KQ8
  dateStart: 19730101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1881-7742
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0049848
  issn: 0301-4800
  databaseCode: DIK
  dateStart: 19730101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l5YKEEFAKYSlzqDgQOdgeO7GPgbYkjdJENJEKF2s8njQuxI6IU1FO_Dn-F28WTxaCVLiMLHueHft9ecvMWxA6dBM3sBOHW0mDcEtUv7NiQnwLTKOA0CbxbU9kI_fOGu2Rd3rhX1Qqv1ailhZFXGc_tuaV_A9X4RzwVWTJ_gNnzU3hBBwDf2EEDsN4Kx4fL4MxjlJeiAA4UBr5nE74d8qzPGW1FkuTmoxmYTLAeTDJ5zOQeOksTcqdgrLI6mWtJUNlVUmmE1rAkaaflsFdy5gCqmt2_2nZZmWF_zLhUiclXKcFnabrC_ntzsfW8HzUbcllWJ6mbJIaJdDvfB71OlIW3eRfcrMg3H8npw_z6crZT_1u_0P_vC3nt9OET1J9sVzUCE1InUnmssG1DWy1ZcOVbA4CB5wBb014qxq_GqTeiiQmqvmPVupEtYva1BdE7VhfZfPruu_XDc1qVe4NbWliGMF7EuSRII58PwLiHXTHbTYaopHGUadbGgReGMgmbuadVJqoIH678uQ1w2hnTHOwia7AQxClH-7N6Bz-smPVa-XvzpA0ioYP0H3Nc9xS0HyIKjx7hPZaGS3y6Q1-jWV8seT3Hvqp0YrzMdZoxRtoxQJteIlWvIZWnGcYoIdLtGKNVgzYwhKtJb1Bq3iWIJFofYxGJ8fD921L9_-wGGiFwmK2zzxQMr4b0IbDQ06EiR-PAxYz0BtjHzSSS_wErNzYaSYk9IgLMkn45J4HZijZR7tZnvGnCIs6l8xmlIpaUb5HQ4eFlI9Z7DieTWO3it6UHz9iuji-6NHyNdrC5io6NJNnqibM9mn7wMWIXoK2jk4HAuai4p0NDwsVYw21liCG2lMD3MRcEkmYIPOq6GANC-YWoJdD0KbNKnpVgiMCTSG2_2jG88U8ch1RCypsVNEThZnljwefhMCHfna7F3uO7i7_sy_QbvFtwV-CaV7EBxL4MJ4Ner8B9M3oTQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Dietary+Docosahexaenoic+Acid+Connecting+Phospholipids+on+the+Learning+Ability+and+Fatty+Acid+Composition+of+the+Brain&rft.jtitle=Journal+of+nutritional+science+and+vitaminology&rft.au=HIRATSUKA%2C+Seiichi&rft.au=KOIZUMI%2C+Kyoko&rft.au=OOBA%2C+Tomoko&rft.au=YOKOGOSHI%2C+Hidehiko&rft.date=2009-08-01&rft.issn=0301-4800&rft.eissn=1881-7742&rft.volume=55&rft.issue=4&rft.spage=374&rft.epage=380&rft_id=info:doi/10.3177%2Fjnsv.55.374&rft.externalDBID=n%2Fa&rft.externalDocID=10_3177_jnsv_55_374
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4800&client=summon