Triggering anti-GBM immune response with EGFR-mediated photoimmunotherapy

Background Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immun...

Full description

Saved in:
Bibliographic Details
Published inBMC medicine Vol. 20; no. 1; pp. 16 - 17
Main Authors Mączyńska, Justyna, Raes, Florian, Da Pieve, Chiara, Turnock, Stephen, Boult, Jessica K. R., Hoebart, Julia, Niedbala, Marcin, Robinson, Simon P., Harrington, Kevin J., Kaspera, Wojciech, Kramer-Marek, Gabriela
Format Journal Article
LanguageEnglish
Published London BioMed Central 21.01.2022
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1741-7015
1741-7015
DOI10.1186/s12916-021-02213-z

Cover

Abstract Background Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients’ outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response. Methods EGFR-specific affibody molecule (Z EGFR:03115 ) was conjugated to IR700. The response to Z EGFR:03115 -IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used. Results In vitro findings confirmed the ability of Z EGFR:03115 -IR700 to produce reactive oxygen species upon light irradiation. Z EGFR:03115 -IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T 2 *w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours. Conclusions Our data underline the potential of Z EGFR:03115 -IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.
AbstractList Background Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients’ outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response. Methods EGFR-specific affibody molecule (ZEGFR:03115) was conjugated to IR700. The response to ZEGFR:03115-IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used. Results In vitro findings confirmed the ability of ZEGFR:03115-IR700 to produce reactive oxygen species upon light irradiation. ZEGFR:03115-IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T2*w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours. Conclusions Our data underline the potential of ZEGFR:03115-IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.
Background Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients' outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response. Methods EGFR-specific affibody molecule (Z.sub.EGFR:03115) was conjugated to IR700. The response to Z.sub.EGFR:03115-IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used. Results In vitro findings confirmed the ability of Z.sub.EGFR:03115-IR700 to produce reactive oxygen species upon light irradiation. Z.sub.EGFR:03115-IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T.sub.2*w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours. Conclusions Our data underline the potential of Z.sub.EGFR:03115-IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one. Keywords: Photoimmunotherapy, Glioblastoma, Affibody molecules, IR700
Abstract Background Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients’ outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response. Methods EGFR-specific affibody molecule (ZEGFR:03115) was conjugated to IR700. The response to ZEGFR:03115-IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used. Results In vitro findings confirmed the ability of ZEGFR:03115-IR700 to produce reactive oxygen species upon light irradiation. ZEGFR:03115-IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T2*w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours. Conclusions Our data underline the potential of ZEGFR:03115-IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.
Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients' outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response.BACKGROUNDSurgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients' outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response.EGFR-specific affibody molecule (ZEGFR:03115) was conjugated to IR700. The response to ZEGFR:03115-IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used.METHODSEGFR-specific affibody molecule (ZEGFR:03115) was conjugated to IR700. The response to ZEGFR:03115-IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used.In vitro findings confirmed the ability of ZEGFR:03115-IR700 to produce reactive oxygen species upon light irradiation. ZEGFR:03115-IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T2*w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours.RESULTSIn vitro findings confirmed the ability of ZEGFR:03115-IR700 to produce reactive oxygen species upon light irradiation. ZEGFR:03115-IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T2*w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours.Our data underline the potential of ZEGFR:03115-IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.CONCLUSIONSOur data underline the potential of ZEGFR:03115-IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.
Background Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients’ outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response. Methods EGFR-specific affibody molecule (Z EGFR:03115 ) was conjugated to IR700. The response to Z EGFR:03115 -IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used. Results In vitro findings confirmed the ability of Z EGFR:03115 -IR700 to produce reactive oxygen species upon light irradiation. Z EGFR:03115 -IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T 2 *w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours. Conclusions Our data underline the potential of Z EGFR:03115 -IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.
Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients' outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response. EGFR-specific affibody molecule (Z.sub.EGFR:03115) was conjugated to IR700. The response to Z.sub.EGFR:03115-IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used. In vitro findings confirmed the ability of Z.sub.EGFR:03115-IR700 to produce reactive oxygen species upon light irradiation. Z.sub.EGFR:03115-IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T.sub.2*w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours. Our data underline the potential of Z.sub.EGFR:03115-IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.
Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients' outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response. EGFR-specific affibody molecule (Z ) was conjugated to IR700. The response to Z -IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used. In vitro findings confirmed the ability of Z -IR700 to produce reactive oxygen species upon light irradiation. Z -IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T *w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours. Our data underline the potential of Z -IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.
ArticleNumber 16
Audience Academic
Author Harrington, Kevin J.
Da Pieve, Chiara
Niedbala, Marcin
Robinson, Simon P.
Kaspera, Wojciech
Raes, Florian
Turnock, Stephen
Kramer-Marek, Gabriela
Hoebart, Julia
Boult, Jessica K. R.
Mączyńska, Justyna
Author_xml – sequence: 1
  givenname: Justyna
  surname: Mączyńska
  fullname: Mączyńska, Justyna
  organization: Division of Radiotherapy and Imaging, The Institute of Cancer Research
– sequence: 2
  givenname: Florian
  surname: Raes
  fullname: Raes, Florian
  organization: Division of Radiotherapy and Imaging, The Institute of Cancer Research
– sequence: 3
  givenname: Chiara
  surname: Da Pieve
  fullname: Da Pieve, Chiara
  organization: Division of Radiotherapy and Imaging, The Institute of Cancer Research
– sequence: 4
  givenname: Stephen
  surname: Turnock
  fullname: Turnock, Stephen
  organization: Division of Radiotherapy and Imaging, The Institute of Cancer Research
– sequence: 5
  givenname: Jessica K. R.
  surname: Boult
  fullname: Boult, Jessica K. R.
  organization: Division of Radiotherapy and Imaging, The Institute of Cancer Research
– sequence: 6
  givenname: Julia
  surname: Hoebart
  fullname: Hoebart, Julia
  organization: Division of Radiotherapy and Imaging, The Institute of Cancer Research
– sequence: 7
  givenname: Marcin
  surname: Niedbala
  fullname: Niedbala, Marcin
  organization: Department of Neurosurgery, Medical University of Silesia, Regional Hospital
– sequence: 8
  givenname: Simon P.
  surname: Robinson
  fullname: Robinson, Simon P.
  organization: Division of Radiotherapy and Imaging, The Institute of Cancer Research
– sequence: 9
  givenname: Kevin J.
  surname: Harrington
  fullname: Harrington, Kevin J.
  organization: Division of Radiotherapy and Imaging, The Institute of Cancer Research
– sequence: 10
  givenname: Wojciech
  surname: Kaspera
  fullname: Kaspera, Wojciech
  email: wkaspera@sum.edu.pl
  organization: Department of Neurosurgery, Medical University of Silesia, Regional Hospital
– sequence: 11
  givenname: Gabriela
  surname: Kramer-Marek
  fullname: Kramer-Marek, Gabriela
  email: gkramermarek@icr.ac.uk
  organization: Division of Radiotherapy and Imaging, The Institute of Cancer Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35057796$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1q3DAQhU1JaX7aF-hFMRRKb5xKsi1ZN4U0JNuFlEJJr4Usj20F29pKckvy9J3dTZrdUGJjLMbfOdKMz3FyMLkJkuQtJaeUVvxToExSnhFG8WE0z-5eJEdUFDQThJYHO-vD5DiEG0JYKUTxKjnMS4IryY-S5bW3XQfeTl2qp2izxZdvqR3HeYLUQ1i5KUD6x8Y-vVhc_shGaKyO0KSr3kW34VzswevV7evkZauHAG_u3yfJz8uL6_Ov2dX3xfL87CozPK9iVvNKCt4yIVpKBdYaAlpzYnjRMlnJouDScGC5pJq2siZ45aSo6ha0qAjLT5Ll1rdx-katvB21v1VOW7UpON8p7aM1AyjJC2a4pAVIKEoial1WuYGWMcFrbhr0-rz1Ws01tmZgil4Pe6b7Xybbq879VhUeJSccDT7eG3j3a4YQ1WiDgWHQE7g5KMYZblblnCL6_gl642Y_4aiQwg6FqBh7pDqNDdipdbivWZuqMy7zQua8LJA6_Q-FdwOjNZiS1mJ9T_BhR9CDHmIf3DBHiz94H3y3O5F_o3hIDALVFjDeheChVcZGvfbBI9hBUaLW4VTbcCoMp9qEU92hlD2RPrg_K8q3orBahxT849ieUf0F8R_zmQ
CitedBy_id crossref_primary_10_3390_ijms25052529
crossref_primary_10_1021_acsanm_3c01790
crossref_primary_10_1186_s12916_022_02388_z
crossref_primary_10_3390_cancers14122996
crossref_primary_10_1186_s12916_022_02287_3
crossref_primary_10_3390_ijms24032655
crossref_primary_10_3390_cancers15133427
crossref_primary_10_1039_D3NR04241C
crossref_primary_10_1038_s41416_024_02844_y
crossref_primary_10_1111_jcmm_18555
crossref_primary_10_1134_S0006297923090043
crossref_primary_10_1093_abt_tbaf001
crossref_primary_10_1186_s12964_023_01438_0
crossref_primary_10_3390_pharmaceutics14091762
crossref_primary_10_1007_s11033_025_10312_w
crossref_primary_10_3389_fimmu_2023_1102094
crossref_primary_10_1021_acsanm_3c02418
crossref_primary_10_3390_pharmaceutics15122776
crossref_primary_10_3390_cancers15123131
crossref_primary_10_31857_S032097252309004X
crossref_primary_10_1186_s12967_024_05469_0
crossref_primary_10_1016_j_phrs_2025_107612
Cites_doi 10.2147/Ov.S145532
10.1038/s41416-018-0258-8
10.1126/scitranslmed.aaa0984
10.3171/2019.11.JNS192443
10.1155/2013/482160
10.1073/pnas.0705158104
10.2967/jnumed.118.216069
10.1371/journal.pbio.1000412
10.1016/j.clon.2014.04.001
10.1515/nanoph-2021-0119
10.1158/1078-0432.Ccr-15-1535
10.1021/acs.accounts.9b00273
10.1158/0008-5472.CAN-12-1298
10.1016/j.canlet.2008.01.040
10.1016/j.clineuro.2012.02.054
10.3390/jcm10071367
10.1021/acsptsci.1c00184
10.18632/oncotarget.14425
10.1016/j.cell.2021.03.023
10.1038/s41590-019-0433-y
10.1038/sj.cdd.4402269
10.18632/oncotarget.5975
10.1038/s41586-018-0792-9
10.1515/nanoph-2019-0186
10.1002/ijc.31246
10.1038/s41591-019-0349-y
10.1038/nrc3380
10.1158/2326-6066.CIR-17-0055
10.3389/fphar.2017.00332
10.7150/thno.53056
10.1136/jitc-2020-001926
10.1016/j.freeradbiomed.2017.12.034
10.1021/acs.biomac.8b00460
10.1038/ncomms12632
10.3389/fimmu.2015.00588
10.1158/0008-5472.1018.65.3
10.1186/s40425-019-0614-0
10.1016/j.canlet.2020.09.028
10.18632/oncotarget.24876
10.1016/j.cell.2013.09.034
10.1158/1541-7786.MCR-17-0333
10.1016/j.jconrel.2016.03.014
10.1038/sj.bjc.6605642
10.1016/j.addr.2003.09.003
10.1038/s41568-019-0205-x
10.1038/s41419-020-03077-6
10.3390/cancers13112535
10.1016/j.ccell.2018.06.006
10.1016/S1470-2045(17)30517-X
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7U9
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12916-021-02213-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-7015
EndPage 17
ExternalDocumentID oai_doaj_org_article_9642c6914e9e4507ba583cef2276b6cd
PMC8780306
A693493654
35057796
10_1186_s12916_021_02213_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
United Kingdom--UK
United States--US
GeographicLocations_xml – name: Germany
– name: United Kingdom--UK
– name: United States--US
GrantInformation_xml – fundername: Narodowe Centrum Nauki
  grantid: 2015/19/N/NZ7/01336
  funderid: http://dx.doi.org/10.13039/501100004281
– fundername: CRUK Convergence Science Centre
  grantid: A26234
– fundername: Cancer Research UK
  grantid: 28724
– fundername: Cancer Research UK
  grantid: 27725
– fundername: ;
  grantid: 2015/19/N/NZ7/01336
– fundername: ;
  grantid: A26234
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QL
7U9
7XB
8FK
AZQEC
C1K
DWQXO
H94
K9.
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c638t-b68976f277f117c63d0eaa60c64f29894469c6e2391a1f9b00003048bfea78023
IEDL.DBID C6C
ISSN 1741-7015
IngestDate Wed Aug 27 01:29:27 EDT 2025
Thu Aug 21 18:24:27 EDT 2025
Thu Sep 04 16:11:07 EDT 2025
Fri Jul 25 21:12:27 EDT 2025
Tue Jun 17 22:12:08 EDT 2025
Tue Jun 10 21:07:42 EDT 2025
Thu May 22 21:25:04 EDT 2025
Mon Jul 21 05:45:42 EDT 2025
Tue Jul 01 02:51:29 EDT 2025
Thu Apr 24 23:00:52 EDT 2025
Sat Sep 06 07:29:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Photoimmunotherapy
IR700
Affibody molecules
Glioblastoma
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c638t-b68976f277f117c63d0eaa60c64f29894469c6e2391a1f9b00003048bfea78023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s12916-021-02213-z
PMID 35057796
PQID 2630477822
PQPubID 42775
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_9642c6914e9e4507ba583cef2276b6cd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8780306
proquest_miscellaneous_2622278361
proquest_journals_2630477822
gale_infotracmisc_A693493654
gale_infotracacademiconefile_A693493654
gale_healthsolutions_A693493654
pubmed_primary_35057796
crossref_citationtrail_10_1186_s12916_021_02213_z
crossref_primary_10_1186_s12916_021_02213_z
springer_journals_10_1186_s12916_021_02213_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-21
PublicationDateYYYYMMDD 2022-01-21
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medicine
PublicationTitleAbbrev BMC Med
PublicationTitleAlternate BMC Med
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References T Kato (2213_CR19) 2021; 13
2213_CR32
2213_CR30
SK Rajendrakumar (2213_CR15) 2018; 19
E Gangoso (2213_CR24) 2021; 184
M Ogawa (2213_CR28) 2017; 8
TA Burley (2213_CR22) 2018; 142
CY Chen (2213_CR31) 2018; 7
T Kato (2213_CR16) 2021; 4
JW Kleinovink (2213_CR48) 2017; 5
XJ Wang (2213_CR46) 2015; 6
C Kilkenny (2213_CR27) 2010; 8
2213_CR39
M Wang (2213_CR34) 2021; 11
M Korbelik (2213_CR47) 2005; 65
J Maczynska (2213_CR37) 2020; 11
CW Li (2213_CR1) 2016; 7
F Zhou (2213_CR43) 2008; 264
NF Brown (2213_CR2) 2018; 119
K Majchrzak (2213_CR5) 2012; 114
J Zhao (2213_CR11) 2019; 25
CD Arvanitis (2213_CR40) 2020; 20
S Kishimoto (2213_CR41) 2018; 116
PH Huang (2213_CR23) 2007; 104
DV Krysko (2213_CR21) 2012; 12
H Kobayashi (2213_CR33) 2019; 52
2213_CR9
FF Inagaki (2213_CR14) 2019; 8
F Concha-Benavente (2213_CR8) 2017; 8
A Tesniere (2213_CR45) 2008; 15
M Weller (2213_CR7) 2017; 18
S Schipmann (2213_CR49) 2020; 134
ZA Binder (2213_CR3) 2018; 34
T Nagaya (2213_CR17) 2017; 15
HS Wang (2213_CR12) 2021; 496
H Wakiyama (2213_CR20) 2021; 10
CM Jackson (2213_CR10) 2019; 20
AD Garg (2213_CR38) 2015; 6
TA Burley (2213_CR25) 2019; 60
GA van Dongen (2213_CR35) 2004; 56
JE Kim (2213_CR29) 2017; 23
P van Driel (2213_CR36) 2016; 229
E Panzarini (2213_CR44) 2013; 2013
C Watts (2213_CR4) 2014; 26
DB Keskin (2213_CR13) 2019; 565
P Workman (2213_CR26) 2010; 102
T Nagaya (2213_CR18) 2018; 9
CW Brennan (2213_CR6) 2013; 155
T Nakajima (2213_CR42) 2012; 72
35505318 - BMC Med. 2022 May 3;20(1):179. doi: 10.1186/s12916-022-02388-z.
References_xml – volume: 7
  start-page: 65
  year: 2018
  ident: 2213_CR31
  publication-title: Oncolytic Virother
  doi: 10.2147/Ov.S145532
– volume: 119
  start-page: 1171
  issue: 10
  year: 2018
  ident: 2213_CR2
  publication-title: Br J Cancer
  doi: 10.1038/s41416-018-0258-8
– ident: 2213_CR32
  doi: 10.1126/scitranslmed.aaa0984
– volume: 134
  start-page: 1
  issue: 2
  year: 2020
  ident: 2213_CR49
  publication-title: J Neurosurg
  doi: 10.3171/2019.11.JNS192443
– volume: 2013
  start-page: 482160
  year: 2013
  ident: 2213_CR44
  publication-title: Biomed Res Int
  doi: 10.1155/2013/482160
– volume: 104
  start-page: 12867
  issue: 31
  year: 2007
  ident: 2213_CR23
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0705158104
– volume: 60
  start-page: 353
  issue: 3
  year: 2019
  ident: 2213_CR25
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.118.216069
– volume: 8
  start-page: e1000412
  issue: 6
  year: 2010
  ident: 2213_CR27
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000412
– volume: 26
  start-page: 385
  issue: 7
  year: 2014
  ident: 2213_CR4
  publication-title: Clin Oncol (R Coll Radiol)
  doi: 10.1016/j.clon.2014.04.001
– volume: 10
  start-page: 3135
  issue: 12
  year: 2021
  ident: 2213_CR20
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0119
– volume: 23
  start-page: 124
  issue: 1
  year: 2017
  ident: 2213_CR29
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.Ccr-15-1535
– volume: 52
  start-page: 2332
  issue: 8
  year: 2019
  ident: 2213_CR33
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.9b00273
– volume: 72
  start-page: 4622
  issue: 18
  year: 2012
  ident: 2213_CR42
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-1298
– volume: 264
  start-page: 135
  issue: 1
  year: 2008
  ident: 2213_CR43
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2008.01.040
– volume: 114
  start-page: 1135
  issue: 8
  year: 2012
  ident: 2213_CR5
  publication-title: Clin Neurol Neurosurg\
  doi: 10.1016/j.clineuro.2012.02.054
– ident: 2213_CR9
  doi: 10.3390/jcm10071367
– volume: 4
  start-page: 1689
  issue: 5
  year: 2021
  ident: 2213_CR16
  publication-title: ACS Pharmacol Transl Sci
  doi: 10.1021/acsptsci.1c00184
– volume: 8
  start-page: 10425
  issue: 6
  year: 2017
  ident: 2213_CR28
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14425
– volume: 184
  start-page: 2454
  issue: 9
  year: 2021
  ident: 2213_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.023
– volume: 20
  start-page: 1100
  issue: 9
  year: 2019
  ident: 2213_CR10
  publication-title: Nat Immunol
  doi: 10.1038/s41590-019-0433-y
– volume: 15
  start-page: 3
  issue: 1
  year: 2008
  ident: 2213_CR45
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4402269
– volume: 6
  start-page: 44688
  issue: 42
  year: 2015
  ident: 2213_CR46
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5975
– volume: 565
  start-page: 234
  issue: 7738
  year: 2019
  ident: 2213_CR13
  publication-title: Nature
  doi: 10.1038/s41586-018-0792-9
– volume: 8
  start-page: 1673
  issue: 10
  year: 2019
  ident: 2213_CR14
  publication-title: Nanophotonics-Berlin
  doi: 10.1515/nanoph-2019-0186
– volume: 142
  start-page: 2363
  issue: 11
  year: 2018
  ident: 2213_CR22
  publication-title: Int J Cancer
  doi: 10.1002/ijc.31246
– volume: 25
  start-page: 462
  issue: 3
  year: 2019
  ident: 2213_CR11
  publication-title: Nat med
  doi: 10.1038/s41591-019-0349-y
– volume: 12
  start-page: 860
  issue: 12
  year: 2012
  ident: 2213_CR21
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3380
– volume: 5
  start-page: 832
  issue: 10
  year: 2017
  ident: 2213_CR48
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-17-0055
– volume: 8
  start-page: 332
  year: 2017
  ident: 2213_CR8
  publication-title: Front pharmacol
  doi: 10.3389/fphar.2017.00332
– volume: 11
  start-page: 2218
  issue: 5
  year: 2021
  ident: 2213_CR34
  publication-title: Theranostics
  doi: 10.7150/thno.53056
– ident: 2213_CR39
  doi: 10.1136/jitc-2020-001926
– volume: 116
  start-page: 1
  year: 2018
  ident: 2213_CR41
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2017.12.034
– volume: 19
  start-page: 1869
  issue: 6
  year: 2018
  ident: 2213_CR15
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00460
– volume: 7
  start-page: 12632
  issue: 1
  year: 2016
  ident: 2213_CR1
  publication-title: Nat Commun
  doi: 10.1038/ncomms12632
– volume: 6
  start-page: 588
  year: 2015
  ident: 2213_CR38
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2015.00588
– volume: 65
  start-page: 1018
  issue: 3
  year: 2005
  ident: 2213_CR47
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.1018.65.3
– ident: 2213_CR30
  doi: 10.1186/s40425-019-0614-0
– volume: 496
  start-page: 134
  year: 2021
  ident: 2213_CR12
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2020.09.028
– volume: 9
  start-page: 19026
  issue: 27
  year: 2018
  ident: 2213_CR18
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.24876
– volume: 155
  start-page: 462
  issue: 2
  year: 2013
  ident: 2213_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.034
– volume: 15
  start-page: 1667
  issue: 12
  year: 2017
  ident: 2213_CR17
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-17-0333
– volume: 229
  start-page: 93
  year: 2016
  ident: 2213_CR36
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2016.03.014
– volume: 102
  start-page: 1555
  issue: 11
  year: 2010
  ident: 2213_CR26
  publication-title: Bri J Cancer
  doi: 10.1038/sj.bjc.6605642
– volume: 56
  start-page: 31
  issue: 1
  year: 2004
  ident: 2213_CR35
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2003.09.003
– volume: 20
  start-page: 26
  issue: 1
  year: 2020
  ident: 2213_CR40
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-019-0205-x
– volume: 11
  start-page: 886
  issue: 10
  year: 2020
  ident: 2213_CR37
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-020-03077-6
– volume: 13
  start-page: 2535
  issue: 11
  year: 2021
  ident: 2213_CR19
  publication-title: Cancers
  doi: 10.3390/cancers13112535
– volume: 34
  start-page: 163
  issue: 1
  year: 2018
  ident: 2213_CR3
  publication-title: Cancer cell
  doi: 10.1016/j.ccell.2018.06.006
– volume: 18
  start-page: 1373
  issue: 10
  year: 2017
  ident: 2213_CR7
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(17)30517-X
– reference: 35505318 - BMC Med. 2022 May 3;20(1):179. doi: 10.1186/s12916-022-02388-z.
SSID ssj0025774
Score 2.4553013
Snippet Background Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually...
Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur....
Background Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually...
Abstract Background Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16
SubjectTerms Affibody molecules
Analysis
Animals
Antibodies
Apoptosis
Autoantibodies
Biomedicine
Brain
Brain cancer
Brain research
Brain tumors
Calreticulin
Cancer therapies
Care and treatment
Cell activation
Cell death
Cell Line, Tumor
Cell proliferation
Conjugates
Damage patterns
Dendritic cells
Diagnosis
Epidermal growth factor receptors
ErbB Receptors
Experiments
Flow cytometry
Glioblastoma
Glioblastoma - therapy
Glioblastoma multiforme
Hemorrhage
HMGB1 protein
Hsp70 protein
Humans
Immune response
Immune system
Immunity
Immunogenicity
Immunology
Immunotherapy
In vivo methods and tests
IR700
Irradiation
Kinases
Ligands
Light effects
Light irradiation
Lymphocytes
Lymphocytes T
Magnetic resonance imaging
Medical prognosis
Medical research
Medicine
Medicine & Public Health
Mice
Microenvironments
Mutation
Necrosis
Neoplasm Recurrence, Local
Patient outcomes
Patients
Phenols
Photoimmunotherapy
Photosensitizing Agents
Post-irradiation
Radiation
Radioimmunotherapy
Reactive oxygen species
Research Article
Risk factors
Surgery
Targeted Therapies
Tumor Microenvironment
Tumor suppressor genes
Tumors
Xenograft Model Antitumor Assays
Xenografts
Xenotransplantation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9UwDLbQDogL4jeFAUVC4gDRmqRNmuOG9jaQHge0SbtFaZqyJ0190_Z2YH89dpqWdQi4cG2cqnHsxG78fQF4V7WuNTx4plsnWalazurKd6wJyrdKlrKMOO7lV3V4XH45qU5uXPVFNWEDPfCguB2DAbJXhpfBhBKDl8ZVtfShE0KrBt9Hq29hijGZSqlWhVHNCJGp1c4l7mqcim0xdRaCS3Y924YiW__va_KNTel2weStU9O4GS0ewP0URea7w9c_hDuhfwR3l-mc_DF8PsKk-3tkGcxRdSt2sLfMVwQFCfnFUBUbcvoFm-8fLL6xCB_B0DM_P11v1lEuAbN-PIHjxf7Rp0OWLk1gHl1pwxpVY4TRCa07zjU-a4vgnCq8KrvIto75sFdBSMMd70wMEiW6cdMFp4kN7ils9es-PIc8KIyu6FLQQvvSEY-NJihtqFyDHZzJgI86tD4xitPFFmc2Zha1soPeLerdRr3b6ww-TH3OBz6Nv0rv0dRMksSFHR-ghdhkIfZfFpLBG5pYOwBLJ4-2u8rgmKSqygzeRwnyaRyAdwmagGogdqyZ5PZMEn3Rz5tH47FpLbi0QtHRJkViGbydmqkn1bf1YX1FMhGTLBXP4Nlga9OgJeWQ2qgM9MwKZ1qZt_Sr08gUXuOMYk6YwcfRXn991p-1_uJ_aP0l3BOEFCk4E3wbtjYXV-EVxm-b5nV01Z-AOT1L
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLdgSIgXxPc6BhQJiQeIdulH0jyhDe02kI4HtEn3FqVpup2E2tvd7YH99dhp2qND7LVxpMaxYzuxfwb4kFemUtxZJiuTskxUnBW5rVnphK1EmqWZr-Oe_RCn59n3eT4PF27rkFbZn4n-oK5aS3fkB4mgByKyZ1-WV4y6RtHramihcR8ecPREqHWDnG8Drhx9m75QphAHa7RtnFJuMYBOEp6ym5Ex8pj9_57Mf5mm22mTt95OvUmaPoHHwZeMD7vNfwr3XPMMHs7Ca_lz-HaG_3_hsQZjZOCCnRzN4gUVhLh41eXGupguYuPjk-lP5otI0AGNl5ftpvV0oTzr9ws4nx6ffT1loXUCs6hQG1aKAv2MOpGy5lzit2rijBETK7LaY65jVGyFS1LFDa-VdxWRv0VZOyMJE-4l7DRt43YhdgJ9LGoNOpE2M4RmI6mg1uWmxAlGRcB7HmobcMWpvcUv7eOLQuiO7xr5rj3f9U0En4Y5yw5V407qI9qagZIQsf2HdnWhg4JphYGUFYpnTrkMndzS5EVqXZ0kUpQodxG8o43VXXnpoNf6UChcUyryLIKPnoI0GxdgTShQQDYQRtaIcn9EiRppx8O98OhwIqz1Vn4jeD8M00zKcmtce000vjI5FTyCV52sDYtOKZKUSkQgR1I44sp4pFlcerzwAncUI8MIPvfyuv2t_3N97-5VvIZHCVWCTDhL-D7sbFbX7g36Z5vyrVfCP_mwNO8
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiEuiDehBYKExAFM17FjJweEWtRtQVoOqCv1ZjmO065UJWW7ldr-emacB6QUJK7xWIrHM_FMZr7PAG_S0pY5947p0gomVclZlrqKFV65UgkpZMBxz76p_bn8epgerkF_3VGnwLMbUzu6T2q-PPlw8ePyEzr8x-Dwmdo6wzOLUystJsZJwgW7ugW3Q72IWvnkUFVA69SyB87cOG90OAUO_z-_1L8dVdfbKK_VUsMRNb0P97rYMt5ujeEBrPn6IdyZddXzR_DlAFPxo8A9GKNCF2xvZxYvCCDi42XbK-tj-jEb7-5Nv7MAKsGAND49blZNkOvgWpePYT7dPfi8z7qrFJhDB1uxQmUYd1SJ1hXnGp-VE2-tmjglq8DBjlmyUz4RObe8ykPoKNC5i8pbTRxxT2C9bmr_DGKvMOaiq0In2klL7DaaALY-tQVOsHkEvNehcR3POF13cWJCvpEp0-rdoN5N0Lu5iuDdMOe0Zdn4p_QObc0gSQzZ4UGzPDKdw5kcEyunci597iUGvYVNM-F8lSRaFWiHEbyijTUt3HTwc7OtclyTUKmM4G2QINvDBTjbARZQDcSZNZLcHEmih7rxcG88pjdwkygqeFJ8FsHrYZhmUtdb7ZtzkglIZaF4BE9bWxsWLSiz1LmKQI-scKSV8Ui9OA784RnuKGaKEbzv7fXXa_1d68__T3wD7iaEFJlwlvBNWF8tz_0LjN9WxcvglD8BsX48zA
  priority: 102
  providerName: Scholars Portal
Title Triggering anti-GBM immune response with EGFR-mediated photoimmunotherapy
URI https://link.springer.com/article/10.1186/s12916-021-02213-z
https://www.ncbi.nlm.nih.gov/pubmed/35057796
https://www.proquest.com/docview/2630477822
https://www.proquest.com/docview/2622278361
https://pubmed.ncbi.nlm.nih.gov/PMC8780306
https://doaj.org/article/9642c6914e9e4507ba583cef2276b6cd
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7WFsZexn7PW5d5MNjDJhZZsmQ_NiFpN0gZoYWwFyHL8hoYTmnTh_Wv353seHW7FvriB-kE1ulOupP0fQL4mJa2zLl3TJdWMKlKzrLUVazwypVKSCEDjnt2qA6O5fdFumhpcggLc_X8nmfq6zmuR5yuyWLSmyRcsMst2Elx4iVrHqtxl1ylGMdsQDH_bddbeAI__81Z-MoydP2K5LVz0rD8TJ_A4zZujPeagX4KD3z9DB7O2pPx5_DtCNPsX4FXMEZlLdn-aBYvCfzh47PmHqyPadM1nuxP5ywARjDYjE9PVutVkGuhWH9ewPF0cjQ-YO0zCcyh86xZoTKMKapE64pzjWXl0Furhk7JKvCrYwbslE9Ezi2v8hAWCnTcovJWE__bS9iuV7V_DbFXGE_RM6BD7aQl5hpN4Fmf2gIb2DwCvtGhcS2HOD1l8duEXCJTptG7Qb2boHdzGcHnrs1pw6Bxp_SIhqaTJPbrUIBGYVpnMjkmTU7lXPrcSwxoC5tmwvkqSbQq0MYieE8DaxooaefDZk_l2CehUhnBpyBBXowdcLYFI6AaiA-rJ7nbk0Tvc_3qjfGY1vvPTaLoMJNirwg-dNXUkm601X51QTIBhSwUj-BVY2tdpwVljTpXEeieFfa00q-plyeBGzzDEUXniODLxl7__dbtWn9zP_G38CghFMiQs4Tvwvb67MK_w9hsXQxgSy_0AHZGk8Mf80Fw0UHY58DvTGb4nY9-_gWuHjOj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8IL4JDBYkEA9grc6HkzxMaIV2LVsrNHXS3ozjOFsl1JS2E9r-OP427pyPkSH2ttf4LMV35_uw_bsDeBtmKku40SzKlM8CkXEWhzpnqRE6E37gBxbHPZ6I4XHw9SQ82YDfNRaGnlXWNtEa6qzQdEa-4wm6ICJ_9mnxk1HXKLpdrVtoqKq1QrZrS4xVwI4Dc_ELU7jV7ugLyvud5w36089DVnUZYBp1b81SEaNLzr0oyjmP8FvWNUqJrhZBbsuTYwKphfH8hCueJzaqwl-J09yoKLaFD9AFbAZ0gNKBzV5_8u2oSflCjK5qqE4sdlboXTk9-sUU3vO4zy5b7tB2DfjXN_zlHK8_3Lx2e2ud4uAB3K-iWXevVL-HsGHmj-DOuLqvfwyjKXLw1FY7dFGEM7bfG7szgqQYd1m-zjUuHQW7_f3BEbMwFgyB3cVZsS4sXQUQu3gCx7fC1qfQmRdz8xxcIzDKo-ak3UgHiurpRATpNaFKcYJKHOA1D6WuKptTg40f0mY4sZAl3yXyXVq-y0sHPjRzFmVdjxupeySahpJqctsPxfJUVltcJpjKaZHwwCQmwDA7VWHsa5N7XiRS1HwHtkmwsgS4NpZF7okE1-SLMHDgvaUg24IL0KqCSCAbqEpXi3KrRYk2QbeHa-WRlU1ayasd5MCbZphm0ju7uSnOicZio33BHXhW6lqzaJ9y2SgRDkQtLWxxpT0yn53ZiuUxShRzUwc-1vp69Vv_5_qLm1exDXeH0_GhPBxNDl7CPY9wKV3OPL4FnfXy3LzCaHGdvq62pAvfb9sK_AFTRHZp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BK1VcEO-mLTRISBzA6joPOz5uodt2YSsErdSb5ThOuxJKVtvtgf56ZpwHTXlIXO2xFI9n7Jl4vs8Ab9LCFIo7y2RhYpaIgrMstSXLnbCFiJM48Tju2Yk4Okum5-n5LRS_r3bvriQbTAOxNFWrvUVRNi6eib0rPKU4Fc9iKhxFPGY392E9S5XC9Gt9PJ5-m_ZJV4rxTQeW-ePIwYHkeft_351vHU93Syfv3J_6Y2nyCB628WQ4bgzgMdxz1RPYmLU35k_h-BTT7wvPNxiiEufscH8WzgkU4sJlUx_rQvoZGx4cTr4yDyTBIDRcXNar2su1EK0fz-BscnD64Yi1zycwi061YrnIMNYoIylLziW2FSNnjBhZkZSedx0zYytcFCtueKl8uBijQ-elM5J44Z7DWlVXbhNCJzDOoudBR9ImhhhtJIFqXWpyHGBUALzTobYttzg9cfFd-xwjE7rRu0a9a693fRPAu37MomHW-Kf0Pi1NL0ms2L6hXl7o1sm0wmTKCsUTp1yCgW5u0iy2rowiKXK0vQB2aWF1AzHtfVuPhcI5xSJNAnjrJci7cQLWtCAFVAPxZA0kdwaS6JV22N0Zj253hSsdCbrkpJgsgNd9N42kSrfK1dck49HJseABvGhsrZ90TNmkVCIAObDCgVaGPdX80nOGZ7iimB0G8L6z11-f9Xetb_2f-C5sfPk40Z-PTz5tw4OIgCIjziK-A2ur5bV7ieHbKn_VeuhP_YQ68Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triggering+anti-GBM+immune+response+with+EGFR-mediated+photoimmunotherapy&rft.jtitle=BMC+medicine&rft.au=M%C4%85czy%C5%84ska%2C+Justyna&rft.au=Raes%2C+Florian&rft.au=Da+Pieve%2C+Chiara&rft.au=Turnock%2C+Stephen&rft.date=2022-01-21&rft.pub=BioMed+Central&rft.eissn=1741-7015&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12916-021-02213-z&rft.externalDocID=10_1186_s12916_021_02213_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7015&client=summon