Protein co-evolution, co-adaptation and interactions
Co‐evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co‐evolution at t...
Saved in:
Published in | The EMBO journal Vol. 27; no. 20; pp. 2648 - 2655 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
22.10.2008
Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 1460-2075 |
DOI | 10.1038/emboj.2008.189 |
Cover
Abstract | Co‐evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co‐evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co‐evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees:
mirrortree
). Future advances in this field will require a better understanding of the molecular basis of the co‐evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes (‘co‐adaptation’) from other forces that, in a less specific way, can also create general patterns of co‐evolution. |
---|---|
AbstractList | Co‐evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co‐evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co‐evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co‐evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes (‘co‐adaptation’) from other forces that, in a less specific way, can also create general patterns of co‐evolution. Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree ). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes (‘co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution. Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host-parasite and predator-prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes ('co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution.Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host-parasite and predator-prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes ('co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution. Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host-parasite and predator-prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes ('co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution. [PUBLICATION ABSTRACT] |
Author | Pazos, Florencio Valencia, Alfonso |
Author_xml | – sequence: 1 givenname: Florencio surname: Pazos fullname: Pazos, Florencio organization: Structure of Macromolecules, Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain – sequence: 2 givenname: Alfonso surname: Valencia fullname: Valencia, Alfonso email: valencia@cnio.es organization: Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18818697$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFK0e04sCJbMdx7NgXpLJqF9AWEFoBN8tJpsVL1l7spKX_HoeUValU9WQ9-3sz4zcHZM95h4Q8pzCjwOQRbiq_nuUAckalekQmtBCQ5VDyPTKBXNCsSPf75CDGNQBwWdInZJ9KSaVQ5YQUn4Pv0Lpp7TO89G3fWe9eD8o0ZtuZQU6Na6bWdRhMPej4lDw-N23EZzfnIVmdnqzm77Llp8X7-fEyqwWTKquAloAIucnBVI0QkiMWnHJeAAosVVMLhbQGYIzxuiiZUqZSkhaoEJAdkjdj2W1fbbCp0XXBtHob7MaEa-2N1f-_OPtDX_hLnXMuQLFU4NVNgeB_9Rg7vbGxxrY1Dn0ftVBCSVaoB0GqCspKzhP48g649n1wKYTE8JyrMhcJenF77t3A_1JPQDECdfAxBjzXtR2jTt-wraagh-Xqv8vVw3KTd5hydse2q3yfoRwNV7bF6wdofXL29sMgRufR6IzJ5C4w3Prnfb2y0WFjh793vUz4qUWZstPfPi40fP1-tvoyX-gl-wMEXNa4 |
CODEN | EMJODG |
CitedBy_id | crossref_primary_10_1016_j_pbiomolbio_2014_05_004 crossref_primary_10_1038_srep25047 crossref_primary_10_1093_molbev_msab350 crossref_primary_10_1371_journal_pone_0084842 crossref_primary_10_3390_genes16010045 crossref_primary_10_1002_pmic_201100597 crossref_primary_10_1002_iub_455 crossref_primary_10_1093_evolut_qpad082 crossref_primary_10_1093_femsle_fnz217 crossref_primary_10_1007_s10479_018_2956_2 crossref_primary_10_1007_s00775_013_0989_1 crossref_primary_10_1016_j_febslet_2012_11_001 crossref_primary_10_1093_bioinformatics_bts109 crossref_primary_10_3389_fcell_2014_00014 crossref_primary_10_1093_molbev_msq129 crossref_primary_10_1093_bioinformatics_btab617 crossref_primary_10_1093_molbev_msq004 crossref_primary_10_1093_gbe_evv083 crossref_primary_10_1371_journal_pbio_1000538 crossref_primary_10_1371_journal_pone_0081100 crossref_primary_10_1093_gbe_evu270 crossref_primary_10_1016_j_cell_2011_11_023 crossref_primary_10_1371_journal_pcbi_1008844 crossref_primary_10_1111_nph_14180 crossref_primary_10_1016_j_abb_2014_05_010 crossref_primary_10_1042_BST20200570 crossref_primary_10_1186_1471_2148_12_238 crossref_primary_10_1098_rsos_171854 crossref_primary_10_1111_mmi_12078 crossref_primary_10_1002_bies_201700069 crossref_primary_10_2174_0929866526666191105142034 crossref_primary_10_1042_BST0370768 crossref_primary_10_1016_j_atg_2012_03_001 crossref_primary_10_1007_s00294_018_0906_9 crossref_primary_10_1042_BJ20121221 crossref_primary_10_1371_journal_pcbi_1000633 crossref_primary_10_1016_j_tibtech_2009_01_002 crossref_primary_10_1007_s10969_009_9062_2 crossref_primary_10_1016_j_ijantimicag_2018_10_027 crossref_primary_10_1093_gbe_evr034 crossref_primary_10_1105_tpc_110_074955 crossref_primary_10_1186_s12862_015_0506_y crossref_primary_10_1016_j_bbagrm_2011_10_008 crossref_primary_10_1038_msb_2011_3 crossref_primary_10_1093_nar_gkr845 crossref_primary_10_1101_gr_111765_110 crossref_primary_10_1111_mec_13389 crossref_primary_10_1016_j_virol_2021_09_004 crossref_primary_10_1093_bioinformatics_btv188 crossref_primary_10_1093_nar_gkp1158 crossref_primary_10_1080_17429145_2013_816881 crossref_primary_10_1093_bioinformatics_btp480 crossref_primary_10_1186_1471_2148_10_306 crossref_primary_10_1007_s10142_023_01223_9 crossref_primary_10_1016_j_neo_2016_12_004 crossref_primary_10_1515_bmc_2011_025 crossref_primary_10_1126_science_adj8172 crossref_primary_10_1002_bies_200900127 crossref_primary_10_1074_jbc_M110_112532 crossref_primary_10_1016_j_compbiolchem_2014_08_017 crossref_primary_10_1039_C2MB25317H crossref_primary_10_1007_s00018_013_1458_2 crossref_primary_10_1093_nargab_lqab032 crossref_primary_10_1039_B916371A crossref_primary_10_1038_nrg3414 crossref_primary_10_1073_pnas_1707335114 crossref_primary_10_1371_journal_pgen_1003161 crossref_primary_10_1371_journal_pcbi_1004067 crossref_primary_10_1002_prot_24360 crossref_primary_10_1186_1471_2105_11_470 crossref_primary_10_1093_molbev_msw012 crossref_primary_10_5511_plantbiotechnology_26_495 crossref_primary_10_1186_s12864_022_08892_z crossref_primary_10_3390_v12091035 crossref_primary_10_1021_bi400383e crossref_primary_10_1038_nrm2762 crossref_primary_10_1038_s41598_019_57187_z crossref_primary_10_1093_molbev_msr094 crossref_primary_10_15252_embj_2020106742 crossref_primary_10_1093_nar_gkw792 crossref_primary_10_1111_j_1365_294X_2011_05014_x crossref_primary_10_1016_j_compbiomed_2014_12_013 crossref_primary_10_1074_jbc_M116_733675 crossref_primary_10_1371_journal_pone_0094970 crossref_primary_10_1016_j_csbj_2021_06_039 crossref_primary_10_1016_j_semcancer_2013_06_005 crossref_primary_10_1016_j_compbiomed_2025_110001 crossref_primary_10_1038_s41598_024_64509_3 crossref_primary_10_1073_pnas_1108633109 crossref_primary_10_1016_j_sbi_2010_03_006 crossref_primary_10_1111_1574_6976_12089 crossref_primary_10_1016_j_bbamcr_2023_119592 crossref_primary_10_1074_jbc_M115_645796 crossref_primary_10_1128_JB_05175_11 crossref_primary_10_3390_ijms18122618 crossref_primary_10_1152_ajprenal_00628_2011 crossref_primary_10_1016_j_meegid_2020_104646 crossref_primary_10_3389_fmolb_2024_1414916 crossref_primary_10_1186_1471_2148_11_266 crossref_primary_10_1007_s12192_018_0933_y crossref_primary_10_1039_C6MB00210B crossref_primary_10_1016_j_gene_2011_06_030 crossref_primary_10_1016_j_gene_2014_04_029 crossref_primary_10_1371_journal_pcbi_1000945 crossref_primary_10_1186_1471_2148_12_99 crossref_primary_10_1002_prot_24388 crossref_primary_10_1105_tpc_114_134353 crossref_primary_10_1093_bioinformatics_btt489 crossref_primary_10_1126_sciadv_abb9484 crossref_primary_10_3389_fmicb_2023_1052352 crossref_primary_10_1016_j_sbi_2011_03_013 crossref_primary_10_1186_1471_2164_11_607 crossref_primary_10_1186_1471_2105_12_363 crossref_primary_10_1039_C2MB25325A crossref_primary_10_1093_bioinformatics_btq137 crossref_primary_10_1093_bioinformatics_btq412 crossref_primary_10_1016_j_bmc_2013_04_052 crossref_primary_10_1093_gbe_evt129 crossref_primary_10_1093_bioinformatics_btr503 crossref_primary_10_1093_molbev_msq144 crossref_primary_10_1371_journal_pone_0011082 |
Cites_doi | 10.1006/jmbi.2000.3732 10.1038/nbt834 10.1074/jbc.271.7.3619 10.1186/1471-2105-8-6 10.1093/icb/39.2.451 10.1534/genetics.104.028944 10.1073/pnas.0609962104 10.1093/molbev/msl155 10.1093/bioinformatics/btg278 10.1038/nature03991 10.1016/S0966-842X(97)01110-4 10.1093/oxfordjournals.jhered.a111061 10.1126/science.1103330 10.1093/bioinformatics/bti564 10.1371/journal.pcbi.0010009 10.1126/science.1068696 10.1073/pnas.96.7.3595 10.1038/nbt861 10.1016/S0022-2836(02)01038-0 10.1016/j.tig.2006.06.008 10.1002/prot.20098 10.1093/molbev/msl193 10.1093/protein/7.3.349 10.1016/S0014-5793(00)01514-3 10.1038/47048 10.1002/prot.20933 10.1093/oxfordjournals.molbev.a003895 10.1126/science.1062509 10.1186/gb-2007-8-8-109 10.1093/emboj/20.6.1363 10.1093/molbev/msh024 10.1086/281795 10.1007/BF01659396 10.1016/j.jmb.2006.04.011 10.1016/j.jmb.2004.10.086 10.1126/science.1100522 10.1016/S0022-2836(03)00114-1 10.1038/332258a0 10.1093/nar/gkl112 10.2307/2406212 10.1186/gb-2004-5-5-r35 10.1093/nar/gkg034 10.1002/prot.340180402 10.1073/pnas.232565499 10.1086/283213 10.1093/molbev/msj038 10.1016/S0959-440X(02)00333-0 10.1002/prot.10074 10.1371/journal.pcbi.0030237 10.1073/pnas.0402591101 10.1038/msb4100203 10.1093/genetics/35.3.288 10.1016/S1359-0278(97)00060-6 10.1016/j.jmb.2005.07.005 10.1186/1471-2105-8-S4-S7 10.1002/prot.21347 10.1146/annurev.biochem.73.011303.073950 10.1016/j.jmb.2006.09.053 10.1093/nar/gkh471 10.1093/bioinformatics/bti1009 10.1038/nrg1272 10.1002/prot.21791 10.1126/science.1123809 10.2741/1805 10.1093/oxfordjournals.molbev.a004214 10.1002/prot.20570 10.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P 10.1186/1471-2105-8-173 10.1007/978-1-59745-398-1_31 10.1038/ng1685 10.1006/jmbi.1997.1198 10.1371/journal.pcbi.0030211 10.1002/prot.20948 10.1016/S0168-9525(01)02348-4 10.1093/bioinformatics/bth053 10.1038/nrg2319 10.1016/S0168-9525(96)80020-5 10.1016/S0960-9822(02)01333-7 10.1073/pnas.96.8.4285 10.1073/pnas.0502667102 10.1371/journal.pcbi.0030043 10.1073/pnas.95.25.14863 10.1093/bioinformatics/btl419 10.1093/genetics/158.2.927 10.1093/protein/14.9.609 10.1002/1097-0134(20001001)41:1<98::AID-PROT120>3.3.CO;2-J 10.1093/bioinformatics/btl558 10.1016/j.jmb.2006.07.072 10.1007/s00239-002-2382-5 10.1093/bioinformatics/bti532 10.1016/j.jmb.2004.10.019 10.1073/pnas.0709671105 10.1089/omi.1.1998.3.177 |
ContentType | Journal Article |
Copyright | European Molecular Biology Organization 2008 Copyright © 2008 European Molecular Biology Organization Copyright Nature Publishing Group Oct 22, 2008 Copyright © 2008, European Molecular Biology Organization 2008 |
Copyright_xml | – notice: European Molecular Biology Organization 2008 – notice: Copyright © 2008 European Molecular Biology Organization – notice: Copyright Nature Publishing Group Oct 22, 2008 – notice: Copyright © 2008, European Molecular Biology Organization 2008 |
DBID | BSCLL C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1038/emboj.2008.189 |
DatabaseName | Istex Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection ProQuest Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Protein co-evolution, co-adaptation and interactions |
EISSN | 1460-2075 |
EndPage | 2655 |
ExternalDocumentID | PMC2556093 1581235321 18818697 10_1038_emboj_2008_189 EMBJ2008189 ark_67375_WNG_0VXMTRCG_L |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 29G 2WC 33P 36B 39C 3O- 4.4 53G 5VS 70F 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAESR AAEVG AAHBH AAIHA AAJSJ AAMMB AANHP AANLZ AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABUWG ABZEH ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYN AEUYR AFBPY AFFNX AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C1A C6C CAG CCPQU COF CS3 D1J DCZOG DIK DPXWK DRFUL DRSTM DU5 DWQXO E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P FEDTE FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HVGLF HYE KQ8 LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ NAO O9- OK1 P2P P2W PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X RHI RNS ROL RPM RZO SV3 TN5 TR2 UKHRP WBKPD WH7 WIH WIK WIN WOHZO WXSBR YSK ZCA ZZTAW ~KM 24P 3V. 88A AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV M0L RHF WYJ ABJNI AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c6389-b0170ee02a20abd6685ee4515540e6e79dc69e1c003335c47399ab9814e9e0e3 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:29:52 EDT 2025 Sun Sep 28 03:15:08 EDT 2025 Sat Sep 27 21:50:20 EDT 2025 Fri Jul 25 19:35:18 EDT 2025 Wed Feb 19 02:33:40 EST 2025 Thu Apr 24 23:02:36 EDT 2025 Tue Jul 01 02:05:39 EDT 2025 Wed Jan 22 17:00:26 EST 2025 Fri Feb 21 02:36:57 EST 2025 Sun Sep 21 06:19:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | protein–protein interaction phylogenetic tree interactome co‐evolution |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://doi.wiley.com/10.1002/tdm_license_1.1 This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits distribution, and reproduction in any medium, provided the original author and source are credited. This licence does not permit commercial exploitation or the creation of derivative works without specific permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6389-b0170ee02a20abd6685ee4515540e6e79dc69e1c003335c47399ab9814e9e0e3 |
Notes | ark:/67375/WNG-0VXMTRCG-L istex:95010D8D86EEC490118318BBBE939345F52A2EA1 ArticleID:EMBJ2008189 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 |
OpenAccessLink | https://www.nature.com/articles/emboj.2008.189 |
PMID | 18818697 |
PQID | 195259726 |
PQPubID | 35985 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2556093 proquest_miscellaneous_69698349 proquest_miscellaneous_19413755 proquest_journals_195259726 pubmed_primary_18818697 crossref_citationtrail_10_1038_emboj_2008_189 crossref_primary_10_1038_emboj_2008_189 wiley_primary_10_1038_emboj_2008_189_EMBJ2008189 springer_journals_10_1038_emboj_2008_189 istex_primary_ark_67375_WNG_0VXMTRCG_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 22, 2008 |
PublicationDateYYYYMMDD | 2008-10-22 |
PublicationDate_xml | – month: 10 year: 2008 text: October 22, 2008 day: 22 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: London – name: England – name: New York |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2008 |
Publisher | John Wiley & Sons, Ltd Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Kann MG, Jothi R, Cherukuri PF, Przytycka TM (2007) Predicting protein domain interactions from coevolution of conserved regions. Proteins 67: 811-820 Labedan B, Xu Y, Naumoff DG, Glansdorff N (2004) Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase. Mol Biol Evol 21: 364-373 Pazos F, Valencia A (2002) In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47: 219-227 Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18: 586-608 Fodor AA, Aldrich RW (2004) Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 56: 211-221 Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol 3: e43 Wallace B (1953) On coadaptation in Drosophila. Am Nat 87: 343-358 Wang HC, Spencer M, Susko E, Roger AJ (2007) Testing for covarion-like evolution in protein sequences. Mol Biol Evol 24: 294-305 Mateu MG, Fersht AR (1999) Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization. Proc Natl Acad Sci USA 96: 3595-3599 Watanabe M, Ito A, Takada Y, Ninomiya C, Kakizaki T, Takahata Y, Hatakeyama K, Hinata K, Suzuki G, Takasaki T, Satta Y, Shiba H, Takayama S, Isogai A (2000) Highly divergent sequences of the pollen self-incompatibility (S) gene in class-I S haplotypes of Brassica campestris (syn. rapa) L. FEBS Lett 473: 139-144 Devos D, Valencia A (2001) Intrinsic errors in genome annotation. Trends Genet 17: 429-431 Shakhnovich BE (2005) Improving the precision of the structure-function relationship by considering phylogenetic context. PLoS Comput Biol 1: e9 Bowers P, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D (2004a) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5: R35 Fitch WM (1971) Rate of change of concomitantly variable codons. J Mol Evol 1: 84-96 Ramani AK, Marcotte EM (2003) Exploiting the co-evolution of interacting proteins to discover interaction specificity. J Mol Biol 327: 273-284 Pazos F, Helmer-Citterich M, Ausiello G, Valencia A (1997) Correlated mutations contain information about protein-protein interaction. J Mol Biol 271: 511-523 Ranea JA, Yeats C, Grant A, Orengo CA (2007) Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo-Tuner method applied to eukaryotic genomes. PLoS Comput Biol 3: e237 Fryxell KJ (1996) The coevolution of gene family trees. Trends Genet 12: 364-369 Pazos F, Ranea JAG, Juan D, Sternberg MJE (2005) Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. J Mol Biol 352: 1002-1015 Waddell PJ, Kishino H, Ota R (2007) Phylogenetic methodology for detecting protein interactions. Mol Biol Evol 24: 650-659 Goh C-S, Bogan AA, Joachimiak M, Walther D, Cohen FE (2000) Co-evolution of proteins with their interaction partners. J Mol Biol 299: 283-293 Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296: 750-752 Goh CS, Cohen FE (2002) Co-evolutionary analysis reveals insights into protein-protein interactions. J Mol Biol 324: 177-192 Izarzugaza JM, Juan D, Pons C, Ranea JA, Valencia A, Pazos F (2006) TSEMA: interactive prediction of protein pairings between interacting families. Nucleic Acids Res 34: W315-W319 Socolich M, Lockless SW, Russ WP, Lee H, Gardner KH, Ranganathan R (2005) Evolutionary information for specifying a protein fold. Nature 437: 512-518 Thompson JN (1994) The Coevolutionary Process. Chicago: University of Chicago Press Burton RS, Rawson PD, Edmands S (1999) Genetic architecture of physiological phenotypes: empirical evidence for coadapted gene complexes. Am Zool 39: 451-462 Liu J-C, Makova KD, Adkins RM, Gibson S, Li W-H (2001) Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor. Mol Biol Evol 18: 945-953 Burger L, van Nimwegen E (2008) Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method. Mol Syst Biol 4: 165 Futuyma DJ (1997) Evolutionary Biology. Stamford, Connecticut: Sinauer Associates Shim Choi S, Li W, Lahn BT (2005) Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny-aided structural analysis. Nat Genet 37: 1367-1371 Haag ES, Wang S, Kimble J (2002) Rapid coevolution of the nematode sex-determining genes fem-3 and tra-2. Curr Biol 12: 2035-2041 Sun J, Xu J, Liu Z, Liu Q, Zhao A, Shi T, Li Y (2005) Refined phylogenetic profiles method for predicting protein-protein interactions. Bioinformatics 21: 3409-3415 Olmea O, Valencia A (1997) Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des 2: S25-S32 Pagel P, Wong P, Frishman D (2004) A domain interaction map based on phylogenetic profiling. J Mol Biol 344: 1331-1346 Dobzhansky T (1950) Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35: 288-302 Craig RA, Liao L (2007) Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices. BMC Bioinformatics 8: 6 Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T (2007) The human phylome. Genome Biol 8: R109 Wallace B (1991) Coadaptation revisited. J Hered 82: 89-96 Yeang CH, Haussler D (2007) Detecting coevolution in and among protein domains. PLoS Comput Biol 3: e211 Dou T, Ji C, Gu S, Xu J, Ying K, Xie Y, Mao Y (2006) Co-evolutionary analysis of insulin/insulin like growth factor 1 signal pathway in vertebrate species. Front Biosci 11: 380-388 Fraser HB, Hirsh AE, Wall DP, Eisen MB (2004) Coevolution of gene expression among interacting proteins. Proc Natl Acad Sci USA 101: 9033-9038 Sato T, Yamanishi Y, Horimoto K, Kanehisa M, Toh H (2006) Partial correlation coefficient between distance matrices as a new indicator of protein-protein interactions. Bioinformatics 22: 2488-2492 Date SV, Marcotte EM (2003) Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nat Biotechnol 21: 1055-1062 Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402: 83-86 Xia Y, Yu H, Jansen R, Seringhaus M, Baxter S, Greenbaum D, Zhao H, Gerstein M (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73: 1051-1087 Kondrashov AS, Sunyaev S, Kondrashov FA (2002) Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci USA 99: 14878-14883 Kulathinal RJ, Bettencourt BR, Hartl DL (2004) Compensated deleterious mutations in insect genomes. Science 306: 1553-1554 Pal C, Papp B, Hurst LD (2001) Highly expressed genes in yeast evolve slowly. Genetics 158: 927-931 Tress M, de Juan D, Grana O, Gomez MJ, Gomez-Puertas P, Gonzalez JM, Lopez G, Valencia A (2005) Scoring docking models with evolutionary information. Proteins 60: 275-280 Zhou Y, Wang R, Li L, Xia X, Sun Z (2006) Inferring functional linkages between proteins from evolutionary scenarios. J Mol Biol 359: 1150-1159 del Alamo M, Mateu MG (2005) Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein. J Mol Biol 345: 893-906 Drummond DA, Raval A, Wilke CO (2006) A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 23: 327-337 Shindyalov IN, Kolchanov NA, Sander C (1994) Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? Protein Eng 7: 349-358 Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5: 101-113 Chen Y, Dokholyan NV (2006) The coordinated evolution of yeast proteins is constrained by functional modularity. Trends Genet 22: 416-419 Shackelford G, Karplus K (2007) Contact prediction using mutual information and neural nets. Proteins 69: 159-164 Danchin A (2003) The Delphic Boat: What Genomes Tell Us. Cambridge, Massachusetts: Harvard University Press Jothi R, Przytycka TM, Aravind L (2007) Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment. BMC Bioinformatics 8: 173 Bowers PM, Cokus SJ, Eisenberg D, Yeates TO (2004b) Use of logic relationships to decipher protein network organization. Science 306: 2246-2249 Lawrence JG (1997) Selfish operons and speciation by gene transfer. Trends Microbiol 5: 355-359 Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311: 1430-1436 Devos D, Valencia A (2000) Practical limits of function prediction. Proteins 41: 98-107 Stone AR, Hawksworth DL (1985) Coevolution and Systematics. Oxford: Clarendon Press Mintseris J, Weng Z (2005) Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci USA 102: 10930-10935 Halperin I, Wolfson H, Nussinov R (2006) Correlated mutations: advances and limitations. A study on fusion proteins and on the Cohesin-Dockerin families. Proteins 63: 832-845 Wang S, Kimble J (2001) The TRA-1 transcription factor binds TRA-2 to regulate sexual fates in Caenorhabditis elegans. EMBO J 20: 1363-1372 Dobzhansky T (1970) Genetics of the Evolutionary Process. New York: Columbia University Press Susko E, Inagaki Y, Field C, Holder ME, Roger AJ (2002) Testing for differences in rates-across-sites distributions in phylogenetic subtrees. Mol Biol Evol 19: 1514-1523 Cokus S, Mizutani S, Pellegrini M (2007) An improved method for identifying functionally linked p Gertz, Elfond, Shustrova, Weisinger, Pellegrini, Cokus, Rothschild (CR31) 2003; 19 Göbel, Sander, Schneider, Valencia (CR32) 1994; 18 Watanabe, Ito, Takada, Ninomiya, Kakizaki, Takahata, Hatakeyama, Hinata, Suzuki, Takasaki, Satta, Shiba, Takayama, Isogai (CR98) 2000; 473 Liu, Makova, Adkins, Gibson, Li (CR52) 2001; 18 Mintseris, Weng (CR55) 2005; 102 Barabasi, Oltvai (CR1) 2004; 5 Sato, Yamanishi, Kanehisa, Toh (CR72) 2005; 21 Pazos, Valencia (CR65) 2001; 14 Sun, Xu, Liu, Liu, Zhao, Shi, Li (CR82) 2005; 21 Goh, Cohen (CR34) 2002; 324 van Kesteren, Tensen, Smit, van Minnen, Kolakowski, Meyerhof, Richter, van Heerikhuizen, Vreugdenhil, Geraerts (CR89) 1996; 271 Wang, Kimble (CR97) 2001; 20 Chen, Dokholyan (CR9) 2006; 22 Fodor, Aldrich (CR25) 2004; 56 Kulathinal, Bettencourt, Hartl (CR49) 2004; 306 del Alamo, Mateu (CR13) 2005; 345 Valencia, Pazos (CR88) 2002; 12 Hakes, Lovell, Oliver, Robertson (CR37) 2007; 104 Dou, Ji, Gu, Xu, Ying, Xie, Mao (CR19) 2006; 11 Juan, Pazos, Valencia (CR44) 2008; 105 Pazos, Ranea, Juan, Sternberg (CR64) 2005; 352 Goh, Bogan, Joachimiak, Walther, Cohen (CR33) 2000; 299 Sato, Yamanishi, Horimoto, Kanehisa, Toh (CR71) 2006; 22 Fraser, Hirsh, Wall, Eisen (CR27) 2004; 101 Burton, Rawson, Edmands (CR6) 1999; 39 Devoto, Hartmann, Piffanelli, Elliott, Simmons, Taramino, Goh, Cohen, Emerson, Schulze‐Lefert, Panstruga (CR16) 2003; 56 Bowers, Pellegrini, Thompson, Fierro, Yeates, Eisenberg (CR3) 2004; 5 Fitch (CR24) 1971; 1 Susko, Inagaki, Field, Holder, Roger (CR83) 2002; 19 Drummond, Raval, Wilke (CR20) 2006; 23 Wallace (CR95) 1991; 82 Socolich, Lockless, Russ, Lee, Gardner, Ranganathan (CR79) 2005; 437 Burger, van Nimwegen (CR5) 2008; 4 Yeang, Haussler (CR100) 2007; 3 Jothi, Cherukuri, Tasneem, Przytycka (CR41) 2006; 362 Olmea, Valencia (CR58) 1997; 2 Pazos, Valencia (CR66) 2002; 47 Labedan, Xu, Naumoff, Glansdorff (CR50) 2004; 21 Lawrence (CR51) 1997; 5 Halperin, Wolfson, Nussinov (CR38) 2006; 63 Gaasterland, Ragan (CR30) 1998; 3 Waddell, Kishino, Ota (CR93) 2007; 24 Ehrlich, Raven (CR21) 1964; 18 Fraser, Hirsh, Steinmetz, Scharfe, Feldman (CR26) 2002; 296 Pellegrini, Marcotte, Thompson, Eisenberg, Yeates (CR67) 1999; 96 Tress, de Juan, Grana, Gomez, Gomez‐Puertas, Gonzalez, Lopez, Valencia (CR87) 2005; 60 Wallace (CR94) 1953; 87 Tan, Zhang, Ng (CR84) 2004; 32 Shackelford, Karplus (CR74) 2007; 69 Zhou, Wang, Li, Xia, Sun (CR101) 2006; 359 Fryxell (CR28) 1996; 12 Haag, Wang, Kimble (CR35) 2002; 12 von Mering, Huynen, Jaeggi, Schmidt, Bork, Snel (CR92) 2003; 31 Craig, Liao (CR8) 2007; 8 Devos, Valencia (CR14) 2000; 41 Devos, Valencia (CR15) 2001; 17 Sazanov, Hinchliffe (CR73) 2006; 311 Barker, Meade, Pagel (CR2) 2007; 23 Kondrashov, Sunyaev, Kondrashov (CR48) 2002; 99 CR70 Xia, Yu, Jansen, Seringhaus, Baxter, Greenbaum, Zhao, Gerstein (CR99) 2004; 73 Date, Marcotte (CR12) 2003; 21 Pagel, Wong, Frishman (CR59) 2004; 344 Tillier, Biro, Li, Tillo (CR86) 2006; 63 Shim Choi, Li, Lahn (CR76) 2005; 37 Shindyalov, Kolchanov, Sander (CR77) 1994; 7 Moya, Pereto, Gil, Latorre (CR57) 2008; 9 Pazos, Helmer‐Citterich, Ausiello, Valencia (CR62) 1997; 271 Ranea, Yeats, Grant, Orengo (CR69) 2007; 3 Bowers, Cokus, Eisenberg, Yeates (CR4) 2004; 306 Shakhnovich (CR75) 2005; 1 CR85 Pal, Papp, Hurst (CR61) 2001; 158 Marcotte, Pellegrini, Thompson, Yeates, Eisenberg (CR53) 1999; 402 CR80 Ramani, Marcotte (CR68) 2003; 327 Shoemaker, Panchenko (CR78) 2007; 3 Van Valen (CR90) 1973; 1 Hafner, Nadler (CR36) 1988; 332 CR18 Wang, Spencer, Susko, Roger (CR96) 2007; 24 Ferrer‐Costa, Orozco, Cruz (CR23) 2007; 365 Kachroo, Schopfer, Nasrallah, Nasrallah (CR45) 2001; 293 CR11 CR10 Mateu, Fersht (CR54) 1999; 96 Subramanian, Kumar (CR81) 2004; 168 Dobzhansky (CR17) 1950; 35 Pages, Belaich, Belaich, Morag, Lamed, Shoham, Bayer (CR60) 1997; 29 Pazos, Juan, Izarzugaza, Leon, Valencia (CR63) 2008; 484 Huerta‐Cepas, Dopazo, Dopazo, Gabaldon (CR39) 2007; 8 Izarzugaza, Juan, Pons, Ranea, Valencia, Pazos (CR40) 2006; 34 Van Valen (CR91) 1977; 11 Kim, Bolser, Park (CR47) 2004; 20 CR29 Jothi, Kann, Przytycka (CR42) 2005; 21 Eisen, Spellman, Brown, Botstein (CR22) 1998; 95 Cokus, Mizutani, Pellegrini (CR7) 2007; 8 Kann, Jothi, Cherukuri, Przytycka (CR46) 2007; 67 Morett, Korbel, Rajan, Saab‐Rincon, Olvera, Olvera, Schmidt, Snel, Bork (CR56) 2003; 21 Jothi, Przytycka, Aravind (CR43) 2007; 8 2004; 21 2007; 104 2004; 20 2004b; 306 2004; 168 2002; 19 2006; 34 1997; 271 2002; 12 2000; 41 2002; 99 2008; 9 2004; 5 2005; 21 2008; 105 1997; 2 1970 2003; 19 2005; 60 2008; 4 2000; 299 1997; 5 1999; 402 2003; 56 2004; 32 2002; 47 2006; 63 2001; 293 2003; 327 2004; 73 1950; 35 2006; 23 2006; 22 2005; 102 2005; 345 2007; 8 1988; 332 1985 2006; 362 1862 1999; 96 2001; 17 2001; 18 2007; 3 2005; 37 1998; 95 1971; 1 2007; 23 2007; 67 2001; 14 2007; 24 2007; 69 2004; 101 2007; 365 2004; 344 2002; 296 2005; 352 2004a; 5 2006; 11 2005; 437 1997 1997; 29 1991; 82 1994 2000; 473 2003 2004; 306 2008; 484 2006; 359 2003; 31 1996; 12 2001; 20 2006; 311 1964; 18 1999; 39 2004; 56 1996; 271 2002; 324 1998; 3 2005; 1 1977; 11 1994; 18 1973; 1 2003; 21 2001; 158 1953; 87 1994; 7 emboj2008189-b68 emboj2008189-b69 emboj2008189-b66 emboj2008189-b67 emboj2008189-b64 emboj2008189-b65 emboj2008189-b62 emboj2008189-b60 emboj2008189-b79 emboj2008189-b77 emboj2008189-b78 emboj2008189-b75 emboj2008189-b76 emboj2008189-b73 emboj2008189-b74 emboj2008189-b71 emboj2008189-b72 emboj2008189-b70 Gaasterland T (emboj2008189-b30) 1998; 3 Pal C (emboj2008189-b61) 2001; 158 emboj2008189-b88 emboj2008189-b89 emboj2008189-b86 emboj2008189-b87 emboj2008189-b84 emboj2008189-b85 emboj2008189-b82 emboj2008189-b80 emboj2008189-b81 emboj2008189-b19 emboj2008189-b18 emboj2008189-b15 emboj2008189-b16 emboj2008189-b13 emboj2008189-b14 emboj2008189-b11 emboj2008189-b99 emboj2008189-b12 emboj2008189-b97 emboj2008189-b10 emboj2008189-b98 emboj2008189-b96 Pazos F (emboj2008189-b63) 2008; 484 emboj2008189-b93 emboj2008189-b94 emboj2008189-b91 emboj2008189-b92 emboj2008189-b28 emboj2008189-b29 emboj2008189-b26 emboj2008189-b27 emboj2008189-b24 emboj2008189-b25 emboj2008189-b22 emboj2008189-b23 emboj2008189-b20 emboj2008189-b1 emboj2008189-b21 emboj2008189-b2 emboj2008189-b3 emboj2008189-b4 emboj2008189-b100 emboj2008189-b5 emboj2008189-b7 emboj2008189-b101 emboj2008189-b8 emboj2008189-b9 Burton RS (emboj2008189-b6) 1999; 39 emboj2008189-b39 emboj2008189-b37 emboj2008189-b38 emboj2008189-b35 emboj2008189-b36 emboj2008189-b33 emboj2008189-b34 emboj2008189-b31 emboj2008189-b32 Liu J-C (emboj2008189-b52) 2001; 18 emboj2008189-b48 emboj2008189-b49 emboj2008189-b46 emboj2008189-b47 emboj2008189-b44 emboj2008189-b45 emboj2008189-b42 emboj2008189-b43 Van Valen L (emboj2008189-b90) 1973; 1 emboj2008189-b40 emboj2008189-b41 Susko E (emboj2008189-b83) 2002; 19 emboj2008189-b59 emboj2008189-b57 emboj2008189-b58 emboj2008189-b55 emboj2008189-b56 emboj2008189-b53 Dobzhansky T (emboj2008189-b17) 1950; 35 emboj2008189-b54 emboj2008189-b51 emboj2008189-b50 Wallace B (emboj2008189-b95) 1991; 82 |
References_xml | – reference: Subramanian S, Kumar S (2004) Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics 168: 373-381 – reference: Pazos F, Ranea JAG, Juan D, Sternberg MJE (2005) Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. J Mol Biol 352: 1002-1015 – reference: Olmea O, Valencia A (1997) Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des 2: S25-S32 – reference: Thompson JN (1994) The Coevolutionary Process. Chicago: University of Chicago Press – reference: Pazos F, Helmer-Citterich M, Ausiello G, Valencia A (1997) Correlated mutations contain information about protein-protein interaction. J Mol Biol 271: 511-523 – reference: Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402: 83-86 – reference: Pages S, Belaich A, Belaich JP, Morag E, Lamed R, Shoham Y, Bayer EA (1997) Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29: 517-527 – reference: Ramani AK, Marcotte EM (2003) Exploiting the co-evolution of interacting proteins to discover interaction specificity. J Mol Biol 327: 273-284 – reference: Chen Y, Dokholyan NV (2006) The coordinated evolution of yeast proteins is constrained by functional modularity. Trends Genet 22: 416-419 – reference: Ferrer-Costa C, Orozco M, Cruz X (2007) Characterization of compensated mutations in terms of structural and physico-chemical properties. J Mol Biol 365: 249-256 – reference: Jothi R, Kann MG, Przytycka TM (2005) Predicting protein-protein interaction by searching evolutionary tree automorphism space. Bioinformatics 21: i241-i250 – reference: Tillier ER, Biro L, Li G, Tillo D (2006) Codep: maximizing co-evolutionary interdependencies to discover interacting proteins. Proteins 63: 822-831 – reference: Zhou Y, Wang R, Li L, Xia X, Sun Z (2006) Inferring functional linkages between proteins from evolutionary scenarios. J Mol Biol 359: 1150-1159 – reference: Pazos F, Valencia A (2001) Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 14: 609-614 – reference: Danchin A (2003) The Delphic Boat: What Genomes Tell Us. Cambridge, Massachusetts: Harvard University Press – reference: Van Valen L (1973) A new evolutionary law. Evol Theor 1: 1-30 – reference: Barker D, Meade A, Pagel M (2007) Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23: 14-20 – reference: Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56: 77-88 – reference: Pazos F, Valencia A (2002) In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47: 219-227 – reference: Wallace B (1991) Coadaptation revisited. J Hered 82: 89-96 – reference: Gertz J, Elfond G, Shustrova A, Weisinger M, Pellegrini M, Cokus S, Rothschild B (2003) Inferring protein interactions from phylogenetic distance matrices. Bioinformatics 19: 2039-2045 – reference: Tress M, de Juan D, Grana O, Gomez MJ, Gomez-Puertas P, Gonzalez JM, Lopez G, Valencia A (2005) Scoring docking models with evolutionary information. Proteins 60: 275-280 – reference: von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31: 258-261 – reference: Watanabe M, Ito A, Takada Y, Ninomiya C, Kakizaki T, Takahata Y, Hatakeyama K, Hinata K, Suzuki G, Takasaki T, Satta Y, Shiba H, Takayama S, Isogai A (2000) Highly divergent sequences of the pollen self-incompatibility (S) gene in class-I S haplotypes of Brassica campestris (syn. rapa) L. FEBS Lett 473: 139-144 – reference: Izarzugaza JM, Juan D, Pons C, Ranea JA, Valencia A, Pazos F (2006) TSEMA: interactive prediction of protein pairings between interacting families. Nucleic Acids Res 34: W315-W319 – reference: Kim WK, Bolser DM, Park JH (2004) Large-scale co-evolution analysis of protein structural interlogues using the global protein structural interactome map (PSIMAP). Bioinformatics 20: 1138-1150 – reference: Xia Y, Yu H, Jansen R, Seringhaus M, Baxter S, Greenbaum D, Zhao H, Gerstein M (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73: 1051-1087 – reference: Burger L, van Nimwegen E (2008) Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method. Mol Syst Biol 4: 165 – reference: Futuyma DJ (1997) Evolutionary Biology. Stamford, Connecticut: Sinauer Associates – reference: Valencia A, Pazos F (2002) Computational methods for the prediction of protein interactions. Curr Opin Struct Biol 12: 368-373 – reference: Kachroo A, Schopfer CR, Nasrallah ME, Nasrallah JB (2001) Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science 293: 1824-1826 – reference: Burton RS, Rawson PD, Edmands S (1999) Genetic architecture of physiological phenotypes: empirical evidence for coadapted gene complexes. Am Zool 39: 451-462 – reference: Jothi R, Przytycka TM, Aravind L (2007) Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment. BMC Bioinformatics 8: 173 – reference: Shim Choi S, Li W, Lahn BT (2005) Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny-aided structural analysis. Nat Genet 37: 1367-1371 – reference: Wang S, Kimble J (2001) The TRA-1 transcription factor binds TRA-2 to regulate sexual fates in Caenorhabditis elegans. EMBO J 20: 1363-1372 – reference: Haag ES, Wang S, Kimble J (2002) Rapid coevolution of the nematode sex-determining genes fem-3 and tra-2. Curr Biol 12: 2035-2041 – reference: Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18: 586-608 – reference: Drummond DA, Raval A, Wilke CO (2006) A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 23: 327-337 – reference: Van Valen L (1977) The Red Queen. Am Nat 11: 809-810 – reference: Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5: 101-113 – reference: Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296: 750-752 – reference: Moya A, Pereto J, Gil R, Latorre A (2008) Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 9: 218-229 – reference: Darwin CR (1862) On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the Good Effects of Intercrossing. London: John Murray – reference: van Kesteren RE, Tensen CP, Smit AB, van Minnen J, Kolakowski LF, Meyerhof W, Richter D, van Heerikhuizen H, Vreugdenhil E, Geraerts WP (1996) Co-evolution of ligand-receptor pairs in the vasopressin/oxytocin superfamily of bioactive peptides. J Biol Chem 271: 3619-3626 – reference: Hakes L, Lovell S, Oliver SG, Robertson DL (2007) Specificity in protein interactions and its relationship with sequence diversity and coevolution. Proc Natl Acad Sci USA 104: 7999-8004 – reference: Waddell PJ, Kishino H, Ota R (2007) Phylogenetic methodology for detecting protein interactions. Mol Biol Evol 24: 650-659 – reference: Fodor AA, Aldrich RW (2004) Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 56: 211-221 – reference: Cokus S, Mizutani S, Pellegrini M (2007) An improved method for identifying functionally linked proteins using phylogenetic profiles. BMC Bioinformatics 8: S7 – reference: Goh CS, Cohen FE (2002) Co-evolutionary analysis reveals insights into protein-protein interactions. J Mol Biol 324: 177-192 – reference: Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311: 1430-1436 – reference: Bowers P, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D (2004a) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5: R35 – reference: Craig RA, Liao L (2007) Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices. BMC Bioinformatics 8: 6 – reference: Devos D, Valencia A (2001) Intrinsic errors in genome annotation. Trends Genet 17: 429-431 – reference: Hafner MS, Nadler SA (1988) Phylogenetic trees support the coevolution of parasites and their hosts. Nature 332: 258-259 – reference: Pal C, Papp B, Hurst LD (2001) Highly expressed genes in yeast evolve slowly. Genetics 158: 927-931 – reference: Wang HC, Spencer M, Susko E, Roger AJ (2007) Testing for covarion-like evolution in protein sequences. Mol Biol Evol 24: 294-305 – reference: Yeang CH, Haussler D (2007) Detecting coevolution in and among protein domains. PLoS Comput Biol 3: e211 – reference: Dobzhansky T (1970) Genetics of the Evolutionary Process. New York: Columbia University Press – reference: Morett E, Korbel JO, Rajan E, Saab-Rincon G, Olvera L, Olvera M, Schmidt S, Snel B, Bork P (2003) Systematic discovery of analogous enzymes in thiamin biosynthesis. Nat Biotechnol 21: 790-795 – reference: Susko E, Inagaki Y, Field C, Holder ME, Roger AJ (2002) Testing for differences in rates-across-sites distributions in phylogenetic subtrees. Mol Biol Evol 19: 1514-1523 – reference: Kondrashov AS, Sunyaev S, Kondrashov FA (2002) Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci USA 99: 14878-14883 – reference: Wallace B (1953) On coadaptation in Drosophila. Am Nat 87: 343-358 – reference: Bowers PM, Cokus SJ, Eisenberg D, Yeates TO (2004b) Use of logic relationships to decipher protein network organization. Science 306: 2246-2249 – reference: Devos D, Valencia A (2000) Practical limits of function prediction. Proteins 41: 98-107 – reference: Fraser HB, Hirsh AE, Wall DP, Eisen MB (2004) Coevolution of gene expression among interacting proteins. Proc Natl Acad Sci USA 101: 9033-9038 – reference: Goh C-S, Bogan AA, Joachimiak M, Walther D, Cohen FE (2000) Co-evolution of proteins with their interaction partners. J Mol Biol 299: 283-293 – reference: Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol 3: e43 – reference: Jothi R, Cherukuri PF, Tasneem A, Przytycka TM (2006) Co-evolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J Mol Biol 362: 861-875 – reference: Pazos F, Juan D, Izarzugaza JM, Leon E, Valencia A (2008) Prediction of protein interaction based on similarity of phylogenetic trees. Methods Mol Biol 484: 523-535 – reference: Göbel U, Sander C, Schneider R, Valencia A (1994) Correlated mutations and residue contacts in proteins. Proteins 18: 309-317 – reference: Ranea JA, Yeats C, Grant A, Orengo CA (2007) Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo-Tuner method applied to eukaryotic genomes. PLoS Comput Biol 3: e237 – reference: Labedan B, Xu Y, Naumoff DG, Glansdorff N (2004) Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase. Mol Biol Evol 21: 364-373 – reference: Tan S, Zhang Z, Ng S (2004) ADVICE: automated detection and validation of interaction by co-evolution. Nucleic Acids Res 32: W69-W72 – reference: Ridley M (2003) Evolution. Boston, MA: Blackwell Publishing – reference: Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T (2007) The human phylome. Genome Biol 8: R109 – reference: Shackelford G, Karplus K (2007) Contact prediction using mutual information and neural nets. Proteins 69: 159-164 – reference: Pagel P, Wong P, Frishman D (2004) A domain interaction map based on phylogenetic profiling. J Mol Biol 344: 1331-1346 – reference: Stone AR, Hawksworth DL (1985) Coevolution and Systematics. Oxford: Clarendon Press – reference: Liu J-C, Makova KD, Adkins RM, Gibson S, Li W-H (2001) Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor. Mol Biol Evol 18: 945-953 – reference: Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863-14868 – reference: Kulathinal RJ, Bettencourt BR, Hartl DL (2004) Compensated deleterious mutations in insect genomes. Science 306: 1553-1554 – reference: Shakhnovich BE (2005) Improving the precision of the structure-function relationship by considering phylogenetic context. PLoS Comput Biol 1: e9 – reference: Kann MG, Jothi R, Cherukuri PF, Przytycka TM (2007) Predicting protein domain interactions from coevolution of conserved regions. Proteins 67: 811-820 – reference: Lawrence JG (1997) Selfish operons and speciation by gene transfer. Trends Microbiol 5: 355-359 – reference: Mintseris J, Weng Z (2005) Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci USA 102: 10930-10935 – reference: Gaasterland T, Ragan MA (1998) Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. Microb Comp Genomics 3: 199-217 – reference: Socolich M, Lockless SW, Russ WP, Lee H, Gardner KH, Ranganathan R (2005) Evolutionary information for specifying a protein fold. Nature 437: 512-518 – reference: del Alamo M, Mateu MG (2005) Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein. J Mol Biol 345: 893-906 – reference: Dou T, Ji C, Gu S, Xu J, Ying K, Xie Y, Mao Y (2006) Co-evolutionary analysis of insulin/insulin like growth factor 1 signal pathway in vertebrate species. Front Biosci 11: 380-388 – reference: Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96: 4285-4288 – reference: Shindyalov IN, Kolchanov NA, Sander C (1994) Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? Protein Eng 7: 349-358 – reference: Fryxell KJ (1996) The coevolution of gene family trees. Trends Genet 12: 364-369 – reference: Halperin I, Wolfson H, Nussinov R (2006) Correlated mutations: advances and limitations. A study on fusion proteins and on the Cohesin-Dockerin families. Proteins 63: 832-845 – reference: Sun J, Xu J, Liu Z, Liu Q, Zhao A, Shi T, Li Y (2005) Refined phylogenetic profiles method for predicting protein-protein interactions. Bioinformatics 21: 3409-3415 – reference: Dobzhansky T (1950) Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35: 288-302 – reference: Fitch WM (1971) Rate of change of concomitantly variable codons. J Mol Evol 1: 84-96 – reference: Juan D, Pazos F, Valencia A (2008) High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci USA 105: 934-939 – reference: Date SV, Marcotte EM (2003) Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nat Biotechnol 21: 1055-1062 – reference: Mateu MG, Fersht AR (1999) Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization. Proc Natl Acad Sci USA 96: 3595-3599 – reference: Sato T, Yamanishi Y, Horimoto K, Kanehisa M, Toh H (2006) Partial correlation coefficient between distance matrices as a new indicator of protein-protein interactions. Bioinformatics 22: 2488-2492 – reference: Sato T, Yamanishi Y, Kanehisa M, Toh H (2005) The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 21: 3482-3489 – volume: 3 start-page: e211 year: 2007 ident: CR100 article-title: Detecting coevolution in and among protein domains publication-title: PLoS Comput Biol – volume: 344 start-page: 1331 year: 2004 end-page: 1346 ident: CR59 article-title: A domain interaction map based on phylogenetic profiling publication-title: J Mol Biol – volume: 8 start-page: 6 year: 2007 ident: CR8 article-title: Phylogenetic tree information aids supervised learning for predicting protein–protein interaction based on distance matrices publication-title: BMC Bioinformatics – volume: 18 start-page: 309 year: 1994 end-page: 317 ident: CR32 article-title: Correlated mutations and residue contacts in proteins publication-title: Proteins – volume: 29 start-page: 517 year: 1997 end-page: 527 ident: CR60 article-title: Species‐specificity of the cohesin–dockerin interaction between and : prediction of specificity determinants of the dockerin domain publication-title: Proteins – volume: 12 start-page: 368 year: 2002 end-page: 373 ident: CR88 article-title: Computational methods for the prediction of protein interactions publication-title: Curr Opin Struct Biol – volume: 359 start-page: 1150 year: 2006 end-page: 1159 ident: CR101 article-title: Inferring functional linkages between proteins from evolutionary scenarios publication-title: J Mol Biol – volume: 47 start-page: 219 year: 2002 end-page: 227 ident: CR66 article-title: two‐hybrid system for the selection of physically interacting protein pairs publication-title: Proteins – volume: 41 start-page: 98 year: 2000 end-page: 107 ident: CR14 article-title: Practical limits of function prediction publication-title: Proteins – volume: 8 start-page: 173 year: 2007 ident: CR43 article-title: Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment publication-title: BMC Bioinformatics – volume: 37 start-page: 1367 year: 2005 end-page: 1371 ident: CR76 article-title: Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny‐aided structural analysis publication-title: Nat Genet – ident: CR80 – volume: 14 start-page: 609 year: 2001 end-page: 614 ident: CR65 article-title: Similarity of phylogenetic trees as indicator of protein–protein interaction publication-title: Protein Eng – volume: 12 start-page: 2035 year: 2002 end-page: 2041 ident: CR35 article-title: Rapid coevolution of the nematode sex‐determining genes fem‐3 and tra‐2 publication-title: Curr Biol – volume: 365 start-page: 249 year: 2007 end-page: 256 ident: CR23 article-title: Characterization of compensated mutations in terms of structural and physico‐chemical properties publication-title: J Mol Biol – volume: 21 start-page: 3482 year: 2005 end-page: 3489 ident: CR72 article-title: The inference of protein–protein interactions by co‐evolutionary analysis is improved by excluding the information about the phylogenetic relationships publication-title: Bioinformatics – volume: 1 start-page: 84 year: 1971 end-page: 96 ident: CR24 article-title: Rate of change of concomitantly variable codons publication-title: J Mol Evol – volume: 12 start-page: 364 year: 1996 end-page: 369 ident: CR28 article-title: The coevolution of gene family trees publication-title: Trends Genet – volume: 20 start-page: 1363 year: 2001 end-page: 1372 ident: CR97 article-title: The TRA‐1 transcription factor binds TRA‐2 to regulate sexual fates in publication-title: EMBO J – volume: 20 start-page: 1138 year: 2004 end-page: 1150 ident: CR47 article-title: Large‐scale co‐evolution analysis of protein structural interlogues using the global protein structural interactome map (PSIMAP) publication-title: Bioinformatics – volume: 306 start-page: 2246 year: 2004 end-page: 2249 ident: CR4 article-title: Use of logic relationships to decipher protein network organization publication-title: Science – ident: CR11 – ident: CR85 – volume: 299 start-page: 283 year: 2000 end-page: 293 ident: CR33 article-title: Co‐evolution of proteins with their interaction partners publication-title: J Mol Biol – volume: 99 start-page: 14878 year: 2002 end-page: 14883 ident: CR48 article-title: Dobzhansky–Muller incompatibilities in protein evolution publication-title: Proc Natl Acad Sci USA – volume: 311 start-page: 1430 year: 2006 end-page: 1436 ident: CR73 article-title: Structure of the hydrophilic domain of respiratory complex I from publication-title: Science – volume: 60 start-page: 275 year: 2005 end-page: 280 ident: CR87 article-title: Scoring docking models with evolutionary information publication-title: Proteins – volume: 1 start-page: 1 year: 1973 end-page: 30 ident: CR90 article-title: A new evolutionary law publication-title: Evol Theor – ident: CR18 – volume: 3 start-page: 199 year: 1998 end-page: 217 ident: CR30 article-title: Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes publication-title: Microb Comp Genomics – volume: 2 start-page: S25 year: 1997 end-page: S32 ident: CR58 article-title: Improving contact predictions by the combination of correlated mutations and other sources of sequence information publication-title: Fold Des – volume: 17 start-page: 429 year: 2001 end-page: 431 ident: CR15 article-title: Intrinsic errors in genome annotation publication-title: Trends Genet – volume: 3 start-page: e237 year: 2007 ident: CR69 article-title: Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo‐Tuner method applied to eukaryotic genomes publication-title: PLoS Comput Biol – volume: 8 start-page: R109 year: 2007 ident: CR39 article-title: The human phylome publication-title: Genome Biol – ident: CR10 – volume: 306 start-page: 1553 year: 2004 end-page: 1554 ident: CR49 article-title: Compensated deleterious mutations in insect genomes publication-title: Science – volume: 23 start-page: 14 year: 2007 end-page: 20 ident: CR2 article-title: Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes publication-title: Bioinformatics – volume: 82 start-page: 89 year: 1991 end-page: 96 ident: CR95 article-title: Coadaptation revisited publication-title: J Hered – volume: 8 start-page: S7 year: 2007 ident: CR7 article-title: An improved method for identifying functionally linked proteins using phylogenetic profiles publication-title: BMC Bioinformatics – volume: 11 start-page: 809 year: 1977 end-page: 810 ident: CR91 article-title: The Red Queen publication-title: Am Nat – volume: 5 start-page: 101 year: 2004 end-page: 113 ident: CR1 article-title: Network biology: understanding the cell's functional organization publication-title: Nat Rev Genet – volume: 63 start-page: 832 year: 2006 end-page: 845 ident: CR38 article-title: Correlated mutations: advances and limitations. A study on fusion proteins and on the Cohesin–Dockerin families publication-title: Proteins – volume: 5 start-page: 355 year: 1997 end-page: 359 ident: CR51 article-title: Selfish operons and speciation by gene transfer publication-title: Trends Microbiol – volume: 56 start-page: 211 year: 2004 end-page: 221 ident: CR25 article-title: Influence of conservation on calculations of amino acid covariance in multiple sequence alignments publication-title: Proteins – volume: 105 start-page: 934 year: 2008 end-page: 939 ident: CR44 article-title: High‐confidence prediction of global interactomes based on genome‐wide coevolutionary networks publication-title: Proc Natl Acad Sci USA – volume: 102 start-page: 10930 year: 2005 end-page: 10935 ident: CR55 article-title: Structure, function, and evolution of transient and obligate protein–protein interactions publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 2488 year: 2006 end-page: 2492 ident: CR71 article-title: Partial correlation coefficient between distance matrices as a new indicator of protein–protein interactions publication-title: Bioinformatics – volume: 18 start-page: 945 year: 2001 end-page: 953 ident: CR52 article-title: Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor publication-title: Mol Biol Evol – volume: 168 start-page: 373 year: 2004 end-page: 381 ident: CR81 article-title: Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome publication-title: Genetics – volume: 56 start-page: 77 year: 2003 end-page: 88 ident: CR16 article-title: Molecular phylogeny and evolution of the plant‐specific seven‐transmembrane MLO family publication-title: J Mol Evol – volume: 104 start-page: 7999 year: 2007 end-page: 8004 ident: CR37 article-title: Specificity in protein interactions and its relationship with sequence diversity and coevolution publication-title: Proc Natl Acad Sci USA – volume: 101 start-page: 9033 year: 2004 end-page: 9038 ident: CR27 article-title: Coevolution of gene expression among interacting proteins publication-title: Proc Natl Acad Sci USA – volume: 67 start-page: 811 year: 2007 end-page: 820 ident: CR46 article-title: Predicting protein domain interactions from coevolution of conserved regions publication-title: Proteins – volume: 11 start-page: 380 year: 2006 end-page: 388 ident: CR19 article-title: Co‐evolutionary analysis of insulin/insulin like growth factor 1 signal pathway in vertebrate species publication-title: Front Biosci – ident: CR70 – volume: 39 start-page: 451 year: 1999 end-page: 462 ident: CR6 article-title: Genetic architecture of physiological phenotypes: empirical evidence for coadapted gene complexes publication-title: Am Zool – volume: 24 start-page: 650 year: 2007 end-page: 659 ident: CR93 article-title: Phylogenetic methodology for detecting protein interactions publication-title: Mol Biol Evol – volume: 484 start-page: 523 year: 2008 end-page: 535 ident: CR63 article-title: Prediction of protein interaction based on similarity of phylogenetic trees publication-title: Methods Mol Biol – volume: 5 start-page: R35 year: 2004 ident: CR3 article-title: Prolinks: a database of protein functional linkages derived from coevolution publication-title: Genome Biol – volume: 32 start-page: W69 year: 2004 end-page: W72 ident: CR84 article-title: ADVICE: automated detection and validation of interaction by co‐evolution publication-title: Nucleic Acids Res – volume: 296 start-page: 750 year: 2002 end-page: 752 ident: CR26 article-title: Evolutionary rate in the protein interaction network publication-title: Science – volume: 21 start-page: 3409 year: 2005 end-page: 3415 ident: CR82 article-title: Refined phylogenetic profiles method for predicting protein–protein interactions publication-title: Bioinformatics – volume: 21 start-page: 790 year: 2003 end-page: 795 ident: CR56 article-title: Systematic discovery of analogous enzymes in thiamin biosynthesis publication-title: Nat Biotechnol – ident: CR29 – volume: 73 start-page: 1051 year: 2004 end-page: 1087 ident: CR99 article-title: Analyzing cellular biochemistry in terms of molecular networks publication-title: Annu Rev Biochem – volume: 19 start-page: 1514 year: 2002 end-page: 1523 ident: CR83 article-title: Testing for differences in rates‐across‐sites distributions in phylogenetic subtrees publication-title: Mol Biol Evol – volume: 21 start-page: i241 year: 2005 end-page: i250 ident: CR42 article-title: Predicting protein–protein interaction by searching evolutionary tree automorphism space publication-title: Bioinformatics – volume: 35 start-page: 288 year: 1950 end-page: 302 ident: CR17 article-title: Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of publication-title: Genetics – volume: 352 start-page: 1002 year: 2005 end-page: 1015 ident: CR64 article-title: Assessing protein co‐evolution in the context of the tree of life assists in the prediction of the interactome publication-title: J Mol Biol – volume: 19 start-page: 2039 year: 2003 end-page: 2045 ident: CR31 article-title: Inferring protein interactions from phylogenetic distance matrices publication-title: Bioinformatics – volume: 34 start-page: W315 year: 2006 end-page: W319 ident: CR40 article-title: TSEMA: interactive prediction of protein pairings between interacting families publication-title: Nucleic Acids Res – volume: 23 start-page: 327 year: 2006 end-page: 337 ident: CR20 article-title: A single determinant dominates the rate of yeast protein evolution publication-title: Mol Biol Evol – volume: 293 start-page: 1824 year: 2001 end-page: 1826 ident: CR45 article-title: Allele‐specific receptor‐ligand interactions in self‐incompatibility publication-title: Science – volume: 7 start-page: 349 year: 1994 end-page: 358 ident: CR77 article-title: Can three‐dimensional contacts in protein structures be predicted by analysis of correlated mutations? publication-title: Protein Eng – volume: 87 start-page: 343 year: 1953 end-page: 358 ident: CR94 article-title: On coadaptation in publication-title: Am Nat – volume: 21 start-page: 364 year: 2004 end-page: 373 ident: CR50 article-title: Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase publication-title: Mol Biol Evol – volume: 402 start-page: 83 year: 1999 end-page: 86 ident: CR53 article-title: A combined algorithm for genome‐wide prediction of protein function publication-title: Nature – volume: 22 start-page: 416 year: 2006 end-page: 419 ident: CR9 article-title: The coordinated evolution of yeast proteins is constrained by functional modularity publication-title: Trends Genet – volume: 18 start-page: 586 year: 1964 end-page: 608 ident: CR21 article-title: Butterflies and plants: a study in coevolution publication-title: Evolution – volume: 362 start-page: 861 year: 2006 end-page: 875 ident: CR41 article-title: Co‐evolutionary analysis of domains in interacting proteins reveals insights into domain–domain interactions mediating protein–protein interactions publication-title: J Mol Biol – volume: 271 start-page: 511 year: 1997 end-page: 523 ident: CR62 article-title: Correlated mutations contain information about protein–protein interaction publication-title: J Mol Biol – volume: 327 start-page: 273 year: 2003 end-page: 284 ident: CR68 article-title: Exploiting the co‐evolution of interacting proteins to discover interaction specificity publication-title: J Mol Biol – volume: 345 start-page: 893 year: 2005 end-page: 906 ident: CR13 article-title: Electrostatic repulsion, compensatory mutations, and long‐range non‐additive effects at the dimerization interface of the HIV capsid protein publication-title: J Mol Biol – volume: 437 start-page: 512 year: 2005 end-page: 518 ident: CR79 article-title: Evolutionary information for specifying a protein fold publication-title: Nature – volume: 324 start-page: 177 year: 2002 end-page: 192 ident: CR34 article-title: Co‐evolutionary analysis reveals insights into protein–protein interactions publication-title: J Mol Biol – volume: 95 start-page: 14863 year: 1998 end-page: 14868 ident: CR22 article-title: Cluster analysis and display of genome‐wide expression patterns publication-title: Proc Natl Acad Sci USA – volume: 63 start-page: 822 year: 2006 end-page: 831 ident: CR86 article-title: Codep: maximizing co‐evolutionary interdependencies to discover interacting proteins publication-title: Proteins – volume: 158 start-page: 927 year: 2001 end-page: 931 ident: CR61 article-title: Highly expressed genes in yeast evolve slowly publication-title: Genetics – volume: 1 start-page: e9 year: 2005 ident: CR75 article-title: Improving the precision of the structure–function relationship by considering phylogenetic context publication-title: PLoS Comput Biol – volume: 3 start-page: e43 year: 2007 ident: CR78 article-title: Deciphering protein–protein interactions. Part II. Computational methods to predict protein and domain interaction partners publication-title: PLoS Comput Biol – volume: 96 start-page: 4285 year: 1999 end-page: 4288 ident: CR67 article-title: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 258 year: 2003 end-page: 261 ident: CR92 article-title: STRING: a database of predicted functional associations between proteins publication-title: Nucleic Acids Res – volume: 4 start-page: 165 year: 2008 ident: CR5 article-title: Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method publication-title: Mol Syst Biol – volume: 9 start-page: 218 year: 2008 end-page: 229 ident: CR57 article-title: Learning how to live together: genomic insights into prokaryote–animal symbioses publication-title: Nat Rev Genet – volume: 69 start-page: 159 year: 2007 end-page: 164 ident: CR74 article-title: Contact prediction using mutual information and neural nets publication-title: Proteins – volume: 332 start-page: 258 year: 1988 end-page: 259 ident: CR36 article-title: Phylogenetic trees support the coevolution of parasites and their hosts publication-title: Nature – volume: 24 start-page: 294 year: 2007 end-page: 305 ident: CR96 article-title: Testing for covarion‐like evolution in protein sequences publication-title: Mol Biol Evol – volume: 21 start-page: 1055 year: 2003 end-page: 1062 ident: CR12 article-title: Discovery of uncharacterized cellular systems by genome‐wide analysis of functional linkages publication-title: Nat Biotechnol – volume: 473 start-page: 139 year: 2000 end-page: 144 ident: CR98 article-title: Highly divergent sequences of the pollen self‐incompatibility (S) gene in class‐I S haplotypes of (syn. ) L publication-title: FEBS Lett – volume: 96 start-page: 3595 year: 1999 end-page: 3599 ident: CR54 article-title: Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero‐oligomerization publication-title: Proc Natl Acad Sci USA – volume: 271 start-page: 3619 year: 1996 end-page: 3626 ident: CR89 article-title: Co‐evolution of ligand–receptor pairs in the vasopressin/oxytocin superfamily of bioactive peptides publication-title: J Biol Chem – volume: 56 start-page: 77 year: 2003 end-page: 88 article-title: Molecular phylogeny and evolution of the plant‐specific seven‐transmembrane MLO family publication-title: J Mol Evol – volume: 67 start-page: 811 year: 2007 end-page: 820 article-title: Predicting protein domain interactions from coevolution of conserved regions publication-title: Proteins – volume: 21 start-page: i241 year: 2005 end-page: i250 article-title: Predicting protein–protein interaction by searching evolutionary tree automorphism space publication-title: Bioinformatics – volume: 24 start-page: 294 year: 2007 end-page: 305 article-title: Testing for covarion‐like evolution in protein sequences publication-title: Mol Biol Evol – volume: 19 start-page: 2039 year: 2003 end-page: 2045 article-title: Inferring protein interactions from phylogenetic distance matrices publication-title: Bioinformatics – volume: 18 start-page: 309 year: 1994 end-page: 317 article-title: Correlated mutations and residue contacts in proteins publication-title: Proteins – volume: 21 start-page: 790 year: 2003 end-page: 795 article-title: Systematic discovery of analogous enzymes in thiamin biosynthesis publication-title: Nat Biotechnol – volume: 324 start-page: 177 year: 2002 end-page: 192 article-title: Co‐evolutionary analysis reveals insights into protein–protein interactions publication-title: J Mol Biol – volume: 402 start-page: 83 year: 1999 end-page: 86 article-title: A combined algorithm for genome‐wide prediction of protein function publication-title: Nature – volume: 12 start-page: 364 year: 1996 end-page: 369 article-title: The coevolution of gene family trees publication-title: Trends Genet – volume: 3 start-page: 199 year: 1998 end-page: 217 article-title: Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes publication-title: Microb Comp Genomics – volume: 87 start-page: 343 year: 1953 end-page: 358 article-title: On coadaptation in publication-title: Am Nat – volume: 299 start-page: 283 year: 2000 end-page: 293 article-title: Co‐evolution of proteins with their interaction partners publication-title: J Mol Biol – volume: 24 start-page: 650 year: 2007 end-page: 659 article-title: Phylogenetic methodology for detecting protein interactions publication-title: Mol Biol Evol – volume: 21 start-page: 3409 year: 2005 end-page: 3415 article-title: Refined phylogenetic profiles method for predicting protein–protein interactions publication-title: Bioinformatics – volume: 362 start-page: 861 year: 2006 end-page: 875 article-title: Co‐evolutionary analysis of domains in interacting proteins reveals insights into domain–domain interactions mediating protein–protein interactions publication-title: J Mol Biol – volume: 35 start-page: 288 year: 1950 end-page: 302 article-title: Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of publication-title: Genetics – volume: 22 start-page: 2488 year: 2006 end-page: 2492 article-title: Partial correlation coefficient between distance matrices as a new indicator of protein–protein interactions publication-title: Bioinformatics – volume: 73 start-page: 1051 year: 2004 end-page: 1087 article-title: Analyzing cellular biochemistry in terms of molecular networks publication-title: Annu Rev Biochem – volume: 306 start-page: 1553 year: 2004 end-page: 1554 article-title: Compensated deleterious mutations in insect genomes publication-title: Science – volume: 365 start-page: 249 year: 2007 end-page: 256 article-title: Characterization of compensated mutations in terms of structural and physico‐chemical properties publication-title: J Mol Biol – volume: 359 start-page: 1150 year: 2006 end-page: 1159 article-title: Inferring functional linkages between proteins from evolutionary scenarios publication-title: J Mol Biol – volume: 23 start-page: 327 year: 2006 end-page: 337 article-title: A single determinant dominates the rate of yeast protein evolution publication-title: Mol Biol Evol – volume: 5 start-page: R35 year: 2004a article-title: Prolinks: a database of protein functional linkages derived from coevolution publication-title: Genome Biol – volume: 29 start-page: 517 year: 1997 end-page: 527 article-title: Species‐specificity of the cohesin–dockerin interaction between and : prediction of specificity determinants of the dockerin domain publication-title: Proteins – volume: 69 start-page: 159 year: 2007 end-page: 164 article-title: Contact prediction using mutual information and neural nets publication-title: Proteins – volume: 99 start-page: 14878 year: 2002 end-page: 14883 article-title: Dobzhansky–Muller incompatibilities in protein evolution publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 3482 year: 2005 end-page: 3489 article-title: The inference of protein–protein interactions by co‐evolutionary analysis is improved by excluding the information about the phylogenetic relationships publication-title: Bioinformatics – year: 1862 publication-title: On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the Good Effects of Intercrossing – year: 1994 publication-title: The Coevolutionary Process – volume: 3 start-page: e211 year: 2007 article-title: Detecting coevolution in and among protein domains publication-title: PLoS Comput Biol – volume: 296 start-page: 750 year: 2002 end-page: 752 article-title: Evolutionary rate in the protein interaction network publication-title: Science – volume: 8 start-page: 6 year: 2007 article-title: Phylogenetic tree information aids supervised learning for predicting protein–protein interaction based on distance matrices publication-title: BMC Bioinformatics – volume: 3 start-page: e43 year: 2007 article-title: Deciphering protein–protein interactions. Part II. Computational methods to predict protein and domain interaction partners publication-title: PLoS Comput Biol – year: 2003 publication-title: The Delphic Boat: What Genomes Tell Us – volume: 32 start-page: W69 year: 2004 end-page: W72 article-title: ADVICE: automated detection and validation of interaction by co‐evolution publication-title: Nucleic Acids Res – volume: 437 start-page: 512 year: 2005 end-page: 518 article-title: Evolutionary information for specifying a protein fold publication-title: Nature – volume: 34 start-page: W315 year: 2006 end-page: W319 article-title: TSEMA: interactive prediction of protein pairings between interacting families publication-title: Nucleic Acids Res – volume: 4 start-page: 165 year: 2008 article-title: Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method publication-title: Mol Syst Biol – volume: 18 start-page: 586 year: 1964 end-page: 608 article-title: Butterflies and plants: a study in coevolution publication-title: Evolution – volume: 484 start-page: 523 year: 2008 end-page: 535 article-title: Prediction of protein interaction based on similarity of phylogenetic trees publication-title: Methods Mol Biol – volume: 8 start-page: 173 year: 2007 article-title: Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment publication-title: BMC Bioinformatics – volume: 23 start-page: 14 year: 2007 end-page: 20 article-title: Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes publication-title: Bioinformatics – volume: 158 start-page: 927 year: 2001 end-page: 931 article-title: Highly expressed genes in yeast evolve slowly publication-title: Genetics – volume: 12 start-page: 2035 year: 2002 end-page: 2041 article-title: Rapid coevolution of the nematode sex‐determining genes fem‐3 and tra‐2 publication-title: Curr Biol – volume: 104 start-page: 7999 year: 2007 end-page: 8004 article-title: Specificity in protein interactions and its relationship with sequence diversity and coevolution publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: S7 year: 2007 article-title: An improved method for identifying functionally linked proteins using phylogenetic profiles publication-title: BMC Bioinformatics – volume: 327 start-page: 273 year: 2003 end-page: 284 article-title: Exploiting the co‐evolution of interacting proteins to discover interaction specificity publication-title: J Mol Biol – volume: 345 start-page: 893 year: 2005 end-page: 906 article-title: Electrostatic repulsion, compensatory mutations, and long‐range non‐additive effects at the dimerization interface of the HIV capsid protein publication-title: J Mol Biol – volume: 311 start-page: 1430 year: 2006 end-page: 1436 article-title: Structure of the hydrophilic domain of respiratory complex I from publication-title: Science – volume: 60 start-page: 275 year: 2005 end-page: 280 article-title: Scoring docking models with evolutionary information publication-title: Proteins – volume: 96 start-page: 4285 year: 1999 end-page: 4288 article-title: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles publication-title: Proc Natl Acad Sci USA – volume: 95 start-page: 14863 year: 1998 end-page: 14868 article-title: Cluster analysis and display of genome‐wide expression patterns publication-title: Proc Natl Acad Sci USA – volume: 47 start-page: 219 year: 2002 end-page: 227 article-title: two‐hybrid system for the selection of physically interacting protein pairs publication-title: Proteins – volume: 8 start-page: R109 year: 2007 article-title: The human phylome publication-title: Genome Biol – volume: 168 start-page: 373 year: 2004 end-page: 381 article-title: Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome publication-title: Genetics – volume: 63 start-page: 832 year: 2006 end-page: 845 article-title: Correlated mutations: advances and limitations. A study on fusion proteins and on the Cohesin–Dockerin families publication-title: Proteins – volume: 102 start-page: 10930 year: 2005 end-page: 10935 article-title: Structure, function, and evolution of transient and obligate protein–protein interactions publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 258 year: 2003 end-page: 261 article-title: STRING: a database of predicted functional associations between proteins publication-title: Nucleic Acids Res – volume: 3 start-page: e237 year: 2007 article-title: Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo‐Tuner method applied to eukaryotic genomes publication-title: PLoS Comput Biol – volume: 7 start-page: 349 year: 1994 end-page: 358 article-title: Can three‐dimensional contacts in protein structures be predicted by analysis of correlated mutations? publication-title: Protein Eng – volume: 306 start-page: 2246 year: 2004b end-page: 2249 article-title: Use of logic relationships to decipher protein network organization publication-title: Science – volume: 37 start-page: 1367 year: 2005 end-page: 1371 article-title: Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny‐aided structural analysis publication-title: Nat Genet – volume: 18 start-page: 945 year: 2001 end-page: 953 article-title: Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor publication-title: Mol Biol Evol – volume: 9 start-page: 218 year: 2008 end-page: 229 article-title: Learning how to live together: genomic insights into prokaryote–animal symbioses publication-title: Nat Rev Genet – volume: 41 start-page: 98 year: 2000 end-page: 107 article-title: Practical limits of function prediction publication-title: Proteins – volume: 20 start-page: 1138 year: 2004 end-page: 1150 article-title: Large‐scale co‐evolution analysis of protein structural interlogues using the global protein structural interactome map (PSIMAP) publication-title: Bioinformatics – volume: 14 start-page: 609 year: 2001 end-page: 614 article-title: Similarity of phylogenetic trees as indicator of protein–protein interaction publication-title: Protein Eng – volume: 56 start-page: 211 year: 2004 end-page: 221 article-title: Influence of conservation on calculations of amino acid covariance in multiple sequence alignments publication-title: Proteins – volume: 39 start-page: 451 year: 1999 end-page: 462 article-title: Genetic architecture of physiological phenotypes: empirical evidence for coadapted gene complexes publication-title: Am Zool – volume: 17 start-page: 429 year: 2001 end-page: 431 article-title: Intrinsic errors in genome annotation publication-title: Trends Genet – volume: 11 start-page: 380 year: 2006 end-page: 388 article-title: Co‐evolutionary analysis of insulin/insulin like growth factor 1 signal pathway in vertebrate species publication-title: Front Biosci – volume: 12 start-page: 368 year: 2002 end-page: 373 article-title: Computational methods for the prediction of protein interactions publication-title: Curr Opin Struct Biol – volume: 332 start-page: 258 year: 1988 end-page: 259 article-title: Phylogenetic trees support the coevolution of parasites and their hosts publication-title: Nature – volume: 293 start-page: 1824 year: 2001 end-page: 1826 article-title: Allele‐specific receptor‐ligand interactions in self‐incompatibility publication-title: Science – volume: 1 start-page: 84 year: 1971 end-page: 96 article-title: Rate of change of concomitantly variable codons publication-title: J Mol Evol – year: 1970 publication-title: Genetics of the Evolutionary Process – volume: 105 start-page: 934 year: 2008 end-page: 939 article-title: High‐confidence prediction of global interactomes based on genome‐wide coevolutionary networks publication-title: Proc Natl Acad Sci USA – volume: 344 start-page: 1331 year: 2004 end-page: 1346 article-title: A domain interaction map based on phylogenetic profiling publication-title: J Mol Biol – year: 2003 publication-title: Evolution – volume: 20 start-page: 1363 year: 2001 end-page: 1372 article-title: The TRA‐1 transcription factor binds TRA‐2 to regulate sexual fates in publication-title: EMBO J – volume: 101 start-page: 9033 year: 2004 end-page: 9038 article-title: Coevolution of gene expression among interacting proteins publication-title: Proc Natl Acad Sci USA – volume: 63 start-page: 822 year: 2006 end-page: 831 article-title: Codep: maximizing co‐evolutionary interdependencies to discover interacting proteins publication-title: Proteins – year: 1985 publication-title: Coevolution and Systematics – volume: 5 start-page: 101 year: 2004 end-page: 113 article-title: Network biology: understanding the cell's functional organization publication-title: Nat Rev Genet – volume: 22 start-page: 416 year: 2006 end-page: 419 article-title: The coordinated evolution of yeast proteins is constrained by functional modularity publication-title: Trends Genet – volume: 19 start-page: 1514 year: 2002 end-page: 1523 article-title: Testing for differences in rates‐across‐sites distributions in phylogenetic subtrees publication-title: Mol Biol Evol – volume: 1 start-page: e9 year: 2005 article-title: Improving the precision of the structure–function relationship by considering phylogenetic context publication-title: PLoS Comput Biol – volume: 473 start-page: 139 year: 2000 end-page: 144 article-title: Highly divergent sequences of the pollen self‐incompatibility (S) gene in class‐I S haplotypes of (syn. ) L publication-title: FEBS Lett – volume: 271 start-page: 3619 year: 1996 end-page: 3626 article-title: Co‐evolution of ligand–receptor pairs in the vasopressin/oxytocin superfamily of bioactive peptides publication-title: J Biol Chem – volume: 1 start-page: 1 year: 1973 end-page: 30 article-title: A new evolutionary law publication-title: Evol Theor – volume: 21 start-page: 364 year: 2004 end-page: 373 article-title: Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase publication-title: Mol Biol Evol – year: 1997 publication-title: Evolutionary Biology – volume: 352 start-page: 1002 year: 2005 end-page: 1015 article-title: Assessing protein co‐evolution in the context of the tree of life assists in the prediction of the interactome publication-title: J Mol Biol – volume: 271 start-page: 511 year: 1997 end-page: 523 article-title: Correlated mutations contain information about protein–protein interaction publication-title: J Mol Biol – volume: 11 start-page: 809 year: 1977 end-page: 810 article-title: The Red Queen publication-title: Am Nat – volume: 82 start-page: 89 year: 1991 end-page: 96 article-title: Coadaptation revisited publication-title: J Hered – volume: 2 start-page: S25 year: 1997 end-page: S32 article-title: Improving contact predictions by the combination of correlated mutations and other sources of sequence information publication-title: Fold Des – volume: 96 start-page: 3595 year: 1999 end-page: 3599 article-title: Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero‐oligomerization publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 355 year: 1997 end-page: 359 article-title: Selfish operons and speciation by gene transfer publication-title: Trends Microbiol – volume: 21 start-page: 1055 year: 2003 end-page: 1062 article-title: Discovery of uncharacterized cellular systems by genome‐wide analysis of functional linkages publication-title: Nat Biotechnol – volume: 1 start-page: 1 year: 1973 ident: emboj2008189-b90 publication-title: Evol Theor – ident: emboj2008189-b33 doi: 10.1006/jmbi.2000.3732 – ident: emboj2008189-b56 doi: 10.1038/nbt834 – ident: emboj2008189-b89 doi: 10.1074/jbc.271.7.3619 – ident: emboj2008189-b8 doi: 10.1186/1471-2105-8-6 – volume: 39 start-page: 451 year: 1999 ident: emboj2008189-b6 publication-title: Am Zool doi: 10.1093/icb/39.2.451 – ident: emboj2008189-b80 – ident: emboj2008189-b81 doi: 10.1534/genetics.104.028944 – ident: emboj2008189-b37 doi: 10.1073/pnas.0609962104 – ident: emboj2008189-b96 doi: 10.1093/molbev/msl155 – ident: emboj2008189-b31 doi: 10.1093/bioinformatics/btg278 – ident: emboj2008189-b79 doi: 10.1038/nature03991 – ident: emboj2008189-b51 doi: 10.1016/S0966-842X(97)01110-4 – volume: 82 start-page: 89 year: 1991 ident: emboj2008189-b95 publication-title: J Hered doi: 10.1093/oxfordjournals.jhered.a111061 – ident: emboj2008189-b4 doi: 10.1126/science.1103330 – ident: emboj2008189-b72 doi: 10.1093/bioinformatics/bti564 – ident: emboj2008189-b75 doi: 10.1371/journal.pcbi.0010009 – ident: emboj2008189-b26 doi: 10.1126/science.1068696 – ident: emboj2008189-b54 doi: 10.1073/pnas.96.7.3595 – ident: emboj2008189-b12 doi: 10.1038/nbt861 – ident: emboj2008189-b34 doi: 10.1016/S0022-2836(02)01038-0 – ident: emboj2008189-b9 doi: 10.1016/j.tig.2006.06.008 – ident: emboj2008189-b25 doi: 10.1002/prot.20098 – ident: emboj2008189-b93 doi: 10.1093/molbev/msl193 – ident: emboj2008189-b77 doi: 10.1093/protein/7.3.349 – ident: emboj2008189-b98 doi: 10.1016/S0014-5793(00)01514-3 – ident: emboj2008189-b53 doi: 10.1038/47048 – ident: emboj2008189-b38 doi: 10.1002/prot.20933 – ident: emboj2008189-b85 – volume: 18 start-page: 945 year: 2001 ident: emboj2008189-b52 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003895 – ident: emboj2008189-b45 doi: 10.1126/science.1062509 – ident: emboj2008189-b39 doi: 10.1186/gb-2007-8-8-109 – ident: emboj2008189-b97 doi: 10.1093/emboj/20.6.1363 – ident: emboj2008189-b50 doi: 10.1093/molbev/msh024 – ident: emboj2008189-b11 – ident: emboj2008189-b94 doi: 10.1086/281795 – ident: emboj2008189-b24 doi: 10.1007/BF01659396 – ident: emboj2008189-b101 doi: 10.1016/j.jmb.2006.04.011 – ident: emboj2008189-b13 doi: 10.1016/j.jmb.2004.10.086 – ident: emboj2008189-b49 doi: 10.1126/science.1100522 – ident: emboj2008189-b68 doi: 10.1016/S0022-2836(03)00114-1 – ident: emboj2008189-b36 doi: 10.1038/332258a0 – ident: emboj2008189-b40 doi: 10.1093/nar/gkl112 – ident: emboj2008189-b21 doi: 10.2307/2406212 – ident: emboj2008189-b3 doi: 10.1186/gb-2004-5-5-r35 – ident: emboj2008189-b92 doi: 10.1093/nar/gkg034 – ident: emboj2008189-b32 doi: 10.1002/prot.340180402 – ident: emboj2008189-b48 doi: 10.1073/pnas.232565499 – ident: emboj2008189-b91 doi: 10.1086/283213 – ident: emboj2008189-b20 doi: 10.1093/molbev/msj038 – ident: emboj2008189-b88 doi: 10.1016/S0959-440X(02)00333-0 – ident: emboj2008189-b70 – ident: emboj2008189-b66 doi: 10.1002/prot.10074 – ident: emboj2008189-b69 doi: 10.1371/journal.pcbi.0030237 – ident: emboj2008189-b27 doi: 10.1073/pnas.0402591101 – ident: emboj2008189-b5 doi: 10.1038/msb4100203 – volume: 35 start-page: 288 year: 1950 ident: emboj2008189-b17 publication-title: Genetics doi: 10.1093/genetics/35.3.288 – ident: emboj2008189-b58 doi: 10.1016/S1359-0278(97)00060-6 – ident: emboj2008189-b64 doi: 10.1016/j.jmb.2005.07.005 – ident: emboj2008189-b29 – ident: emboj2008189-b7 doi: 10.1186/1471-2105-8-S4-S7 – ident: emboj2008189-b46 doi: 10.1002/prot.21347 – ident: emboj2008189-b99 doi: 10.1146/annurev.biochem.73.011303.073950 – ident: emboj2008189-b23 doi: 10.1016/j.jmb.2006.09.053 – ident: emboj2008189-b84 doi: 10.1093/nar/gkh471 – ident: emboj2008189-b42 doi: 10.1093/bioinformatics/bti1009 – ident: emboj2008189-b1 doi: 10.1038/nrg1272 – ident: emboj2008189-b74 doi: 10.1002/prot.21791 – ident: emboj2008189-b73 doi: 10.1126/science.1123809 – ident: emboj2008189-b19 doi: 10.2741/1805 – volume: 19 start-page: 1514 year: 2002 ident: emboj2008189-b83 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a004214 – ident: emboj2008189-b87 doi: 10.1002/prot.20570 – ident: emboj2008189-b60 doi: 10.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P – ident: emboj2008189-b43 doi: 10.1186/1471-2105-8-173 – volume: 484 start-page: 523 year: 2008 ident: emboj2008189-b63 publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-398-1_31 – ident: emboj2008189-b76 doi: 10.1038/ng1685 – ident: emboj2008189-b18 – ident: emboj2008189-b62 doi: 10.1006/jmbi.1997.1198 – ident: emboj2008189-b100 doi: 10.1371/journal.pcbi.0030211 – ident: emboj2008189-b86 doi: 10.1002/prot.20948 – ident: emboj2008189-b15 doi: 10.1016/S0168-9525(01)02348-4 – ident: emboj2008189-b47 doi: 10.1093/bioinformatics/bth053 – ident: emboj2008189-b57 doi: 10.1038/nrg2319 – ident: emboj2008189-b28 doi: 10.1016/S0168-9525(96)80020-5 – ident: emboj2008189-b35 doi: 10.1016/S0960-9822(02)01333-7 – ident: emboj2008189-b67 doi: 10.1073/pnas.96.8.4285 – ident: emboj2008189-b55 doi: 10.1073/pnas.0502667102 – ident: emboj2008189-b78 doi: 10.1371/journal.pcbi.0030043 – ident: emboj2008189-b22 doi: 10.1073/pnas.95.25.14863 – ident: emboj2008189-b71 doi: 10.1093/bioinformatics/btl419 – volume: 158 start-page: 927 year: 2001 ident: emboj2008189-b61 publication-title: Genetics doi: 10.1093/genetics/158.2.927 – ident: emboj2008189-b65 doi: 10.1093/protein/14.9.609 – ident: emboj2008189-b14 doi: 10.1002/1097-0134(20001001)41:1<98::AID-PROT120>3.3.CO;2-J – ident: emboj2008189-b2 doi: 10.1093/bioinformatics/btl558 – ident: emboj2008189-b41 doi: 10.1016/j.jmb.2006.07.072 – ident: emboj2008189-b16 doi: 10.1007/s00239-002-2382-5 – ident: emboj2008189-b82 doi: 10.1093/bioinformatics/bti532 – ident: emboj2008189-b10 – ident: emboj2008189-b59 doi: 10.1016/j.jmb.2004.10.019 – ident: emboj2008189-b44 doi: 10.1073/pnas.0709671105 – volume: 3 start-page: 199 year: 1998 ident: emboj2008189-b30 publication-title: Microb Comp Genomics doi: 10.1089/omi.1.1998.3.177 |
SSID | ssj0005871 |
Score | 2.3370361 |
SecondaryResourceType | review_article |
Snippet | Co‐evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey... Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host-parasite and predator-prey... Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2648 |
SubjectTerms | Animals Biological Evolution co-evolution Escherichia coli - metabolism Evolution & development Evolution, Molecular Genomics Humans interactome mirrortree Models, Biological Molecular biology Mutation Mutualism New EMBO Member's Review Parasites phylogenetic tree Phylogeny Predator-prey interactions Prey Protein Interaction Mapping protein-protein interaction Proteins Proteins - chemistry Proteins - genetics Proteome Symbiosis Systems Biology |
SummonAdditionalLinks | – databaseName: Proquest Public Health Database dbid: 8C1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BKwSXCgqUtDxyQMCBqHk4jn1CsOpDFa0QWmBvke1MRIEm2922Kv8ej-OEXcHC0fIcrM9je-wZfx_A81rbPU7UVZQxqejpRkWK1ybSiIU2qeYFOrbPE374iR1N8omvzZn7ssp-T3QbddUaeiPfTWRuI_Ui5W-m5xGJRlFy1Sto3IR1-gJKdy8xWqjwEO6-5Z5YWCJkz9mYiV080-23rpIyIYX3hTNpneC9_lvA-Wfd5JA8XQ5t3dm0fxc2fFAZvu284B7cwGYTbnUykz834faoV3W7D-wDETOcNqFpI7zyfveaWqpS0y4vH6qmColHYtb9epg_gPH-3nh0GHnlhMhQBBJpYsVBjFOVxkpXnIsckZGaC4uRYyErwyUmhpTcstywwoYpSkuRMJQYY_YQ1pq2wUcQ1mhXLDKleVXbq6YRnMd1rQXTSW1YxQKIeuhK41nFSdziR-my25koHdSd2qWFOoCXg_2049NYafnCzcRgpmbfqQqtyMsvJwdl_HlyPP44OijfB7DTT1XpF-C8HNwlgGdDr4Wa0iGqwfaSTOwBXuT5agsuuRTWiQPY6ib-95AFMQHKIoBiySUGA2LtXu5pTr869m7ifItlFsCr3nkWRr0Cidg5138AK_eO3x2ljqNQbv8Tkx24k3pa3zR9DGsXs0t8YmOrC_3UraBfCjwhvg priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BKwQXBOUVyiMHBByImofj2EdY9aGKVhVaYG-W7UxEeWSr3RbBjZ_Ab-SX4LGTtBGsEEfLY8n6PGOPPeNvAJ40xu1xoqmTgklNTzc60byxiUGsjM0Nr9CzfR7yvbdsf1bOLvziD_wQw4MbWYbfr8nAtVl238QpcR2_mPnHkAyZCXkZ1p1nX5CO5-zoPMlD-CuXf2VhTqynbSzE1nj86FhaJ4S__c3n_DN1coifjr1bfzzt3IDrnV8ZvwyKcBMuYbsBV0Klye8bcHXSF3a7BeKIuBmO29jOf_34iV875XsR2rrWJyE8H-u2jolOYhE-Pyxvw3RnezrZS7oCCoklRyQxRI6DmOY6T7WpORclIqOiLixFjpWsLZeYWSroVpSWVc5b0UaKjKHEFIs7sNbOW7wHcYPOcJFpw-vG3Tit4DxtGiOYyRrLahZB0sOnbEcuTjUuPisf5C6E8nCHopcO7gieDfIngVZjpeRTvxqDmF58omS0qlTvD3dV-m52MH0z2VWvI9jsl0t1drhUmSzd_a7KeQSPh14HN0VFdIvzMxJx53hVlqsluORSOF2O4G5Y_PMpCyIElFUE1UgtBgEi7x73tMcfPIk3Ub-lsojgea9AF2a9AonUK9g_AFPbB6_2c09VKO___5BNuJZ3lL95_gDWThdn-ND5XafmkTet3zGQKao priority: 102 providerName: Wiley-Blackwell |
Title | Protein co-evolution, co-adaptation and interactions |
URI | https://api.istex.fr/ark:/67375/WNG-0VXMTRCG-L/fulltext.pdf https://link.springer.com/article/10.1038/emboj.2008.189 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2008.189 https://www.ncbi.nlm.nih.gov/pubmed/18818697 https://www.proquest.com/docview/195259726 https://www.proquest.com/docview/19413755 https://www.proquest.com/docview/69698349 https://pubmed.ncbi.nlm.nih.gov/PMC2556093 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7RRgguCMrLFEIOCDhg1Y_1Po6plbaKaBSVALlZu-uxKA-nSloEN34Cv5Ffwj5slwARXGxZO7ZW387uzuyMvwF4UimzxvGqDFMipD26kaGklQ4VIlM6UZShY_uc0KPXZDzP5o2juGrSKj2lpVum2-ywPfykFu996mPMxRb0OEszq9E5zS9TOrhzsNyZCjFiLUljyn97f20T6lk8v_zNwvwzUbKLlq7bsm4zOrgJNxorcjD0_b4FV7Degau-ruTXHbiWt2XcbgOfWiaG03qgFz--fcfPjaq98M-ylGc-GD-QdTmw5BFL_6vD6g7MDkaz_ChsyiWE2podobJUOIhRIpNIqpJSniESW8KFREiRiVJTgbG25dvSTBNmbBOpBI8JCowwvQvb9aLG-zCo0ExTJFLRsjL-peaURlWlOFFxpUlJAghb-ArdUInbihYfCxfSTnnh4PYlLg3cATzr5M88icZGyaduNDoxufxgU89YVrydHBbRm_nx7CQ_LF4GsNsOV9HMulURi8x4cyyhATzuWg3cNgYia1xcWBGza7Ms2yxBBRXcaG4A9_zgX3aZW_o_wQJga2rRCViq7vWW-vSdo-y2RG-RSAN43irQL73egETkFOwfgBWj4_1x4ogJxYP___ouXE8aYt8keQjb58sLfGSsq3PVh62ETM2VzZm58jzuQ284HL8am_v-aDI96btJ9xMOWCkq |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVqhcEJTXUqB74HVg1X14vfYBIQht0zaJEAolN8v2etUW2ISkBfqf-JF4vA8SQeDU48qjlTUz9ow94-8DeFwou8exIg8SwiVe3chA0kIHyphM6VjRzDi0zwHtfiAHo3S0Aj-btzDYVtnsiW6jzsca78i3I57aTD2L6avJ1wBJo7C42jBoVF5xaC6-2xPb7OX-W2veJ3G8uzPsdIOaVCDQGJwDhYAxxoSxjEOpckpZagxBohMSGmoynmvKTaSR5CxJNclsBJeKs4gYbkKT2N9egTV8Z4RI_awz11DC3PHO3eiQiPEGIjJh2-aLGp9WjZsREsrPhcA1tOaPv-W3f7ZptrXaxUzahcLdG3C9zmH915XT3YQVU27A1YrV8mID1jsNidwtIO8QB-Kk9PU4MN9qN3-BXzKXk6oNwJdl7iNsxbR6ZDG7DcPL0OkdWC3HpbkHfmHsBmGIVDQv7MlWM0rDolCMqKjQJCceBI3qhK5BzJFL47NwxfSECafqilzTqtqDZ638pILvWCr51FmiFZPTT9j0lqXi42BPhEej_vB9Z0_0PNhsTCXq9T4TrXd6sNWOWlVj9UWWZnyOIjZfyNJ0uQTllDO7Zjy4Wxn-95QZAg_yzINswSVaAQQJXxwpT44dWDhCzIU88eB54zxzs16iidA5138UJnb6bw5iB4nI7_9TJ1uw3h32e6K3PzjchGtxjSgcxw9g9Wx6bh7atO5MPXKryQdxyav3FwfFXGM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVjwuCMorLdAcEHAgkIfjxxFCt6W0qwotdG-W7UxEacmutg_BjZ_Ab-SXYDuPssAKjpFHlvV57JnJjL8BeFRpe8fxqowyIpT7daMiRSsTaUSmTaopQ8_2OaTb78nOOB8vQdq9hfFF-57S0l_TXXXYC_ysJ5-a0seEi-fTsroEK9yaQxdwFbS4KOvgPsjy_1WIFe2IGjP-2xxzhmjFYfrlb17mn8WSfcZ03p_1BmlwA663nmT4sln7TVjCehUuN70lv67C1aJr5XYL-L5jYzisQzP58e07nrfq9qz5VqWaNgn5UNVl6AgkZs1zh5PbMBpsjortqG2ZEBnnekTa0eEgxqlKY6VLSnmOSFwbFxIjRSZKQwUmxrVwy3JDmPVPlBY8ISgwxuwOLNeTGu9BWKE9qkiUpmVlY0zDKY2rSnOik8qQkgQQdfBJ09KJu64Wx9KntTMuPdxNm0sLdwBPevlpQ6SxUPKx341eTM2OXPkZy-XBcEvGH8Z7o3fFltwNYL3bLtmevBOZiNxGdCylAWz0oxZulwdRNU7OnIi13CzPF0tQQQW32hvA3WbzL5bMHQWgYAGwObXoBRxd9_xIffjR03Y7srdYZAE87RTol1UvQCL2CvYPwOTm3qud1JMTirX_n30Druy_HsjdN8O363AtbXl-0_Q-LJ_OzvCBdbZO9UN_un4C7moncQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+co-evolution%2C+co-adaptation+and+interactions&rft.jtitle=The+EMBO+journal&rft.au=Pazos%2C+Florencio&rft.au=Valencia%2C+Alfonso&rft.date=2008-10-22&rft.pub=Nature+Publishing+Group&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=27&rft.issue=20&rft.spage=2648&rft.epage=2655&rft_id=info:doi/10.1038%2Femboj.2008.189&rft_id=info%3Apmid%2F18818697&rft.externalDocID=PMC2556093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |