Statistical considerations for testing an AI algorithm used for prescreening lung CT images

Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more rec...

Full description

Saved in:
Bibliographic Details
Published inContemporary clinical trials communications Vol. 16; p. 100434
Main Authors Obuchowski, Nancy A., Bullen, Jennifer A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.12.2019
Elsevier
Subjects
Online AccessGet full text
ISSN2451-8654
2451-8654
DOI10.1016/j.conctc.2019.100434

Cover

Abstract Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm.
AbstractList AbstractArtificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm’s performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm.
Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm.Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm.
Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm.
Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm. Keywords: Artificial intelligence, Diagnostic accuracy, Prescreening, Computer-aided detection, Diagnostic accuracy studies, Area under the ROC curve
ArticleNumber 100434
Author Obuchowski, Nancy A.
Bullen, Jennifer A.
AuthorAffiliation Quantitative Health Sciences /JJN3, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
AuthorAffiliation_xml – name: Quantitative Health Sciences /JJN3, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
Author_xml – sequence: 1
  givenname: Nancy A.
  surname: Obuchowski
  fullname: Obuchowski, Nancy A.
  email: obuchon@ccf.org
– sequence: 2
  givenname: Jennifer A.
  surname: Bullen
  fullname: Bullen, Jennifer A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31485545$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1vEzEQhleoiJbSf4DQHrkk-DsbhJCqiI9IlTi0nDhYXns2dXDsYO8W5d8zm5SqRUKUy641fueZ8TvzvDqKKUJVvaRkSglVb9ZTm6Lt7ZQROscQEVw8qU6YkHTSKCmO7p2Pq7NS1oRgHp9RJp9Vx5yKRkohT6pvl73pfem9NaFGZvEOMkbwVHcp1z3gXVzVJtbny9qEVcq-v97UQwG3F2wzFJsB4qgKA34WV7XfmBWUF9XTzoQCZ7f_0-rrxw9Xi8-Tiy-flovzi4nFhvpJK6xrWueI5R21RCghCTSuddw6wngDwFxjjGKUt3NlZ51zqLeS0bYDsIyfVssD1yWz1tuM1fNOJ-P1PpDySpuMLwyglWk7JVsFkoFw85Hg7NwAF9waZTpkyQNriFuz-2lCuANSokfv9VofvNej9_rgPea9P-Rth3aDTIh9NuFBMw9vor_Wq3Sj1YzOiOIIeH0LyOnHgK7rjS8WQjAR0lA0Y42klDdqhtJX92vdFfk9VRSIg8DmVEqG7rFvePtHmvX9fhewYx8eaQDgpG88ZF2sh2jB-Qy2x1H4_wXY4OO4l99hB2WdhhxxizTVhWmiL8f9HtebzjlSlELAu78D_l3_F8iBDjE
CitedBy_id crossref_primary_10_1016_j_arbres_2024_11_001
crossref_primary_10_1186_s13244_022_01331_3
crossref_primary_10_1007_s00330_023_10422_8
crossref_primary_10_1016_j_jacr_2023_06_025
crossref_primary_10_1007_s12032_021_01500_2
crossref_primary_10_1007_s00330_023_10074_8
crossref_primary_10_1007_s10278_021_00441_6
crossref_primary_10_1016_S2589_7500_20_30003_0
crossref_primary_10_1016_S2589_7500_21_00106_0
crossref_primary_10_1097_RTI_0000000000000691
crossref_primary_10_24835_1607_0763_1446
crossref_primary_10_1148_radiol_211593
crossref_primary_10_3348_kjr_2019_0821
crossref_primary_10_1136_bmjopen_2021_053024
crossref_primary_10_1016_S0140_6736_22_01694_4
crossref_primary_10_1007_s00521_020_05349_w
crossref_primary_10_1007_s10278_022_00631_w
crossref_primary_10_3390_cancers14163867
crossref_primary_10_1177_02841851221140556
crossref_primary_10_3390_cancers17050882
Cites_doi 10.1158/1078-0432.CCR-18-0385
10.1136/svn-2017-000101
10.1093/biostatistics/2.3.249
10.1148/radiol.14131315
10.1002/(SICI)1097-0258(20000315)19:5<649::AID-SIM371>3.0.CO;2-H
10.1097/RTI.0b013e3181f240bc
10.1016/j.acra.2011.12.016
10.1016/j.ejrad.2011.01.098
10.1016/j.acra.2012.04.011
10.1056/NEJMoa1209120
10.1148/radiol.2017171920
10.3171/2018.8.FOCUS18191
ContentType Journal Article
Copyright 2019 The Authors
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.conctc.2019.100434
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2451-8654
EndPage 100434
ExternalDocumentID oai_doaj_org_article_6abf65b6e52e4d91bfedc9ae343ca6af
10.1016/j.conctc.2019.100434
PMC6717063
31485545
10_1016_j_conctc_2019_100434
S2451865419301966
1_s2_0_S2451865419301966
Genre Journal Article
GroupedDBID .1-
.FO
0R~
1P~
457
53G
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
NCXOZ
AFCTW
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c637t-b4cd8bdd0c3f1c046450e8dbd3cd0238ee2d8aa6213b96c7fddd8bc521bfeec23
IEDL.DBID UNPAY
ISSN 2451-8654
IngestDate Fri Oct 03 12:50:46 EDT 2025
Tue Aug 19 15:58:29 EDT 2025
Tue Sep 30 16:51:05 EDT 2025
Wed Oct 01 13:47:19 EDT 2025
Thu Apr 03 06:55:19 EDT 2025
Thu Apr 24 22:51:42 EDT 2025
Wed Oct 01 01:13:17 EDT 2025
Tue Jul 25 20:54:29 EDT 2023
Tue Feb 25 19:58:15 EST 2025
Tue Aug 26 19:48:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Area under the ROC curve
Prescreening
Diagnostic accuracy studies
Artificial intelligence
Computer-aided detection
Diagnostic accuracy
diagnostic accuracy
computer-aided detection
prescreening
diagnostic accuracy studies
area under the ROC curve
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-b4cd8bdd0c3f1c046450e8dbd3cd0238ee2d8aa6213b96c7fddd8bc521bfeec23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.conctc.2019.100434
PMID 31485545
PQID 2285113867
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_6abf65b6e52e4d91bfedc9ae343ca6af
unpaywall_primary_10_1016_j_conctc_2019_100434
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717063
proquest_miscellaneous_2285113867
pubmed_primary_31485545
crossref_primary_10_1016_j_conctc_2019_100434
crossref_citationtrail_10_1016_j_conctc_2019_100434
elsevier_sciencedirect_doi_10_1016_j_conctc_2019_100434
elsevier_clinicalkeyesjournals_1_s2_0_S2451865419301966
elsevier_clinicalkey_doi_10_1016_j_conctc_2019_100434
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Contemporary clinical trials communications
PublicationTitleAlternate Contemp Clin Trials Commun
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Bien, Rajpurkar, Ball (bib15) 2018; 27
Hale, Stonko, Wang, Strother, Chambless (bib12) 2018; 45
The National Lung Screening Trial Research Team (bib4) 2013; 368
Gallas, Chan, D'Orsi, Dodd, Giger, Gur, Krupinski, Metz, Myers, Obuchowski, Sahiner, Toledano, Zuley (bib10) 2012; 19
Rodriguez-Ruiz, Krupinski, Mordang, Schilling, Heywang-Kobrunner, Sechopoulos, Mann (bib13) 2019; 00
Parmar, Barry, Hosny, Quackenbush, Aerts (bib14) 2018; 24
Eadie, Taylor, Gibson (bib11) 2012; 81
Savadjiev, Chong, Dohan, Vakalopoulou, Reinhold, Paragios, Gallix (bib16) Aug 2018
Chen, Petrick, Sahiner (bib9) 2012; 19
Schalekamp, van Ginneken, Koedam, Snoeren, Tiehuis, Wittenberg, Karssemeijer, Schaefer-Prokop (bib6) 2014; 272
Kim, Jang, Kim, Shim, Park (bib3) 2019; 20
Park, Han (bib2) 2018; 286
Meziane, Mazzone, Novak, Lieber, Lababede, Phillips, Obuchowski (bib7) 2012; 27
Pepe, Alonzo (bib5) 2001; 2
Zhou, Obuchowski, McClish (bib8) 2011
Jiang, Jiang, Zhi, Dong, Li, Ma, Wang, Dong, Shen, Wang (bib1) 2017; 2
Biggerstaff (bib17) 2000; 19
Eadie (10.1016/j.conctc.2019.100434_bib11) 2012; 81
The National Lung Screening Trial Research Team (10.1016/j.conctc.2019.100434_bib4) 2013; 368
Chen (10.1016/j.conctc.2019.100434_bib9) 2012; 19
Schalekamp (10.1016/j.conctc.2019.100434_bib6) 2014; 272
Meziane (10.1016/j.conctc.2019.100434_bib7) 2012; 27
Savadjiev (10.1016/j.conctc.2019.100434_bib16) 2018
Jiang (10.1016/j.conctc.2019.100434_bib1) 2017; 2
Kim (10.1016/j.conctc.2019.100434_bib3) 2019; 20
Park (10.1016/j.conctc.2019.100434_bib2) 2018; 286
Hale (10.1016/j.conctc.2019.100434_bib12) 2018; 45
Biggerstaff (10.1016/j.conctc.2019.100434_bib17) 2000; 19
Bien (10.1016/j.conctc.2019.100434_bib15) 2018; 27
Rodriguez-Ruiz (10.1016/j.conctc.2019.100434_bib13) 2019; 00
Parmar (10.1016/j.conctc.2019.100434_bib14) 2018; 24
Pepe (10.1016/j.conctc.2019.100434_bib5) 2001; 2
Zhou (10.1016/j.conctc.2019.100434_bib8) 2011
Gallas (10.1016/j.conctc.2019.100434_bib10) 2012; 19
33392413 - Contemp Clin Trials Commun. 2020 Dec 10;20:100689
References_xml – volume: 272
  start-page: 252
  year: 2014
  end-page: 261
  ident: bib6
  article-title: Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images
  publication-title: Radiology
– year: 2011
  ident: bib8
  article-title: Statistical Methods in Diagnostic Medicine
– volume: 368
  start-page: 1980
  year: 2013
  end-page: 1991
  ident: bib4
  article-title: Results of initial low-dose computed tomographic screening for lung cancer
  publication-title: N. Engl. J. Med.
– volume: 45
  start-page: 1
  year: 2018
  end-page: 6
  ident: bib12
  article-title: Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging
  publication-title: Neurosurg. Focus
– volume: 24
  start-page: 3492
  year: 2018
  end-page: 3499
  ident: bib14
  article-title: Data analysis strategies in medical imaging
  publication-title: Clin. Cancer Res.
– volume: 2
  start-page: 230
  year: 2017
  end-page: 243
  ident: bib1
  article-title: Artificial intelligence in healthcare: past, present and future
  publication-title: Stroke Vasc Neurol
– volume: 2
  start-page: 249
  year: 2001
  end-page: 260
  ident: bib5
  article-title: Comparing disease screening tests when true disease status is ascertained only for screen positives
  publication-title: Biostatistics
– volume: 27
  year: 2018
  ident: bib15
  article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet
  publication-title: PLOS Nov
– volume: 27
  start-page: 58
  year: 2012
  end-page: 64
  ident: bib7
  article-title: A comparison of four versions of a computer-aided detection system for pulmonary nodules on chest radiographs
  publication-title: J. Thorac. Imaging
– volume: 00
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib13
  article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support system
  publication-title: Radiology
– volume: 20
  start-page: 405
  year: 2019
  end-page: 410
  ident: bib3
  article-title: Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers
  publication-title: KJR
– volume: 19
  start-page: 1158
  year: 2012
  end-page: 1165
  ident: bib9
  article-title: Hypothesis testing in noninferiority and equivalence MRMC ROC Studies
  publication-title: Acad. Radiol.
– volume: 19
  start-page: 463
  year: 2012
  end-page: 477
  ident: bib10
  article-title: Evaluating imaging and computer-aided detection and diagnosis devices at the FDA
  publication-title: Acad. Radiol.
– volume: 81
  start-page: 70
  year: 2012
  end-page: 76
  ident: bib11
  article-title: A systematic review of computer aided diagnosis in diagnostic cancer imaging
  publication-title: Eur. J. Radiol.
– volume: 286
  start-page: 800
  year: 2018
  end-page: 809
  ident: bib2
  article-title: Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction
  publication-title: Radiology
– volume: 19
  start-page: 649
  year: 2000
  end-page: 663
  ident: bib17
  article-title: Comparing diagnostic tests: a simple graphic using likelihood ratios
  publication-title: Stat. Med.
– year: Aug 2018
  ident: bib16
  article-title: Demystification of AI-driven medical image interpretation: past, present and future
  publication-title: Eur. Radiol.
– volume: 24
  start-page: 3492
  year: 2018
  ident: 10.1016/j.conctc.2019.100434_bib14
  article-title: Data analysis strategies in medical imaging
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-0385
– volume: 2
  start-page: 230
  year: 2017
  ident: 10.1016/j.conctc.2019.100434_bib1
  article-title: Artificial intelligence in healthcare: past, present and future
  publication-title: Stroke Vasc Neurol
  doi: 10.1136/svn-2017-000101
– volume: 27
  year: 2018
  ident: 10.1016/j.conctc.2019.100434_bib15
  article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet
  publication-title: PLOS Nov
– year: 2018
  ident: 10.1016/j.conctc.2019.100434_bib16
  article-title: Demystification of AI-driven medical image interpretation: past, present and future
  publication-title: Eur. Radiol.
– volume: 2
  start-page: 249
  year: 2001
  ident: 10.1016/j.conctc.2019.100434_bib5
  article-title: Comparing disease screening tests when true disease status is ascertained only for screen positives
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/2.3.249
– volume: 272
  start-page: 252
  year: 2014
  ident: 10.1016/j.conctc.2019.100434_bib6
  article-title: Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images
  publication-title: Radiology
  doi: 10.1148/radiol.14131315
– volume: 19
  start-page: 649
  year: 2000
  ident: 10.1016/j.conctc.2019.100434_bib17
  article-title: Comparing diagnostic tests: a simple graphic using likelihood ratios
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(20000315)19:5<649::AID-SIM371>3.0.CO;2-H
– volume: 27
  start-page: 58
  year: 2012
  ident: 10.1016/j.conctc.2019.100434_bib7
  article-title: A comparison of four versions of a computer-aided detection system for pulmonary nodules on chest radiographs
  publication-title: J. Thorac. Imaging
  doi: 10.1097/RTI.0b013e3181f240bc
– volume: 19
  start-page: 463
  year: 2012
  ident: 10.1016/j.conctc.2019.100434_bib10
  article-title: Evaluating imaging and computer-aided detection and diagnosis devices at the FDA
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2011.12.016
– volume: 81
  start-page: 70
  year: 2012
  ident: 10.1016/j.conctc.2019.100434_bib11
  article-title: A systematic review of computer aided diagnosis in diagnostic cancer imaging
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2011.01.098
– volume: 00
  start-page: 1
  year: 2019
  ident: 10.1016/j.conctc.2019.100434_bib13
  article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support system
  publication-title: Radiology
– volume: 19
  start-page: 1158
  year: 2012
  ident: 10.1016/j.conctc.2019.100434_bib9
  article-title: Hypothesis testing in noninferiority and equivalence MRMC ROC Studies
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2012.04.011
– volume: 368
  start-page: 1980
  year: 2013
  ident: 10.1016/j.conctc.2019.100434_bib4
  article-title: Results of initial low-dose computed tomographic screening for lung cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1209120
– year: 2011
  ident: 10.1016/j.conctc.2019.100434_bib8
– volume: 286
  start-page: 800
  year: 2018
  ident: 10.1016/j.conctc.2019.100434_bib2
  article-title: Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction
  publication-title: Radiology
  doi: 10.1148/radiol.2017171920
– volume: 20
  start-page: 405
  year: 2019
  ident: 10.1016/j.conctc.2019.100434_bib3
  article-title: Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers
  publication-title: KJR
– volume: 45
  start-page: 1
  year: 2018
  ident: 10.1016/j.conctc.2019.100434_bib12
  article-title: Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging
  publication-title: Neurosurg. Focus
  doi: 10.3171/2018.8.FOCUS18191
– reference: 33392413 - Contemp Clin Trials Commun. 2020 Dec 10;20:100689
SSID ssj0001637125
Score 2.256058
Snippet Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There...
AbstractArtificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100434
SubjectTerms Area under the ROC curve
Artificial intelligence
Computer-aided detection
Diagnostic accuracy
Diagnostic accuracy studies
Other
Prescreening
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8WbLQ0HiGohjx0mOpaIqSOVCK1XiYNljp12UZqsmK8S_Z8ZOVhsVaXvgmoxjZWYy8zkef8PYB4x4hSqbLOUebCqNh7S2qkkdiKwpARccFZ1GPvmujs_kt_PifKvVF9WERXrgqLhPythGFVb5IvfS1dw23kFtvJACjDINRd-sqrcWU-HvihIlDx1Xc1nwtFKFnM7NheIuXGtCYDDkNdUJSCFneSnQ98_S0234ebuK8sG6uzZ_fpu23UpRR4_ZoxFbJgfxnZ6we757yu6fjLvnz9hPQpaBmBmlYOzUGf_YJYhdk4EYN7qLxHTJwdfEtBerm-VweZWse--CABXNAhXqkFSLYSI5PE2WVxiS-ufs7OjL6eFxOjZXSAF1M6RWgquscxmIhkPY4Mx85awT4CiPe5-7yhiVc2FrBWXjHMoDZnu0gIdcvGB73arzr1hiQYoccVAF1ssKCms4ZgAhDGDwbOpywcSkWg0j8zg1wGj1VGL2S0eDaDKIjgZZsHQz6joyb-yQ_0xW28gSb3a4gN6kR2_Su7xpwYrJ5no6morBFB-03DF5-a9xvh8jQq-57nOd6R_kj-SOCJyJmkhtjxxBTwQzd5jz_eSUGmMCbfSYzq_Wvc5zwtGiUqj6l9FJN2oRnOiAZIHzztx3prf5nW55GXjHVUlcS2LBPm4c_U6W2f8flnnNHtIjYyXRG7Y33Kz9W8SDg30XPv2_ovZh2g
  priority: 102
  providerName: Directory of Open Access Journals
Title Statistical considerations for testing an AI algorithm used for prescreening lung CT images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2451865419301966
https://www.clinicalkey.es/playcontent/1-s2.0-S2451865419301966
https://dx.doi.org/10.1016/j.conctc.2019.100434
https://www.ncbi.nlm.nih.gov/pubmed/31485545
https://www.proquest.com/docview/2285113867
https://pubmed.ncbi.nlm.nih.gov/PMC6717063
https://doi.org/10.1016/j.conctc.2019.100434
https://doaj.org/article/6abf65b6e52e4d91bfedc9ae343ca6af
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2451-8654
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001637125
  issn: 2451-8654
  databaseCode: KQ8
  dateStart: 20151030
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2451-8654
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001637125
  issn: 2451-8654
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2451-8654
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001637125
  issn: 2451-8654
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2451-8654
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001637125
  issn: 2451-8654
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwEv43NQPqYg8UiqJnac5LFMTAOpExKrNMSDZZ-drZCl05IIjb-eu3xUCwOtPLa9q-Xz-e6X3Plnxt5ixItknE39wIHxhXbgp0ZmvgU-zWLAB46ETiPPj-ThQnw6iU622Lv-LMygft_0YeFjITRkg0FKJX3BxR22LSNE3iO2vTj6PPtK98eJKPATGYn-dNw_VAfZpyHpHyShmyDzZq_kvbq40Fc_dZ5fS0QHD9i8n0Lbf_JjUldmAr_-YHfcdI4P2U6HSL1Z60KP2JYrHrO7867m_oR9Izza0DmjFHT3e7bv-TxEvF5FPB3FqacLb_bR0_np6nJZnZ17delsI0CttkDtPSSVY3Dx9o-95TkGsvIpWxx8ON4_9LsrGXyQPK58I8Amxtop8CyApiw6dYk1loOl7O9caBOtZRhwk0qIM2tRHhAjmMw5CPkuGxWrwj1nngHBQ0RPCRgnEoiMDjBvcK4BQ26WxmPG-6VS0PGV07UZueob076r1m6K7KZau42Zv9a6aPk6bpF_T16wliW27eYLXCDVbV4ltclkZKSLQidsSnOxkGrHBQctdTZmUe9Dqj_QiiEY_2h5y-Dx3_Rc2cWRUgWqDNVUfSH_JvdGuE2ERvK6ZgeVWgi0wZhveidXGEmoPKQLt6pLFYaEvnki0fTPWqdfm4UHRCIkIhx3sB0Gdhv-UizPGrZyGRNDEx-zyXrjbLQyL_5X4SW7T5_aXqNXbFRd1u41IsbK7DVvWva6cPEbY8FriA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwEvfH-ULwWJR1IlseMkj2ViGkidkFilIR4s--xshSydlkQI_nru8lEtDLTy2Pauls_nu19y558Ze4MRL5ZJHvihA-ML7cDPjMx9CzzIE8AHjpROIy8O5cFSfDyOj3fY2-EszKh-3_Zh4WMhtGSDYUYlfcHFDbYrY0TeE7a7PPw0_0L3x4k49FMZi-F03D9UR9mnJekfJaGrIPNqr-StpjzXP3_ooriUiPbvssUwha7_5Pusqc0Mfv3B7rjtHO-xOz0i9eadC91nO658wG4u-pr7Q_aV8GhL54xS0N_v2b3n8xDxejXxdJQnni69-QdPFyfri1V9euY1lbOtALXaArX3kFSBwcXbO_JWZxjIqkdsuf_-aO_A769k8EHypPaNAJsaawPgeQhtWTRwqTWWg6Xs71xkU61lFHKTSUhya1EeECOY3DmI-GM2Kdele8o8A4JHiJ5SME6kEBsdYt7gXAOG3DxLpowPS6Wg5yunazMKNTSmfVOd3RTZTXV2mzJ_o3Xe8XVcI_-OvGAjS2zb7Re4QKrfvEpqk8vYSBdHTtiM5mIh044LDlrqfMriwYfUcKAVQzD-0eqawZO_6bmqjyOVClUVqUB9Jv8m90a4TYRG8rJmD5U6CLTFmK8HJ1cYSag8pEu3bioVRYS-eSrR9E86p9-YhYdEIiRiHHe0HUZ2G_9Srk5btnKZEEMTn7LZZuNstTLP_lfhObtNn7peoxdsUl807iUixtq86gPFb-QvapM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+considerations+for+testing+an+AI+algorithm+used+for+prescreening+lung+CT+images&rft.jtitle=Contemporary+clinical+trials+communications&rft.au=Obuchowski%2C+Nancy+A.&rft.au=Bullen%2C+Jennifer+A.&rft.date=2019-12-01&rft.pub=Elsevier+Inc&rft.issn=2451-8654&rft.eissn=2451-8654&rft.volume=16&rft_id=info:doi/10.1016%2Fj.conctc.2019.100434&rft.externalDocID=S2451865419301966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-8654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-8654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-8654&client=summon