Statistical considerations for testing an AI algorithm used for prescreening lung CT images
Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more rec...
Saved in:
| Published in | Contemporary clinical trials communications Vol. 16; p. 100434 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier Inc
01.12.2019
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2451-8654 2451-8654 |
| DOI | 10.1016/j.conctc.2019.100434 |
Cover
| Abstract | Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm. |
|---|---|
| AbstractList | AbstractArtificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm’s performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm. Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm.Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm. Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm. Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There are multiple use cases of AI algorithms in medical imaging: first-reader (or concurrent) mode, second-reader mode, triage mode, and more recently prescreening mode as when an AI algorithm is applied to the worklist of images to identify obvious negative cases so that human readers do not need to review them and can focus on interpreting the remaining cases. In this paper we describe the statistical considerations for designing a study to test a new AI prescreening algorithm for identifying normal lung cancer screening CTs. We contrast agreement vs. accuracy studies, and retrospective vs. prospective designs. We evaluate various test performance metrics with respect to their sensitivity to changes in the AI algorithm's performance, as well as to shifts in reader behavior to a revised worklist. We consider sample size requirements for testing the AI prescreening algorithm. Keywords: Artificial intelligence, Diagnostic accuracy, Prescreening, Computer-aided detection, Diagnostic accuracy studies, Area under the ROC curve |
| ArticleNumber | 100434 |
| Author | Obuchowski, Nancy A. Bullen, Jennifer A. |
| AuthorAffiliation | Quantitative Health Sciences /JJN3, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA |
| AuthorAffiliation_xml | – name: Quantitative Health Sciences /JJN3, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA |
| Author_xml | – sequence: 1 givenname: Nancy A. surname: Obuchowski fullname: Obuchowski, Nancy A. email: obuchon@ccf.org – sequence: 2 givenname: Jennifer A. surname: Bullen fullname: Bullen, Jennifer A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31485545$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkk1vEzEQhleoiJbSf4DQHrkk-DsbhJCqiI9IlTi0nDhYXns2dXDsYO8W5d8zm5SqRUKUy641fueZ8TvzvDqKKUJVvaRkSglVb9ZTm6Lt7ZQROscQEVw8qU6YkHTSKCmO7p2Pq7NS1oRgHp9RJp9Vx5yKRkohT6pvl73pfem9NaFGZvEOMkbwVHcp1z3gXVzVJtbny9qEVcq-v97UQwG3F2wzFJsB4qgKA34WV7XfmBWUF9XTzoQCZ7f_0-rrxw9Xi8-Tiy-flovzi4nFhvpJK6xrWueI5R21RCghCTSuddw6wngDwFxjjGKUt3NlZ51zqLeS0bYDsIyfVssD1yWz1tuM1fNOJ-P1PpDySpuMLwyglWk7JVsFkoFw85Hg7NwAF9waZTpkyQNriFuz-2lCuANSokfv9VofvNej9_rgPea9P-Rth3aDTIh9NuFBMw9vor_Wq3Sj1YzOiOIIeH0LyOnHgK7rjS8WQjAR0lA0Y42klDdqhtJX92vdFfk9VRSIg8DmVEqG7rFvePtHmvX9fhewYx8eaQDgpG88ZF2sh2jB-Qy2x1H4_wXY4OO4l99hB2WdhhxxizTVhWmiL8f9HtebzjlSlELAu78D_l3_F8iBDjE |
| CitedBy_id | crossref_primary_10_1016_j_arbres_2024_11_001 crossref_primary_10_1186_s13244_022_01331_3 crossref_primary_10_1007_s00330_023_10422_8 crossref_primary_10_1016_j_jacr_2023_06_025 crossref_primary_10_1007_s12032_021_01500_2 crossref_primary_10_1007_s00330_023_10074_8 crossref_primary_10_1007_s10278_021_00441_6 crossref_primary_10_1016_S2589_7500_20_30003_0 crossref_primary_10_1016_S2589_7500_21_00106_0 crossref_primary_10_1097_RTI_0000000000000691 crossref_primary_10_24835_1607_0763_1446 crossref_primary_10_1148_radiol_211593 crossref_primary_10_3348_kjr_2019_0821 crossref_primary_10_1136_bmjopen_2021_053024 crossref_primary_10_1016_S0140_6736_22_01694_4 crossref_primary_10_1007_s00521_020_05349_w crossref_primary_10_1007_s10278_022_00631_w crossref_primary_10_3390_cancers14163867 crossref_primary_10_1177_02841851221140556 crossref_primary_10_3390_cancers17050882 |
| Cites_doi | 10.1158/1078-0432.CCR-18-0385 10.1136/svn-2017-000101 10.1093/biostatistics/2.3.249 10.1148/radiol.14131315 10.1002/(SICI)1097-0258(20000315)19:5<649::AID-SIM371>3.0.CO;2-H 10.1097/RTI.0b013e3181f240bc 10.1016/j.acra.2011.12.016 10.1016/j.ejrad.2011.01.098 10.1016/j.acra.2012.04.011 10.1056/NEJMoa1209120 10.1148/radiol.2017171920 10.3171/2018.8.FOCUS18191 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors 2019 The Authors 2019 |
| Copyright_xml | – notice: 2019 The Authors – notice: 2019 The Authors 2019 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1016/j.conctc.2019.100434 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2451-8654 |
| EndPage | 100434 |
| ExternalDocumentID | oai_doaj_org_article_6abf65b6e52e4d91bfedc9ae343ca6af 10.1016/j.conctc.2019.100434 PMC6717063 31485545 10_1016_j_conctc_2019_100434 S2451865419301966 1_s2_0_S2451865419301966 |
| Genre | Journal Article |
| GroupedDBID | .1- .FO 0R~ 1P~ 457 53G AAEDW AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS EJD FDB GROUPED_DOAJ HYE KQ8 M~E O9- OK1 ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH NCXOZ AFCTW AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c637t-b4cd8bdd0c3f1c046450e8dbd3cd0238ee2d8aa6213b96c7fddd8bc521bfeec23 |
| IEDL.DBID | UNPAY |
| ISSN | 2451-8654 |
| IngestDate | Fri Oct 03 12:50:46 EDT 2025 Tue Aug 19 15:58:29 EDT 2025 Tue Sep 30 16:51:05 EDT 2025 Wed Oct 01 13:47:19 EDT 2025 Thu Apr 03 06:55:19 EDT 2025 Thu Apr 24 22:51:42 EDT 2025 Wed Oct 01 01:13:17 EDT 2025 Tue Jul 25 20:54:29 EDT 2023 Tue Feb 25 19:58:15 EST 2025 Tue Aug 26 19:48:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Area under the ROC curve Prescreening Diagnostic accuracy studies Artificial intelligence Computer-aided detection Diagnostic accuracy diagnostic accuracy computer-aided detection prescreening diagnostic accuracy studies area under the ROC curve |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c637t-b4cd8bdd0c3f1c046450e8dbd3cd0238ee2d8aa6213b96c7fddd8bc521bfeec23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.conctc.2019.100434 |
| PMID | 31485545 |
| PQID | 2285113867 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6abf65b6e52e4d91bfedc9ae343ca6af unpaywall_primary_10_1016_j_conctc_2019_100434 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717063 proquest_miscellaneous_2285113867 pubmed_primary_31485545 crossref_primary_10_1016_j_conctc_2019_100434 crossref_citationtrail_10_1016_j_conctc_2019_100434 elsevier_sciencedirect_doi_10_1016_j_conctc_2019_100434 elsevier_clinicalkeyesjournals_1_s2_0_S2451865419301966 elsevier_clinicalkey_doi_10_1016_j_conctc_2019_100434 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Contemporary clinical trials communications |
| PublicationTitleAlternate | Contemp Clin Trials Commun |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Bien, Rajpurkar, Ball (bib15) 2018; 27 Hale, Stonko, Wang, Strother, Chambless (bib12) 2018; 45 The National Lung Screening Trial Research Team (bib4) 2013; 368 Gallas, Chan, D'Orsi, Dodd, Giger, Gur, Krupinski, Metz, Myers, Obuchowski, Sahiner, Toledano, Zuley (bib10) 2012; 19 Rodriguez-Ruiz, Krupinski, Mordang, Schilling, Heywang-Kobrunner, Sechopoulos, Mann (bib13) 2019; 00 Parmar, Barry, Hosny, Quackenbush, Aerts (bib14) 2018; 24 Eadie, Taylor, Gibson (bib11) 2012; 81 Savadjiev, Chong, Dohan, Vakalopoulou, Reinhold, Paragios, Gallix (bib16) Aug 2018 Chen, Petrick, Sahiner (bib9) 2012; 19 Schalekamp, van Ginneken, Koedam, Snoeren, Tiehuis, Wittenberg, Karssemeijer, Schaefer-Prokop (bib6) 2014; 272 Kim, Jang, Kim, Shim, Park (bib3) 2019; 20 Park, Han (bib2) 2018; 286 Meziane, Mazzone, Novak, Lieber, Lababede, Phillips, Obuchowski (bib7) 2012; 27 Pepe, Alonzo (bib5) 2001; 2 Zhou, Obuchowski, McClish (bib8) 2011 Jiang, Jiang, Zhi, Dong, Li, Ma, Wang, Dong, Shen, Wang (bib1) 2017; 2 Biggerstaff (bib17) 2000; 19 Eadie (10.1016/j.conctc.2019.100434_bib11) 2012; 81 The National Lung Screening Trial Research Team (10.1016/j.conctc.2019.100434_bib4) 2013; 368 Chen (10.1016/j.conctc.2019.100434_bib9) 2012; 19 Schalekamp (10.1016/j.conctc.2019.100434_bib6) 2014; 272 Meziane (10.1016/j.conctc.2019.100434_bib7) 2012; 27 Savadjiev (10.1016/j.conctc.2019.100434_bib16) 2018 Jiang (10.1016/j.conctc.2019.100434_bib1) 2017; 2 Kim (10.1016/j.conctc.2019.100434_bib3) 2019; 20 Park (10.1016/j.conctc.2019.100434_bib2) 2018; 286 Hale (10.1016/j.conctc.2019.100434_bib12) 2018; 45 Biggerstaff (10.1016/j.conctc.2019.100434_bib17) 2000; 19 Bien (10.1016/j.conctc.2019.100434_bib15) 2018; 27 Rodriguez-Ruiz (10.1016/j.conctc.2019.100434_bib13) 2019; 00 Parmar (10.1016/j.conctc.2019.100434_bib14) 2018; 24 Pepe (10.1016/j.conctc.2019.100434_bib5) 2001; 2 Zhou (10.1016/j.conctc.2019.100434_bib8) 2011 Gallas (10.1016/j.conctc.2019.100434_bib10) 2012; 19 33392413 - Contemp Clin Trials Commun. 2020 Dec 10;20:100689 |
| References_xml | – volume: 272 start-page: 252 year: 2014 end-page: 261 ident: bib6 article-title: Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images publication-title: Radiology – year: 2011 ident: bib8 article-title: Statistical Methods in Diagnostic Medicine – volume: 368 start-page: 1980 year: 2013 end-page: 1991 ident: bib4 article-title: Results of initial low-dose computed tomographic screening for lung cancer publication-title: N. Engl. J. Med. – volume: 45 start-page: 1 year: 2018 end-page: 6 ident: bib12 article-title: Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging publication-title: Neurosurg. Focus – volume: 24 start-page: 3492 year: 2018 end-page: 3499 ident: bib14 article-title: Data analysis strategies in medical imaging publication-title: Clin. Cancer Res. – volume: 2 start-page: 230 year: 2017 end-page: 243 ident: bib1 article-title: Artificial intelligence in healthcare: past, present and future publication-title: Stroke Vasc Neurol – volume: 2 start-page: 249 year: 2001 end-page: 260 ident: bib5 article-title: Comparing disease screening tests when true disease status is ascertained only for screen positives publication-title: Biostatistics – volume: 27 year: 2018 ident: bib15 article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet publication-title: PLOS Nov – volume: 27 start-page: 58 year: 2012 end-page: 64 ident: bib7 article-title: A comparison of four versions of a computer-aided detection system for pulmonary nodules on chest radiographs publication-title: J. Thorac. Imaging – volume: 00 start-page: 1 year: 2019 end-page: 10 ident: bib13 article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support system publication-title: Radiology – volume: 20 start-page: 405 year: 2019 end-page: 410 ident: bib3 article-title: Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers publication-title: KJR – volume: 19 start-page: 1158 year: 2012 end-page: 1165 ident: bib9 article-title: Hypothesis testing in noninferiority and equivalence MRMC ROC Studies publication-title: Acad. Radiol. – volume: 19 start-page: 463 year: 2012 end-page: 477 ident: bib10 article-title: Evaluating imaging and computer-aided detection and diagnosis devices at the FDA publication-title: Acad. Radiol. – volume: 81 start-page: 70 year: 2012 end-page: 76 ident: bib11 article-title: A systematic review of computer aided diagnosis in diagnostic cancer imaging publication-title: Eur. J. Radiol. – volume: 286 start-page: 800 year: 2018 end-page: 809 ident: bib2 article-title: Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction publication-title: Radiology – volume: 19 start-page: 649 year: 2000 end-page: 663 ident: bib17 article-title: Comparing diagnostic tests: a simple graphic using likelihood ratios publication-title: Stat. Med. – year: Aug 2018 ident: bib16 article-title: Demystification of AI-driven medical image interpretation: past, present and future publication-title: Eur. Radiol. – volume: 24 start-page: 3492 year: 2018 ident: 10.1016/j.conctc.2019.100434_bib14 article-title: Data analysis strategies in medical imaging publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-0385 – volume: 2 start-page: 230 year: 2017 ident: 10.1016/j.conctc.2019.100434_bib1 article-title: Artificial intelligence in healthcare: past, present and future publication-title: Stroke Vasc Neurol doi: 10.1136/svn-2017-000101 – volume: 27 year: 2018 ident: 10.1016/j.conctc.2019.100434_bib15 article-title: Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet publication-title: PLOS Nov – year: 2018 ident: 10.1016/j.conctc.2019.100434_bib16 article-title: Demystification of AI-driven medical image interpretation: past, present and future publication-title: Eur. Radiol. – volume: 2 start-page: 249 year: 2001 ident: 10.1016/j.conctc.2019.100434_bib5 article-title: Comparing disease screening tests when true disease status is ascertained only for screen positives publication-title: Biostatistics doi: 10.1093/biostatistics/2.3.249 – volume: 272 start-page: 252 year: 2014 ident: 10.1016/j.conctc.2019.100434_bib6 article-title: Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images publication-title: Radiology doi: 10.1148/radiol.14131315 – volume: 19 start-page: 649 year: 2000 ident: 10.1016/j.conctc.2019.100434_bib17 article-title: Comparing diagnostic tests: a simple graphic using likelihood ratios publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(20000315)19:5<649::AID-SIM371>3.0.CO;2-H – volume: 27 start-page: 58 year: 2012 ident: 10.1016/j.conctc.2019.100434_bib7 article-title: A comparison of four versions of a computer-aided detection system for pulmonary nodules on chest radiographs publication-title: J. Thorac. Imaging doi: 10.1097/RTI.0b013e3181f240bc – volume: 19 start-page: 463 year: 2012 ident: 10.1016/j.conctc.2019.100434_bib10 article-title: Evaluating imaging and computer-aided detection and diagnosis devices at the FDA publication-title: Acad. Radiol. doi: 10.1016/j.acra.2011.12.016 – volume: 81 start-page: 70 year: 2012 ident: 10.1016/j.conctc.2019.100434_bib11 article-title: A systematic review of computer aided diagnosis in diagnostic cancer imaging publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2011.01.098 – volume: 00 start-page: 1 year: 2019 ident: 10.1016/j.conctc.2019.100434_bib13 article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support system publication-title: Radiology – volume: 19 start-page: 1158 year: 2012 ident: 10.1016/j.conctc.2019.100434_bib9 article-title: Hypothesis testing in noninferiority and equivalence MRMC ROC Studies publication-title: Acad. Radiol. doi: 10.1016/j.acra.2012.04.011 – volume: 368 start-page: 1980 year: 2013 ident: 10.1016/j.conctc.2019.100434_bib4 article-title: Results of initial low-dose computed tomographic screening for lung cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1209120 – year: 2011 ident: 10.1016/j.conctc.2019.100434_bib8 – volume: 286 start-page: 800 year: 2018 ident: 10.1016/j.conctc.2019.100434_bib2 article-title: Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction publication-title: Radiology doi: 10.1148/radiol.2017171920 – volume: 20 start-page: 405 year: 2019 ident: 10.1016/j.conctc.2019.100434_bib3 article-title: Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers publication-title: KJR – volume: 45 start-page: 1 year: 2018 ident: 10.1016/j.conctc.2019.100434_bib12 article-title: Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging publication-title: Neurosurg. Focus doi: 10.3171/2018.8.FOCUS18191 – reference: 33392413 - Contemp Clin Trials Commun. 2020 Dec 10;20:100689 |
| SSID | ssj0001637125 |
| Score | 2.256058 |
| Snippet | Artificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few years. There... AbstractArtificial intelligence, as applied to medical images to detect, rule out, diagnose, and stage disease, has seen enormous growth over the last few... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 100434 |
| SubjectTerms | Area under the ROC curve Artificial intelligence Computer-aided detection Diagnostic accuracy Diagnostic accuracy studies Other Prescreening |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8WbLQ0HiGohjx0mOpaIqSOVCK1XiYNljp12UZqsmK8S_Z8ZOVhsVaXvgmoxjZWYy8zkef8PYB4x4hSqbLOUebCqNh7S2qkkdiKwpARccFZ1GPvmujs_kt_PifKvVF9WERXrgqLhPythGFVb5IvfS1dw23kFtvJACjDINRd-sqrcWU-HvihIlDx1Xc1nwtFKFnM7NheIuXGtCYDDkNdUJSCFneSnQ98_S0234ebuK8sG6uzZ_fpu23UpRR4_ZoxFbJgfxnZ6we757yu6fjLvnz9hPQpaBmBmlYOzUGf_YJYhdk4EYN7qLxHTJwdfEtBerm-VweZWse--CABXNAhXqkFSLYSI5PE2WVxiS-ufs7OjL6eFxOjZXSAF1M6RWgquscxmIhkPY4Mx85awT4CiPe5-7yhiVc2FrBWXjHMoDZnu0gIdcvGB73arzr1hiQYoccVAF1ssKCms4ZgAhDGDwbOpywcSkWg0j8zg1wGj1VGL2S0eDaDKIjgZZsHQz6joyb-yQ_0xW28gSb3a4gN6kR2_Su7xpwYrJ5no6morBFB-03DF5-a9xvh8jQq-57nOd6R_kj-SOCJyJmkhtjxxBTwQzd5jz_eSUGmMCbfSYzq_Wvc5zwtGiUqj6l9FJN2oRnOiAZIHzztx3prf5nW55GXjHVUlcS2LBPm4c_U6W2f8flnnNHtIjYyXRG7Y33Kz9W8SDg30XPv2_ovZh2g priority: 102 providerName: Directory of Open Access Journals |
| Title | Statistical considerations for testing an AI algorithm used for prescreening lung CT images |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2451865419301966 https://www.clinicalkey.es/playcontent/1-s2.0-S2451865419301966 https://dx.doi.org/10.1016/j.conctc.2019.100434 https://www.ncbi.nlm.nih.gov/pubmed/31485545 https://www.proquest.com/docview/2285113867 https://pubmed.ncbi.nlm.nih.gov/PMC6717063 https://doi.org/10.1016/j.conctc.2019.100434 https://doaj.org/article/6abf65b6e52e4d91bfedc9ae343ca6af |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2451-8654 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001637125 issn: 2451-8654 databaseCode: KQ8 dateStart: 20151030 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2451-8654 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001637125 issn: 2451-8654 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2451-8654 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001637125 issn: 2451-8654 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2451-8654 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001637125 issn: 2451-8654 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwEv43NQPqYg8UiqJnac5LFMTAOpExKrNMSDZZ-drZCl05IIjb-eu3xUCwOtPLa9q-Xz-e6X3Plnxt5ixItknE39wIHxhXbgp0ZmvgU-zWLAB46ETiPPj-ThQnw6iU622Lv-LMygft_0YeFjITRkg0FKJX3BxR22LSNE3iO2vTj6PPtK98eJKPATGYn-dNw_VAfZpyHpHyShmyDzZq_kvbq40Fc_dZ5fS0QHD9i8n0Lbf_JjUldmAr_-YHfcdI4P2U6HSL1Z60KP2JYrHrO7867m_oR9Izza0DmjFHT3e7bv-TxEvF5FPB3FqacLb_bR0_np6nJZnZ17delsI0CttkDtPSSVY3Dx9o-95TkGsvIpWxx8ON4_9LsrGXyQPK58I8Amxtop8CyApiw6dYk1loOl7O9caBOtZRhwk0qIM2tRHhAjmMw5CPkuGxWrwj1nngHBQ0RPCRgnEoiMDjBvcK4BQ26WxmPG-6VS0PGV07UZueob076r1m6K7KZau42Zv9a6aPk6bpF_T16wliW27eYLXCDVbV4ltclkZKSLQidsSnOxkGrHBQctdTZmUe9Dqj_QiiEY_2h5y-Dx3_Rc2cWRUgWqDNVUfSH_JvdGuE2ERvK6ZgeVWgi0wZhveidXGEmoPKQLt6pLFYaEvnki0fTPWqdfm4UHRCIkIhx3sB0Gdhv-UizPGrZyGRNDEx-zyXrjbLQyL_5X4SW7T5_aXqNXbFRd1u41IsbK7DVvWva6cPEbY8FriA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwEvfH-ULwWJR1IlseMkj2ViGkidkFilIR4s--xshSydlkQI_nru8lEtDLTy2Pauls_nu19y558Ze4MRL5ZJHvihA-ML7cDPjMx9CzzIE8AHjpROIy8O5cFSfDyOj3fY2-EszKh-3_Zh4WMhtGSDYUYlfcHFDbYrY0TeE7a7PPw0_0L3x4k49FMZi-F03D9UR9mnJekfJaGrIPNqr-StpjzXP3_ooriUiPbvssUwha7_5Pusqc0Mfv3B7rjtHO-xOz0i9eadC91nO658wG4u-pr7Q_aV8GhL54xS0N_v2b3n8xDxejXxdJQnni69-QdPFyfri1V9euY1lbOtALXaArX3kFSBwcXbO_JWZxjIqkdsuf_-aO_A769k8EHypPaNAJsaawPgeQhtWTRwqTWWg6Xs71xkU61lFHKTSUhya1EeECOY3DmI-GM2Kdele8o8A4JHiJ5SME6kEBsdYt7gXAOG3DxLpowPS6Wg5yunazMKNTSmfVOd3RTZTXV2mzJ_o3Xe8XVcI_-OvGAjS2zb7Re4QKrfvEpqk8vYSBdHTtiM5mIh044LDlrqfMriwYfUcKAVQzD-0eqawZO_6bmqjyOVClUVqUB9Jv8m90a4TYRG8rJmD5U6CLTFmK8HJ1cYSag8pEu3bioVRYS-eSrR9E86p9-YhYdEIiRiHHe0HUZ2G_9Srk5btnKZEEMTn7LZZuNstTLP_lfhObtNn7peoxdsUl807iUixtq86gPFb-QvapM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+considerations+for+testing+an+AI+algorithm+used+for+prescreening+lung+CT+images&rft.jtitle=Contemporary+clinical+trials+communications&rft.au=Obuchowski%2C+Nancy+A.&rft.au=Bullen%2C+Jennifer+A.&rft.date=2019-12-01&rft.pub=Elsevier+Inc&rft.issn=2451-8654&rft.eissn=2451-8654&rft.volume=16&rft_id=info:doi/10.1016%2Fj.conctc.2019.100434&rft.externalDocID=S2451865419301966 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-8654&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-8654&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-8654&client=summon |