Potential biomarkers of acute myocardial infarction based on weighted gene co-expression network analysis

Background Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP , CRP and other serum inflammatory...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 18; no. 1; pp. 9 - 12
Main Authors Liu, Zhihua, Ma, Chenguang, Gu, Junhua, Yu, Ming
Format Journal Article
LanguageEnglish
Published London BioMed Central 25.01.2019
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1475-925X
1475-925X
DOI10.1186/s12938-019-0625-6

Cover

Abstract Background Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP , CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI. Results Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction. Conclusions The results suggested that three overlapping genes ( FGFBP2 , GFOD1 and MLC1 ) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.
AbstractList Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI. Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction. The results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.
Abstract Background Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI. Results Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction. Conclusions The results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.
Background Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI. Results Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction. Conclusions The results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI. Keywords: Acute myocardial infarction, Weighted gene co-expression network analysis, Gene ontology, Functional enrichment analysis
Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI. Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction. The results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.
Background Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI. Results Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction. Conclusions The results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.
Background Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP , CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI. Results Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction. Conclusions The results suggested that three overlapping genes ( FGFBP2 , GFOD1 and MLC1 ) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.
Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI.BACKGROUNDAcute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI.Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction.RESULTSHere, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction.The results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.CONCLUSIONSThe results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.
ArticleNumber 9
Audience Academic
Author Liu, Zhihua
Gu, Junhua
Ma, Chenguang
Yu, Ming
Author_xml – sequence: 1
  givenname: Zhihua
  surname: Liu
  fullname: Liu, Zhihua
  email: zh.liu@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing Yuqiu Medical Research Institute, Shenzhen Yuqiu Biological Big Data Research Institute, Nanjing Yuqiu Biotechnology Co., Ltd
– sequence: 2
  givenname: Chenguang
  surname: Ma
  fullname: Ma, Chenguang
  organization: Tsinghua University, Beijing Yuqiu Medical Research Institute, Shenzhen Yuqiu Biological Big Data Research Institute, Nanjing Yuqiu Biotechnology Co., Ltd
– sequence: 3
  givenname: Junhua
  surname: Gu
  fullname: Gu, Junhua
  organization: Shenzhen Yuqiu Biological Big Data Research Institute, Nanjing Yuqiu Biotechnology Co., Ltd., Hebei University of Technology
– sequence: 4
  givenname: Ming
  surname: Yu
  fullname: Yu, Ming
  organization: Shenzhen Yuqiu Biological Big Data Research Institute, Nanjing Yuqiu Biotechnology Co., Ltd., Hebei University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30683112$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGxgkeJH7CQbpKriMVIlEA-JneU416mnmXhqO7Tz77lhStupAGWRK_s7x77X5zDbG_0IWfackmNKa_kmUtbwuiC0KYhkopCPsgNaVqJomPixd6_ezw5jXBLCCJHNk2yfE1lzStlB5j77BGNyeshb51c6XECIube5NlOCfLXxRodu3naj1cEk58e81RG6HIsrcP15wrqHEXLjC7heB4hxhkZIVz5c5HrUwya6-DR7bPUQ4dnN_yj7_v7dt9OPxdmnD4vTk7PCSF6lomNlbWQprNUaasq5bgwzUrdAjeUNtx2AaZipO0kt8FYSobHuyoqTThrKj7LF1rfzeqnWwWFTG-W1U78XfOiVDsmZAZRE85o2ghAhSkHbpoOyNRWtS04s5xa93m691lO7gs7gpIIedkx3d0Z3rnr_E53LqiolGry6MQj-coKY1MpFA8OgR_BTVIxWTcmlIBWiLx-gSz8FHN5M4WsJTip5R_UaG8A38XiumU3ViahpyWpW1Ugd_4XCr4OVMxgi63B9R_B6R4BMguvU6ylGtfj6ZZd9cX8ot9P4EyoE6BYwwccYwN4ilKg5uGobXIXBVXNw1dxX9UBjXNJz2vDmbvivkm2VEU8Zewh3c_u36BeywQFU
CitedBy_id crossref_primary_10_1371_journal_pone_0264362
crossref_primary_10_1097_MD_0000000000033634
crossref_primary_10_3389_fcvm_2020_601364
crossref_primary_10_1089_dna_2020_6447
crossref_primary_10_1016_j_bbrc_2024_149906
crossref_primary_10_3724_abbs_2024105
crossref_primary_10_3892_etm_2021_11085
crossref_primary_10_1155_2021_5584681
crossref_primary_10_1093_bib_bbab602
crossref_primary_10_1016_j_gep_2020_119111
crossref_primary_10_1186_s12917_023_03789_9
crossref_primary_10_3892_etm_2022_11270
crossref_primary_10_1080_21655979_2021_2003932
crossref_primary_10_3389_fcvm_2024_1360548
crossref_primary_10_1590_1414_431x2023e12910
crossref_primary_10_1007_s13721_022_00371_5
crossref_primary_10_1631_jzus_B2000544
crossref_primary_10_3389_fcvm_2022_912454
crossref_primary_10_1016_j_heliyon_2023_e13323
crossref_primary_10_1186_s12891_021_03958_7
crossref_primary_10_3390_genes13122321
crossref_primary_10_3390_jcdd9010030
Cites_doi 10.1097/HJH.0b013e3282ef9819
10.1038/srep43167
10.1111/j.1365-2796.2012.02589.x
10.1186/s13040-016-0117-1
10.1093/bioinformatics/bts666
10.1016/j.artmed.2017.02.005
10.1182/blood-2004-08-3283
10.1371/journal.pone.0042076
10.1007/s11033-012-2330-4
10.1007/s10741-007-9004-7
10.1093/molbev/mst021
10.1016/j.jjcc.2010.10.003
10.1016/j.amjcard.2007.02.077
10.1159/000258197
10.1186/gm560
10.1001/archinte.167.6.573
10.1016/j.jacc.2006.05.055
10.1038/s41598-017-04037-5
10.1016/j.yjmcc.2014.04.017
10.1001/archinte.162.21.2405
10.1002/path.2652
10.1186/1755-8794-4-83
10.1038/nature03985
10.5812/ircmj.26919v2
10.1007/s10741-016-9554-7
10.1016/j.ijcard.2015.03.305
10.1161/ATVBAHA.114.304405
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2019 BioMed Central Ltd.
Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s12938-019-0625-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE




Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 12
ExternalDocumentID oai_doaj_org_article_63a981950055451b9de4bc718430f33f
PMC6347746
A581428278
30683112
10_1186_s12938_019_0625_6
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: SZ Basic Research Grant
  grantid: JCYJ20150401145529007
– fundername: SZ Technology Research Grant
  grantid: CXZZ20151015163619907; JSGG20160229123927512; KQJSCX20170331161941176
– fundername: SZ Technology Research Grant
  grantid: KQJSCX20170331161941176
– fundername: SZ Technology Research Grant
  grantid: CXZZ20151015163619907
– fundername: SZ Technology Research Grant
  grantid: JSGG20160229123927512
– fundername: ;
  grantid: JCYJ20150401145529007
– fundername: ;
  grantid: CXZZ20151015163619907; JSGG20160229123927512; KQJSCX20170331161941176
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c637t-d248c645ffaae8133a9c2c6abe1cf393fdeec92c8d61fe3b605a8d6d4730d6c13
IEDL.DBID M48
ISSN 1475-925X
IngestDate Wed Aug 27 01:31:09 EDT 2025
Thu Aug 21 14:26:58 EDT 2025
Thu Sep 04 18:09:45 EDT 2025
Fri Jul 25 19:33:09 EDT 2025
Tue Jun 17 21:46:32 EDT 2025
Tue Jun 10 20:29:10 EDT 2025
Fri Jun 27 04:22:33 EDT 2025
Thu Apr 03 07:04:31 EDT 2025
Tue Jul 01 00:34:37 EDT 2025
Thu Apr 24 23:07:17 EDT 2025
Sat Sep 06 07:30:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gene ontology
Functional enrichment analysis
Acute myocardial infarction
Weighted gene co-expression network analysis
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-d248c645ffaae8133a9c2c6abe1cf393fdeec92c8d61fe3b605a8d6d4730d6c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-019-0625-6
PMID 30683112
PQID 2183153076
PQPubID 42562
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_63a981950055451b9de4bc718430f33f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6347746
proquest_miscellaneous_2179436507
proquest_journals_2183153076
gale_infotracmisc_A581428278
gale_infotracacademiconefile_A581428278
gale_incontextgauss_ISR_A581428278
pubmed_primary_30683112
crossref_primary_10_1186_s12938_019_0625_6
crossref_citationtrail_10_1186_s12938_019_0625_6
springer_journals_10_1186_s12938_019_0625_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-25
PublicationDateYYYYMMDD 2019-01-25
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-25
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References Y Ge (625_CR5) 2012; 272
D Mozaffarian (625_CR1) 2016; 133
A Bauters (625_CR24) 2007; 100
ZH Liu (625_CR10) 2012; 29
DV Cokkinos (625_CR23) 2016; 21
UA Ajani (625_CR3) 2006; 48
J Kim (625_CR9) 2014; 6
S Aoki (625_CR25) 2011; 57
Y Devaux (625_CR8) 2011; 4
ZH Liu (625_CR14) 2013; 40
R Suresh (625_CR19) 2014; 74
PA Hall (625_CR6) 2010; 220
D Yang (625_CR12) 2012; 7
L Wei (625_CR15) 2017; 83
J Li (625_CR17) 2017; 7
SE Calvano (625_CR20) 2005; 437
B Heidecker (625_CR7) 2007; 12
F Abdulaziz Qari (625_CR22) 2015; 17
M Hausberg (625_CR28) 2007; 25
SB Wettinger (625_CR21) 2005; 105
J Li (625_CR18) 2016; 9
D Wang (625_CR16) 2017; 7
GM Ren (625_CR11) 2013; 29
H Jiang (625_CR26) 2015; 35
MR Law (625_CR2) 2002; 162
S Ozturk (625_CR27) 2015; 186
A Hozawa (625_CR4) 2007; 167
JK Cheng (625_CR13) 2013; 30
References_xml – volume: 25
  start-page: 2004
  issue: 10
  year: 2007
  ident: 625_CR28
  publication-title: J Hypertens
  doi: 10.1097/HJH.0b013e3282ef9819
– volume: 7
  start-page: 43167
  year: 2017
  ident: 625_CR16
  publication-title: Sci Rep
  doi: 10.1038/srep43167
– volume: 272
  start-page: 430
  issue: 5
  year: 2012
  ident: 625_CR5
  publication-title: J Intern Med
  doi: 10.1111/j.1365-2796.2012.02589.x
– volume: 9
  start-page: 37
  year: 2016
  ident: 625_CR18
  publication-title: BioData Min
  doi: 10.1186/s13040-016-0117-1
– volume: 29
  start-page: 279
  issue: 2
  year: 2013
  ident: 625_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts666
– volume: 83
  start-page: 82
  year: 2017
  ident: 625_CR15
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2017.02.005
– volume: 105
  start-page: 2000
  issue: 5
  year: 2005
  ident: 625_CR21
  publication-title: Blood
  doi: 10.1182/blood-2004-08-3283
– volume: 7
  start-page: e42076
  issue: 7
  year: 2012
  ident: 625_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0042076
– volume: 40
  start-page: 2491
  year: 2013
  ident: 625_CR14
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-012-2330-4
– volume: 12
  start-page: 1
  issue: 1
  year: 2007
  ident: 625_CR7
  publication-title: Heart Fail Rev
  doi: 10.1007/s10741-007-9004-7
– volume: 30
  start-page: 1032
  issue: 5
  year: 2013
  ident: 625_CR13
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst021
– volume: 57
  start-page: 202
  issue: 2
  year: 2011
  ident: 625_CR25
  publication-title: J Cardiol
  doi: 10.1016/j.jjcc.2010.10.003
– volume: 100
  start-page: 182
  issue: 2
  year: 2007
  ident: 625_CR24
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2007.02.077
– volume: 29
  start-page: 851
  year: 2012
  ident: 625_CR10
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000258197
– volume: 6
  start-page: 40
  issue: 5
  year: 2014
  ident: 625_CR9
  publication-title: Genome Med
  doi: 10.1186/gm560
– volume: 167
  start-page: 573
  issue: 6
  year: 2007
  ident: 625_CR4
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.167.6.573
– volume: 48
  start-page: 1177
  issue: 6
  year: 2006
  ident: 625_CR3
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2006.05.055
– volume: 7
  start-page: 4354
  year: 2017
  ident: 625_CR17
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-04037-5
– volume: 74
  start-page: 13
  year: 2014
  ident: 625_CR19
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2014.04.017
– volume: 133
  start-page: e38
  issue: 4
  year: 2016
  ident: 625_CR1
  publication-title: Circulation
– volume: 162
  start-page: 2405
  issue: 21
  year: 2002
  ident: 625_CR2
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.162.21.2405
– volume: 220
  start-page: 109
  issue: 2
  year: 2010
  ident: 625_CR6
  publication-title: J Pathol
  doi: 10.1002/path.2652
– volume: 4
  start-page: 83
  year: 2011
  ident: 625_CR8
  publication-title: BMC Med Genom
  doi: 10.1186/1755-8794-4-83
– volume: 437
  start-page: 1032
  issue: 7061
  year: 2005
  ident: 625_CR20
  publication-title: Nature
  doi: 10.1038/nature03985
– volume: 17
  start-page: e26919
  issue: 7
  year: 2015
  ident: 625_CR22
  publication-title: Iran Red Crescent Med J
  doi: 10.5812/ircmj.26919v2
– volume: 21
  start-page: 365
  issue: 4
  year: 2016
  ident: 625_CR23
  publication-title: Heart Fail Rev
  doi: 10.1007/s10741-016-9554-7
– volume: 186
  start-page: 299
  year: 2015
  ident: 625_CR27
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2015.03.305
– volume: 35
  start-page: 580
  issue: 3
  year: 2015
  ident: 625_CR26
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.114.304405
SSID ssj0020069
Score 2.3295338
Snippet Background Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis...
Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify...
Background Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis...
Abstract Background Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Acute Coronary Syndrome - metabolism
Acute myocardial infarction
Bioinformatics
Biological markers
Biomarkers
Biomarkers - metabolism
Biomaterials
Biomedical Engineering and Bioengineering
BioMedical Engineering and the Heart
Biomedical Engineering/Biotechnology
Biotechnology
Blood
Blood Proteins - metabolism
Cardiovascular disease
Case-Control Studies
Cluster Analysis
Computational Biology
Congestive heart failure
Coronary vessels
Datasets
Developed countries
Diabetes Mellitus, Type 1 - metabolism
Diagnosis
DNA microarrays
Engineering
Enrichment
Feasibility studies
Functional enrichment analysis
Gene expression
Gene Expression Profiling
Gene Expression Regulation
Gene ontology
Genes
Genetic aspects
Genomes
Health aspects
Health care
Heart
Heart attack
Heart attacks
Heart failure
Humans
Immune response
Immune system
Industrialized nations
Inflammation
Membrane Proteins - metabolism
Modules
Mortality
Myocardial infarction
Myocardial Infarction - genetics
Myocardial Infarction - metabolism
Network analysis
Oligonucleotide Array Sequence Analysis
Ontology
Oxidoreductases - genetics
Oxidoreductases - metabolism
Patient Discharge
Patients
Pilot Projects
Renal failure
Thyroid
Thyroid diseases
Thyroid Diseases - metabolism
Transcription, Genetic
Weighted gene co-expression network analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA-yB9EH2eZX55QogqCEtU3z0ccpjilMRB3sLSRpooOtHWsv6n-_c9rc6-1EffEtNCf3Nuf8kpPTnPxCyPNauTxEUTAlLAQowmnmouYsd8pp7QL4JPw0cPRBHh5X70_EydpVX5gTNtEDT4rbk9zWuNeDZFGVKFzdhMp5hdeU5JHziLMvuLFlMJVCLSTgTXuYhZZ7PXo1TNrCE_elYHLmhUay_t-n5DWfdD1f8tqm6eiLDjbJnbSIpPvTy2-RG6HdJrfXqAW3yc2jtGl-l5x-7AbMCYIWeNge83Eue9pFav1iCPT8J7gzhMkZBbQB7tFUFL1bQ6Hwffx2CmVAWqC-Y-FHyp1taTvlkFObmE3ukeODt1_eHLJ0wwLzkquBNWWlvaxEjNYGDeGqrX3ppXWh8JHXPDYh-Lr0upFFDNxB7GOh3FQwLzTSF_w-2Wi7NjwktLFaCIc3_EWI0XRlPXe84T4Uwgqd-4zkS40bn-jH8RaMMzOGIVqayUgGjGTQSEZm5OWqycXEvfE34ddoxpUg0maPDwBMJoHJ_AtMGXmGIDBIjNFi5s1Xu-h78-7zJ7MvNJLTlUpn5EUSih30wNt0kAH0gFxaM8ndmSSMXD-vXmLNpJmjN7hkBS-UK-jR01U1tsRsuDZ0C5RBWj9YW6uMPJigueo3hIDwA0WZETUD7Uwx85r29NvIKy55BcEA_O-rJbx_vdYf9b7zP_T-iNwqx8FZsFLsko3hchEew2JvcE_GcX0F2bVOXA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ha9QwFA86QfSD6NRZnRJFEJSypmnS9JNM8ZzCRNTBvoUkTeZgtvPaQ_3vfa_NdevEfQuXl7tL3i95ecnL7xHyvCpt5oNgaSkMOCjCqtQGxdPMllYp68Em4dHA_ie5d1B8PBSH8cCti2GV6zVxWKjr1uEZ-Q6acpid4Ha_Pv2ZYtYovF2NKTSukmssByThS_HF-8nhQhreeJPJlNzp0LZh6Ba-u89FKme2aKDs_3dhPmeZLkZNXrg6HSzS4ja5FbeSdHfU_R1yxTeb5OY5gsFNcn0_Xp3fJcef2x4jg6AFPrnHqJxlR9tAjVv1nv74A0YNwXJCAXOAflQYRRtXUyj8Gk5QoQx489S1qf8dI2gb2oyR5NREfpN75GDx7tvbvTTmWUid5GWf1nmhnCxECMZ4BU6rqVzupLGeucArHmrvXZU7VUsWPLfgARko1wWsDrV0jN8nG03b-AeE1kYJYTHPXwBPTRXGcctr7jwTRqjMJSRbj7h2kYQcc2Gc6MEZUVKPStKgJI1K0jIhL6cmpyMDx2XCb1CNkyCSZw8ftMsjHeeiltBBvD5E_rFCMFvVvrCuxMw3WeA8JOQZgkAjPUaD8TdHZtV1-sPXL3pXKKSoy0uVkBdRKLTQA2ficwYYB2TUmkluzyRh_rp59RprOq4fnT5De0KeTtXYEmPiGt-uUAbJ_WCHXSZka4Tm1G9wBOELWJ6Qcgba2cDMa5rj7wO7uOQFuATwu6_W8D77W_8d94eXd-IRuZEP046ludgmG_1y5R_DZq63T4YZ-xfntEcx
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0BPEeRM-v6ilRBEEptk2Tpo_n4nEKJ6Ie3FtI0kQPzva4dlH_e2fa7Lo9P8C3sJm0m8wvmZlm8gvA07qymQ8iTythMEARVqU2KJ5mtrJKWY82iT4NHL6TB0fl22NxHMmi6SzM5v59ruTLnuwRpVvRWflCpPIyXBG47lL23kIu1rEVMe7GTcs_NpuZnZGd__c1eMMIXUyQvLBLOhqf_RtwPXqNbG9S80245Nsd2N7gEtyBq4dxl_wWnLzvBkoCwhZ0up4ScM571gVm3HLw7OsPtF-Ei1OG8EKgk24YmbOGYeHb-LEUywgtz1yX-u8xWbZl7ZQ0zkykMrkNR_uvPy0O0nilQuokr4a0KUrlZClCMMYrjE9N7QonjfW5C7zmofHe1YVTjcyD5xaDHYPlpsSFoJEu53dgq-1afw9YY5QQlq70CxiUqdI4bnnDnc-FESpzCWSrEdcu8o3TtReneow7lNSTkjQqSZOStEzg-brJ2US28S_hV6TGtSDxZI8_IHx0nHZaYgdpp5CoxkqR27rxpXUVXXKTBc5DAk8IBJqYMFpKtflsln2v33z8oPeEIja6olIJPItCocMeOBNPLuA4EHnWTHJ3JolT1c2rV1jTcanoNfmoaHayCnv0eF1NLSn9rfXdkmSIxw-d6SqBuxM01_3GmA8fkBcJVDPQzgZmXtOefBmJxCUv0fvH975YwfvX3_rruN__L-kHcK0YZ2GeFmIXtobzpX-IbtxgH40T-CfYDD_B
  priority: 102
  providerName: Springer Nature
Title Potential biomarkers of acute myocardial infarction based on weighted gene co-expression network analysis
URI https://link.springer.com/article/10.1186/s12938-019-0625-6
https://www.ncbi.nlm.nih.gov/pubmed/30683112
https://www.proquest.com/docview/2183153076
https://www.proquest.com/docview/2179436507
https://pubmed.ncbi.nlm.nih.gov/PMC6347746
https://doaj.org/article/63a981950055451b9de4bc718430f33f
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ADMLS
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M48
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: AAJSJ
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: C6C
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELf2kBB8QDBegVEFhIQECiRx_MgHhLZqZSB1mgaV-s2yHXtMKgn0Ibb_njs3LcsYiC-VG5-T-HyX89nn3xHyohQmdZ5liWAaHBRmZGK8pElqhJHSOLBJuDQwPOKHo-LTmI03yCq9VcvA2bWuHeaTGk0nb85_XLwHhX8XFF7ytzO0WRiShefpc5bwTbINhilHIR8W600FdJ7LcNhIsKTM2bjd5Lz2Fh0zFdD8__xmXzJaVwMqr-yqBmM1uENut7PMeG8pFnfJhqt3yK1L2IM75Maw3VW_R86OmzkGDUELPI2PATvTWdz4WNvF3MXfLsDeoRxNYmAQKAaOZYzmr4qh8DMsrkIZRNHFtknceRtcW8f1Msg81i30yX0yGhx86R8mbQqGxHIq5kmVF9LygnmvtZPgz-rS5pZr4zLraUl95ZwtcysrnnlHDThHGspVAR-OituMPiBbdVO7RySutGTMYApAD06cLLSlhlbUuoxpJlMbkXTFcWVbfHJMkzFRwU-RXC0HScEgKRwkxSPyat3k-xKc41_E-ziMa0LE1Q4XmumpatVUcegg7iwiNFnBMlNWrjBWYFKc1FPqI_IchUAhckaNoTmnejGbqY-fT9Qek4helwsZkZctkW-gB1a3Jx2ADwi21aHc7VCCattu9UrW1EozFM5pwUylAnr0bF2NLTFcrnbNAmkQ9w8m3yIiD5eiue43-IhwgyyPiOgIbYcx3Zr67GsAHue0AG8Bnvt6Jd6_X-uvfH_839x4Qm7mQQOzJGe7ZGs-XbinMOWbmx7ZFGMBv3LwoUe29w-Ojk_gX5_3e2ERpRcU_RdKOFWn
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKkTgeEJQrUMAgEFJR1CSOHe8DQuWodukhBK20b8Z27FKpJGWzq9I_xW9kJsduU0Tf-mbF4yT2zHg89vgbQl4OMhM5z-Mw4xocFG5kaLxkYWQyI6VxYJNwa2BnVwz3089jPl4if7q7MBhW2c2J9USdlxb3yNfRlIN2gtv97vhXiFmj8HS1S6HRiMWWOz0Bl616O_oI_H2VJJuf9j4MwzarQGgFy6ZhnqTSipR7r7WT4KLpgU2s0MbF1rMB87lzdpBYmYvYO2Zgva-hnKegC7mwMYP3XiFXUxaliNWfjRcOHsL-tiensRTrFdpSDBXDe_4JD0XP9tUpAv41BGcs4fkozXNHtbUF3LxNbrVLV7rRyNodsuSKFXLzDKDhCrm20x7V3yWHX8opRiJBC7zij1FAk4qWnmo7mzr68xSMKArnEQUZh2FFAaFoU3MKhZN6xxbKIN-O2jJ0v9uI3YIWTeQ61S2eyj2yfykcuE-Wi7JwDwnNteTcYF5BD56hTLVlhuXMuphrLiMbkKgbcWVb0HPMvXGkaudHCtUwSQGTFDJJiYCszZscN4gfFxG_RzbOCRGsu35QTg5Uq_tKQAfxuBLxzlIem0HuUmMzzLQTecZ8QF6gECiE4ygw3udAz6pKjb59VRtcIiReksmAvG6JfAk9sLq9PgHjgAhePcrVHiXMF7Zf3cmaauerSi20KyDP59XYEmPwClfOkAbBBGFFnwXkQSOa836D4wkviJOAZD2h7Q1Mv6Y4_FGjmQuWggsC333Tiffit_477o8u7sQzcn24t7Ottke7W4_JjaRWwThM-CpZnk5m7gksJKfmaa29lHy_7OniL4evhh8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gkyZ4QDBgFAYEhIQEqtY2TZo-Hh-n7WDTxJi0tyhJkzFptNP1TsB_j93myjo-JN6ii9OeYzuOa-cXQl6UhUmc52lccA0BCjcyNl6yODGFkdI48En4aWD_QOwe57MTfhLuOW1X1e6rlGR_pgFRmurFzkXlexOXYqdFL4VFWHiCPuOxuE7WJS8FRF_rk8nsaDbEXIjEG5KZfxw4ckcdav_va_Ml53S1cPJK9rRzStPb5FbYTdJJL_475JqrN8nNSxiDm2RjP2TP75KzwwZ5BI2jeOoeC3PmLW081Xa5cPTrD_BrqC_nFNQODABlRtHNVRQa37qPqNAGlXPUNrH7Hopoa1r3xeRUB4iTe-R4-v7z2904XLUQW8GKRVxlubQi595r7STErbq0mRXauNR6VjJfOWfLzMpKpN4xA0GQhnaVwwJRCZuy-2Stbmr3gNBKS84NXvXnIViTubbMsIpZl3LNZWIjkqxmXNmAQ47XYZyrLh6RQvVCUiAkhUJSIiKvhiEXPQjHv4jfoBgHQsTP7n5o5qcqmKMSwCBmEBGCLOepKSuXG1vg5TeJZ8xH5DkqgUKEjBpLcE71sm3V3tEnNeESUeqyQkbkZSDyDXBgdTjRAPOAoFojyu0RJZiwHXevdE2FJaRVuHcFd5QUwNGzoRtHYllc7Zol0iC-H2yyi4hs9ao58A2xIDwgzSJSjJR2NDHjnvrsSwcwLlgOUQG89_VKvX_9rb_O-8P_on5KNg7fTdXHvYMPj8iNrDPINM74NllbzJfuMez0FuZJsOafqpNMbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+biomarkers+of+acute+myocardial+infarction+based+on+weighted+gene+co-expression+network+analysis&rft.jtitle=Biomedical+engineering+online&rft.au=Liu%2C+Zhihua&rft.au=Ma%2C+Chenguang&rft.au=Gu%2C+Junhua&rft.au=Yu%2C+Ming&rft.date=2019-01-25&rft.pub=BioMed+Central+Ltd&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12938-019-0625-6&rft.externalDocID=A581428278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon