Scalable metagenomics alignment research tool (SMART): a scalable, rapid, and complete search heuristic for the classification of metagenomic sequences from complex sequence populations
Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capaci...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 17; no. 1; p. 292 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        28.07.2016
     BioMed Central Ltd Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/s12859-016-1159-6 | 
Cover
| Abstract | Background
Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results.
Results
After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 10
11
base pairs of 3.3 × 10
6
sequences from 9.25 × 10
5
species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 10
6
reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK.
Conclusions
SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived. | 
    
|---|---|
| AbstractList | Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results.
After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 10(11) base pairs of 3.3 × 10(6) sequences from 9.25 × 10(5) species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 10(6) reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK.
SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived. Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results. Results After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 1011 base pairs of 3.3 × 106 sequences from 9.25 × 105 species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 106 reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK. Conclusions SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived. Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results. Results After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 x 10.sup.11 base pairs of 3.3 x 10.sup.6 sequences from 9.25 x 10.sup.5 species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 x 10.sup.6 reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK. Conclusions SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived. Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results. Results After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 10 11 base pairs of 3.3 × 10 6 sequences from 9.25 × 10 5 species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 10 6 reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK. Conclusions SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived. Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results. After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 x 10.sup.11 base pairs of 3.3 x 10.sup.6 sequences from 9.25 x 10.sup.5 species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 x 10.sup.6 reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK. SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived. BACKGROUNDNext generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results.RESULTSAfter retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 10(11) base pairs of 3.3 × 10(6) sequences from 9.25 × 10(5) species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 10(6) reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK.CONCLUSIONSSMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived.  | 
    
| ArticleNumber | 292 | 
    
| Audience | Academic | 
    
| Author | Lee, Aaron Y. Lee, Cecilia S. Van Gelder, Russell N.  | 
    
| Author_xml | – sequence: 1 givenname: Aaron Y. surname: Lee fullname: Lee, Aaron Y. email: leeay@uw.edu organization: Department of Ophthalmology, University of Washington School of Medicine – sequence: 2 givenname: Cecilia S. surname: Lee fullname: Lee, Cecilia S. organization: Department of Ophthalmology, University of Washington School of Medicine – sequence: 3 givenname: Russell N. surname: Van Gelder fullname: Van Gelder, Russell N. organization: Department of Ophthalmology, University of Washington School of Medicine, Departments of Biological Structure and Pathology, University of Washington School of Medicine  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27465705$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkstu1DAYhSNURC_wAGyQJTat1BQ7FzthgTSquFQqQmrL2nKc3xlXjh3sBNpH4-3wdEI7UwFCWcSyz3dsn-P9ZMc6C0nykuATQir6JpCsKusUE5oSEgf0SbJHCkbSjOByZ2O8m-yHcI0xYRUunyW7GStoyXC5l_y8lMKIxgDqYRQdWNdrGZAwurM92BF5CCC8XKLROYMOLz8vLq6O3iKBwgweIy8G3R4jYVskXT8YGAHN0BImr8OoJVLOo3EJSBoRglZailE7i5za3Dhi3yawEgJS3vWz3c39NBrcMJk7MjxPniphAryY_wfJ1w_vr04_pedfPp6dLs5TSXM2popiQQvWUIVBNUVZK5KXLZFFlrW1jJqK5rkoCyC4VZhUBYNW0QKYUCVuaJMfJNnad7KDuP0hjOGD173wt5xgvuqBr3vgsQe-6oHTCL1bQ8PU9NDKmKQXD6ATmm-vWL3knfvOi5rmdV1Fg8PZwLt49zDyXgcJxggLbgqcVJhVjNWMROnrR9JrN3kbM1mryozl-EHVCQNcW-XivnJlyhcFraqa4GzldfIHVfxaiPXE16d0nN8CjraAqBnhZuzEFAI_u7zY1r7aDOU-jd-vMQrYWiC9C8GD4lKPd23HU2jzz7zJI_J_OpqLDVFrO_Abuf0V-gWPpxTi | 
    
| CitedBy_id | crossref_primary_10_3390_ijms19010129 crossref_primary_10_1016_j_ajo_2020_03_008 crossref_primary_10_1080_07388551_2018_1500997 crossref_primary_10_3389_fmicb_2018_00749 crossref_primary_10_3390_life12091345 crossref_primary_10_1016_j_ijbiomac_2024_134438 crossref_primary_10_1007_s44169_024_00072_2 crossref_primary_10_1016_j_xops_2022_100166 crossref_primary_10_1016_j_ophtha_2018_02_016 crossref_primary_10_30895_2221_996X_2018_18_4_208_215 crossref_primary_10_1016_j_ajo_2022_05_022 crossref_primary_10_1186_s13059_021_02443_7 crossref_primary_10_1016_j_ajo_2021_10_028 crossref_primary_10_1155_2018_6813467 crossref_primary_10_1038_s41564_023_01381_3 crossref_primary_10_3389_fphys_2016_00606 crossref_primary_10_1007_s13762_024_05594_9 crossref_primary_10_1016_j_ajo_2021_12_002 crossref_primary_10_1038_s41538_020_00083_y crossref_primary_10_1007_s00436_017_5397_y crossref_primary_10_1016_j_exppara_2017_03_005 crossref_primary_10_1097_APO_0000000000000366 crossref_primary_10_1172_jci_insight_183902 crossref_primary_10_1016_j_jtos_2019_10_007  | 
    
| Cites_doi | 10.1093/nar/gks803 10.1186/gb-2009-10-3-r25 10.1093/nar/30.1.17 10.1093/bioinformatics/btt389 10.1186/gb-2014-15-3-r46 10.1186/s12864-015-1419-2 10.1093/bioinformatics/btt601 10.1186/1471-2164-12-S2-S4 10.1186/1471-2105-11-259 10.1101/gr.097261.109 10.1145/1327452.1327492 10.1093/nar/25.17.3389 10.1186/1471-2105-11-S12-S1 10.1109/TNB.2015.2461219 10.1101/gr.096651.109 10.1093/bioinformatics/btp698 10.3390/ijms16011096 10.1186/s13015-014-0029-x 10.1145/1629175.1629198 10.1186/s12859-015-0753-3 10.1371/journal.pone.0102642 10.1093/bib/bbs088 10.1155/2008/205969 10.1093/bioinformatics/btr507 10.1007/978-1-61779-585-5_17 10.1109/TNB.2010.2081375 10.1038/nmeth.1358 10.1186/1471-2164-14-641 10.1142/S0219720012500151 10.1186/s13015-014-0030-4  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s). 2016 COPYRIGHT 2016 BioMed Central Ltd. Copyright BioMed Central 2016  | 
    
| Copyright_xml | – notice: The Author(s). 2016 – notice: COPYRIGHT 2016 BioMed Central Ltd. – notice: Copyright BioMed Central 2016  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1186/s12859-016-1159-6 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | 292 | 
    
| ExternalDocumentID | 10.1186/s12859-016-1159-6 PMC4963998 4133595701 A468891021 27465705 10_1186_s12859_016_1159_6  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: National Institutes of Health grantid: P30 EY001730; R01 EY022038; K23 EY024921 funderid: http://dx.doi.org/10.13039/100000002 – fundername: Research to Prevent Blindness grantid: Unrestricted funderid: http://dx.doi.org/10.13039/100001818 – fundername: NEI NIH HHS grantid: K23 EY024921 – fundername: NEI NIH HHS grantid: P30 EY001730 – fundername: NEI NIH HHS grantid: R01 EY022038 – fundername: ; grantid: P30 EY001730; R01 EY022038; K23 EY024921 – fundername: ; grantid: Unrestricted  | 
    
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c637t-f60a647b6f0efb459f135d1c422d9cc638633a54e10df01847edf64e7af50b6b3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Sun Oct 26 04:09:25 EDT 2025 Tue Sep 30 16:51:41 EDT 2025 Thu Oct 02 11:11:30 EDT 2025 Mon Oct 06 18:27:31 EDT 2025 Mon Oct 20 22:50:05 EDT 2025 Mon Oct 20 17:01:21 EDT 2025 Thu Oct 16 16:09:25 EDT 2025 Mon Jul 21 06:01:03 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Wed Oct 01 04:15:28 EDT 2025 Sat Sep 06 07:21:13 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Simulated Dataset Computational Node MapReduce Framework Cloud Computing Infrastructure Human Microbiome Project  | 
    
| Language | English | 
    
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c637t-f60a647b6f0efb459f135d1c422d9cc638633a54e10df01847edf64e7af50b6b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-016-1159-6 | 
    
| PMID | 27465705 | 
    
| PQID | 1807852730 | 
    
| PQPubID | 44065 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | unpaywall_primary_10_1186_s12859_016_1159_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4963998 proquest_miscellaneous_1807877971 proquest_journals_1807852730 gale_infotracmisc_A468891021 gale_infotracacademiconefile_A468891021 gale_incontextgauss_ISR_A468891021 pubmed_primary_27465705 crossref_citationtrail_10_1186_s12859_016_1159_6 crossref_primary_10_1186_s12859_016_1159_6 springer_journals_10_1186_s12859_016_1159_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-07-28 | 
    
| PublicationDateYYYYMMDD | 2016-07-28 | 
    
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-28 day: 28  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationSubtitle | BMC series – open, inclusive and trusted | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2016 | 
    
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V  | 
    
| References | RP Padhy (1159_CR29) 2011; 11 Z Rasheed (1159_CR19) 2012; 10 R Cattell (1159_CR28) 2011; 39 DE Wood (1159_CR5) 2014; 15 H Li (1159_CR7) 2010; 26 G Rosen (1159_CR12) 2008; 2008 A Schumacher (1159_CR25) 2014; 30 R Li (1159_CR8) 2010; 20 1159_CR34 DP Wall (1159_CR33) 2010; 11 H Cui (1159_CR15) 2013; 14 X Ding (1159_CR14) 2015; 16 1159_CR13 J Dean (1159_CR22) 2008; 51 RC Taylor (1159_CR24) 2010; 11 A Brady (1159_CR16) 2009; 6 J Dean (1159_CR23) 2010; 53 T Magoč (1159_CR30) 2011; 27 G Ditzler (1159_CR18) 2015; 14 CA Mack (1159_CR32) 2011; 24 C-L Hung (1159_CR27) 2015; 16 B Liu (1159_CR10) 2011; 12 Q Zou (1159_CR26) 2014; 15 J Peterson (1159_CR31) 2009; 19 GL Rosen (1159_CR11) 2010; 9 B Langmead (1159_CR6) 2009; 10 SF Altschul (1159_CR4) 1997; 25 MS Lindner (1159_CR2) 2013; 41 DH Huson (1159_CR9) 2012; 856 R Ounit (1159_CR20) 2015; 16 M Comin (1159_CR1) 2015; 10 DA Benson (1159_CR3) 2002; 30 LV Vinh (1159_CR17) 2015; 10 SK Ames (1159_CR21) 2013; 29 25879410 - BMC Genomics. 2015 Mar 25;16:236 26316190 - IEEE Trans Nanobioscience. 2015 Sep;14(6):608-16 25691913 - Algorithms Mol Biol. 2015 Jan 28;10:4 21903629 - Bioinformatics. 2011 Nov 1;27(21):2957-63 21210976 - BMC Bioinformatics. 2010 Dec 21;11 Suppl 12:S1 22399469 - Methods Mol Biol. 2012;856:415-29 20482786 - BMC Bioinformatics. 2010 May 18;11:259 24149054 - Bioinformatics. 2014 Jan 1;30(1):119-20 24580807 - Genome Biol. 2014 Mar 03;15(3):R46 23396756 - Brief Bioinform. 2014 Jul;15(4):637-47 25648210 - Algorithms Mol Biol. 2015 Jan 16;10(1):2 25569088 - Int J Mol Sci. 2015 Jan 05;16(1):1096-110 20876033 - IEEE Trans Nanobioscience. 2010 Dec;9(4):310-6 26618474 - J Comput Biol. 2015 Nov 30 22849369 - J Bioinform Comput Biol. 2012 Oct;10(5):1250015 20019144 - Genome Res. 2010 Feb;20(2):265-72 26446672 - BMC Bioinformatics. 2015 Oct 07;16:323 23828782 - Bioinformatics. 2013 Sep 15;29(18):2253-60 22941661 - Nucleic Acids Res. 2013 Jan 7;41(1):e10 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 24053649 - BMC Genomics. 2013 Sep 22;14:641 19261174 - Genome Biol. 2009;10(3):R25 21989143 - BMC Genomics. 2011;12 Suppl 2:S4 19648916 - Nat Methods. 2009 Sep;6(9):673-6 11752243 - Nucleic Acids Res. 2002 Jan 1;30(1):17-20 19956701 - Adv Bioinformatics. 2008;2008:205969 19819907 - Genome Res. 2009 Dec;19(12):2317-23 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95 25050811 - PLoS One. 2014 Jul 22;9(7):e102642  | 
    
| References_xml | – volume: 41 start-page: e10 year: 2013 ident: 1159_CR2 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks803 – volume: 10 start-page: R25 year: 2009 ident: 1159_CR6 publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 30 start-page: 17 year: 2002 ident: 1159_CR3 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.17 – volume: 39 start-page: 12 year: 2011 ident: 1159_CR28 publication-title: ACM – ident: 1159_CR13 – volume: 29 start-page: 2253 year: 2013 ident: 1159_CR21 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt389 – volume: 24 start-page: 202 year: 2011 ident: 1159_CR32 publication-title: IEEE – volume: 15 start-page: R46 year: 2014 ident: 1159_CR5 publication-title: Genome Biol doi: 10.1186/gb-2014-15-3-r46 – volume: 16 start-page: 236 year: 2015 ident: 1159_CR20 publication-title: BMC Genomics doi: 10.1186/s12864-015-1419-2 – volume: 30 start-page: 119 year: 2014 ident: 1159_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt601 – volume: 12 start-page: S4 issue: Suppl 2 year: 2011 ident: 1159_CR10 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-S2-S4 – volume: 11 start-page: 259 year: 2010 ident: 1159_CR33 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-259 – volume: 20 start-page: 265 year: 2010 ident: 1159_CR8 publication-title: Genome Res doi: 10.1101/gr.097261.109 – volume: 51 start-page: 107 year: 2008 ident: 1159_CR22 publication-title: ACM doi: 10.1145/1327452.1327492 – volume: 25 start-page: 3389 year: 1997 ident: 1159_CR4 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.17.3389 – volume: 11 start-page: S1 issue: Suppl 12 year: 2010 ident: 1159_CR24 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-S12-S1 – volume: 14 start-page: 608 year: 2015 ident: 1159_CR18 publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2015.2461219 – volume: 19 start-page: 2317 year: 2009 ident: 1159_CR31 publication-title: Genome Res doi: 10.1101/gr.096651.109 – volume: 26 start-page: 589 year: 2010 ident: 1159_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp698 – volume: 16 start-page: 1096 year: 2015 ident: 1159_CR27 publication-title: Int J Mol Sci doi: 10.3390/ijms16011096 – volume: 11 start-page: 15 year: 2011 ident: 1159_CR29 publication-title: Int J Adv Eng Sci Technol – volume: 10 start-page: 4 year: 2015 ident: 1159_CR1 publication-title: Algorithms Mol Biol doi: 10.1186/s13015-014-0029-x – volume: 53 start-page: 72 year: 2010 ident: 1159_CR23 publication-title: ACM doi: 10.1145/1629175.1629198 – volume: 16 start-page: 323 year: 2015 ident: 1159_CR14 publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0753-3 – ident: 1159_CR34 doi: 10.1371/journal.pone.0102642 – volume: 15 start-page: 637 year: 2014 ident: 1159_CR26 publication-title: Brief Bioinformatics doi: 10.1093/bib/bbs088 – volume: 2008 start-page: 205969 year: 2008 ident: 1159_CR12 publication-title: Adv Bioinformatics doi: 10.1155/2008/205969 – volume: 27 start-page: 2957 year: 2011 ident: 1159_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr507 – volume: 856 start-page: 415 year: 2012 ident: 1159_CR9 publication-title: Methods Mol Biol doi: 10.1007/978-1-61779-585-5_17 – volume: 9 start-page: 310 year: 2010 ident: 1159_CR11 publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2010.2081375 – volume: 6 start-page: 673 year: 2009 ident: 1159_CR16 publication-title: Nat Methods doi: 10.1038/nmeth.1358 – volume: 14 start-page: 641 year: 2013 ident: 1159_CR15 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-641 – volume: 10 start-page: 1250015 year: 2012 ident: 1159_CR19 publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720012500151 – volume: 10 start-page: 2 year: 2015 ident: 1159_CR17 publication-title: Algorithms Mol Biol doi: 10.1186/s13015-014-0030-4 – reference: 25569088 - Int J Mol Sci. 2015 Jan 05;16(1):1096-110 – reference: 25050811 - PLoS One. 2014 Jul 22;9(7):e102642 – reference: 23396756 - Brief Bioinform. 2014 Jul;15(4):637-47 – reference: 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95 – reference: 19819907 - Genome Res. 2009 Dec;19(12):2317-23 – reference: 22849369 - J Bioinform Comput Biol. 2012 Oct;10(5):1250015 – reference: 19956701 - Adv Bioinformatics. 2008;2008:205969 – reference: 20876033 - IEEE Trans Nanobioscience. 2010 Dec;9(4):310-6 – reference: 26618474 - J Comput Biol. 2015 Nov 30;: – reference: 25648210 - Algorithms Mol Biol. 2015 Jan 16;10(1):2 – reference: 21210976 - BMC Bioinformatics. 2010 Dec 21;11 Suppl 12:S1 – reference: 22941661 - Nucleic Acids Res. 2013 Jan 7;41(1):e10 – reference: 21989143 - BMC Genomics. 2011;12 Suppl 2:S4 – reference: 23828782 - Bioinformatics. 2013 Sep 15;29(18):2253-60 – reference: 19648916 - Nat Methods. 2009 Sep;6(9):673-6 – reference: 24580807 - Genome Biol. 2014 Mar 03;15(3):R46 – reference: 22399469 - Methods Mol Biol. 2012;856:415-29 – reference: 26446672 - BMC Bioinformatics. 2015 Oct 07;16:323 – reference: 20482786 - BMC Bioinformatics. 2010 May 18;11:259 – reference: 25879410 - BMC Genomics. 2015 Mar 25;16:236 – reference: 11752243 - Nucleic Acids Res. 2002 Jan 1;30(1):17-20 – reference: 24149054 - Bioinformatics. 2014 Jan 1;30(1):119-20 – reference: 24053649 - BMC Genomics. 2013 Sep 22;14:641 – reference: 20019144 - Genome Res. 2010 Feb;20(2):265-72 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 25691913 - Algorithms Mol Biol. 2015 Jan 28;10:4 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 26316190 - IEEE Trans Nanobioscience. 2015 Sep;14(6):608-16 – reference: 21903629 - Bioinformatics. 2011 Nov 1;27(21):2957-63  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.3253431 | 
    
| Snippet | Background
Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity... Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and... Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity... BACKGROUNDNext generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity...  | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 292 | 
    
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Classification Computational Biology/Bioinformatics Computer Appl. in Life Sciences Databases, Nucleic Acid Deoxyribonucleic acid DNA DNA sequencing Heuristic programming Heuristics High-Throughput Nucleotide Sequencing Humans Life Sciences Metagenomics - methods Methods Microarrays Microorganisms Nucleotide sequencing Sequence analysis (methods) Sequence Analysis, DNA Software  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEF_qFdF-EN-NVllF8NEuzWOzmwgiVVqq0EN6FvotbPbRO7gmsblD-6f537mTbOKlYP2anU2ymZndmczMbxB65QPImWCGBEJzQlWkSJ4ySRIljILKRWnAUTwas8MT-vU0Pl1D464WBtIquz2x2ahVKeEf-W4AwOiAFuZ_rH4Q6BoF0dWuhYZwrRXUhwZi7AZaDwEZa4TWP-2Pvx33cQVA8HexzSBhu3UA-G3WnWbEWkYpYYPT6eoevXJIXU2g7KOoG-jWsqjE5U8xn68cVAd30R1nYeK9ViTuoTVd3Ec3256Tlw_Q74nlCtRL4XO9EADRej6TNbbm-FmTGIAd_M8UL8pyjt9MjqzJ-_Y9Frh2E3fwhahmageLQuEmJd0a3thNmupli_2MrTWMrXWJJdjnkJDUyAAuzeqDcZ_KjaHQxd3uV38ZV32DsfohOjnY__75kLj-DUSyiC-IYb5glOfM-NrkNE5NEMUqkDQMVSotTcKiSMRUB74yvnU1uVaGUc2Fif2c5dEjNCrKQm8iLCNNISBp2WWo3XREJEKtqRBMWwcxjjzkd3zLpAM3hx4b86xxchKWtazOIKENWJ0xD73rp1Qtssd1xC9BGDJAzCggJedMLOs6-zI5zvYoS5IUOqR76LUjMqV9uBSuwsEuAUC2BpRbA0qr0nI43Mlc5raUOvurAB560Q_DTEiTK3S5dDScp9ze4nErov3aQk4hzSn2EB8Ib08AQOPDkWI2bQDHaQp2bOKh7U7MV17r359su9eE_3_gJ9cv-Sm6HYKW-pyEyRYaLS6W-pm1Bhf5c6fifwCJAl9e priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagCAEPiJtAQQYhcbQWORw74a2qqApSeWCp1DfL8dFdaZusmkTQn8a_w5N4rU3FIV7jGSfxjO0Zzcw3CL2KAeRMMksSaTihOtOkKpkihZZWQ-WisuAoHn1hh8f080l-4sGioRZmM36fFOx9mwDCmnN4GXG2S0nYVXTN3VFsiMuy_RAwAGh-H7T8Ldvk2rl8-G7cPpczI0N49Ba60dcrefFdLpcbN9DBHXTbm454b5T1XXTF1PfQ9bGZ5MV99HPmlhsKofCZ6SRgr54tVIudnX06RPyxx_WZ465plvjN7MjZsm8_YIlbz7iLz-VqoXexrDUecs2dRY0909z0I6gzdmYudmYjVmB4Q6bRIFzc2M0X45CjjaGCxU_3IzzGq9A5rH2Ajg8-fts_JL4xA1Es4x2xLJaM8orZ2NiK5qVNslwniqapLpWjKViWyZyaJNY2dj4kN9oyari0eVyxKnuItuqmNo8RVpmhEGl04rLUnSYyk6kxVEpmnOeXZxGK13ITyqOWQ_OMpRi8l4KJUdQCMtVA1IJF6F1gWY2QHX8jfgnKIAAKo4Zcm1PZt634NPsq9igrihJan0fotSeyjXu5kr50wf0CoGdNKLcnlG6vqunwWueEPytakQDkP-DgxRF6EYaBE_LfatP0nobzkrspHo0qGv4t5RTyl_II8YnyBgJAEJ-O1Iv5gCROSzBQiwjtrNV847P-vGQ7YSf8e4Gf_NfcT9HNFDZtzElabKOt7rw3z5zV11XPh_3-C-j7UWA priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJ8R44JsRGMggJBhbunw4dsJbhZgG0gaiVBpPkePYa7U2iZZEMP4z_jt8iRs1FR9C4i2K75LYuTvfyXe_Q-i5AyBnnCrb5ZLZJPVTO4mosMOUqxQqF4WCQPH4hB5NyPvT4HQDfVjWwiQLkcxyAxoKQMXD1TL0eWO79YU4PyhS1ap8SA9KF3DYdFhMbe3hRDa9gjZpoJ3zAdqcnHwcfWlqjJhr6wAnMGebv-Tr7U7rNnplk1pPoOxOUa-ja3VW8MuvfD5f2agOb6JiOcU2P-V8WFfJUHxfQ3_8j2twC90wTi0etVJ4G23I7A662ra5vLyLfoy1IECJFl7IigMq7EK_DusI4KzJRcAGcWiKqzyf45fjY-1l777GHJeGcR9f8GKW7mOepbjJgte-PjZMU1m3cNNYTwVrhxYLCAkgB6oRO5yr1RfjLnscQ22Nedy37jYuup5m5T00OXz7-c2RbVpG2IL6rLIVdTglLKHKkSohQaRcP0hdQTwvjYSmCanv84BI10mVo6NbJlNFiWRcBU5CE_8-GmR5Jh8gLHxJ4AxUr6oi2s5xn3tSEs6p1DFp4FvIWYpKLAyeOrT1mMdNXBXSuP0jMeTQwR-JqYVedSxFCybyJ-JnIH8xgHRkkAV0xuuyjN-NP8UjQsMwgqbsFnphiFQOIsFNUYWeAuB69Sh3epTaioj-8FLMY2PFytiFZgSA0OdY6Gk3DJyQmZfJvDY0jEVMP2K71Ypubh4jkFkVWIj19KUjAGzz_kg2mzYY5yQC1zm00N5Ss1Y-6_dLttcp398X-OE_UT9CWx7olsNsL9xBg-qilo-1P1olT4yN-QmSKIfa priority: 102 providerName: Unpaywall  | 
    
| Title | Scalable metagenomics alignment research tool (SMART): a scalable, rapid, and complete search heuristic for the classification of metagenomic sequences from complex sequence populations | 
    
| URI | https://link.springer.com/article/10.1186/s12859-016-1159-6 https://www.ncbi.nlm.nih.gov/pubmed/27465705 https://www.proquest.com/docview/1807852730 https://www.proquest.com/docview/1807877971 https://pubmed.ncbi.nlm.nih.gov/PMC4963998 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-016-1159-6  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central : All journals [free access] customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1tb9MwELb2IgR8QLwTGJVBSEhsgaRx7AQJoVJtjEqrppVK5VPkJPZaqUtK04r1b_ELuUvc0ExjfEmk-Ow0vjv7rr57jpA3DoKcSa5tVyphs9RL7TjkiR2kUqeYuZhodBRP-vx4yHojf7RF1uWtzAQW17p2WE9qOJ--v_y5-gwK_6lU-IB_KFxEYQOnmNtg34Q23ya7sFGFWMnhhP09VED4_jLZSLg2eDq-OeS8dojGNnV1sd7Yra5GUtbHqXfJ7WU2k6tfcjrd2LGO7pN7xtSknUo2HpAtlT0kt6rik6tH5PcA2IOJU_RCLSRitV5MkoKCXX5eRghQgwM0pos8n9KPVNLC9DigczmbpAdUZiktg9LB9KaGeqyWFfozBXuYgn1JE7TQMSSplAKa68030jqYm2Kqixnusn5MZ3WJseIxGR4dfu8e26aCg51wTyxszR3JmYi5dpSOmR9q1_NTN2HtdhomQBNwz5M-U66TagecTaFSzZkSUvtOzGPvCdnJ8kw9IzTxFMMjSeCTZrDsSE-2lWJScgUuou9ZxFkzLEoMvDlW2ZhGpZsT8KjicYQhbcjjiFvkXd1lVmF73ET8GqUgQsyMDINyzuWyKKJvg7Oow3gQhFgj3SJvDZHO4eWJNDkO8AkIs9Wg3GtQglInzea1sEVrnYhcrA2AgHmORV7VzdgTA-UylS8NjRChgCGeVrJZf1tbMAx08i0iGlJbEyDUeLMlm4xLyHEWoiUbWGR_Ld8bP-vfU7Zfq8D_J_j5zTPygtxpo3o6wm4He2RnMV-ql2APLuIW2RYjAdfg6GuL7HY6vUEP7l8O-6dn8LTLu63yn5ZWuRpAy7B_2vnxB-euY_k | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8CBQwC8Wij5uHYCRJCFVDt0seBbaW9Gcexuyttk6XZVdk_xZ1_hydxwqYS5dTreuysMw_PxDPfIPTSA5AzQbXrC8VckoWZmyZUunEmdAaVi1JDoLh_QHtH5OswGq6gX00tDKRVNjaxMtRZIeEb-ZYPwOiAFuZ9nP5woWsU3K42LTRqsdhVizMTspUf-p8Nf18Fwc6Xw08913YVcCUN2czV1BOUsJRqT-mURIn2wyjzJQmCLJGGJqZhKCKifC_TngmAmMo0JYoJHXkpTUOz7hV0lYTGlhj9YcM2wPOhP4C9OfVjulX6gA5ngnXqGr8rcWnn7Dt_AiwdgefTM9s72htobZ5PxeJMTCZLx-DOLXTT-q94uxa422hF5XfQtbqj5eIu-j0wPIdqLHyiZgIAYE_GssTG2T-u0g6wBRca4VlRTPCbwb5xqN--xwKXduImPhXTcbaJRZ7hKuHduPXYThqpeY0sjY2vjY3viiV4_5DuVEkYLvTyg3GbKI6hjMYu97P9GU_b9mXlPXR0KXy8j1bzIlcPEZahInDdadiliTFpIhSBUkQIqkz4GYUO8hq-cWmh06GDx4RXIVRMec1qDulywGpOHfSunTKtcUMuIn4BwsABjyOHhJ9jMS9L3h9849uExnEC_dcd9NoS6cI8XApbP2G2ABBeHcr1DqUxGLI73Mgctwar5H_Vy0HP22GYCUl4uSrmloaxhJklHtQi2u4tYASSqCIHsY7wtgQAY94dycejCs6cJOAlxw7aaMR86W_9-5VttJrw_xf86OItP0NrvcP9Pb7XP9h9jK4HoLEec4N4Ha3OTufqifE7Z-nTStkx-n7Z1uUPG0OV1w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagCAoPiKsQKGAQEkcbNYdjJ7xVC6sWaIXYVuqb5fjorrRNoiYr6E_j3-FJvNGm4hCv6xlnk5mxZzQz3yD0KgCQM0GNHwrNfKJi5ecZlX6qhFHQuSgNBIoHh3TvmHw6SU7cnNN6We2-TEl2PQ2A0lQ0O5UynYmndKcOAXfNhsHUtx5N5tOr6BqxlxuMMBjRUZ9GAMB-l8r8LdvgMrp8JK_cSZfrJfuk6S20vigqcfFdzOcr99L4DrrtHEq822nAXXRFF_fQ9W7E5MV99HNihQDtUfhMNwIQWc9mssbW-z5t6wCwQ_uZ4qYs5_jN5MB6uG_fY4Frx7iNz0U1U9tYFAq3FejWz8aOaaoXHdQzts4vts4kluCOQ_1RK3JcmtUH475yG0Nfi9vuR_8zrvp5YvUDdDz-eDTa8924Bl_SmDW-oYGghOXUBNrkJMlMGCcqlCSKVCYtTUrjWCREh4EygY0smVaGEs2ESYKc5vEGWivKQj9CWMaaQP7RissQe8aIWERaEyGotvFgEnsoWMqNS4dlDiM15ryNaVLKO1FzqF8DUXPqoXc9S9UBefyN-CUoAweAjAIqcE7Foq75_uQb3yU0TTMYiO6h147IlPbhUriGBvsKgKk1oNwcUFoLlsPlpc5xd4LUPIRBAICOF3joRb8MnFAVV-hy4WgYy5jd4mGnov27RYxAVVPiITZQ3p4AcMWHK8Vs2uKLkwzc1tRDW0s1X_lbf_5kW70l_PsDP_6vvZ-jG18_jPmX_cPPT9DNCOw3YH6UbqK15nyhn1q3sMmftab_C1JdXJY | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJ8R44JsRGMggJBhbunw4dsJbhZgG0gaiVBpPkePYa7U2iZZEMP4z_jt8iRs1FR9C4i2K75LYuTvfyXe_Q-i5AyBnnCrb5ZLZJPVTO4mosMOUqxQqF4WCQPH4hB5NyPvT4HQDfVjWwiQLkcxyAxoKQMXD1TL0eWO79YU4PyhS1ap8SA9KF3DYdFhMbe3hRDa9gjZpoJ3zAdqcnHwcfWlqjJhr6wAnMGebv-Tr7U7rNnplk1pPoOxOUa-ja3VW8MuvfD5f2agOb6JiOcU2P-V8WFfJUHxfQ3_8j2twC90wTi0etVJ4G23I7A662ra5vLyLfoy1IECJFl7IigMq7EK_DusI4KzJRcAGcWiKqzyf45fjY-1l777GHJeGcR9f8GKW7mOepbjJgte-PjZMU1m3cNNYTwVrhxYLCAkgB6oRO5yr1RfjLnscQ22Nedy37jYuup5m5T00OXz7-c2RbVpG2IL6rLIVdTglLKHKkSohQaRcP0hdQTwvjYSmCanv84BI10mVo6NbJlNFiWRcBU5CE_8-GmR5Jh8gLHxJ4AxUr6oi2s5xn3tSEs6p1DFp4FvIWYpKLAyeOrT1mMdNXBXSuP0jMeTQwR-JqYVedSxFCybyJ-JnIH8xgHRkkAV0xuuyjN-NP8UjQsMwgqbsFnphiFQOIsFNUYWeAuB69Sh3epTaioj-8FLMY2PFytiFZgSA0OdY6Gk3DJyQmZfJvDY0jEVMP2K71Ypubh4jkFkVWIj19KUjAGzz_kg2mzYY5yQC1zm00N5Ss1Y-6_dLttcp398X-OE_UT9CWx7olsNsL9xBg-qilo-1P1olT4yN-QmSKIfa | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+metagenomics+alignment+research+tool+%3A+a+scalable%2C+rapid%2C+and+complete+search+heuristic+for+the+classification+of+metagenomic+sequences+from+complex+sequence+populations&rft.jtitle=BMC+bioinformatics&rft.au=Lee%2C+Aaron+Y&rft.au=Lee%2C+Cecilia+S&rft.au=Van+Gelder%2C+Russell+N&rft.date=2016-07-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-016-1159-6&rft.externalDocID=A468891021 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |