Scalable metagenomics alignment research tool (SMART): a scalable, rapid, and complete search heuristic for the classification of metagenomic sequences from complex sequence populations

Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capaci...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 17; no. 1; p. 292
Main Authors Lee, Aaron Y., Lee, Cecilia S., Van Gelder, Russell N.
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.07.2016
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-016-1159-6

Cover

Abstract Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results. Results After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 10 11 base pairs of 3.3 × 10 6 sequences from 9.25 × 10 5 species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 10 6 reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK. Conclusions SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived.
AbstractList Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results. After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 10(11) base pairs of 3.3 × 10(6) sequences from 9.25 × 10(5) species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 10(6) reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK. SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived.
Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results. Results After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 1011 base pairs of 3.3 × 106 sequences from 9.25 × 105 species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 106 reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK. Conclusions SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived.
Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results. Results After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 x 10.sup.11 base pairs of 3.3 x 10.sup.6 sequences from 9.25 x 10.sup.5 species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 x 10.sup.6 reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK. Conclusions SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived.
Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results. Results After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 10 11 base pairs of 3.3 × 10 6 sequences from 9.25 × 10 5 species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 10 6 reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK. Conclusions SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived.
Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results. After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 x 10.sup.11 base pairs of 3.3 x 10.sup.6 sequences from 9.25 x 10.sup.5 species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 x 10.sup.6 reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK. SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived.
BACKGROUNDNext generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results.RESULTSAfter retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 10(11) base pairs of 3.3 × 10(6) sequences from 9.25 × 10(5) species were indexed using 4 base pair hashtable shards. A MapReduce searching strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors. Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 10(6) reads classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater than 94 % with simulated datasets at the species classification level. We demonstrated the application of this technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART required approximately half the amount of RAM of CLARK.CONCLUSIONSSMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable of matching against all the species and sequences present in the NCBI GenBank and allows for a single step classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the metagenomic sample may have been derived.
ArticleNumber 292
Audience Academic
Author Lee, Aaron Y.
Lee, Cecilia S.
Van Gelder, Russell N.
Author_xml – sequence: 1
  givenname: Aaron Y.
  surname: Lee
  fullname: Lee, Aaron Y.
  email: leeay@uw.edu
  organization: Department of Ophthalmology, University of Washington School of Medicine
– sequence: 2
  givenname: Cecilia S.
  surname: Lee
  fullname: Lee, Cecilia S.
  organization: Department of Ophthalmology, University of Washington School of Medicine
– sequence: 3
  givenname: Russell N.
  surname: Van Gelder
  fullname: Van Gelder, Russell N.
  organization: Department of Ophthalmology, University of Washington School of Medicine, Departments of Biological Structure and Pathology, University of Washington School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27465705$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAYhSNURC_wAGyQJTat1BQ7FzthgTSquFQqQmrL2nKc3xlXjh3sBNpH4-3wdEI7UwFCWcSyz3dsn-P9ZMc6C0nykuATQir6JpCsKusUE5oSEgf0SbJHCkbSjOByZ2O8m-yHcI0xYRUunyW7GStoyXC5l_y8lMKIxgDqYRQdWNdrGZAwurM92BF5CCC8XKLROYMOLz8vLq6O3iKBwgweIy8G3R4jYVskXT8YGAHN0BImr8OoJVLOo3EJSBoRglZailE7i5za3Dhi3yawEgJS3vWz3c39NBrcMJk7MjxPniphAryY_wfJ1w_vr04_pedfPp6dLs5TSXM2popiQQvWUIVBNUVZK5KXLZFFlrW1jJqK5rkoCyC4VZhUBYNW0QKYUCVuaJMfJNnad7KDuP0hjOGD173wt5xgvuqBr3vgsQe-6oHTCL1bQ8PU9NDKmKQXD6ATmm-vWL3knfvOi5rmdV1Fg8PZwLt49zDyXgcJxggLbgqcVJhVjNWMROnrR9JrN3kbM1mryozl-EHVCQNcW-XivnJlyhcFraqa4GzldfIHVfxaiPXE16d0nN8CjraAqBnhZuzEFAI_u7zY1r7aDOU-jd-vMQrYWiC9C8GD4lKPd23HU2jzz7zJI_J_OpqLDVFrO_Abuf0V-gWPpxTi
CitedBy_id crossref_primary_10_3390_ijms19010129
crossref_primary_10_1016_j_ajo_2020_03_008
crossref_primary_10_1080_07388551_2018_1500997
crossref_primary_10_3389_fmicb_2018_00749
crossref_primary_10_3390_life12091345
crossref_primary_10_1016_j_ijbiomac_2024_134438
crossref_primary_10_1007_s44169_024_00072_2
crossref_primary_10_1016_j_xops_2022_100166
crossref_primary_10_1016_j_ophtha_2018_02_016
crossref_primary_10_30895_2221_996X_2018_18_4_208_215
crossref_primary_10_1016_j_ajo_2022_05_022
crossref_primary_10_1186_s13059_021_02443_7
crossref_primary_10_1016_j_ajo_2021_10_028
crossref_primary_10_1155_2018_6813467
crossref_primary_10_1038_s41564_023_01381_3
crossref_primary_10_3389_fphys_2016_00606
crossref_primary_10_1007_s13762_024_05594_9
crossref_primary_10_1016_j_ajo_2021_12_002
crossref_primary_10_1038_s41538_020_00083_y
crossref_primary_10_1007_s00436_017_5397_y
crossref_primary_10_1016_j_exppara_2017_03_005
crossref_primary_10_1097_APO_0000000000000366
crossref_primary_10_1172_jci_insight_183902
crossref_primary_10_1016_j_jtos_2019_10_007
Cites_doi 10.1093/nar/gks803
10.1186/gb-2009-10-3-r25
10.1093/nar/30.1.17
10.1093/bioinformatics/btt389
10.1186/gb-2014-15-3-r46
10.1186/s12864-015-1419-2
10.1093/bioinformatics/btt601
10.1186/1471-2164-12-S2-S4
10.1186/1471-2105-11-259
10.1101/gr.097261.109
10.1145/1327452.1327492
10.1093/nar/25.17.3389
10.1186/1471-2105-11-S12-S1
10.1109/TNB.2015.2461219
10.1101/gr.096651.109
10.1093/bioinformatics/btp698
10.3390/ijms16011096
10.1186/s13015-014-0029-x
10.1145/1629175.1629198
10.1186/s12859-015-0753-3
10.1371/journal.pone.0102642
10.1093/bib/bbs088
10.1155/2008/205969
10.1093/bioinformatics/btr507
10.1007/978-1-61779-585-5_17
10.1109/TNB.2010.2081375
10.1038/nmeth.1358
10.1186/1471-2164-14-641
10.1142/S0219720012500151
10.1186/s13015-014-0030-4
ContentType Journal Article
Copyright The Author(s). 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
Copyright_xml – notice: The Author(s). 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12859-016-1159-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 292
ExternalDocumentID 10.1186/s12859-016-1159-6
PMC4963998
4133595701
A468891021
27465705
10_1186_s12859_016_1159_6
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: P30 EY001730; R01 EY022038; K23 EY024921
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: Research to Prevent Blindness
  grantid: Unrestricted
  funderid: http://dx.doi.org/10.13039/100001818
– fundername: NEI NIH HHS
  grantid: K23 EY024921
– fundername: NEI NIH HHS
  grantid: P30 EY001730
– fundername: NEI NIH HHS
  grantid: R01 EY022038
– fundername: ;
  grantid: P30 EY001730; R01 EY022038; K23 EY024921
– fundername: ;
  grantid: Unrestricted
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c637t-f60a647b6f0efb459f135d1c422d9cc638633a54e10df01847edf64e7af50b6b3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Sun Oct 26 04:09:25 EDT 2025
Tue Sep 30 16:51:41 EDT 2025
Thu Oct 02 11:11:30 EDT 2025
Mon Oct 06 18:27:31 EDT 2025
Mon Oct 20 22:50:05 EDT 2025
Mon Oct 20 17:01:21 EDT 2025
Thu Oct 16 16:09:25 EDT 2025
Mon Jul 21 06:01:03 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Wed Oct 01 04:15:28 EDT 2025
Sat Sep 06 07:21:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Simulated Dataset
Computational Node
MapReduce Framework
Cloud Computing Infrastructure
Human Microbiome Project
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-f60a647b6f0efb459f135d1c422d9cc638633a54e10df01847edf64e7af50b6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-016-1159-6
PMID 27465705
PQID 1807852730
PQPubID 44065
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_s12859_016_1159_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4963998
proquest_miscellaneous_1807877971
proquest_journals_1807852730
gale_infotracmisc_A468891021
gale_infotracacademiconefile_A468891021
gale_incontextgauss_ISR_A468891021
pubmed_primary_27465705
crossref_citationtrail_10_1186_s12859_016_1159_6
crossref_primary_10_1186_s12859_016_1159_6
springer_journals_10_1186_s12859_016_1159_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-28
PublicationDateYYYYMMDD 2016-07-28
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References RP Padhy (1159_CR29) 2011; 11
Z Rasheed (1159_CR19) 2012; 10
R Cattell (1159_CR28) 2011; 39
DE Wood (1159_CR5) 2014; 15
H Li (1159_CR7) 2010; 26
G Rosen (1159_CR12) 2008; 2008
A Schumacher (1159_CR25) 2014; 30
R Li (1159_CR8) 2010; 20
1159_CR34
DP Wall (1159_CR33) 2010; 11
H Cui (1159_CR15) 2013; 14
X Ding (1159_CR14) 2015; 16
1159_CR13
J Dean (1159_CR22) 2008; 51
RC Taylor (1159_CR24) 2010; 11
A Brady (1159_CR16) 2009; 6
J Dean (1159_CR23) 2010; 53
T Magoč (1159_CR30) 2011; 27
G Ditzler (1159_CR18) 2015; 14
CA Mack (1159_CR32) 2011; 24
C-L Hung (1159_CR27) 2015; 16
B Liu (1159_CR10) 2011; 12
Q Zou (1159_CR26) 2014; 15
J Peterson (1159_CR31) 2009; 19
GL Rosen (1159_CR11) 2010; 9
B Langmead (1159_CR6) 2009; 10
SF Altschul (1159_CR4) 1997; 25
MS Lindner (1159_CR2) 2013; 41
DH Huson (1159_CR9) 2012; 856
R Ounit (1159_CR20) 2015; 16
M Comin (1159_CR1) 2015; 10
DA Benson (1159_CR3) 2002; 30
LV Vinh (1159_CR17) 2015; 10
SK Ames (1159_CR21) 2013; 29
25879410 - BMC Genomics. 2015 Mar 25;16:236
26316190 - IEEE Trans Nanobioscience. 2015 Sep;14(6):608-16
25691913 - Algorithms Mol Biol. 2015 Jan 28;10:4
21903629 - Bioinformatics. 2011 Nov 1;27(21):2957-63
21210976 - BMC Bioinformatics. 2010 Dec 21;11 Suppl 12:S1
22399469 - Methods Mol Biol. 2012;856:415-29
20482786 - BMC Bioinformatics. 2010 May 18;11:259
24149054 - Bioinformatics. 2014 Jan 1;30(1):119-20
24580807 - Genome Biol. 2014 Mar 03;15(3):R46
23396756 - Brief Bioinform. 2014 Jul;15(4):637-47
25648210 - Algorithms Mol Biol. 2015 Jan 16;10(1):2
25569088 - Int J Mol Sci. 2015 Jan 05;16(1):1096-110
20876033 - IEEE Trans Nanobioscience. 2010 Dec;9(4):310-6
26618474 - J Comput Biol. 2015 Nov 30
22849369 - J Bioinform Comput Biol. 2012 Oct;10(5):1250015
20019144 - Genome Res. 2010 Feb;20(2):265-72
26446672 - BMC Bioinformatics. 2015 Oct 07;16:323
23828782 - Bioinformatics. 2013 Sep 15;29(18):2253-60
22941661 - Nucleic Acids Res. 2013 Jan 7;41(1):e10
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
24053649 - BMC Genomics. 2013 Sep 22;14:641
19261174 - Genome Biol. 2009;10(3):R25
21989143 - BMC Genomics. 2011;12 Suppl 2:S4
19648916 - Nat Methods. 2009 Sep;6(9):673-6
11752243 - Nucleic Acids Res. 2002 Jan 1;30(1):17-20
19956701 - Adv Bioinformatics. 2008;2008:205969
19819907 - Genome Res. 2009 Dec;19(12):2317-23
20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95
25050811 - PLoS One. 2014 Jul 22;9(7):e102642
References_xml – volume: 41
  start-page: e10
  year: 2013
  ident: 1159_CR2
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks803
– volume: 10
  start-page: R25
  year: 2009
  ident: 1159_CR6
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 30
  start-page: 17
  year: 2002
  ident: 1159_CR3
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.17
– volume: 39
  start-page: 12
  year: 2011
  ident: 1159_CR28
  publication-title: ACM
– ident: 1159_CR13
– volume: 29
  start-page: 2253
  year: 2013
  ident: 1159_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt389
– volume: 24
  start-page: 202
  year: 2011
  ident: 1159_CR32
  publication-title: IEEE
– volume: 15
  start-page: R46
  year: 2014
  ident: 1159_CR5
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-3-r46
– volume: 16
  start-page: 236
  year: 2015
  ident: 1159_CR20
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1419-2
– volume: 30
  start-page: 119
  year: 2014
  ident: 1159_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt601
– volume: 12
  start-page: S4
  issue: Suppl 2
  year: 2011
  ident: 1159_CR10
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-S2-S4
– volume: 11
  start-page: 259
  year: 2010
  ident: 1159_CR33
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-259
– volume: 20
  start-page: 265
  year: 2010
  ident: 1159_CR8
  publication-title: Genome Res
  doi: 10.1101/gr.097261.109
– volume: 51
  start-page: 107
  year: 2008
  ident: 1159_CR22
  publication-title: ACM
  doi: 10.1145/1327452.1327492
– volume: 25
  start-page: 3389
  year: 1997
  ident: 1159_CR4
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 11
  start-page: S1
  issue: Suppl 12
  year: 2010
  ident: 1159_CR24
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-S12-S1
– volume: 14
  start-page: 608
  year: 2015
  ident: 1159_CR18
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2015.2461219
– volume: 19
  start-page: 2317
  year: 2009
  ident: 1159_CR31
  publication-title: Genome Res
  doi: 10.1101/gr.096651.109
– volume: 26
  start-page: 589
  year: 2010
  ident: 1159_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp698
– volume: 16
  start-page: 1096
  year: 2015
  ident: 1159_CR27
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms16011096
– volume: 11
  start-page: 15
  year: 2011
  ident: 1159_CR29
  publication-title: Int J Adv Eng Sci Technol
– volume: 10
  start-page: 4
  year: 2015
  ident: 1159_CR1
  publication-title: Algorithms Mol Biol
  doi: 10.1186/s13015-014-0029-x
– volume: 53
  start-page: 72
  year: 2010
  ident: 1159_CR23
  publication-title: ACM
  doi: 10.1145/1629175.1629198
– volume: 16
  start-page: 323
  year: 2015
  ident: 1159_CR14
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0753-3
– ident: 1159_CR34
  doi: 10.1371/journal.pone.0102642
– volume: 15
  start-page: 637
  year: 2014
  ident: 1159_CR26
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbs088
– volume: 2008
  start-page: 205969
  year: 2008
  ident: 1159_CR12
  publication-title: Adv Bioinformatics
  doi: 10.1155/2008/205969
– volume: 27
  start-page: 2957
  year: 2011
  ident: 1159_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr507
– volume: 856
  start-page: 415
  year: 2012
  ident: 1159_CR9
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-61779-585-5_17
– volume: 9
  start-page: 310
  year: 2010
  ident: 1159_CR11
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2010.2081375
– volume: 6
  start-page: 673
  year: 2009
  ident: 1159_CR16
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1358
– volume: 14
  start-page: 641
  year: 2013
  ident: 1159_CR15
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-641
– volume: 10
  start-page: 1250015
  year: 2012
  ident: 1159_CR19
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720012500151
– volume: 10
  start-page: 2
  year: 2015
  ident: 1159_CR17
  publication-title: Algorithms Mol Biol
  doi: 10.1186/s13015-014-0030-4
– reference: 25569088 - Int J Mol Sci. 2015 Jan 05;16(1):1096-110
– reference: 25050811 - PLoS One. 2014 Jul 22;9(7):e102642
– reference: 23396756 - Brief Bioinform. 2014 Jul;15(4):637-47
– reference: 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95
– reference: 19819907 - Genome Res. 2009 Dec;19(12):2317-23
– reference: 22849369 - J Bioinform Comput Biol. 2012 Oct;10(5):1250015
– reference: 19956701 - Adv Bioinformatics. 2008;2008:205969
– reference: 20876033 - IEEE Trans Nanobioscience. 2010 Dec;9(4):310-6
– reference: 26618474 - J Comput Biol. 2015 Nov 30;:
– reference: 25648210 - Algorithms Mol Biol. 2015 Jan 16;10(1):2
– reference: 21210976 - BMC Bioinformatics. 2010 Dec 21;11 Suppl 12:S1
– reference: 22941661 - Nucleic Acids Res. 2013 Jan 7;41(1):e10
– reference: 21989143 - BMC Genomics. 2011;12 Suppl 2:S4
– reference: 23828782 - Bioinformatics. 2013 Sep 15;29(18):2253-60
– reference: 19648916 - Nat Methods. 2009 Sep;6(9):673-6
– reference: 24580807 - Genome Biol. 2014 Mar 03;15(3):R46
– reference: 22399469 - Methods Mol Biol. 2012;856:415-29
– reference: 26446672 - BMC Bioinformatics. 2015 Oct 07;16:323
– reference: 20482786 - BMC Bioinformatics. 2010 May 18;11:259
– reference: 25879410 - BMC Genomics. 2015 Mar 25;16:236
– reference: 11752243 - Nucleic Acids Res. 2002 Jan 1;30(1):17-20
– reference: 24149054 - Bioinformatics. 2014 Jan 1;30(1):119-20
– reference: 24053649 - BMC Genomics. 2013 Sep 22;14:641
– reference: 20019144 - Genome Res. 2010 Feb;20(2):265-72
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 25691913 - Algorithms Mol Biol. 2015 Jan 28;10:4
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 26316190 - IEEE Trans Nanobioscience. 2015 Sep;14(6):608-16
– reference: 21903629 - Bioinformatics. 2011 Nov 1;27(21):2957-63
SSID ssj0017805
Score 2.3253431
Snippet Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity...
Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity and...
Background Next generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity...
BACKGROUNDNext generation sequencing technology has enabled characterization of metagenomics through massively parallel genomic DNA sequencing. The complexity...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 292
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Classification
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Databases, Nucleic Acid
Deoxyribonucleic acid
DNA
DNA sequencing
Heuristic programming
Heuristics
High-Throughput Nucleotide Sequencing
Humans
Life Sciences
Metagenomics - methods
Methods
Microarrays
Microorganisms
Nucleotide sequencing
Sequence analysis (methods)
Sequence Analysis, DNA
Software
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEF_qFdF-EN-NVllF8NEuzWOzmwgiVVqq0EN6FvotbPbRO7gmsblD-6f537mTbOKlYP2anU2ymZndmczMbxB65QPImWCGBEJzQlWkSJ4ySRIljILKRWnAUTwas8MT-vU0Pl1D464WBtIquz2x2ahVKeEf-W4AwOiAFuZ_rH4Q6BoF0dWuhYZwrRXUhwZi7AZaDwEZa4TWP-2Pvx33cQVA8HexzSBhu3UA-G3WnWbEWkYpYYPT6eoevXJIXU2g7KOoG-jWsqjE5U8xn68cVAd30R1nYeK9ViTuoTVd3Ec3256Tlw_Q74nlCtRL4XO9EADRej6TNbbm-FmTGIAd_M8UL8pyjt9MjqzJ-_Y9Frh2E3fwhahmageLQuEmJd0a3thNmupli_2MrTWMrXWJJdjnkJDUyAAuzeqDcZ_KjaHQxd3uV38ZV32DsfohOjnY__75kLj-DUSyiC-IYb5glOfM-NrkNE5NEMUqkDQMVSotTcKiSMRUB74yvnU1uVaGUc2Fif2c5dEjNCrKQm8iLCNNISBp2WWo3XREJEKtqRBMWwcxjjzkd3zLpAM3hx4b86xxchKWtazOIKENWJ0xD73rp1Qtssd1xC9BGDJAzCggJedMLOs6-zI5zvYoS5IUOqR76LUjMqV9uBSuwsEuAUC2BpRbA0qr0nI43Mlc5raUOvurAB560Q_DTEiTK3S5dDScp9ze4nErov3aQk4hzSn2EB8Ib08AQOPDkWI2bQDHaQp2bOKh7U7MV17r359su9eE_3_gJ9cv-Sm6HYKW-pyEyRYaLS6W-pm1Bhf5c6fifwCJAl9e
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagCAEPiJtAQQYhcbQWORw74a2qqApSeWCp1DfL8dFdaZusmkTQn8a_w5N4rU3FIV7jGSfxjO0Zzcw3CL2KAeRMMksSaTihOtOkKpkihZZWQ-WisuAoHn1hh8f080l-4sGioRZmM36fFOx9mwDCmnN4GXG2S0nYVXTN3VFsiMuy_RAwAGh-H7T8Ldvk2rl8-G7cPpczI0N49Ba60dcrefFdLpcbN9DBHXTbm454b5T1XXTF1PfQ9bGZ5MV99HPmlhsKofCZ6SRgr54tVIudnX06RPyxx_WZ465plvjN7MjZsm8_YIlbz7iLz-VqoXexrDUecs2dRY0909z0I6gzdmYudmYjVmB4Q6bRIFzc2M0X45CjjaGCxU_3IzzGq9A5rH2Ajg8-fts_JL4xA1Es4x2xLJaM8orZ2NiK5qVNslwniqapLpWjKViWyZyaJNY2dj4kN9oyari0eVyxKnuItuqmNo8RVpmhEGl04rLUnSYyk6kxVEpmnOeXZxGK13ITyqOWQ_OMpRi8l4KJUdQCMtVA1IJF6F1gWY2QHX8jfgnKIAAKo4Zcm1PZt634NPsq9igrihJan0fotSeyjXu5kr50wf0CoGdNKLcnlG6vqunwWueEPytakQDkP-DgxRF6EYaBE_LfatP0nobzkrspHo0qGv4t5RTyl_II8YnyBgJAEJ-O1Iv5gCROSzBQiwjtrNV847P-vGQ7YSf8e4Gf_NfcT9HNFDZtzElabKOt7rw3z5zV11XPh_3-C-j7UWA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJ8R44JsRGMggJBhbunw4dsJbhZgG0gaiVBpPkePYa7U2iZZEMP4z_jt8iRs1FR9C4i2K75LYuTvfyXe_Q-i5AyBnnCrb5ZLZJPVTO4mosMOUqxQqF4WCQPH4hB5NyPvT4HQDfVjWwiQLkcxyAxoKQMXD1TL0eWO79YU4PyhS1ap8SA9KF3DYdFhMbe3hRDa9gjZpoJ3zAdqcnHwcfWlqjJhr6wAnMGebv-Tr7U7rNnplk1pPoOxOUa-ja3VW8MuvfD5f2agOb6JiOcU2P-V8WFfJUHxfQ3_8j2twC90wTi0etVJ4G23I7A662ra5vLyLfoy1IECJFl7IigMq7EK_DusI4KzJRcAGcWiKqzyf45fjY-1l777GHJeGcR9f8GKW7mOepbjJgte-PjZMU1m3cNNYTwVrhxYLCAkgB6oRO5yr1RfjLnscQ22Nedy37jYuup5m5T00OXz7-c2RbVpG2IL6rLIVdTglLKHKkSohQaRcP0hdQTwvjYSmCanv84BI10mVo6NbJlNFiWRcBU5CE_8-GmR5Jh8gLHxJ4AxUr6oi2s5xn3tSEs6p1DFp4FvIWYpKLAyeOrT1mMdNXBXSuP0jMeTQwR-JqYVedSxFCybyJ-JnIH8xgHRkkAV0xuuyjN-NP8UjQsMwgqbsFnphiFQOIsFNUYWeAuB69Sh3epTaioj-8FLMY2PFytiFZgSA0OdY6Gk3DJyQmZfJvDY0jEVMP2K71Ypubh4jkFkVWIj19KUjAGzz_kg2mzYY5yQC1zm00N5Ss1Y-6_dLttcp398X-OE_UT9CWx7olsNsL9xBg-qilo-1P1olT4yN-QmSKIfa
  priority: 102
  providerName: Unpaywall
Title Scalable metagenomics alignment research tool (SMART): a scalable, rapid, and complete search heuristic for the classification of metagenomic sequences from complex sequence populations
URI https://link.springer.com/article/10.1186/s12859-016-1159-6
https://www.ncbi.nlm.nih.gov/pubmed/27465705
https://www.proquest.com/docview/1807852730
https://www.proquest.com/docview/1807877971
https://pubmed.ncbi.nlm.nih.gov/PMC4963998
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-016-1159-6
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central : All journals [free access]
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1tb9MwELb2IgR8QLwTGJVBSEhsgaRx7AQJoVJtjEqrppVK5VPkJPZaqUtK04r1b_ELuUvc0ExjfEmk-Ow0vjv7rr57jpA3DoKcSa5tVyphs9RL7TjkiR2kUqeYuZhodBRP-vx4yHojf7RF1uWtzAQW17p2WE9qOJ--v_y5-gwK_6lU-IB_KFxEYQOnmNtg34Q23ya7sFGFWMnhhP09VED4_jLZSLg2eDq-OeS8dojGNnV1sd7Yra5GUtbHqXfJ7WU2k6tfcjrd2LGO7pN7xtSknUo2HpAtlT0kt6rik6tH5PcA2IOJU_RCLSRitV5MkoKCXX5eRghQgwM0pos8n9KPVNLC9DigczmbpAdUZiktg9LB9KaGeqyWFfozBXuYgn1JE7TQMSSplAKa68030jqYm2Kqixnusn5MZ3WJseIxGR4dfu8e26aCg51wTyxszR3JmYi5dpSOmR9q1_NTN2HtdhomQBNwz5M-U66TagecTaFSzZkSUvtOzGPvCdnJ8kw9IzTxFMMjSeCTZrDsSE-2lWJScgUuou9ZxFkzLEoMvDlW2ZhGpZsT8KjicYQhbcjjiFvkXd1lVmF73ET8GqUgQsyMDINyzuWyKKJvg7Oow3gQhFgj3SJvDZHO4eWJNDkO8AkIs9Wg3GtQglInzea1sEVrnYhcrA2AgHmORV7VzdgTA-UylS8NjRChgCGeVrJZf1tbMAx08i0iGlJbEyDUeLMlm4xLyHEWoiUbWGR_Ld8bP-vfU7Zfq8D_J_j5zTPygtxpo3o6wm4He2RnMV-ql2APLuIW2RYjAdfg6GuL7HY6vUEP7l8O-6dn8LTLu63yn5ZWuRpAy7B_2vnxB-euY_k
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8CBQwC8Wij5uHYCRJCFVDt0seBbaW9Gcexuyttk6XZVdk_xZ1_hydxwqYS5dTreuysMw_PxDPfIPTSA5AzQbXrC8VckoWZmyZUunEmdAaVi1JDoLh_QHtH5OswGq6gX00tDKRVNjaxMtRZIeEb-ZYPwOiAFuZ9nP5woWsU3K42LTRqsdhVizMTspUf-p8Nf18Fwc6Xw08913YVcCUN2czV1BOUsJRqT-mURIn2wyjzJQmCLJGGJqZhKCKifC_TngmAmMo0JYoJHXkpTUOz7hV0lYTGlhj9YcM2wPOhP4C9OfVjulX6gA5ngnXqGr8rcWnn7Dt_AiwdgefTM9s72htobZ5PxeJMTCZLx-DOLXTT-q94uxa422hF5XfQtbqj5eIu-j0wPIdqLHyiZgIAYE_GssTG2T-u0g6wBRca4VlRTPCbwb5xqN--xwKXduImPhXTcbaJRZ7hKuHduPXYThqpeY0sjY2vjY3viiV4_5DuVEkYLvTyg3GbKI6hjMYu97P9GU_b9mXlPXR0KXy8j1bzIlcPEZahInDdadiliTFpIhSBUkQIqkz4GYUO8hq-cWmh06GDx4RXIVRMec1qDulywGpOHfSunTKtcUMuIn4BwsABjyOHhJ9jMS9L3h9849uExnEC_dcd9NoS6cI8XApbP2G2ABBeHcr1DqUxGLI73Mgctwar5H_Vy0HP22GYCUl4uSrmloaxhJklHtQi2u4tYASSqCIHsY7wtgQAY94dycejCs6cJOAlxw7aaMR86W_9-5VttJrw_xf86OItP0NrvcP9Pb7XP9h9jK4HoLEec4N4Ha3OTufqifE7Z-nTStkx-n7Z1uUPG0OV1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagCAoPiKsQKGAQEkcbNYdjJ7xVC6sWaIXYVuqb5fjorrRNoiYr6E_j3-FJvNGm4hCv6xlnk5mxZzQz3yD0KgCQM0GNHwrNfKJi5ecZlX6qhFHQuSgNBIoHh3TvmHw6SU7cnNN6We2-TEl2PQ2A0lQ0O5UynYmndKcOAXfNhsHUtx5N5tOr6BqxlxuMMBjRUZ9GAMB-l8r8LdvgMrp8JK_cSZfrJfuk6S20vigqcfFdzOcr99L4DrrtHEq822nAXXRFF_fQ9W7E5MV99HNihQDtUfhMNwIQWc9mssbW-z5t6wCwQ_uZ4qYs5_jN5MB6uG_fY4Frx7iNz0U1U9tYFAq3FejWz8aOaaoXHdQzts4vts4kluCOQ_1RK3JcmtUH475yG0Nfi9vuR_8zrvp5YvUDdDz-eDTa8924Bl_SmDW-oYGghOXUBNrkJMlMGCcqlCSKVCYtTUrjWCREh4EygY0smVaGEs2ESYKc5vEGWivKQj9CWMaaQP7RissQe8aIWERaEyGotvFgEnsoWMqNS4dlDiM15ryNaVLKO1FzqF8DUXPqoXc9S9UBefyN-CUoAweAjAIqcE7Foq75_uQb3yU0TTMYiO6h147IlPbhUriGBvsKgKk1oNwcUFoLlsPlpc5xd4LUPIRBAICOF3joRb8MnFAVV-hy4WgYy5jd4mGnov27RYxAVVPiITZQ3p4AcMWHK8Vs2uKLkwzc1tRDW0s1X_lbf_5kW70l_PsDP_6vvZ-jG18_jPmX_cPPT9DNCOw3YH6UbqK15nyhn1q3sMmftab_C1JdXJY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJ8R44JsRGMggJBhbunw4dsJbhZgG0gaiVBpPkePYa7U2iZZEMP4z_jt8iRs1FR9C4i2K75LYuTvfyXe_Q-i5AyBnnCrb5ZLZJPVTO4mosMOUqxQqF4WCQPH4hB5NyPvT4HQDfVjWwiQLkcxyAxoKQMXD1TL0eWO79YU4PyhS1ap8SA9KF3DYdFhMbe3hRDa9gjZpoJ3zAdqcnHwcfWlqjJhr6wAnMGebv-Tr7U7rNnplk1pPoOxOUa-ja3VW8MuvfD5f2agOb6JiOcU2P-V8WFfJUHxfQ3_8j2twC90wTi0etVJ4G23I7A662ra5vLyLfoy1IECJFl7IigMq7EK_DusI4KzJRcAGcWiKqzyf45fjY-1l777GHJeGcR9f8GKW7mOepbjJgte-PjZMU1m3cNNYTwVrhxYLCAkgB6oRO5yr1RfjLnscQ22Nedy37jYuup5m5T00OXz7-c2RbVpG2IL6rLIVdTglLKHKkSohQaRcP0hdQTwvjYSmCanv84BI10mVo6NbJlNFiWRcBU5CE_8-GmR5Jh8gLHxJ4AxUr6oi2s5xn3tSEs6p1DFp4FvIWYpKLAyeOrT1mMdNXBXSuP0jMeTQwR-JqYVedSxFCybyJ-JnIH8xgHRkkAV0xuuyjN-NP8UjQsMwgqbsFnphiFQOIsFNUYWeAuB69Sh3epTaioj-8FLMY2PFytiFZgSA0OdY6Gk3DJyQmZfJvDY0jEVMP2K71Ypubh4jkFkVWIj19KUjAGzz_kg2mzYY5yQC1zm00N5Ss1Y-6_dLttcp398X-OE_UT9CWx7olsNsL9xBg-qilo-1P1olT4yN-QmSKIfa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+metagenomics+alignment+research+tool+%3A+a+scalable%2C+rapid%2C+and+complete+search+heuristic+for+the+classification+of+metagenomic+sequences+from+complex+sequence+populations&rft.jtitle=BMC+bioinformatics&rft.au=Lee%2C+Aaron+Y&rft.au=Lee%2C+Cecilia+S&rft.au=Van+Gelder%2C+Russell+N&rft.date=2016-07-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-016-1159-6&rft.externalDocID=A468891021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon