Protein co-evolution, co-adaptation and interactions

Co‐evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co‐evolution at t...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 27; no. 20; pp. 2648 - 2655
Main Authors Pazos, Florencio, Valencia, Alfonso
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 22.10.2008
Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0261-4189
1460-2075
1460-2075
DOI10.1038/emboj.2008.189

Cover

Abstract Co‐evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co‐evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co‐evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree ). Future advances in this field will require a better understanding of the molecular basis of the co‐evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes (‘co‐adaptation’) from other forces that, in a less specific way, can also create general patterns of co‐evolution.
AbstractList Co‐evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co‐evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co‐evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co‐evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes (‘co‐adaptation’) from other forces that, in a less specific way, can also create general patterns of co‐evolution.
Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree ). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes (‘co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution.
Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host-parasite and predator-prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes ('co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution.Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host-parasite and predator-prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes ('co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution.
Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host-parasite and predator-prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes ('co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution. [PUBLICATION ABSTRACT]
Author Pazos, Florencio
Valencia, Alfonso
Author_xml – sequence: 1
  givenname: Florencio
  surname: Pazos
  fullname: Pazos, Florencio
  organization: Structure of Macromolecules, Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
– sequence: 2
  givenname: Alfonso
  surname: Valencia
  fullname: Valencia, Alfonso
  email: valencia@cnio.es
  organization: Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18818697$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFK0e04sCJbMdx7NgXpLJqF9AWEFoBN8tJpsVL1l7spKX_HoeUValU9WQ9-3sz4zcHZM95h4Q8pzCjwOQRbiq_nuUAckalekQmtBCQ5VDyPTKBXNCsSPf75CDGNQBwWdInZJ9KSaVQ5YQUn4Pv0Lpp7TO89G3fWe9eD8o0ZtuZQU6Na6bWdRhMPej4lDw-N23EZzfnIVmdnqzm77Llp8X7-fEyqwWTKquAloAIucnBVI0QkiMWnHJeAAosVVMLhbQGYIzxuiiZUqZSkhaoEJAdkjdj2W1fbbCp0XXBtHob7MaEa-2N1f-_OPtDX_hLnXMuQLFU4NVNgeB_9Rg7vbGxxrY1Dn0ftVBCSVaoB0GqCspKzhP48g649n1wKYTE8JyrMhcJenF77t3A_1JPQDECdfAxBjzXtR2jTt-wraagh-Xqv8vVw3KTd5hydse2q3yfoRwNV7bF6wdofXL29sMgRufR6IzJ5C4w3Prnfb2y0WFjh793vUz4qUWZstPfPi40fP1-tvoyX-gl-wMEXNa4
CODEN EMJODG
CitedBy_id crossref_primary_10_1016_j_pbiomolbio_2014_05_004
crossref_primary_10_1038_srep25047
crossref_primary_10_1093_molbev_msab350
crossref_primary_10_1371_journal_pone_0084842
crossref_primary_10_3390_genes16010045
crossref_primary_10_1002_pmic_201100597
crossref_primary_10_1002_iub_455
crossref_primary_10_1093_evolut_qpad082
crossref_primary_10_1093_femsle_fnz217
crossref_primary_10_1007_s10479_018_2956_2
crossref_primary_10_1007_s00775_013_0989_1
crossref_primary_10_1016_j_febslet_2012_11_001
crossref_primary_10_1093_bioinformatics_bts109
crossref_primary_10_3389_fcell_2014_00014
crossref_primary_10_1093_molbev_msq129
crossref_primary_10_1093_bioinformatics_btab617
crossref_primary_10_1093_molbev_msq004
crossref_primary_10_1093_gbe_evv083
crossref_primary_10_1371_journal_pbio_1000538
crossref_primary_10_1371_journal_pone_0081100
crossref_primary_10_1093_gbe_evu270
crossref_primary_10_1016_j_cell_2011_11_023
crossref_primary_10_1371_journal_pcbi_1008844
crossref_primary_10_1111_nph_14180
crossref_primary_10_1016_j_abb_2014_05_010
crossref_primary_10_1042_BST20200570
crossref_primary_10_1186_1471_2148_12_238
crossref_primary_10_1098_rsos_171854
crossref_primary_10_1111_mmi_12078
crossref_primary_10_1002_bies_201700069
crossref_primary_10_2174_0929866526666191105142034
crossref_primary_10_1042_BST0370768
crossref_primary_10_1016_j_atg_2012_03_001
crossref_primary_10_1007_s00294_018_0906_9
crossref_primary_10_1042_BJ20121221
crossref_primary_10_1371_journal_pcbi_1000633
crossref_primary_10_1016_j_tibtech_2009_01_002
crossref_primary_10_1007_s10969_009_9062_2
crossref_primary_10_1016_j_ijantimicag_2018_10_027
crossref_primary_10_1093_gbe_evr034
crossref_primary_10_1105_tpc_110_074955
crossref_primary_10_1186_s12862_015_0506_y
crossref_primary_10_1016_j_bbagrm_2011_10_008
crossref_primary_10_1038_msb_2011_3
crossref_primary_10_1093_nar_gkr845
crossref_primary_10_1101_gr_111765_110
crossref_primary_10_1111_mec_13389
crossref_primary_10_1016_j_virol_2021_09_004
crossref_primary_10_1093_bioinformatics_btv188
crossref_primary_10_1093_nar_gkp1158
crossref_primary_10_1080_17429145_2013_816881
crossref_primary_10_1093_bioinformatics_btp480
crossref_primary_10_1186_1471_2148_10_306
crossref_primary_10_1007_s10142_023_01223_9
crossref_primary_10_1016_j_neo_2016_12_004
crossref_primary_10_1515_bmc_2011_025
crossref_primary_10_1126_science_adj8172
crossref_primary_10_1002_bies_200900127
crossref_primary_10_1074_jbc_M110_112532
crossref_primary_10_1016_j_compbiolchem_2014_08_017
crossref_primary_10_1039_C2MB25317H
crossref_primary_10_1007_s00018_013_1458_2
crossref_primary_10_1093_nargab_lqab032
crossref_primary_10_1039_B916371A
crossref_primary_10_1038_nrg3414
crossref_primary_10_1073_pnas_1707335114
crossref_primary_10_1371_journal_pgen_1003161
crossref_primary_10_1371_journal_pcbi_1004067
crossref_primary_10_1002_prot_24360
crossref_primary_10_1186_1471_2105_11_470
crossref_primary_10_1093_molbev_msw012
crossref_primary_10_5511_plantbiotechnology_26_495
crossref_primary_10_1186_s12864_022_08892_z
crossref_primary_10_3390_v12091035
crossref_primary_10_1021_bi400383e
crossref_primary_10_1038_nrm2762
crossref_primary_10_1038_s41598_019_57187_z
crossref_primary_10_1093_molbev_msr094
crossref_primary_10_15252_embj_2020106742
crossref_primary_10_1093_nar_gkw792
crossref_primary_10_1111_j_1365_294X_2011_05014_x
crossref_primary_10_1016_j_compbiomed_2014_12_013
crossref_primary_10_1074_jbc_M116_733675
crossref_primary_10_1371_journal_pone_0094970
crossref_primary_10_1016_j_csbj_2021_06_039
crossref_primary_10_1016_j_semcancer_2013_06_005
crossref_primary_10_1016_j_compbiomed_2025_110001
crossref_primary_10_1038_s41598_024_64509_3
crossref_primary_10_1073_pnas_1108633109
crossref_primary_10_1016_j_sbi_2010_03_006
crossref_primary_10_1111_1574_6976_12089
crossref_primary_10_1016_j_bbamcr_2023_119592
crossref_primary_10_1074_jbc_M115_645796
crossref_primary_10_1128_JB_05175_11
crossref_primary_10_3390_ijms18122618
crossref_primary_10_1152_ajprenal_00628_2011
crossref_primary_10_1016_j_meegid_2020_104646
crossref_primary_10_3389_fmolb_2024_1414916
crossref_primary_10_1186_1471_2148_11_266
crossref_primary_10_1007_s12192_018_0933_y
crossref_primary_10_1039_C6MB00210B
crossref_primary_10_1016_j_gene_2011_06_030
crossref_primary_10_1016_j_gene_2014_04_029
crossref_primary_10_1371_journal_pcbi_1000945
crossref_primary_10_1186_1471_2148_12_99
crossref_primary_10_1002_prot_24388
crossref_primary_10_1105_tpc_114_134353
crossref_primary_10_1093_bioinformatics_btt489
crossref_primary_10_1126_sciadv_abb9484
crossref_primary_10_3389_fmicb_2023_1052352
crossref_primary_10_1016_j_sbi_2011_03_013
crossref_primary_10_1186_1471_2164_11_607
crossref_primary_10_1186_1471_2105_12_363
crossref_primary_10_1039_C2MB25325A
crossref_primary_10_1093_bioinformatics_btq137
crossref_primary_10_1093_bioinformatics_btq412
crossref_primary_10_1016_j_bmc_2013_04_052
crossref_primary_10_1093_gbe_evt129
crossref_primary_10_1093_bioinformatics_btr503
crossref_primary_10_1093_molbev_msq144
crossref_primary_10_1371_journal_pone_0011082
Cites_doi 10.1006/jmbi.2000.3732
10.1038/nbt834
10.1074/jbc.271.7.3619
10.1186/1471-2105-8-6
10.1093/icb/39.2.451
10.1534/genetics.104.028944
10.1073/pnas.0609962104
10.1093/molbev/msl155
10.1093/bioinformatics/btg278
10.1038/nature03991
10.1016/S0966-842X(97)01110-4
10.1093/oxfordjournals.jhered.a111061
10.1126/science.1103330
10.1093/bioinformatics/bti564
10.1371/journal.pcbi.0010009
10.1126/science.1068696
10.1073/pnas.96.7.3595
10.1038/nbt861
10.1016/S0022-2836(02)01038-0
10.1016/j.tig.2006.06.008
10.1002/prot.20098
10.1093/molbev/msl193
10.1093/protein/7.3.349
10.1016/S0014-5793(00)01514-3
10.1038/47048
10.1002/prot.20933
10.1093/oxfordjournals.molbev.a003895
10.1126/science.1062509
10.1186/gb-2007-8-8-109
10.1093/emboj/20.6.1363
10.1093/molbev/msh024
10.1086/281795
10.1007/BF01659396
10.1016/j.jmb.2006.04.011
10.1016/j.jmb.2004.10.086
10.1126/science.1100522
10.1016/S0022-2836(03)00114-1
10.1038/332258a0
10.1093/nar/gkl112
10.2307/2406212
10.1186/gb-2004-5-5-r35
10.1093/nar/gkg034
10.1002/prot.340180402
10.1073/pnas.232565499
10.1086/283213
10.1093/molbev/msj038
10.1016/S0959-440X(02)00333-0
10.1002/prot.10074
10.1371/journal.pcbi.0030237
10.1073/pnas.0402591101
10.1038/msb4100203
10.1093/genetics/35.3.288
10.1016/S1359-0278(97)00060-6
10.1016/j.jmb.2005.07.005
10.1186/1471-2105-8-S4-S7
10.1002/prot.21347
10.1146/annurev.biochem.73.011303.073950
10.1016/j.jmb.2006.09.053
10.1093/nar/gkh471
10.1093/bioinformatics/bti1009
10.1038/nrg1272
10.1002/prot.21791
10.1126/science.1123809
10.2741/1805
10.1093/oxfordjournals.molbev.a004214
10.1002/prot.20570
10.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P
10.1186/1471-2105-8-173
10.1007/978-1-59745-398-1_31
10.1038/ng1685
10.1006/jmbi.1997.1198
10.1371/journal.pcbi.0030211
10.1002/prot.20948
10.1016/S0168-9525(01)02348-4
10.1093/bioinformatics/bth053
10.1038/nrg2319
10.1016/S0168-9525(96)80020-5
10.1016/S0960-9822(02)01333-7
10.1073/pnas.96.8.4285
10.1073/pnas.0502667102
10.1371/journal.pcbi.0030043
10.1073/pnas.95.25.14863
10.1093/bioinformatics/btl419
10.1093/genetics/158.2.927
10.1093/protein/14.9.609
10.1002/1097-0134(20001001)41:1<98::AID-PROT120>3.3.CO;2-J
10.1093/bioinformatics/btl558
10.1016/j.jmb.2006.07.072
10.1007/s00239-002-2382-5
10.1093/bioinformatics/bti532
10.1016/j.jmb.2004.10.019
10.1073/pnas.0709671105
10.1089/omi.1.1998.3.177
ContentType Journal Article
Copyright European Molecular Biology Organization 2008
Copyright © 2008 European Molecular Biology Organization
Copyright Nature Publishing Group Oct 22, 2008
Copyright © 2008, European Molecular Biology Organization 2008
Copyright_xml – notice: European Molecular Biology Organization 2008
– notice: Copyright © 2008 European Molecular Biology Organization
– notice: Copyright Nature Publishing Group Oct 22, 2008
– notice: Copyright © 2008, European Molecular Biology Organization 2008
DBID BSCLL
C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/emboj.2008.189
DatabaseName Istex
Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
ProQuest Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts

MEDLINE - Academic
MEDLINE

Research Library Prep
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Protein co-evolution, co-adaptation and interactions
EISSN 1460-2075
EndPage 2655
ExternalDocumentID PMC2556093
1581235321
18818697
10_1038_emboj_2008_189
EMBJ2008189
ark_67375_WNG_0VXMTRCG_L
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
29G
2WC
33P
36B
39C
3O-
4.4
53G
5VS
70F
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANHP
AANLZ
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYN
AEUYR
AFBPY
AFFNX
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
D1J
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HH5
HK~
HMCUK
HVGLF
HYE
KQ8
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O9-
OK1
P2P
P2W
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
RHI
RNS
ROL
RPM
RZO
SV3
TN5
TR2
UKHRP
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
YSK
ZCA
ZZTAW
~KM
24P
3V.
88A
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
M0L
RHF
WYJ
ABJNI
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c6389-b0170ee02a20abd6685ee4515540e6e79dc69e1c003335c47399ab9814e9e0e3
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:29:52 EDT 2025
Sun Sep 28 03:15:08 EDT 2025
Sat Sep 27 21:50:20 EDT 2025
Fri Jul 25 19:35:18 EDT 2025
Wed Feb 19 02:33:40 EST 2025
Thu Apr 24 23:02:36 EDT 2025
Tue Jul 01 02:05:39 EDT 2025
Wed Jan 22 17:00:26 EST 2025
Fri Feb 21 02:36:57 EST 2025
Sun Sep 21 06:19:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords protein–protein interaction
phylogenetic tree
interactome
co‐evolution
Language English
License Attribution-NonCommercial-NoDerivs
http://doi.wiley.com/10.1002/tdm_license_1.1
This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits distribution, and reproduction in any medium, provided the original author and source are credited. This licence does not permit commercial exploitation or the creation of derivative works without specific permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6389-b0170ee02a20abd6685ee4515540e6e79dc69e1c003335c47399ab9814e9e0e3
Notes ark:/67375/WNG-0VXMTRCG-L
istex:95010D8D86EEC490118318BBBE939345F52A2EA1
ArticleID:EMBJ2008189
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Review-3
OpenAccessLink https://www.nature.com/articles/emboj.2008.189
PMID 18818697
PQID 195259726
PQPubID 35985
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2556093
proquest_miscellaneous_69698349
proquest_miscellaneous_19413755
proquest_journals_195259726
pubmed_primary_18818697
crossref_citationtrail_10_1038_emboj_2008_189
crossref_primary_10_1038_emboj_2008_189
wiley_primary_10_1038_emboj_2008_189_EMBJ2008189
springer_journals_10_1038_emboj_2008_189
istex_primary_ark_67375_WNG_0VXMTRCG_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 22, 2008
PublicationDateYYYYMMDD 2008-10-22
PublicationDate_xml – month: 10
  year: 2008
  text: October 22, 2008
  day: 22
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
– name: England
– name: New York
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Kann MG, Jothi R, Cherukuri PF, Przytycka TM (2007) Predicting protein domain interactions from coevolution of conserved regions. Proteins 67: 811-820
Labedan B, Xu Y, Naumoff DG, Glansdorff N (2004) Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase. Mol Biol Evol 21: 364-373
Pazos F, Valencia A (2002) In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47: 219-227
Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18: 586-608
Fodor AA, Aldrich RW (2004) Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 56: 211-221
Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol 3: e43
Wallace B (1953) On coadaptation in Drosophila. Am Nat 87: 343-358
Wang HC, Spencer M, Susko E, Roger AJ (2007) Testing for covarion-like evolution in protein sequences. Mol Biol Evol 24: 294-305
Mateu MG, Fersht AR (1999) Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization. Proc Natl Acad Sci USA 96: 3595-3599
Watanabe M, Ito A, Takada Y, Ninomiya C, Kakizaki T, Takahata Y, Hatakeyama K, Hinata K, Suzuki G, Takasaki T, Satta Y, Shiba H, Takayama S, Isogai A (2000) Highly divergent sequences of the pollen self-incompatibility (S) gene in class-I S haplotypes of Brassica campestris (syn. rapa) L. FEBS Lett 473: 139-144
Devos D, Valencia A (2001) Intrinsic errors in genome annotation. Trends Genet 17: 429-431
Shakhnovich BE (2005) Improving the precision of the structure-function relationship by considering phylogenetic context. PLoS Comput Biol 1: e9
Bowers P, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D (2004a) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5: R35
Fitch WM (1971) Rate of change of concomitantly variable codons. J Mol Evol 1: 84-96
Ramani AK, Marcotte EM (2003) Exploiting the co-evolution of interacting proteins to discover interaction specificity. J Mol Biol 327: 273-284
Pazos F, Helmer-Citterich M, Ausiello G, Valencia A (1997) Correlated mutations contain information about protein-protein interaction. J Mol Biol 271: 511-523
Ranea JA, Yeats C, Grant A, Orengo CA (2007) Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo-Tuner method applied to eukaryotic genomes. PLoS Comput Biol 3: e237
Fryxell KJ (1996) The coevolution of gene family trees. Trends Genet 12: 364-369
Pazos F, Ranea JAG, Juan D, Sternberg MJE (2005) Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. J Mol Biol 352: 1002-1015
Waddell PJ, Kishino H, Ota R (2007) Phylogenetic methodology for detecting protein interactions. Mol Biol Evol 24: 650-659
Goh C-S, Bogan AA, Joachimiak M, Walther D, Cohen FE (2000) Co-evolution of proteins with their interaction partners. J Mol Biol 299: 283-293
Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296: 750-752
Goh CS, Cohen FE (2002) Co-evolutionary analysis reveals insights into protein-protein interactions. J Mol Biol 324: 177-192
Izarzugaza JM, Juan D, Pons C, Ranea JA, Valencia A, Pazos F (2006) TSEMA: interactive prediction of protein pairings between interacting families. Nucleic Acids Res 34: W315-W319
Socolich M, Lockless SW, Russ WP, Lee H, Gardner KH, Ranganathan R (2005) Evolutionary information for specifying a protein fold. Nature 437: 512-518
Thompson JN (1994) The Coevolutionary Process. Chicago: University of Chicago Press
Burton RS, Rawson PD, Edmands S (1999) Genetic architecture of physiological phenotypes: empirical evidence for coadapted gene complexes. Am Zool 39: 451-462
Liu J-C, Makova KD, Adkins RM, Gibson S, Li W-H (2001) Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor. Mol Biol Evol 18: 945-953
Burger L, van Nimwegen E (2008) Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method. Mol Syst Biol 4: 165
Futuyma DJ (1997) Evolutionary Biology. Stamford, Connecticut: Sinauer Associates
Shim Choi S, Li W, Lahn BT (2005) Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny-aided structural analysis. Nat Genet 37: 1367-1371
Haag ES, Wang S, Kimble J (2002) Rapid coevolution of the nematode sex-determining genes fem-3 and tra-2. Curr Biol 12: 2035-2041
Sun J, Xu J, Liu Z, Liu Q, Zhao A, Shi T, Li Y (2005) Refined phylogenetic profiles method for predicting protein-protein interactions. Bioinformatics 21: 3409-3415
Olmea O, Valencia A (1997) Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des 2: S25-S32
Pagel P, Wong P, Frishman D (2004) A domain interaction map based on phylogenetic profiling. J Mol Biol 344: 1331-1346
Dobzhansky T (1950) Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35: 288-302
Craig RA, Liao L (2007) Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices. BMC Bioinformatics 8: 6
Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T (2007) The human phylome. Genome Biol 8: R109
Wallace B (1991) Coadaptation revisited. J Hered 82: 89-96
Yeang CH, Haussler D (2007) Detecting coevolution in and among protein domains. PLoS Comput Biol 3: e211
Dou T, Ji C, Gu S, Xu J, Ying K, Xie Y, Mao Y (2006) Co-evolutionary analysis of insulin/insulin like growth factor 1 signal pathway in vertebrate species. Front Biosci 11: 380-388
Fraser HB, Hirsh AE, Wall DP, Eisen MB (2004) Coevolution of gene expression among interacting proteins. Proc Natl Acad Sci USA 101: 9033-9038
Sato T, Yamanishi Y, Horimoto K, Kanehisa M, Toh H (2006) Partial correlation coefficient between distance matrices as a new indicator of protein-protein interactions. Bioinformatics 22: 2488-2492
Date SV, Marcotte EM (2003) Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nat Biotechnol 21: 1055-1062
Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402: 83-86
Xia Y, Yu H, Jansen R, Seringhaus M, Baxter S, Greenbaum D, Zhao H, Gerstein M (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73: 1051-1087
Kondrashov AS, Sunyaev S, Kondrashov FA (2002) Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci USA 99: 14878-14883
Kulathinal RJ, Bettencourt BR, Hartl DL (2004) Compensated deleterious mutations in insect genomes. Science 306: 1553-1554
Pal C, Papp B, Hurst LD (2001) Highly expressed genes in yeast evolve slowly. Genetics 158: 927-931
Tress M, de Juan D, Grana O, Gomez MJ, Gomez-Puertas P, Gonzalez JM, Lopez G, Valencia A (2005) Scoring docking models with evolutionary information. Proteins 60: 275-280
Zhou Y, Wang R, Li L, Xia X, Sun Z (2006) Inferring functional linkages between proteins from evolutionary scenarios. J Mol Biol 359: 1150-1159
del Alamo M, Mateu MG (2005) Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein. J Mol Biol 345: 893-906
Drummond DA, Raval A, Wilke CO (2006) A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 23: 327-337
Shindyalov IN, Kolchanov NA, Sander C (1994) Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? Protein Eng 7: 349-358
Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5: 101-113
Chen Y, Dokholyan NV (2006) The coordinated evolution of yeast proteins is constrained by functional modularity. Trends Genet 22: 416-419
Shackelford G, Karplus K (2007) Contact prediction using mutual information and neural nets. Proteins 69: 159-164
Danchin A (2003) The Delphic Boat: What Genomes Tell Us. Cambridge, Massachusetts: Harvard University Press
Jothi R, Przytycka TM, Aravind L (2007) Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment. BMC Bioinformatics 8: 173
Bowers PM, Cokus SJ, Eisenberg D, Yeates TO (2004b) Use of logic relationships to decipher protein network organization. Science 306: 2246-2249
Lawrence JG (1997) Selfish operons and speciation by gene transfer. Trends Microbiol 5: 355-359
Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311: 1430-1436
Devos D, Valencia A (2000) Practical limits of function prediction. Proteins 41: 98-107
Stone AR, Hawksworth DL (1985) Coevolution and Systematics. Oxford: Clarendon Press
Mintseris J, Weng Z (2005) Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci USA 102: 10930-10935
Halperin I, Wolfson H, Nussinov R (2006) Correlated mutations: advances and limitations. A study on fusion proteins and on the Cohesin-Dockerin families. Proteins 63: 832-845
Wang S, Kimble J (2001) The TRA-1 transcription factor binds TRA-2 to regulate sexual fates in Caenorhabditis elegans. EMBO J 20: 1363-1372
Dobzhansky T (1970) Genetics of the Evolutionary Process. New York: Columbia University Press
Susko E, Inagaki Y, Field C, Holder ME, Roger AJ (2002) Testing for differences in rates-across-sites distributions in phylogenetic subtrees. Mol Biol Evol 19: 1514-1523
Cokus S, Mizutani S, Pellegrini M (2007) An improved method for identifying functionally linked p
Gertz, Elfond, Shustrova, Weisinger, Pellegrini, Cokus, Rothschild (CR31) 2003; 19
Göbel, Sander, Schneider, Valencia (CR32) 1994; 18
Watanabe, Ito, Takada, Ninomiya, Kakizaki, Takahata, Hatakeyama, Hinata, Suzuki, Takasaki, Satta, Shiba, Takayama, Isogai (CR98) 2000; 473
Liu, Makova, Adkins, Gibson, Li (CR52) 2001; 18
Mintseris, Weng (CR55) 2005; 102
Barabasi, Oltvai (CR1) 2004; 5
Sato, Yamanishi, Kanehisa, Toh (CR72) 2005; 21
Pazos, Valencia (CR65) 2001; 14
Sun, Xu, Liu, Liu, Zhao, Shi, Li (CR82) 2005; 21
Goh, Cohen (CR34) 2002; 324
van Kesteren, Tensen, Smit, van Minnen, Kolakowski, Meyerhof, Richter, van Heerikhuizen, Vreugdenhil, Geraerts (CR89) 1996; 271
Wang, Kimble (CR97) 2001; 20
Chen, Dokholyan (CR9) 2006; 22
Fodor, Aldrich (CR25) 2004; 56
Kulathinal, Bettencourt, Hartl (CR49) 2004; 306
del Alamo, Mateu (CR13) 2005; 345
Valencia, Pazos (CR88) 2002; 12
Hakes, Lovell, Oliver, Robertson (CR37) 2007; 104
Dou, Ji, Gu, Xu, Ying, Xie, Mao (CR19) 2006; 11
Juan, Pazos, Valencia (CR44) 2008; 105
Pazos, Ranea, Juan, Sternberg (CR64) 2005; 352
Goh, Bogan, Joachimiak, Walther, Cohen (CR33) 2000; 299
Sato, Yamanishi, Horimoto, Kanehisa, Toh (CR71) 2006; 22
Fraser, Hirsh, Wall, Eisen (CR27) 2004; 101
Burton, Rawson, Edmands (CR6) 1999; 39
Devoto, Hartmann, Piffanelli, Elliott, Simmons, Taramino, Goh, Cohen, Emerson, Schulze‐Lefert, Panstruga (CR16) 2003; 56
Bowers, Pellegrini, Thompson, Fierro, Yeates, Eisenberg (CR3) 2004; 5
Fitch (CR24) 1971; 1
Susko, Inagaki, Field, Holder, Roger (CR83) 2002; 19
Drummond, Raval, Wilke (CR20) 2006; 23
Wallace (CR95) 1991; 82
Socolich, Lockless, Russ, Lee, Gardner, Ranganathan (CR79) 2005; 437
Burger, van Nimwegen (CR5) 2008; 4
Yeang, Haussler (CR100) 2007; 3
Jothi, Cherukuri, Tasneem, Przytycka (CR41) 2006; 362
Olmea, Valencia (CR58) 1997; 2
Pazos, Valencia (CR66) 2002; 47
Labedan, Xu, Naumoff, Glansdorff (CR50) 2004; 21
Lawrence (CR51) 1997; 5
Halperin, Wolfson, Nussinov (CR38) 2006; 63
Gaasterland, Ragan (CR30) 1998; 3
Waddell, Kishino, Ota (CR93) 2007; 24
Ehrlich, Raven (CR21) 1964; 18
Fraser, Hirsh, Steinmetz, Scharfe, Feldman (CR26) 2002; 296
Pellegrini, Marcotte, Thompson, Eisenberg, Yeates (CR67) 1999; 96
Tress, de Juan, Grana, Gomez, Gomez‐Puertas, Gonzalez, Lopez, Valencia (CR87) 2005; 60
Wallace (CR94) 1953; 87
Tan, Zhang, Ng (CR84) 2004; 32
Shackelford, Karplus (CR74) 2007; 69
Zhou, Wang, Li, Xia, Sun (CR101) 2006; 359
Fryxell (CR28) 1996; 12
Haag, Wang, Kimble (CR35) 2002; 12
von Mering, Huynen, Jaeggi, Schmidt, Bork, Snel (CR92) 2003; 31
Craig, Liao (CR8) 2007; 8
Devos, Valencia (CR14) 2000; 41
Devos, Valencia (CR15) 2001; 17
Sazanov, Hinchliffe (CR73) 2006; 311
Barker, Meade, Pagel (CR2) 2007; 23
Kondrashov, Sunyaev, Kondrashov (CR48) 2002; 99
CR70
Xia, Yu, Jansen, Seringhaus, Baxter, Greenbaum, Zhao, Gerstein (CR99) 2004; 73
Date, Marcotte (CR12) 2003; 21
Pagel, Wong, Frishman (CR59) 2004; 344
Tillier, Biro, Li, Tillo (CR86) 2006; 63
Shim Choi, Li, Lahn (CR76) 2005; 37
Shindyalov, Kolchanov, Sander (CR77) 1994; 7
Moya, Pereto, Gil, Latorre (CR57) 2008; 9
Pazos, Helmer‐Citterich, Ausiello, Valencia (CR62) 1997; 271
Ranea, Yeats, Grant, Orengo (CR69) 2007; 3
Bowers, Cokus, Eisenberg, Yeates (CR4) 2004; 306
Shakhnovich (CR75) 2005; 1
CR85
Pal, Papp, Hurst (CR61) 2001; 158
Marcotte, Pellegrini, Thompson, Yeates, Eisenberg (CR53) 1999; 402
CR80
Ramani, Marcotte (CR68) 2003; 327
Shoemaker, Panchenko (CR78) 2007; 3
Van Valen (CR90) 1973; 1
Hafner, Nadler (CR36) 1988; 332
CR18
Wang, Spencer, Susko, Roger (CR96) 2007; 24
Ferrer‐Costa, Orozco, Cruz (CR23) 2007; 365
Kachroo, Schopfer, Nasrallah, Nasrallah (CR45) 2001; 293
CR11
CR10
Mateu, Fersht (CR54) 1999; 96
Subramanian, Kumar (CR81) 2004; 168
Dobzhansky (CR17) 1950; 35
Pages, Belaich, Belaich, Morag, Lamed, Shoham, Bayer (CR60) 1997; 29
Pazos, Juan, Izarzugaza, Leon, Valencia (CR63) 2008; 484
Huerta‐Cepas, Dopazo, Dopazo, Gabaldon (CR39) 2007; 8
Izarzugaza, Juan, Pons, Ranea, Valencia, Pazos (CR40) 2006; 34
Van Valen (CR91) 1977; 11
Kim, Bolser, Park (CR47) 2004; 20
CR29
Jothi, Kann, Przytycka (CR42) 2005; 21
Eisen, Spellman, Brown, Botstein (CR22) 1998; 95
Cokus, Mizutani, Pellegrini (CR7) 2007; 8
Kann, Jothi, Cherukuri, Przytycka (CR46) 2007; 67
Morett, Korbel, Rajan, Saab‐Rincon, Olvera, Olvera, Schmidt, Snel, Bork (CR56) 2003; 21
Jothi, Przytycka, Aravind (CR43) 2007; 8
2004; 21
2007; 104
2004; 20
2004b; 306
2004; 168
2002; 19
2006; 34
1997; 271
2002; 12
2000; 41
2002; 99
2008; 9
2004; 5
2005; 21
2008; 105
1997; 2
1970
2003; 19
2005; 60
2008; 4
2000; 299
1997; 5
1999; 402
2003; 56
2004; 32
2002; 47
2006; 63
2001; 293
2003; 327
2004; 73
1950; 35
2006; 23
2006; 22
2005; 102
2005; 345
2007; 8
1988; 332
1985
2006; 362
1862
1999; 96
2001; 17
2001; 18
2007; 3
2005; 37
1998; 95
1971; 1
2007; 23
2007; 67
2001; 14
2007; 24
2007; 69
2004; 101
2007; 365
2004; 344
2002; 296
2005; 352
2004a; 5
2006; 11
2005; 437
1997
1997; 29
1991; 82
1994
2000; 473
2003
2004; 306
2008; 484
2006; 359
2003; 31
1996; 12
2001; 20
2006; 311
1964; 18
1999; 39
2004; 56
1996; 271
2002; 324
1998; 3
2005; 1
1977; 11
1994; 18
1973; 1
2003; 21
2001; 158
1953; 87
1994; 7
emboj2008189-b68
emboj2008189-b69
emboj2008189-b66
emboj2008189-b67
emboj2008189-b64
emboj2008189-b65
emboj2008189-b62
emboj2008189-b60
emboj2008189-b79
emboj2008189-b77
emboj2008189-b78
emboj2008189-b75
emboj2008189-b76
emboj2008189-b73
emboj2008189-b74
emboj2008189-b71
emboj2008189-b72
emboj2008189-b70
Gaasterland T (emboj2008189-b30) 1998; 3
Pal C (emboj2008189-b61) 2001; 158
emboj2008189-b88
emboj2008189-b89
emboj2008189-b86
emboj2008189-b87
emboj2008189-b84
emboj2008189-b85
emboj2008189-b82
emboj2008189-b80
emboj2008189-b81
emboj2008189-b19
emboj2008189-b18
emboj2008189-b15
emboj2008189-b16
emboj2008189-b13
emboj2008189-b14
emboj2008189-b11
emboj2008189-b99
emboj2008189-b12
emboj2008189-b97
emboj2008189-b10
emboj2008189-b98
emboj2008189-b96
Pazos F (emboj2008189-b63) 2008; 484
emboj2008189-b93
emboj2008189-b94
emboj2008189-b91
emboj2008189-b92
emboj2008189-b28
emboj2008189-b29
emboj2008189-b26
emboj2008189-b27
emboj2008189-b24
emboj2008189-b25
emboj2008189-b22
emboj2008189-b23
emboj2008189-b20
emboj2008189-b1
emboj2008189-b21
emboj2008189-b2
emboj2008189-b3
emboj2008189-b4
emboj2008189-b100
emboj2008189-b5
emboj2008189-b7
emboj2008189-b101
emboj2008189-b8
emboj2008189-b9
Burton RS (emboj2008189-b6) 1999; 39
emboj2008189-b39
emboj2008189-b37
emboj2008189-b38
emboj2008189-b35
emboj2008189-b36
emboj2008189-b33
emboj2008189-b34
emboj2008189-b31
emboj2008189-b32
Liu J-C (emboj2008189-b52) 2001; 18
emboj2008189-b48
emboj2008189-b49
emboj2008189-b46
emboj2008189-b47
emboj2008189-b44
emboj2008189-b45
emboj2008189-b42
emboj2008189-b43
Van Valen L (emboj2008189-b90) 1973; 1
emboj2008189-b40
emboj2008189-b41
Susko E (emboj2008189-b83) 2002; 19
emboj2008189-b59
emboj2008189-b57
emboj2008189-b58
emboj2008189-b55
emboj2008189-b56
emboj2008189-b53
Dobzhansky T (emboj2008189-b17) 1950; 35
emboj2008189-b54
emboj2008189-b51
emboj2008189-b50
Wallace B (emboj2008189-b95) 1991; 82
References_xml – reference: Subramanian S, Kumar S (2004) Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics 168: 373-381
– reference: Pazos F, Ranea JAG, Juan D, Sternberg MJE (2005) Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. J Mol Biol 352: 1002-1015
– reference: Olmea O, Valencia A (1997) Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des 2: S25-S32
– reference: Thompson JN (1994) The Coevolutionary Process. Chicago: University of Chicago Press
– reference: Pazos F, Helmer-Citterich M, Ausiello G, Valencia A (1997) Correlated mutations contain information about protein-protein interaction. J Mol Biol 271: 511-523
– reference: Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402: 83-86
– reference: Pages S, Belaich A, Belaich JP, Morag E, Lamed R, Shoham Y, Bayer EA (1997) Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29: 517-527
– reference: Ramani AK, Marcotte EM (2003) Exploiting the co-evolution of interacting proteins to discover interaction specificity. J Mol Biol 327: 273-284
– reference: Chen Y, Dokholyan NV (2006) The coordinated evolution of yeast proteins is constrained by functional modularity. Trends Genet 22: 416-419
– reference: Ferrer-Costa C, Orozco M, Cruz X (2007) Characterization of compensated mutations in terms of structural and physico-chemical properties. J Mol Biol 365: 249-256
– reference: Jothi R, Kann MG, Przytycka TM (2005) Predicting protein-protein interaction by searching evolutionary tree automorphism space. Bioinformatics 21: i241-i250
– reference: Tillier ER, Biro L, Li G, Tillo D (2006) Codep: maximizing co-evolutionary interdependencies to discover interacting proteins. Proteins 63: 822-831
– reference: Zhou Y, Wang R, Li L, Xia X, Sun Z (2006) Inferring functional linkages between proteins from evolutionary scenarios. J Mol Biol 359: 1150-1159
– reference: Pazos F, Valencia A (2001) Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 14: 609-614
– reference: Danchin A (2003) The Delphic Boat: What Genomes Tell Us. Cambridge, Massachusetts: Harvard University Press
– reference: Van Valen L (1973) A new evolutionary law. Evol Theor 1: 1-30
– reference: Barker D, Meade A, Pagel M (2007) Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23: 14-20
– reference: Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56: 77-88
– reference: Pazos F, Valencia A (2002) In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47: 219-227
– reference: Wallace B (1991) Coadaptation revisited. J Hered 82: 89-96
– reference: Gertz J, Elfond G, Shustrova A, Weisinger M, Pellegrini M, Cokus S, Rothschild B (2003) Inferring protein interactions from phylogenetic distance matrices. Bioinformatics 19: 2039-2045
– reference: Tress M, de Juan D, Grana O, Gomez MJ, Gomez-Puertas P, Gonzalez JM, Lopez G, Valencia A (2005) Scoring docking models with evolutionary information. Proteins 60: 275-280
– reference: von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31: 258-261
– reference: Watanabe M, Ito A, Takada Y, Ninomiya C, Kakizaki T, Takahata Y, Hatakeyama K, Hinata K, Suzuki G, Takasaki T, Satta Y, Shiba H, Takayama S, Isogai A (2000) Highly divergent sequences of the pollen self-incompatibility (S) gene in class-I S haplotypes of Brassica campestris (syn. rapa) L. FEBS Lett 473: 139-144
– reference: Izarzugaza JM, Juan D, Pons C, Ranea JA, Valencia A, Pazos F (2006) TSEMA: interactive prediction of protein pairings between interacting families. Nucleic Acids Res 34: W315-W319
– reference: Kim WK, Bolser DM, Park JH (2004) Large-scale co-evolution analysis of protein structural interlogues using the global protein structural interactome map (PSIMAP). Bioinformatics 20: 1138-1150
– reference: Xia Y, Yu H, Jansen R, Seringhaus M, Baxter S, Greenbaum D, Zhao H, Gerstein M (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73: 1051-1087
– reference: Burger L, van Nimwegen E (2008) Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method. Mol Syst Biol 4: 165
– reference: Futuyma DJ (1997) Evolutionary Biology. Stamford, Connecticut: Sinauer Associates
– reference: Valencia A, Pazos F (2002) Computational methods for the prediction of protein interactions. Curr Opin Struct Biol 12: 368-373
– reference: Kachroo A, Schopfer CR, Nasrallah ME, Nasrallah JB (2001) Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science 293: 1824-1826
– reference: Burton RS, Rawson PD, Edmands S (1999) Genetic architecture of physiological phenotypes: empirical evidence for coadapted gene complexes. Am Zool 39: 451-462
– reference: Jothi R, Przytycka TM, Aravind L (2007) Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment. BMC Bioinformatics 8: 173
– reference: Shim Choi S, Li W, Lahn BT (2005) Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny-aided structural analysis. Nat Genet 37: 1367-1371
– reference: Wang S, Kimble J (2001) The TRA-1 transcription factor binds TRA-2 to regulate sexual fates in Caenorhabditis elegans. EMBO J 20: 1363-1372
– reference: Haag ES, Wang S, Kimble J (2002) Rapid coevolution of the nematode sex-determining genes fem-3 and tra-2. Curr Biol 12: 2035-2041
– reference: Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18: 586-608
– reference: Drummond DA, Raval A, Wilke CO (2006) A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 23: 327-337
– reference: Van Valen L (1977) The Red Queen. Am Nat 11: 809-810
– reference: Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5: 101-113
– reference: Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296: 750-752
– reference: Moya A, Pereto J, Gil R, Latorre A (2008) Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 9: 218-229
– reference: Darwin CR (1862) On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the Good Effects of Intercrossing. London: John Murray
– reference: van Kesteren RE, Tensen CP, Smit AB, van Minnen J, Kolakowski LF, Meyerhof W, Richter D, van Heerikhuizen H, Vreugdenhil E, Geraerts WP (1996) Co-evolution of ligand-receptor pairs in the vasopressin/oxytocin superfamily of bioactive peptides. J Biol Chem 271: 3619-3626
– reference: Hakes L, Lovell S, Oliver SG, Robertson DL (2007) Specificity in protein interactions and its relationship with sequence diversity and coevolution. Proc Natl Acad Sci USA 104: 7999-8004
– reference: Waddell PJ, Kishino H, Ota R (2007) Phylogenetic methodology for detecting protein interactions. Mol Biol Evol 24: 650-659
– reference: Fodor AA, Aldrich RW (2004) Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 56: 211-221
– reference: Cokus S, Mizutani S, Pellegrini M (2007) An improved method for identifying functionally linked proteins using phylogenetic profiles. BMC Bioinformatics 8: S7
– reference: Goh CS, Cohen FE (2002) Co-evolutionary analysis reveals insights into protein-protein interactions. J Mol Biol 324: 177-192
– reference: Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311: 1430-1436
– reference: Bowers P, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D (2004a) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5: R35
– reference: Craig RA, Liao L (2007) Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices. BMC Bioinformatics 8: 6
– reference: Devos D, Valencia A (2001) Intrinsic errors in genome annotation. Trends Genet 17: 429-431
– reference: Hafner MS, Nadler SA (1988) Phylogenetic trees support the coevolution of parasites and their hosts. Nature 332: 258-259
– reference: Pal C, Papp B, Hurst LD (2001) Highly expressed genes in yeast evolve slowly. Genetics 158: 927-931
– reference: Wang HC, Spencer M, Susko E, Roger AJ (2007) Testing for covarion-like evolution in protein sequences. Mol Biol Evol 24: 294-305
– reference: Yeang CH, Haussler D (2007) Detecting coevolution in and among protein domains. PLoS Comput Biol 3: e211
– reference: Dobzhansky T (1970) Genetics of the Evolutionary Process. New York: Columbia University Press
– reference: Morett E, Korbel JO, Rajan E, Saab-Rincon G, Olvera L, Olvera M, Schmidt S, Snel B, Bork P (2003) Systematic discovery of analogous enzymes in thiamin biosynthesis. Nat Biotechnol 21: 790-795
– reference: Susko E, Inagaki Y, Field C, Holder ME, Roger AJ (2002) Testing for differences in rates-across-sites distributions in phylogenetic subtrees. Mol Biol Evol 19: 1514-1523
– reference: Kondrashov AS, Sunyaev S, Kondrashov FA (2002) Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci USA 99: 14878-14883
– reference: Wallace B (1953) On coadaptation in Drosophila. Am Nat 87: 343-358
– reference: Bowers PM, Cokus SJ, Eisenberg D, Yeates TO (2004b) Use of logic relationships to decipher protein network organization. Science 306: 2246-2249
– reference: Devos D, Valencia A (2000) Practical limits of function prediction. Proteins 41: 98-107
– reference: Fraser HB, Hirsh AE, Wall DP, Eisen MB (2004) Coevolution of gene expression among interacting proteins. Proc Natl Acad Sci USA 101: 9033-9038
– reference: Goh C-S, Bogan AA, Joachimiak M, Walther D, Cohen FE (2000) Co-evolution of proteins with their interaction partners. J Mol Biol 299: 283-293
– reference: Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput Biol 3: e43
– reference: Jothi R, Cherukuri PF, Tasneem A, Przytycka TM (2006) Co-evolutionary analysis of domains in interacting proteins reveals insights into domain-domain interactions mediating protein-protein interactions. J Mol Biol 362: 861-875
– reference: Pazos F, Juan D, Izarzugaza JM, Leon E, Valencia A (2008) Prediction of protein interaction based on similarity of phylogenetic trees. Methods Mol Biol 484: 523-535
– reference: Göbel U, Sander C, Schneider R, Valencia A (1994) Correlated mutations and residue contacts in proteins. Proteins 18: 309-317
– reference: Ranea JA, Yeats C, Grant A, Orengo CA (2007) Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo-Tuner method applied to eukaryotic genomes. PLoS Comput Biol 3: e237
– reference: Labedan B, Xu Y, Naumoff DG, Glansdorff N (2004) Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase. Mol Biol Evol 21: 364-373
– reference: Tan S, Zhang Z, Ng S (2004) ADVICE: automated detection and validation of interaction by co-evolution. Nucleic Acids Res 32: W69-W72
– reference: Ridley M (2003) Evolution. Boston, MA: Blackwell Publishing
– reference: Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T (2007) The human phylome. Genome Biol 8: R109
– reference: Shackelford G, Karplus K (2007) Contact prediction using mutual information and neural nets. Proteins 69: 159-164
– reference: Pagel P, Wong P, Frishman D (2004) A domain interaction map based on phylogenetic profiling. J Mol Biol 344: 1331-1346
– reference: Stone AR, Hawksworth DL (1985) Coevolution and Systematics. Oxford: Clarendon Press
– reference: Liu J-C, Makova KD, Adkins RM, Gibson S, Li W-H (2001) Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor. Mol Biol Evol 18: 945-953
– reference: Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863-14868
– reference: Kulathinal RJ, Bettencourt BR, Hartl DL (2004) Compensated deleterious mutations in insect genomes. Science 306: 1553-1554
– reference: Shakhnovich BE (2005) Improving the precision of the structure-function relationship by considering phylogenetic context. PLoS Comput Biol 1: e9
– reference: Kann MG, Jothi R, Cherukuri PF, Przytycka TM (2007) Predicting protein domain interactions from coevolution of conserved regions. Proteins 67: 811-820
– reference: Lawrence JG (1997) Selfish operons and speciation by gene transfer. Trends Microbiol 5: 355-359
– reference: Mintseris J, Weng Z (2005) Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci USA 102: 10930-10935
– reference: Gaasterland T, Ragan MA (1998) Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. Microb Comp Genomics 3: 199-217
– reference: Socolich M, Lockless SW, Russ WP, Lee H, Gardner KH, Ranganathan R (2005) Evolutionary information for specifying a protein fold. Nature 437: 512-518
– reference: del Alamo M, Mateu MG (2005) Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein. J Mol Biol 345: 893-906
– reference: Dou T, Ji C, Gu S, Xu J, Ying K, Xie Y, Mao Y (2006) Co-evolutionary analysis of insulin/insulin like growth factor 1 signal pathway in vertebrate species. Front Biosci 11: 380-388
– reference: Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96: 4285-4288
– reference: Shindyalov IN, Kolchanov NA, Sander C (1994) Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? Protein Eng 7: 349-358
– reference: Fryxell KJ (1996) The coevolution of gene family trees. Trends Genet 12: 364-369
– reference: Halperin I, Wolfson H, Nussinov R (2006) Correlated mutations: advances and limitations. A study on fusion proteins and on the Cohesin-Dockerin families. Proteins 63: 832-845
– reference: Sun J, Xu J, Liu Z, Liu Q, Zhao A, Shi T, Li Y (2005) Refined phylogenetic profiles method for predicting protein-protein interactions. Bioinformatics 21: 3409-3415
– reference: Dobzhansky T (1950) Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35: 288-302
– reference: Fitch WM (1971) Rate of change of concomitantly variable codons. J Mol Evol 1: 84-96
– reference: Juan D, Pazos F, Valencia A (2008) High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci USA 105: 934-939
– reference: Date SV, Marcotte EM (2003) Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nat Biotechnol 21: 1055-1062
– reference: Mateu MG, Fersht AR (1999) Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization. Proc Natl Acad Sci USA 96: 3595-3599
– reference: Sato T, Yamanishi Y, Horimoto K, Kanehisa M, Toh H (2006) Partial correlation coefficient between distance matrices as a new indicator of protein-protein interactions. Bioinformatics 22: 2488-2492
– reference: Sato T, Yamanishi Y, Kanehisa M, Toh H (2005) The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 21: 3482-3489
– volume: 3
  start-page: e211
  year: 2007
  ident: CR100
  article-title: Detecting coevolution in and among protein domains
  publication-title: PLoS Comput Biol
– volume: 344
  start-page: 1331
  year: 2004
  end-page: 1346
  ident: CR59
  article-title: A domain interaction map based on phylogenetic profiling
  publication-title: J Mol Biol
– volume: 8
  start-page: 6
  year: 2007
  ident: CR8
  article-title: Phylogenetic tree information aids supervised learning for predicting protein–protein interaction based on distance matrices
  publication-title: BMC Bioinformatics
– volume: 18
  start-page: 309
  year: 1994
  end-page: 317
  ident: CR32
  article-title: Correlated mutations and residue contacts in proteins
  publication-title: Proteins
– volume: 29
  start-page: 517
  year: 1997
  end-page: 527
  ident: CR60
  article-title: Species‐specificity of the cohesin–dockerin interaction between and : prediction of specificity determinants of the dockerin domain
  publication-title: Proteins
– volume: 12
  start-page: 368
  year: 2002
  end-page: 373
  ident: CR88
  article-title: Computational methods for the prediction of protein interactions
  publication-title: Curr Opin Struct Biol
– volume: 359
  start-page: 1150
  year: 2006
  end-page: 1159
  ident: CR101
  article-title: Inferring functional linkages between proteins from evolutionary scenarios
  publication-title: J Mol Biol
– volume: 47
  start-page: 219
  year: 2002
  end-page: 227
  ident: CR66
  article-title: two‐hybrid system for the selection of physically interacting protein pairs
  publication-title: Proteins
– volume: 41
  start-page: 98
  year: 2000
  end-page: 107
  ident: CR14
  article-title: Practical limits of function prediction
  publication-title: Proteins
– volume: 8
  start-page: 173
  year: 2007
  ident: CR43
  article-title: Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment
  publication-title: BMC Bioinformatics
– volume: 37
  start-page: 1367
  year: 2005
  end-page: 1371
  ident: CR76
  article-title: Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny‐aided structural analysis
  publication-title: Nat Genet
– ident: CR80
– volume: 14
  start-page: 609
  year: 2001
  end-page: 614
  ident: CR65
  article-title: Similarity of phylogenetic trees as indicator of protein–protein interaction
  publication-title: Protein Eng
– volume: 12
  start-page: 2035
  year: 2002
  end-page: 2041
  ident: CR35
  article-title: Rapid coevolution of the nematode sex‐determining genes fem‐3 and tra‐2
  publication-title: Curr Biol
– volume: 365
  start-page: 249
  year: 2007
  end-page: 256
  ident: CR23
  article-title: Characterization of compensated mutations in terms of structural and physico‐chemical properties
  publication-title: J Mol Biol
– volume: 21
  start-page: 3482
  year: 2005
  end-page: 3489
  ident: CR72
  article-title: The inference of protein–protein interactions by co‐evolutionary analysis is improved by excluding the information about the phylogenetic relationships
  publication-title: Bioinformatics
– volume: 1
  start-page: 84
  year: 1971
  end-page: 96
  ident: CR24
  article-title: Rate of change of concomitantly variable codons
  publication-title: J Mol Evol
– volume: 12
  start-page: 364
  year: 1996
  end-page: 369
  ident: CR28
  article-title: The coevolution of gene family trees
  publication-title: Trends Genet
– volume: 20
  start-page: 1363
  year: 2001
  end-page: 1372
  ident: CR97
  article-title: The TRA‐1 transcription factor binds TRA‐2 to regulate sexual fates in
  publication-title: EMBO J
– volume: 20
  start-page: 1138
  year: 2004
  end-page: 1150
  ident: CR47
  article-title: Large‐scale co‐evolution analysis of protein structural interlogues using the global protein structural interactome map (PSIMAP)
  publication-title: Bioinformatics
– volume: 306
  start-page: 2246
  year: 2004
  end-page: 2249
  ident: CR4
  article-title: Use of logic relationships to decipher protein network organization
  publication-title: Science
– ident: CR11
– ident: CR85
– volume: 299
  start-page: 283
  year: 2000
  end-page: 293
  ident: CR33
  article-title: Co‐evolution of proteins with their interaction partners
  publication-title: J Mol Biol
– volume: 99
  start-page: 14878
  year: 2002
  end-page: 14883
  ident: CR48
  article-title: Dobzhansky–Muller incompatibilities in protein evolution
  publication-title: Proc Natl Acad Sci USA
– volume: 311
  start-page: 1430
  year: 2006
  end-page: 1436
  ident: CR73
  article-title: Structure of the hydrophilic domain of respiratory complex I from
  publication-title: Science
– volume: 60
  start-page: 275
  year: 2005
  end-page: 280
  ident: CR87
  article-title: Scoring docking models with evolutionary information
  publication-title: Proteins
– volume: 1
  start-page: 1
  year: 1973
  end-page: 30
  ident: CR90
  article-title: A new evolutionary law
  publication-title: Evol Theor
– ident: CR18
– volume: 3
  start-page: 199
  year: 1998
  end-page: 217
  ident: CR30
  article-title: Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes
  publication-title: Microb Comp Genomics
– volume: 2
  start-page: S25
  year: 1997
  end-page: S32
  ident: CR58
  article-title: Improving contact predictions by the combination of correlated mutations and other sources of sequence information
  publication-title: Fold Des
– volume: 17
  start-page: 429
  year: 2001
  end-page: 431
  ident: CR15
  article-title: Intrinsic errors in genome annotation
  publication-title: Trends Genet
– volume: 3
  start-page: e237
  year: 2007
  ident: CR69
  article-title: Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo‐Tuner method applied to eukaryotic genomes
  publication-title: PLoS Comput Biol
– volume: 8
  start-page: R109
  year: 2007
  ident: CR39
  article-title: The human phylome
  publication-title: Genome Biol
– ident: CR10
– volume: 306
  start-page: 1553
  year: 2004
  end-page: 1554
  ident: CR49
  article-title: Compensated deleterious mutations in insect genomes
  publication-title: Science
– volume: 23
  start-page: 14
  year: 2007
  end-page: 20
  ident: CR2
  article-title: Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes
  publication-title: Bioinformatics
– volume: 82
  start-page: 89
  year: 1991
  end-page: 96
  ident: CR95
  article-title: Coadaptation revisited
  publication-title: J Hered
– volume: 8
  start-page: S7
  year: 2007
  ident: CR7
  article-title: An improved method for identifying functionally linked proteins using phylogenetic profiles
  publication-title: BMC Bioinformatics
– volume: 11
  start-page: 809
  year: 1977
  end-page: 810
  ident: CR91
  article-title: The Red Queen
  publication-title: Am Nat
– volume: 5
  start-page: 101
  year: 2004
  end-page: 113
  ident: CR1
  article-title: Network biology: understanding the cell's functional organization
  publication-title: Nat Rev Genet
– volume: 63
  start-page: 832
  year: 2006
  end-page: 845
  ident: CR38
  article-title: Correlated mutations: advances and limitations. A study on fusion proteins and on the Cohesin–Dockerin families
  publication-title: Proteins
– volume: 5
  start-page: 355
  year: 1997
  end-page: 359
  ident: CR51
  article-title: Selfish operons and speciation by gene transfer
  publication-title: Trends Microbiol
– volume: 56
  start-page: 211
  year: 2004
  end-page: 221
  ident: CR25
  article-title: Influence of conservation on calculations of amino acid covariance in multiple sequence alignments
  publication-title: Proteins
– volume: 105
  start-page: 934
  year: 2008
  end-page: 939
  ident: CR44
  article-title: High‐confidence prediction of global interactomes based on genome‐wide coevolutionary networks
  publication-title: Proc Natl Acad Sci USA
– volume: 102
  start-page: 10930
  year: 2005
  end-page: 10935
  ident: CR55
  article-title: Structure, function, and evolution of transient and obligate protein–protein interactions
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 2488
  year: 2006
  end-page: 2492
  ident: CR71
  article-title: Partial correlation coefficient between distance matrices as a new indicator of protein–protein interactions
  publication-title: Bioinformatics
– volume: 18
  start-page: 945
  year: 2001
  end-page: 953
  ident: CR52
  article-title: Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor
  publication-title: Mol Biol Evol
– volume: 168
  start-page: 373
  year: 2004
  end-page: 381
  ident: CR81
  article-title: Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome
  publication-title: Genetics
– volume: 56
  start-page: 77
  year: 2003
  end-page: 88
  ident: CR16
  article-title: Molecular phylogeny and evolution of the plant‐specific seven‐transmembrane MLO family
  publication-title: J Mol Evol
– volume: 104
  start-page: 7999
  year: 2007
  end-page: 8004
  ident: CR37
  article-title: Specificity in protein interactions and its relationship with sequence diversity and coevolution
  publication-title: Proc Natl Acad Sci USA
– volume: 101
  start-page: 9033
  year: 2004
  end-page: 9038
  ident: CR27
  article-title: Coevolution of gene expression among interacting proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 67
  start-page: 811
  year: 2007
  end-page: 820
  ident: CR46
  article-title: Predicting protein domain interactions from coevolution of conserved regions
  publication-title: Proteins
– volume: 11
  start-page: 380
  year: 2006
  end-page: 388
  ident: CR19
  article-title: Co‐evolutionary analysis of insulin/insulin like growth factor 1 signal pathway in vertebrate species
  publication-title: Front Biosci
– ident: CR70
– volume: 39
  start-page: 451
  year: 1999
  end-page: 462
  ident: CR6
  article-title: Genetic architecture of physiological phenotypes: empirical evidence for coadapted gene complexes
  publication-title: Am Zool
– volume: 24
  start-page: 650
  year: 2007
  end-page: 659
  ident: CR93
  article-title: Phylogenetic methodology for detecting protein interactions
  publication-title: Mol Biol Evol
– volume: 484
  start-page: 523
  year: 2008
  end-page: 535
  ident: CR63
  article-title: Prediction of protein interaction based on similarity of phylogenetic trees
  publication-title: Methods Mol Biol
– volume: 5
  start-page: R35
  year: 2004
  ident: CR3
  article-title: Prolinks: a database of protein functional linkages derived from coevolution
  publication-title: Genome Biol
– volume: 32
  start-page: W69
  year: 2004
  end-page: W72
  ident: CR84
  article-title: ADVICE: automated detection and validation of interaction by co‐evolution
  publication-title: Nucleic Acids Res
– volume: 296
  start-page: 750
  year: 2002
  end-page: 752
  ident: CR26
  article-title: Evolutionary rate in the protein interaction network
  publication-title: Science
– volume: 21
  start-page: 3409
  year: 2005
  end-page: 3415
  ident: CR82
  article-title: Refined phylogenetic profiles method for predicting protein–protein interactions
  publication-title: Bioinformatics
– volume: 21
  start-page: 790
  year: 2003
  end-page: 795
  ident: CR56
  article-title: Systematic discovery of analogous enzymes in thiamin biosynthesis
  publication-title: Nat Biotechnol
– ident: CR29
– volume: 73
  start-page: 1051
  year: 2004
  end-page: 1087
  ident: CR99
  article-title: Analyzing cellular biochemistry in terms of molecular networks
  publication-title: Annu Rev Biochem
– volume: 19
  start-page: 1514
  year: 2002
  end-page: 1523
  ident: CR83
  article-title: Testing for differences in rates‐across‐sites distributions in phylogenetic subtrees
  publication-title: Mol Biol Evol
– volume: 21
  start-page: i241
  year: 2005
  end-page: i250
  ident: CR42
  article-title: Predicting protein–protein interaction by searching evolutionary tree automorphism space
  publication-title: Bioinformatics
– volume: 35
  start-page: 288
  year: 1950
  end-page: 302
  ident: CR17
  article-title: Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of
  publication-title: Genetics
– volume: 352
  start-page: 1002
  year: 2005
  end-page: 1015
  ident: CR64
  article-title: Assessing protein co‐evolution in the context of the tree of life assists in the prediction of the interactome
  publication-title: J Mol Biol
– volume: 19
  start-page: 2039
  year: 2003
  end-page: 2045
  ident: CR31
  article-title: Inferring protein interactions from phylogenetic distance matrices
  publication-title: Bioinformatics
– volume: 34
  start-page: W315
  year: 2006
  end-page: W319
  ident: CR40
  article-title: TSEMA: interactive prediction of protein pairings between interacting families
  publication-title: Nucleic Acids Res
– volume: 23
  start-page: 327
  year: 2006
  end-page: 337
  ident: CR20
  article-title: A single determinant dominates the rate of yeast protein evolution
  publication-title: Mol Biol Evol
– volume: 293
  start-page: 1824
  year: 2001
  end-page: 1826
  ident: CR45
  article-title: Allele‐specific receptor‐ligand interactions in self‐incompatibility
  publication-title: Science
– volume: 7
  start-page: 349
  year: 1994
  end-page: 358
  ident: CR77
  article-title: Can three‐dimensional contacts in protein structures be predicted by analysis of correlated mutations?
  publication-title: Protein Eng
– volume: 87
  start-page: 343
  year: 1953
  end-page: 358
  ident: CR94
  article-title: On coadaptation in
  publication-title: Am Nat
– volume: 21
  start-page: 364
  year: 2004
  end-page: 373
  ident: CR50
  article-title: Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase
  publication-title: Mol Biol Evol
– volume: 402
  start-page: 83
  year: 1999
  end-page: 86
  ident: CR53
  article-title: A combined algorithm for genome‐wide prediction of protein function
  publication-title: Nature
– volume: 22
  start-page: 416
  year: 2006
  end-page: 419
  ident: CR9
  article-title: The coordinated evolution of yeast proteins is constrained by functional modularity
  publication-title: Trends Genet
– volume: 18
  start-page: 586
  year: 1964
  end-page: 608
  ident: CR21
  article-title: Butterflies and plants: a study in coevolution
  publication-title: Evolution
– volume: 362
  start-page: 861
  year: 2006
  end-page: 875
  ident: CR41
  article-title: Co‐evolutionary analysis of domains in interacting proteins reveals insights into domain–domain interactions mediating protein–protein interactions
  publication-title: J Mol Biol
– volume: 271
  start-page: 511
  year: 1997
  end-page: 523
  ident: CR62
  article-title: Correlated mutations contain information about protein–protein interaction
  publication-title: J Mol Biol
– volume: 327
  start-page: 273
  year: 2003
  end-page: 284
  ident: CR68
  article-title: Exploiting the co‐evolution of interacting proteins to discover interaction specificity
  publication-title: J Mol Biol
– volume: 345
  start-page: 893
  year: 2005
  end-page: 906
  ident: CR13
  article-title: Electrostatic repulsion, compensatory mutations, and long‐range non‐additive effects at the dimerization interface of the HIV capsid protein
  publication-title: J Mol Biol
– volume: 437
  start-page: 512
  year: 2005
  end-page: 518
  ident: CR79
  article-title: Evolutionary information for specifying a protein fold
  publication-title: Nature
– volume: 324
  start-page: 177
  year: 2002
  end-page: 192
  ident: CR34
  article-title: Co‐evolutionary analysis reveals insights into protein–protein interactions
  publication-title: J Mol Biol
– volume: 95
  start-page: 14863
  year: 1998
  end-page: 14868
  ident: CR22
  article-title: Cluster analysis and display of genome‐wide expression patterns
  publication-title: Proc Natl Acad Sci USA
– volume: 63
  start-page: 822
  year: 2006
  end-page: 831
  ident: CR86
  article-title: Codep: maximizing co‐evolutionary interdependencies to discover interacting proteins
  publication-title: Proteins
– volume: 158
  start-page: 927
  year: 2001
  end-page: 931
  ident: CR61
  article-title: Highly expressed genes in yeast evolve slowly
  publication-title: Genetics
– volume: 1
  start-page: e9
  year: 2005
  ident: CR75
  article-title: Improving the precision of the structure–function relationship by considering phylogenetic context
  publication-title: PLoS Comput Biol
– volume: 3
  start-page: e43
  year: 2007
  ident: CR78
  article-title: Deciphering protein–protein interactions. Part II. Computational methods to predict protein and domain interaction partners
  publication-title: PLoS Comput Biol
– volume: 96
  start-page: 4285
  year: 1999
  end-page: 4288
  ident: CR67
  article-title: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 258
  year: 2003
  end-page: 261
  ident: CR92
  article-title: STRING: a database of predicted functional associations between proteins
  publication-title: Nucleic Acids Res
– volume: 4
  start-page: 165
  year: 2008
  ident: CR5
  article-title: Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method
  publication-title: Mol Syst Biol
– volume: 9
  start-page: 218
  year: 2008
  end-page: 229
  ident: CR57
  article-title: Learning how to live together: genomic insights into prokaryote–animal symbioses
  publication-title: Nat Rev Genet
– volume: 69
  start-page: 159
  year: 2007
  end-page: 164
  ident: CR74
  article-title: Contact prediction using mutual information and neural nets
  publication-title: Proteins
– volume: 332
  start-page: 258
  year: 1988
  end-page: 259
  ident: CR36
  article-title: Phylogenetic trees support the coevolution of parasites and their hosts
  publication-title: Nature
– volume: 24
  start-page: 294
  year: 2007
  end-page: 305
  ident: CR96
  article-title: Testing for covarion‐like evolution in protein sequences
  publication-title: Mol Biol Evol
– volume: 21
  start-page: 1055
  year: 2003
  end-page: 1062
  ident: CR12
  article-title: Discovery of uncharacterized cellular systems by genome‐wide analysis of functional linkages
  publication-title: Nat Biotechnol
– volume: 473
  start-page: 139
  year: 2000
  end-page: 144
  ident: CR98
  article-title: Highly divergent sequences of the pollen self‐incompatibility (S) gene in class‐I S haplotypes of (syn. ) L
  publication-title: FEBS Lett
– volume: 96
  start-page: 3595
  year: 1999
  end-page: 3599
  ident: CR54
  article-title: Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero‐oligomerization
  publication-title: Proc Natl Acad Sci USA
– volume: 271
  start-page: 3619
  year: 1996
  end-page: 3626
  ident: CR89
  article-title: Co‐evolution of ligand–receptor pairs in the vasopressin/oxytocin superfamily of bioactive peptides
  publication-title: J Biol Chem
– volume: 56
  start-page: 77
  year: 2003
  end-page: 88
  article-title: Molecular phylogeny and evolution of the plant‐specific seven‐transmembrane MLO family
  publication-title: J Mol Evol
– volume: 67
  start-page: 811
  year: 2007
  end-page: 820
  article-title: Predicting protein domain interactions from coevolution of conserved regions
  publication-title: Proteins
– volume: 21
  start-page: i241
  year: 2005
  end-page: i250
  article-title: Predicting protein–protein interaction by searching evolutionary tree automorphism space
  publication-title: Bioinformatics
– volume: 24
  start-page: 294
  year: 2007
  end-page: 305
  article-title: Testing for covarion‐like evolution in protein sequences
  publication-title: Mol Biol Evol
– volume: 19
  start-page: 2039
  year: 2003
  end-page: 2045
  article-title: Inferring protein interactions from phylogenetic distance matrices
  publication-title: Bioinformatics
– volume: 18
  start-page: 309
  year: 1994
  end-page: 317
  article-title: Correlated mutations and residue contacts in proteins
  publication-title: Proteins
– volume: 21
  start-page: 790
  year: 2003
  end-page: 795
  article-title: Systematic discovery of analogous enzymes in thiamin biosynthesis
  publication-title: Nat Biotechnol
– volume: 324
  start-page: 177
  year: 2002
  end-page: 192
  article-title: Co‐evolutionary analysis reveals insights into protein–protein interactions
  publication-title: J Mol Biol
– volume: 402
  start-page: 83
  year: 1999
  end-page: 86
  article-title: A combined algorithm for genome‐wide prediction of protein function
  publication-title: Nature
– volume: 12
  start-page: 364
  year: 1996
  end-page: 369
  article-title: The coevolution of gene family trees
  publication-title: Trends Genet
– volume: 3
  start-page: 199
  year: 1998
  end-page: 217
  article-title: Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes
  publication-title: Microb Comp Genomics
– volume: 87
  start-page: 343
  year: 1953
  end-page: 358
  article-title: On coadaptation in
  publication-title: Am Nat
– volume: 299
  start-page: 283
  year: 2000
  end-page: 293
  article-title: Co‐evolution of proteins with their interaction partners
  publication-title: J Mol Biol
– volume: 24
  start-page: 650
  year: 2007
  end-page: 659
  article-title: Phylogenetic methodology for detecting protein interactions
  publication-title: Mol Biol Evol
– volume: 21
  start-page: 3409
  year: 2005
  end-page: 3415
  article-title: Refined phylogenetic profiles method for predicting protein–protein interactions
  publication-title: Bioinformatics
– volume: 362
  start-page: 861
  year: 2006
  end-page: 875
  article-title: Co‐evolutionary analysis of domains in interacting proteins reveals insights into domain–domain interactions mediating protein–protein interactions
  publication-title: J Mol Biol
– volume: 35
  start-page: 288
  year: 1950
  end-page: 302
  article-title: Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of
  publication-title: Genetics
– volume: 22
  start-page: 2488
  year: 2006
  end-page: 2492
  article-title: Partial correlation coefficient between distance matrices as a new indicator of protein–protein interactions
  publication-title: Bioinformatics
– volume: 73
  start-page: 1051
  year: 2004
  end-page: 1087
  article-title: Analyzing cellular biochemistry in terms of molecular networks
  publication-title: Annu Rev Biochem
– volume: 306
  start-page: 1553
  year: 2004
  end-page: 1554
  article-title: Compensated deleterious mutations in insect genomes
  publication-title: Science
– volume: 365
  start-page: 249
  year: 2007
  end-page: 256
  article-title: Characterization of compensated mutations in terms of structural and physico‐chemical properties
  publication-title: J Mol Biol
– volume: 359
  start-page: 1150
  year: 2006
  end-page: 1159
  article-title: Inferring functional linkages between proteins from evolutionary scenarios
  publication-title: J Mol Biol
– volume: 23
  start-page: 327
  year: 2006
  end-page: 337
  article-title: A single determinant dominates the rate of yeast protein evolution
  publication-title: Mol Biol Evol
– volume: 5
  start-page: R35
  year: 2004a
  article-title: Prolinks: a database of protein functional linkages derived from coevolution
  publication-title: Genome Biol
– volume: 29
  start-page: 517
  year: 1997
  end-page: 527
  article-title: Species‐specificity of the cohesin–dockerin interaction between and : prediction of specificity determinants of the dockerin domain
  publication-title: Proteins
– volume: 69
  start-page: 159
  year: 2007
  end-page: 164
  article-title: Contact prediction using mutual information and neural nets
  publication-title: Proteins
– volume: 99
  start-page: 14878
  year: 2002
  end-page: 14883
  article-title: Dobzhansky–Muller incompatibilities in protein evolution
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  start-page: 3482
  year: 2005
  end-page: 3489
  article-title: The inference of protein–protein interactions by co‐evolutionary analysis is improved by excluding the information about the phylogenetic relationships
  publication-title: Bioinformatics
– year: 1862
  publication-title: On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the Good Effects of Intercrossing
– year: 1994
  publication-title: The Coevolutionary Process
– volume: 3
  start-page: e211
  year: 2007
  article-title: Detecting coevolution in and among protein domains
  publication-title: PLoS Comput Biol
– volume: 296
  start-page: 750
  year: 2002
  end-page: 752
  article-title: Evolutionary rate in the protein interaction network
  publication-title: Science
– volume: 8
  start-page: 6
  year: 2007
  article-title: Phylogenetic tree information aids supervised learning for predicting protein–protein interaction based on distance matrices
  publication-title: BMC Bioinformatics
– volume: 3
  start-page: e43
  year: 2007
  article-title: Deciphering protein–protein interactions. Part II. Computational methods to predict protein and domain interaction partners
  publication-title: PLoS Comput Biol
– year: 2003
  publication-title: The Delphic Boat: What Genomes Tell Us
– volume: 32
  start-page: W69
  year: 2004
  end-page: W72
  article-title: ADVICE: automated detection and validation of interaction by co‐evolution
  publication-title: Nucleic Acids Res
– volume: 437
  start-page: 512
  year: 2005
  end-page: 518
  article-title: Evolutionary information for specifying a protein fold
  publication-title: Nature
– volume: 34
  start-page: W315
  year: 2006
  end-page: W319
  article-title: TSEMA: interactive prediction of protein pairings between interacting families
  publication-title: Nucleic Acids Res
– volume: 4
  start-page: 165
  year: 2008
  article-title: Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method
  publication-title: Mol Syst Biol
– volume: 18
  start-page: 586
  year: 1964
  end-page: 608
  article-title: Butterflies and plants: a study in coevolution
  publication-title: Evolution
– volume: 484
  start-page: 523
  year: 2008
  end-page: 535
  article-title: Prediction of protein interaction based on similarity of phylogenetic trees
  publication-title: Methods Mol Biol
– volume: 8
  start-page: 173
  year: 2007
  article-title: Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment
  publication-title: BMC Bioinformatics
– volume: 23
  start-page: 14
  year: 2007
  end-page: 20
  article-title: Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes
  publication-title: Bioinformatics
– volume: 158
  start-page: 927
  year: 2001
  end-page: 931
  article-title: Highly expressed genes in yeast evolve slowly
  publication-title: Genetics
– volume: 12
  start-page: 2035
  year: 2002
  end-page: 2041
  article-title: Rapid coevolution of the nematode sex‐determining genes fem‐3 and tra‐2
  publication-title: Curr Biol
– volume: 104
  start-page: 7999
  year: 2007
  end-page: 8004
  article-title: Specificity in protein interactions and its relationship with sequence diversity and coevolution
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: S7
  year: 2007
  article-title: An improved method for identifying functionally linked proteins using phylogenetic profiles
  publication-title: BMC Bioinformatics
– volume: 327
  start-page: 273
  year: 2003
  end-page: 284
  article-title: Exploiting the co‐evolution of interacting proteins to discover interaction specificity
  publication-title: J Mol Biol
– volume: 345
  start-page: 893
  year: 2005
  end-page: 906
  article-title: Electrostatic repulsion, compensatory mutations, and long‐range non‐additive effects at the dimerization interface of the HIV capsid protein
  publication-title: J Mol Biol
– volume: 311
  start-page: 1430
  year: 2006
  end-page: 1436
  article-title: Structure of the hydrophilic domain of respiratory complex I from
  publication-title: Science
– volume: 60
  start-page: 275
  year: 2005
  end-page: 280
  article-title: Scoring docking models with evolutionary information
  publication-title: Proteins
– volume: 96
  start-page: 4285
  year: 1999
  end-page: 4288
  article-title: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles
  publication-title: Proc Natl Acad Sci USA
– volume: 95
  start-page: 14863
  year: 1998
  end-page: 14868
  article-title: Cluster analysis and display of genome‐wide expression patterns
  publication-title: Proc Natl Acad Sci USA
– volume: 47
  start-page: 219
  year: 2002
  end-page: 227
  article-title: two‐hybrid system for the selection of physically interacting protein pairs
  publication-title: Proteins
– volume: 8
  start-page: R109
  year: 2007
  article-title: The human phylome
  publication-title: Genome Biol
– volume: 168
  start-page: 373
  year: 2004
  end-page: 381
  article-title: Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome
  publication-title: Genetics
– volume: 63
  start-page: 832
  year: 2006
  end-page: 845
  article-title: Correlated mutations: advances and limitations. A study on fusion proteins and on the Cohesin–Dockerin families
  publication-title: Proteins
– volume: 102
  start-page: 10930
  year: 2005
  end-page: 10935
  article-title: Structure, function, and evolution of transient and obligate protein–protein interactions
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 258
  year: 2003
  end-page: 261
  article-title: STRING: a database of predicted functional associations between proteins
  publication-title: Nucleic Acids Res
– volume: 3
  start-page: e237
  year: 2007
  article-title: Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo‐Tuner method applied to eukaryotic genomes
  publication-title: PLoS Comput Biol
– volume: 7
  start-page: 349
  year: 1994
  end-page: 358
  article-title: Can three‐dimensional contacts in protein structures be predicted by analysis of correlated mutations?
  publication-title: Protein Eng
– volume: 306
  start-page: 2246
  year: 2004b
  end-page: 2249
  article-title: Use of logic relationships to decipher protein network organization
  publication-title: Science
– volume: 37
  start-page: 1367
  year: 2005
  end-page: 1371
  article-title: Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny‐aided structural analysis
  publication-title: Nat Genet
– volume: 18
  start-page: 945
  year: 2001
  end-page: 953
  article-title: Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor
  publication-title: Mol Biol Evol
– volume: 9
  start-page: 218
  year: 2008
  end-page: 229
  article-title: Learning how to live together: genomic insights into prokaryote–animal symbioses
  publication-title: Nat Rev Genet
– volume: 41
  start-page: 98
  year: 2000
  end-page: 107
  article-title: Practical limits of function prediction
  publication-title: Proteins
– volume: 20
  start-page: 1138
  year: 2004
  end-page: 1150
  article-title: Large‐scale co‐evolution analysis of protein structural interlogues using the global protein structural interactome map (PSIMAP)
  publication-title: Bioinformatics
– volume: 14
  start-page: 609
  year: 2001
  end-page: 614
  article-title: Similarity of phylogenetic trees as indicator of protein–protein interaction
  publication-title: Protein Eng
– volume: 56
  start-page: 211
  year: 2004
  end-page: 221
  article-title: Influence of conservation on calculations of amino acid covariance in multiple sequence alignments
  publication-title: Proteins
– volume: 39
  start-page: 451
  year: 1999
  end-page: 462
  article-title: Genetic architecture of physiological phenotypes: empirical evidence for coadapted gene complexes
  publication-title: Am Zool
– volume: 17
  start-page: 429
  year: 2001
  end-page: 431
  article-title: Intrinsic errors in genome annotation
  publication-title: Trends Genet
– volume: 11
  start-page: 380
  year: 2006
  end-page: 388
  article-title: Co‐evolutionary analysis of insulin/insulin like growth factor 1 signal pathway in vertebrate species
  publication-title: Front Biosci
– volume: 12
  start-page: 368
  year: 2002
  end-page: 373
  article-title: Computational methods for the prediction of protein interactions
  publication-title: Curr Opin Struct Biol
– volume: 332
  start-page: 258
  year: 1988
  end-page: 259
  article-title: Phylogenetic trees support the coevolution of parasites and their hosts
  publication-title: Nature
– volume: 293
  start-page: 1824
  year: 2001
  end-page: 1826
  article-title: Allele‐specific receptor‐ligand interactions in self‐incompatibility
  publication-title: Science
– volume: 1
  start-page: 84
  year: 1971
  end-page: 96
  article-title: Rate of change of concomitantly variable codons
  publication-title: J Mol Evol
– year: 1970
  publication-title: Genetics of the Evolutionary Process
– volume: 105
  start-page: 934
  year: 2008
  end-page: 939
  article-title: High‐confidence prediction of global interactomes based on genome‐wide coevolutionary networks
  publication-title: Proc Natl Acad Sci USA
– volume: 344
  start-page: 1331
  year: 2004
  end-page: 1346
  article-title: A domain interaction map based on phylogenetic profiling
  publication-title: J Mol Biol
– year: 2003
  publication-title: Evolution
– volume: 20
  start-page: 1363
  year: 2001
  end-page: 1372
  article-title: The TRA‐1 transcription factor binds TRA‐2 to regulate sexual fates in
  publication-title: EMBO J
– volume: 101
  start-page: 9033
  year: 2004
  end-page: 9038
  article-title: Coevolution of gene expression among interacting proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 63
  start-page: 822
  year: 2006
  end-page: 831
  article-title: Codep: maximizing co‐evolutionary interdependencies to discover interacting proteins
  publication-title: Proteins
– year: 1985
  publication-title: Coevolution and Systematics
– volume: 5
  start-page: 101
  year: 2004
  end-page: 113
  article-title: Network biology: understanding the cell's functional organization
  publication-title: Nat Rev Genet
– volume: 22
  start-page: 416
  year: 2006
  end-page: 419
  article-title: The coordinated evolution of yeast proteins is constrained by functional modularity
  publication-title: Trends Genet
– volume: 19
  start-page: 1514
  year: 2002
  end-page: 1523
  article-title: Testing for differences in rates‐across‐sites distributions in phylogenetic subtrees
  publication-title: Mol Biol Evol
– volume: 1
  start-page: e9
  year: 2005
  article-title: Improving the precision of the structure–function relationship by considering phylogenetic context
  publication-title: PLoS Comput Biol
– volume: 473
  start-page: 139
  year: 2000
  end-page: 144
  article-title: Highly divergent sequences of the pollen self‐incompatibility (S) gene in class‐I S haplotypes of (syn. ) L
  publication-title: FEBS Lett
– volume: 271
  start-page: 3619
  year: 1996
  end-page: 3626
  article-title: Co‐evolution of ligand–receptor pairs in the vasopressin/oxytocin superfamily of bioactive peptides
  publication-title: J Biol Chem
– volume: 1
  start-page: 1
  year: 1973
  end-page: 30
  article-title: A new evolutionary law
  publication-title: Evol Theor
– volume: 21
  start-page: 364
  year: 2004
  end-page: 373
  article-title: Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase
  publication-title: Mol Biol Evol
– year: 1997
  publication-title: Evolutionary Biology
– volume: 352
  start-page: 1002
  year: 2005
  end-page: 1015
  article-title: Assessing protein co‐evolution in the context of the tree of life assists in the prediction of the interactome
  publication-title: J Mol Biol
– volume: 271
  start-page: 511
  year: 1997
  end-page: 523
  article-title: Correlated mutations contain information about protein–protein interaction
  publication-title: J Mol Biol
– volume: 11
  start-page: 809
  year: 1977
  end-page: 810
  article-title: The Red Queen
  publication-title: Am Nat
– volume: 82
  start-page: 89
  year: 1991
  end-page: 96
  article-title: Coadaptation revisited
  publication-title: J Hered
– volume: 2
  start-page: S25
  year: 1997
  end-page: S32
  article-title: Improving contact predictions by the combination of correlated mutations and other sources of sequence information
  publication-title: Fold Des
– volume: 96
  start-page: 3595
  year: 1999
  end-page: 3599
  article-title: Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero‐oligomerization
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 355
  year: 1997
  end-page: 359
  article-title: Selfish operons and speciation by gene transfer
  publication-title: Trends Microbiol
– volume: 21
  start-page: 1055
  year: 2003
  end-page: 1062
  article-title: Discovery of uncharacterized cellular systems by genome‐wide analysis of functional linkages
  publication-title: Nat Biotechnol
– volume: 1
  start-page: 1
  year: 1973
  ident: emboj2008189-b90
  publication-title: Evol Theor
– ident: emboj2008189-b33
  doi: 10.1006/jmbi.2000.3732
– ident: emboj2008189-b56
  doi: 10.1038/nbt834
– ident: emboj2008189-b89
  doi: 10.1074/jbc.271.7.3619
– ident: emboj2008189-b8
  doi: 10.1186/1471-2105-8-6
– volume: 39
  start-page: 451
  year: 1999
  ident: emboj2008189-b6
  publication-title: Am Zool
  doi: 10.1093/icb/39.2.451
– ident: emboj2008189-b80
– ident: emboj2008189-b81
  doi: 10.1534/genetics.104.028944
– ident: emboj2008189-b37
  doi: 10.1073/pnas.0609962104
– ident: emboj2008189-b96
  doi: 10.1093/molbev/msl155
– ident: emboj2008189-b31
  doi: 10.1093/bioinformatics/btg278
– ident: emboj2008189-b79
  doi: 10.1038/nature03991
– ident: emboj2008189-b51
  doi: 10.1016/S0966-842X(97)01110-4
– volume: 82
  start-page: 89
  year: 1991
  ident: emboj2008189-b95
  publication-title: J Hered
  doi: 10.1093/oxfordjournals.jhered.a111061
– ident: emboj2008189-b4
  doi: 10.1126/science.1103330
– ident: emboj2008189-b72
  doi: 10.1093/bioinformatics/bti564
– ident: emboj2008189-b75
  doi: 10.1371/journal.pcbi.0010009
– ident: emboj2008189-b26
  doi: 10.1126/science.1068696
– ident: emboj2008189-b54
  doi: 10.1073/pnas.96.7.3595
– ident: emboj2008189-b12
  doi: 10.1038/nbt861
– ident: emboj2008189-b34
  doi: 10.1016/S0022-2836(02)01038-0
– ident: emboj2008189-b9
  doi: 10.1016/j.tig.2006.06.008
– ident: emboj2008189-b25
  doi: 10.1002/prot.20098
– ident: emboj2008189-b93
  doi: 10.1093/molbev/msl193
– ident: emboj2008189-b77
  doi: 10.1093/protein/7.3.349
– ident: emboj2008189-b98
  doi: 10.1016/S0014-5793(00)01514-3
– ident: emboj2008189-b53
  doi: 10.1038/47048
– ident: emboj2008189-b38
  doi: 10.1002/prot.20933
– ident: emboj2008189-b85
– volume: 18
  start-page: 945
  year: 2001
  ident: emboj2008189-b52
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a003895
– ident: emboj2008189-b45
  doi: 10.1126/science.1062509
– ident: emboj2008189-b39
  doi: 10.1186/gb-2007-8-8-109
– ident: emboj2008189-b97
  doi: 10.1093/emboj/20.6.1363
– ident: emboj2008189-b50
  doi: 10.1093/molbev/msh024
– ident: emboj2008189-b11
– ident: emboj2008189-b94
  doi: 10.1086/281795
– ident: emboj2008189-b24
  doi: 10.1007/BF01659396
– ident: emboj2008189-b101
  doi: 10.1016/j.jmb.2006.04.011
– ident: emboj2008189-b13
  doi: 10.1016/j.jmb.2004.10.086
– ident: emboj2008189-b49
  doi: 10.1126/science.1100522
– ident: emboj2008189-b68
  doi: 10.1016/S0022-2836(03)00114-1
– ident: emboj2008189-b36
  doi: 10.1038/332258a0
– ident: emboj2008189-b40
  doi: 10.1093/nar/gkl112
– ident: emboj2008189-b21
  doi: 10.2307/2406212
– ident: emboj2008189-b3
  doi: 10.1186/gb-2004-5-5-r35
– ident: emboj2008189-b92
  doi: 10.1093/nar/gkg034
– ident: emboj2008189-b32
  doi: 10.1002/prot.340180402
– ident: emboj2008189-b48
  doi: 10.1073/pnas.232565499
– ident: emboj2008189-b91
  doi: 10.1086/283213
– ident: emboj2008189-b20
  doi: 10.1093/molbev/msj038
– ident: emboj2008189-b88
  doi: 10.1016/S0959-440X(02)00333-0
– ident: emboj2008189-b70
– ident: emboj2008189-b66
  doi: 10.1002/prot.10074
– ident: emboj2008189-b69
  doi: 10.1371/journal.pcbi.0030237
– ident: emboj2008189-b27
  doi: 10.1073/pnas.0402591101
– ident: emboj2008189-b5
  doi: 10.1038/msb4100203
– volume: 35
  start-page: 288
  year: 1950
  ident: emboj2008189-b17
  publication-title: Genetics
  doi: 10.1093/genetics/35.3.288
– ident: emboj2008189-b58
  doi: 10.1016/S1359-0278(97)00060-6
– ident: emboj2008189-b64
  doi: 10.1016/j.jmb.2005.07.005
– ident: emboj2008189-b29
– ident: emboj2008189-b7
  doi: 10.1186/1471-2105-8-S4-S7
– ident: emboj2008189-b46
  doi: 10.1002/prot.21347
– ident: emboj2008189-b99
  doi: 10.1146/annurev.biochem.73.011303.073950
– ident: emboj2008189-b23
  doi: 10.1016/j.jmb.2006.09.053
– ident: emboj2008189-b84
  doi: 10.1093/nar/gkh471
– ident: emboj2008189-b42
  doi: 10.1093/bioinformatics/bti1009
– ident: emboj2008189-b1
  doi: 10.1038/nrg1272
– ident: emboj2008189-b74
  doi: 10.1002/prot.21791
– ident: emboj2008189-b73
  doi: 10.1126/science.1123809
– ident: emboj2008189-b19
  doi: 10.2741/1805
– volume: 19
  start-page: 1514
  year: 2002
  ident: emboj2008189-b83
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004214
– ident: emboj2008189-b87
  doi: 10.1002/prot.20570
– ident: emboj2008189-b60
  doi: 10.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P
– ident: emboj2008189-b43
  doi: 10.1186/1471-2105-8-173
– volume: 484
  start-page: 523
  year: 2008
  ident: emboj2008189-b63
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-398-1_31
– ident: emboj2008189-b76
  doi: 10.1038/ng1685
– ident: emboj2008189-b18
– ident: emboj2008189-b62
  doi: 10.1006/jmbi.1997.1198
– ident: emboj2008189-b100
  doi: 10.1371/journal.pcbi.0030211
– ident: emboj2008189-b86
  doi: 10.1002/prot.20948
– ident: emboj2008189-b15
  doi: 10.1016/S0168-9525(01)02348-4
– ident: emboj2008189-b47
  doi: 10.1093/bioinformatics/bth053
– ident: emboj2008189-b57
  doi: 10.1038/nrg2319
– ident: emboj2008189-b28
  doi: 10.1016/S0168-9525(96)80020-5
– ident: emboj2008189-b35
  doi: 10.1016/S0960-9822(02)01333-7
– ident: emboj2008189-b67
  doi: 10.1073/pnas.96.8.4285
– ident: emboj2008189-b55
  doi: 10.1073/pnas.0502667102
– ident: emboj2008189-b78
  doi: 10.1371/journal.pcbi.0030043
– ident: emboj2008189-b22
  doi: 10.1073/pnas.95.25.14863
– ident: emboj2008189-b71
  doi: 10.1093/bioinformatics/btl419
– volume: 158
  start-page: 927
  year: 2001
  ident: emboj2008189-b61
  publication-title: Genetics
  doi: 10.1093/genetics/158.2.927
– ident: emboj2008189-b65
  doi: 10.1093/protein/14.9.609
– ident: emboj2008189-b14
  doi: 10.1002/1097-0134(20001001)41:1<98::AID-PROT120>3.3.CO;2-J
– ident: emboj2008189-b2
  doi: 10.1093/bioinformatics/btl558
– ident: emboj2008189-b41
  doi: 10.1016/j.jmb.2006.07.072
– ident: emboj2008189-b16
  doi: 10.1007/s00239-002-2382-5
– ident: emboj2008189-b82
  doi: 10.1093/bioinformatics/bti532
– ident: emboj2008189-b10
– ident: emboj2008189-b59
  doi: 10.1016/j.jmb.2004.10.019
– ident: emboj2008189-b44
  doi: 10.1073/pnas.0709671105
– volume: 3
  start-page: 199
  year: 1998
  ident: emboj2008189-b30
  publication-title: Microb Comp Genomics
  doi: 10.1089/omi.1.1998.3.177
SSID ssj0005871
Score 2.3370361
SecondaryResourceType review_article
Snippet Co‐evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey...
Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host-parasite and predator-prey...
Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2648
SubjectTerms Animals
Biological Evolution
co-evolution
Escherichia coli - metabolism
Evolution & development
Evolution, Molecular
Genomics
Humans
interactome
mirrortree
Models, Biological
Molecular biology
Mutation
Mutualism
New EMBO Member's Review
Parasites
phylogenetic tree
Phylogeny
Predator-prey interactions
Prey
Protein Interaction Mapping
protein-protein interaction
Proteins
Proteins - chemistry
Proteins - genetics
Proteome
Symbiosis
Systems Biology
SummonAdditionalLinks – databaseName: Proquest Public Health Database
  dbid: 8C1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BKwSXCgqUtDxyQMCBqHk4jn1CsOpDFa0QWmBvke1MRIEm2922Kv8ej-OEXcHC0fIcrM9je-wZfx_A81rbPU7UVZQxqejpRkWK1ybSiIU2qeYFOrbPE374iR1N8omvzZn7ssp-T3QbddUaeiPfTWRuI_Ui5W-m5xGJRlFy1Sto3IR1-gJKdy8xWqjwEO6-5Z5YWCJkz9mYiV080-23rpIyIYX3hTNpneC9_lvA-Wfd5JA8XQ5t3dm0fxc2fFAZvu284B7cwGYTbnUykz834faoV3W7D-wDETOcNqFpI7zyfveaWqpS0y4vH6qmColHYtb9epg_gPH-3nh0GHnlhMhQBBJpYsVBjFOVxkpXnIsckZGaC4uRYyErwyUmhpTcstywwoYpSkuRMJQYY_YQ1pq2wUcQ1mhXLDKleVXbq6YRnMd1rQXTSW1YxQKIeuhK41nFSdziR-my25koHdSd2qWFOoCXg_2049NYafnCzcRgpmbfqQqtyMsvJwdl_HlyPP44OijfB7DTT1XpF-C8HNwlgGdDr4Wa0iGqwfaSTOwBXuT5agsuuRTWiQPY6ib-95AFMQHKIoBiySUGA2LtXu5pTr869m7ifItlFsCr3nkWRr0Cidg5138AK_eO3x2ljqNQbv8Tkx24k3pa3zR9DGsXs0t8YmOrC_3UraBfCjwhvg
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BKwQXBOUVyiMHBByImofj2EdY9aGKVhVaYG-W7UxEeWSr3RbBjZ_Ab-SX4LGTtBGsEEfLY8n6PGOPPeNvAJ40xu1xoqmTgklNTzc60byxiUGsjM0Nr9CzfR7yvbdsf1bOLvziD_wQw4MbWYbfr8nAtVl238QpcR2_mPnHkAyZCXkZ1p1nX5CO5-zoPMlD-CuXf2VhTqynbSzE1nj86FhaJ4S__c3n_DN1coifjr1bfzzt3IDrnV8ZvwyKcBMuYbsBV0Klye8bcHXSF3a7BeKIuBmO29jOf_34iV875XsR2rrWJyE8H-u2jolOYhE-Pyxvw3RnezrZS7oCCoklRyQxRI6DmOY6T7WpORclIqOiLixFjpWsLZeYWSroVpSWVc5b0UaKjKHEFIs7sNbOW7wHcYPOcJFpw-vG3Tit4DxtGiOYyRrLahZB0sOnbEcuTjUuPisf5C6E8nCHopcO7gieDfIngVZjpeRTvxqDmF58omS0qlTvD3dV-m52MH0z2VWvI9jsl0t1drhUmSzd_a7KeQSPh14HN0VFdIvzMxJx53hVlqsluORSOF2O4G5Y_PMpCyIElFUE1UgtBgEi7x73tMcfPIk3Ub-lsojgea9AF2a9AonUK9g_AFPbB6_2c09VKO___5BNuJZ3lL95_gDWThdn-ND5XafmkTet3zGQKao
  priority: 102
  providerName: Wiley-Blackwell
Title Protein co-evolution, co-adaptation and interactions
URI https://api.istex.fr/ark:/67375/WNG-0VXMTRCG-L/fulltext.pdf
https://link.springer.com/article/10.1038/emboj.2008.189
https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2008.189
https://www.ncbi.nlm.nih.gov/pubmed/18818697
https://www.proquest.com/docview/195259726
https://www.proquest.com/docview/19413755
https://www.proquest.com/docview/69698349
https://pubmed.ncbi.nlm.nih.gov/PMC2556093
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7RRgguCMrLFEIOCDhg1Y_1Po6plbaKaBSVALlZu-uxKA-nSloEN34Cv5Ffwj5slwARXGxZO7ZW387uzuyMvwF4UimzxvGqDFMipD26kaGklQ4VIlM6UZShY_uc0KPXZDzP5o2juGrSKj2lpVum2-ywPfykFu996mPMxRb0OEszq9E5zS9TOrhzsNyZCjFiLUljyn97f20T6lk8v_zNwvwzUbKLlq7bsm4zOrgJNxorcjD0_b4FV7Degau-ruTXHbiWt2XcbgOfWiaG03qgFz--fcfPjaq98M-ylGc-GD-QdTmw5BFL_6vD6g7MDkaz_ChsyiWE2podobJUOIhRIpNIqpJSniESW8KFREiRiVJTgbG25dvSTBNmbBOpBI8JCowwvQvb9aLG-zCo0ExTJFLRsjL-peaURlWlOFFxpUlJAghb-ArdUInbihYfCxfSTnnh4PYlLg3cATzr5M88icZGyaduNDoxufxgU89YVrydHBbRm_nx7CQ_LF4GsNsOV9HMulURi8x4cyyhATzuWg3cNgYia1xcWBGza7Ms2yxBBRXcaG4A9_zgX3aZW_o_wQJga2rRCViq7vWW-vSdo-y2RG-RSAN43irQL73egETkFOwfgBWj4_1x4ogJxYP___ouXE8aYt8keQjb58sLfGSsq3PVh62ETM2VzZm58jzuQ284HL8am_v-aDI96btJ9xMOWCkq
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVqhcEJTXUqB74HVg1X14vfYBIQht0zaJEAolN8v2etUW2ISkBfqf-JF4vA8SQeDU48qjlTUz9ow94-8DeFwou8exIg8SwiVe3chA0kIHyphM6VjRzDi0zwHtfiAHo3S0Aj-btzDYVtnsiW6jzsca78i3I57aTD2L6avJ1wBJo7C42jBoVF5xaC6-2xPb7OX-W2veJ3G8uzPsdIOaVCDQGJwDhYAxxoSxjEOpckpZagxBohMSGmoynmvKTaSR5CxJNclsBJeKs4gYbkKT2N9egTV8Z4RI_awz11DC3PHO3eiQiPEGIjJh2-aLGp9WjZsREsrPhcA1tOaPv-W3f7ZptrXaxUzahcLdG3C9zmH915XT3YQVU27A1YrV8mID1jsNidwtIO8QB-Kk9PU4MN9qN3-BXzKXk6oNwJdl7iNsxbR6ZDG7DcPL0OkdWC3HpbkHfmHsBmGIVDQv7MlWM0rDolCMqKjQJCceBI3qhK5BzJFL47NwxfSECafqilzTqtqDZ638pILvWCr51FmiFZPTT9j0lqXi42BPhEej_vB9Z0_0PNhsTCXq9T4TrXd6sNWOWlVj9UWWZnyOIjZfyNJ0uQTllDO7Zjy4Wxn-95QZAg_yzINswSVaAQQJXxwpT44dWDhCzIU88eB54zxzs16iidA5138UJnb6bw5iB4nI7_9TJ1uw3h32e6K3PzjchGtxjSgcxw9g9Wx6bh7atO5MPXKryQdxyav3FwfFXGM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVjwuCMorLdAcEHAgkIfjxxFCt6W0qwotdG-W7UxEacmutg_BjZ_Ab-SXYDuPssAKjpFHlvV57JnJjL8BeFRpe8fxqowyIpT7daMiRSsTaUSmTaopQ8_2OaTb78nOOB8vQdq9hfFF-57S0l_TXXXYC_ysJ5-a0seEi-fTsroEK9yaQxdwFbS4KOvgPsjy_1WIFe2IGjP-2xxzhmjFYfrlb17mn8WSfcZ03p_1BmlwA663nmT4sln7TVjCehUuN70lv67C1aJr5XYL-L5jYzisQzP58e07nrfq9qz5VqWaNgn5UNVl6AgkZs1zh5PbMBpsjortqG2ZEBnnekTa0eEgxqlKY6VLSnmOSFwbFxIjRSZKQwUmxrVwy3JDmPVPlBY8ISgwxuwOLNeTGu9BWKE9qkiUpmVlY0zDKY2rSnOik8qQkgQQdfBJ09KJu64Wx9KntTMuPdxNm0sLdwBPevlpQ6SxUPKx341eTM2OXPkZy-XBcEvGH8Z7o3fFltwNYL3bLtmevBOZiNxGdCylAWz0oxZulwdRNU7OnIi13CzPF0tQQQW32hvA3WbzL5bMHQWgYAGwObXoBRxd9_xIffjR03Y7srdYZAE87RTol1UvQCL2CvYPwOTm3qud1JMTirX_n30Druy_HsjdN8O363AtbXl-0_Q-LJ_OzvCBdbZO9UN_un4C7moncQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+co-evolution%2C+co-adaptation+and+interactions&rft.jtitle=The+EMBO+journal&rft.au=Pazos%2C+Florencio&rft.au=Valencia%2C+Alfonso&rft.date=2008-10-22&rft.pub=Nature+Publishing+Group&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=27&rft.issue=20&rft.spage=2648&rft.epage=2655&rft_id=info:doi/10.1038%2Femboj.2008.189&rft_id=info%3Apmid%2F18818697&rft.externalDocID=PMC2556093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon