Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE)

Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link differe...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 20; no. Suppl 11; pp. 944 - 11
Main Authors Ma, Tianle, Zhang, Aidong
Format Journal Article
LanguageEnglish
Published London BioMed Central 20.12.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/s12864-019-6285-x

Cover

Abstract Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the “big p, small n” problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. Results We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. Conclusions To alleviate the overfitting problem in deep learning on multi-omics data with the “big p, small n” problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.
AbstractList Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. To alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.
Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging.BACKGROUNDComprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging.We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables.RESULTSWe developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables.To alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.CONCLUSIONSTo alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.
Abstract Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the “big p, small n” problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. Results We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. Conclusions To alleviate the overfitting problem in deep learning on multi-omics data with the “big p, small n” problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.
Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. Results We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. Conclusions To alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features. Keywords: Multi-omics data, Biological interaction networks, Deep learning, Multi-view learning, Autoencoder, Data integration, Graph regularization
Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the “big p, small n” problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. Results We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. Conclusions To alleviate the overfitting problem in deep learning on multi-omics data with the “big p, small n” problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.
Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the “big p, small n” problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. Results We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. Conclusions To alleviate the overfitting problem in deep learning on multi-omics data with the “big p, small n” problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.
Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. To alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.
ArticleNumber 944
Audience Academic
Author Zhang, Aidong
Ma, Tianle
Author_xml – sequence: 1
  givenname: Tianle
  surname: Ma
  fullname: Ma, Tianle
  organization: Department of Computer Science and Engineering, University at Buffalo
– sequence: 2
  givenname: Aidong
  surname: Zhang
  fullname: Zhang, Aidong
  email: aidong@virginia.edu
  organization: Department of Computer Science, University of Virginia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31856727$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wA9igSGzaRYof8SMbpFE1hZFaIfFYW47jpB4y9mA7nSm_Hs9kaDsVIJRFLPs7x9fn3uPswDqrs-w1BOcQcvouQMRpWQBYFRRxUqyfZUewZLBAkJYHj9aH2XEIcwAg44i8yA4x5IQyxI6y5cxG3XkZdb4Y-mgKtzAq5I2MMl-ZeJPXxvWuM0r2uUmolyoaZ3Or48r57yEfgrFdfr3V3hq9yi8T4bz5KbfcZIhuapVrtM9PryfTs5fZ81b2Qb_a_U-yb5fTrxcfi6tPH2YXk6tCUcxiUTWNbDFpIVESlrRlVDeKcgW0qtMS163EDICKsgpACjHBgNe8IbBWWMkEnGSz0bdxci6W3iykvxNOGrHdcL4T0kejei04I6jlijRlSUteYdngqioVaGhdEtiy5IVGr8Eu5d1K9v29IQRi0woxtkKkVohNK8Q6id6PouVQL1Lx2kYv-71K9k-suRGduxW0QpgjkAxOdwbe_Rh0iGJhgtJ9L612QxAIo4phxDlO6Nsn6NwN3qZ8E1UCjhkB5IHqZHq1sa1L96qNqZhQCNJQULR57PkfqPQ1Oo1GGsDWpP09wdmeIDFRr2MnhxDE7MvnffbN41Du0_g9kAmAI6C8C8Hr9r-SZk80ysTt-KXKTf9P5a6xId1iO-0fcvu76BcI3hPc
CitedBy_id crossref_primary_10_1186_s12911_024_02582_4
crossref_primary_10_1016_j_inffus_2023_102077
crossref_primary_10_1038_s41416_024_02706_7
crossref_primary_10_1016_j_eswa_2024_124108
crossref_primary_10_1016_j_jbi_2023_104512
crossref_primary_10_61186_ijbc_15_3_13
crossref_primary_10_1186_s13059_022_02739_2
crossref_primary_10_1007_s12038_022_00253_y
crossref_primary_10_1109_ACCESS_2023_3234294
crossref_primary_10_1038_s41467_023_39729_2
crossref_primary_10_1093_bib_bbab569
crossref_primary_10_3389_fonc_2020_588221
crossref_primary_10_3389_fmolb_2022_962799
crossref_primary_10_1007_s10489_024_05821_3
crossref_primary_10_3390_life11040364
crossref_primary_10_1080_10643389_2024_2320753
crossref_primary_10_3390_biology13050338
crossref_primary_10_1016_j_semcancer_2023_02_009
crossref_primary_10_1177_15353702211065010
crossref_primary_10_1093_bioinformatics_btad162
crossref_primary_10_1109_RBME_2024_3503761
crossref_primary_10_1093_bib_bbab159
crossref_primary_10_1089_omi_2024_0110
crossref_primary_10_1016_j_jgg_2021_05_008
crossref_primary_10_1016_j_mec_2022_e00209
crossref_primary_10_1093_bib_bbad411
crossref_primary_10_3390_genes12071098
crossref_primary_10_1016_j_ymeth_2020_08_001
crossref_primary_10_1128_msystems_01105_20
crossref_primary_10_1007_s11633_023_1442_8
crossref_primary_10_1016_j_csbj_2024_04_053
crossref_primary_10_1002_med_21847
crossref_primary_10_34133_2020_8051764
crossref_primary_10_3390_nano11092385
crossref_primary_10_1016_j_jbi_2021_103854
crossref_primary_10_1093_bib_bbab024
crossref_primary_10_3390_ijms221910891
crossref_primary_10_1016_j_csbj_2023_10_016
crossref_primary_10_1186_s13040_024_00391_z
crossref_primary_10_1007_s10237_020_01410_8
crossref_primary_10_1038_s43588_021_00086_z
crossref_primary_10_3390_ijms232012272
crossref_primary_10_1186_s12859_023_05622_4
crossref_primary_10_3389_fonc_2022_998222
crossref_primary_10_1128_msystems_01303_23
crossref_primary_10_1360_TB_2024_0416
crossref_primary_10_1109_TNB_2024_3456797
crossref_primary_10_3389_fgene_2022_854752
crossref_primary_10_3389_fmolb_2021_648012
Cites_doi 10.1016/j.celrep.2018.05.039
10.1093/nar/gkt1102
10.1109/TPAMI.2018.2798607
10.1109/CVPR.2017.243
10.1038/ncomms13091
10.1038/nmeth.2651
10.1016/j.cell.2018.03.034
10.1109/BIBM.2017.8217682
10.1371/journal.pone.0035236
10.1038/nmeth.4627
10.1371/journal.pone.0178751
10.1038/nbt.3300
10.1186/s12859-016-0912-1
10.1007/978-3-319-31750-2_3
10.1109/CVPR.2016.90
10.1093/nar/gku1003
10.1109/TKDE.2018.2872063
10.1038/nmeth.2810
10.1038/nature14539
10.1016/j.cell.2018.03.042
10.1016/j.cell.2018.02.052
10.1016/j.inffus.2017.02.007
10.1109/BIBM.2018.8621379
10.1016/j.celrep.2018.03.046
10.1093/database/bau069
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12864-019-6285-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic



Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 11
ExternalDocumentID oai_doaj_org_article_8752f8c5d4464893ad3994c0d6b451f7
10.1186/s12864-019-6285-x
PMC6923820
A610318627
31856727
10_1186_s12864_019_6285_x
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
EJD
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c637t-9ddaf35f15ca146f76edc68c0ecb6ed3bfa37009679016135308b8d51bc3caed3
IEDL.DBID DOA
ISSN 1471-2164
IngestDate Tue Oct 14 19:00:27 EDT 2025
Sun Oct 26 04:12:13 EDT 2025
Tue Sep 30 16:10:40 EDT 2025
Thu Oct 02 06:48:22 EDT 2025
Tue Oct 07 05:28:24 EDT 2025
Mon Oct 20 22:35:11 EDT 2025
Mon Oct 20 16:45:09 EDT 2025
Thu Oct 16 15:00:09 EDT 2025
Thu Apr 03 07:04:44 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Wed Oct 01 01:08:11 EDT 2025
Sat Sep 06 07:21:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 11
Keywords Deep learning
Graph regularization
Multi-omics data
Autoencoder
Data integration
Biological interaction networks
Multi-view learning
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-9ddaf35f15ca146f76edc68c0ecb6ed3bfa37009679016135308b8d51bc3caed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/8752f8c5d4464893ad3994c0d6b451f7
PMID 31856727
PQID 2340837505
PQPubID 44682
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_8752f8c5d4464893ad3994c0d6b451f7
unpaywall_primary_10_1186_s12864_019_6285_x
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6923820
proquest_miscellaneous_2329732883
proquest_journals_2340837505
gale_infotracmisc_A610318627
gale_infotracacademiconefile_A610318627
gale_incontextgauss_ISR_A610318627
pubmed_primary_31856727
crossref_primary_10_1186_s12864_019_6285_x
crossref_citationtrail_10_1186_s12864_019_6285_x
springer_journals_10_1186_s12864_019_6285_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-20
PublicationDateYYYYMMDD 2019-12-20
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 6285_CR30
J Liu (6285_CR31) 2018; 173
6285_CR3
C Hutter (6285_CR1) 2018; 173
6285_CR32
J Zhao (6285_CR4) 2017; 38
M Hofree (6285_CR15) 2013; 10
6285_CR14
6285_CR18
R Bell (6285_CR5) 2009; 42
H Shen (6285_CR6) 2018; 23
C Angione (6285_CR9) 2016; 17
GP Way (6285_CR8) 2018; 23
TM Malta (6285_CR7) 2018; 173
V. J. Henry (6285_CR11) 2014; 2014
Trang Pham (6285_CR19) 2016
J Ma (6285_CR21) 2018; 15
Yingming Li (6285_CR25) 2019; 31
Y LeCun (6285_CR2) 2015; 521
6285_CR20
DD Lee (6285_CR28) 2001
D Szklarczyk (6285_CR26) 2014; 43
B Wang (6285_CR13) 2014; 11
6285_CR24
J Ngiam (6285_CR23) 2011
A Ebrahim (6285_CR10) 2016; 7
R Shen (6285_CR12) 2012; 7
V Boža (6285_CR17) 2017; 12
6285_CR29
D Croft (6285_CR27) 2013; 42
Tadas Baltrusaitis (6285_CR22) 2019; 41
B Alipanahi (6285_CR16) 2015; 33
References_xml – volume: 23
  start-page: 3392
  issue: 11
  year: 2018
  ident: 6285_CR6
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.05.039
– volume: 42
  start-page: 472
  issue: D1
  year: 2013
  ident: 6285_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1102
– volume: 41
  start-page: 423
  issue: 2
  year: 2019
  ident: 6285_CR22
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2798607
– ident: 6285_CR30
  doi: 10.1109/CVPR.2017.243
– volume-title: Advances in Neural Information Processing Systems
  year: 2001
  ident: 6285_CR28
– volume: 7
  start-page: 13091
  year: 2016
  ident: 6285_CR10
  publication-title: Nat Commun
  doi: 10.1038/ncomms13091
– volume: 10
  start-page: 1108
  issue: 11
  year: 2013
  ident: 6285_CR15
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2651
– volume: 173
  start-page: 338
  issue: 2
  year: 2018
  ident: 6285_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.034
– ident: 6285_CR14
  doi: 10.1109/BIBM.2017.8217682
– ident: 6285_CR20
– volume: 7
  start-page: 35236
  issue: 4
  year: 2012
  ident: 6285_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0035236
– volume: 15
  start-page: 290
  issue: 4
  year: 2018
  ident: 6285_CR21
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4627
– volume: 12
  start-page: 0178751
  issue: 6
  year: 2017
  ident: 6285_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0178751
– volume: 33
  start-page: 831
  issue: 8
  year: 2015
  ident: 6285_CR16
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3300
– volume: 17
  start-page: 83
  issue: 4
  year: 2016
  ident: 6285_CR9
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0912-1
– start-page: 30
  volume-title: Advances in Knowledge Discovery and Data Mining
  year: 2016
  ident: 6285_CR19
  doi: 10.1007/978-3-319-31750-2_3
– ident: 6285_CR29
  doi: 10.1109/CVPR.2016.90
– ident: 6285_CR24
– ident: 6285_CR32
– volume: 43
  start-page: 447
  issue: D1
  year: 2014
  ident: 6285_CR26
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1003
– volume: 31
  start-page: 1863
  issue: 10
  year: 2019
  ident: 6285_CR25
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2872063
– volume: 11
  start-page: 333
  issue: 3
  year: 2014
  ident: 6285_CR13
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
– volume-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11)
  year: 2011
  ident: 6285_CR23
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 6285_CR2
  publication-title: nature
  doi: 10.1038/nature14539
– volume: 173
  start-page: 283
  issue: 2
  year: 2018
  ident: 6285_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.042
– ident: 6285_CR18
– volume: 173
  start-page: 400
  issue: 2
  year: 2018
  ident: 6285_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.052
– volume: 38
  start-page: 43
  year: 2017
  ident: 6285_CR4
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2017.02.007
– volume: 42
  start-page: 30
  year: 2009
  ident: 6285_CR5
  publication-title: Computer
– ident: 6285_CR3
  doi: 10.1109/BIBM.2018.8621379
– volume: 23
  start-page: 172
  issue: 1
  year: 2018
  ident: 6285_CR8
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.03.046
– volume: 2014
  start-page: bau069
  issue: 0
  year: 2014
  ident: 6285_CR11
  publication-title: Database
  doi: 10.1093/database/bau069
SSID ssj0017825
Score 2.541479
Snippet Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data...
Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to...
Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data...
Abstract Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 944
SubjectTerms Algorithms
Animal Genetics and Genomics
Autoencoder
Bias
Biochemistry
Biological interaction networks
Biomedical and Life Sciences
Biomedical data
Cancer
Clustering
Criminal investigation
Data analysis
Data integration
Data Mining
Databases, Genetic
Deep learning
Deoxyribonucleic acid
DNA
DNA methylation
Domains
Factorization
Gene expression
Genes
Genomics
Humans
Knowledge
Knowledge Bases
Learning algorithms
Learning strategies
Life Sciences
Machine Learning
Methylation
Microarrays
Microbial Genetics and Genomics
MicroRNA
Mining industry
miRNA
Models, Biological
Molecular interactions
Multi-omics data
Multi-view learning
Natural language processing
Neoplasms - genetics
Neoplasms - mortality
Neoplasms - pathology
Networks
Patients
Plant Genetics and Genomics
Proteins
Proteomics
Regularization
Representations
Ribonucleic acid
RNA
Systems Biology - methods
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3raxNBEF9qiqgfxLenVVYRfJSj99q9zQeRVBJaoUGqhX5b9vYRhXAXczls_3tn7tWeQvwSQnYOsjvv25nfEPJmbLTSInK-CeEjMRrsoLGZLxLBrHU6dBH2Dp_M-dFZ8uWcne-QedcLg2WVnU2sDbUpNL4jP4jiBKIF8G_s0-qXj1Oj8Ha1G6Gh2tEK5mMNMXaD7EaIjDUiu4fT-dfT_l4B_CFr7zZDwQ9KsM4cqzDGPrYS-hcD71SD-P9rqq_5qr_rKPvL1DvkVpWv1OVvtVxe81eze-RuG2jSSSMZ98mOzR-Qm83oycuHZHXc4UTQuqbQx-7kkmLBKMV3s7RBZ0IWUoSUWDcNEDRvysZLigXzC1r37_p4dHRWT-5p2zrppNoU0xwb5tf03clk-v4ROZtNv38-8tvpC77mcbrxx8YoFzMXMq3AnLqUw0a50IHVGXyNM6fiFDOgdIxhY8ziQGTCsDDTsVZA8JiM8iK3TwkFB8hUkEVWp5C_ZUKFdqwCZ7kNMy5Y4pGgO3WpW2hynJCxlHWKIrhsGCWBURIZJS888qF_ZNXgcmwjPkRW9oQIqV3_UKwXstVQCYlb5IRmBhJkRORRBmK3RAeGZwkLXeqR1ygIEkEzcqzKWaiqLOXxt1M54TgsA3JDIHrbErkCdgB60DQ5wDkgztaAcm9ACVqth8udvMnWqpTySgc88qpfxiexUi63RYU0UQ3AJGKPPGnEs983dsrjzbtH0oHgDg5muJL__FFjjnNIBCBY9Mh-J-JXf2vLue_3WvB_Lj3bvuXn5HaEihpGYNn3yGizruwLCAg32ctWy_8An85fQA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamIQQ8IK5bYCCDkLhMYbnZcR4QKqjVhlQegEp7sxzHLkhVUpJGrP-ec3LbAtN44aWq6hOp9rnH53yHkBdJppUWgXUzHz6iTIMdzEzqikgwY6z2bYC9w_PP_HgRfTplpzukH2_VHWB1aWqH86QW5ert2c_te1D4d43CC35UgY3lWEuRuNgQ6EJIeQ0cVYKTHObR-aUCOEPWXWxe-tjINTUI_n_b6QuO6s8iyuEm9Ra5Uedrtf2lVqsLzmp2h9zuokw6acXiLtkx-T1yvZ07ub1P1ic9SARtCgpdbE2uKFaLUnwxS1toJuQfRTyJsu1-oHlbM15RrJZf0qZ518W7BTprxvZ0PZ10Um-KaY7d8iV9NZ9MXz8gi9n028djtxu94Goexhs3yTJlQ2Z9phXYUhtz2CgX2jM6ha9halUYY_oTJxgzhiz0RCoy5qc61AoIHpLdvMjNPqHg_Zjy0sDoGJK3VCjfJMqzhhs_5YJFDvH6U5e6wyXH8Rgr2eQngsuWURIYJZFR8swhb4ZH1i0ox1XEH5CVAyHiaTc_FOVSduopIWsLrNAsg-wY4XhUBoFbpL2MpxHzbeyQ5ygIEhEzcizJWaq6quTJ1y9ywnFSBiSGQPSyI7IF7ACUoO1wgHNAkK0R5cGIElRaj5d7eZO9RsggjCBchgCPOeTZsIxPYplcbooaaYIGfUmEDtlrxXPYN7bJ47W7Q-KR4I4OZryS__jeAI5zyAIgUnTIYS_i53_rinM_HLTg31x69D-49JjcDFCd_QCM_wHZ3ZS1eQIx4yZ92liC3zonaKA
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA9yIuoH8XlXPSWK4OMo11fS9OMqu9wJ5wd14b6FJE1WYWmX7Ra9_96Z9OFV5cQvS9lMyibzyMzOzC-EvCxKo4xIXFjG8JGVBuxgaXUoMsGsdSZ2CfYOn33kJ8vswzk77_u4m6HafUhJekvt1Vrw4wYsKceKiSLEtr8QHMfrDNG8QIiXyWxMHcCRx_r05V-nTQ4gj9P_pzW-dBz9Xio55ktvk5tttVEX39V6felIWtwld3pfks465t8j12x1n9zobpe8eEA2pwMUBPVlgyE2IDcUa0Ip_v1KOwAm5BJF1Iht1-NAq64yvKFYE7-ivkU3xAwCXfjLefrOTTprd_W8wp74LX19Npu_eUiWi_mX9ydhf8FCaHia78KiLJVLmYuZUWAxXc5hoVyYyBoNj6l2Ks0xyMkL9AxTlkZCi5LF2qRGAcEjslfVlT0gFM44piKdWJNDiKaFim2hIme5jTUXLAtINOy6ND36OF6CsZY-ChFcdoySwCiJjJI_AvJ2nLLpoDeuIn6HrBwJETXbf1FvV7JXQgmxWeKEYSXEwAi6o0pwzzITlVxnLHZ5QF6gIEjExaiw8Gal2qaRp58_yRnH-zAg_AOiVz2Rq2EFIOpdHwPsA0JpTSgPJ5SguGY6PMib7A1HI5M0A6cY3DgWkOfjMM7EYrjK1i3SJB5jSaQB2e_Ec1w3NsNjcj0g-URwJxszHam-ffWw4hx8ffAHA3I0iPivn3XFvh-NWvBvLj3-r3c_IbcS1Ns4AVt-SPZ229Y-BRdwp595lf8Jh7lV-g
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdQJwR84P0IDGQQEo8pXV523I8FtdqQNiGg0vhk2Y5dxrq0ahrB-Ou5S9LQDDSExJcqqs9qfL4739V3vyPk-SAzyojI-VkIH0lmwA5mVvsiEcxaZ0IXYe3wwSHfmyTvjthRAymEtTD61CA46emxKfqbBeizymrDgznZXWSuVnbBdwuwrxzzKAY-FgP64E5ucQZueY9sTQ7fDz9X1UVp6EcQFzS3mn-c1zmXKvj-3430xil1PoOyvUa9Rq6U-UKdfVOz2cZJNb5Bvq7XWCeonPTLle6bH-fgH_8LE26S640_S4e1AN4il2x-m1yuO1ye3SGL_TUcBa1SF_3q5yjmpVL8C5jWIFAoKRSRK5Z1nQXN6-z0gmJe_pRWZcI-3mLQcdUgqKkepcNyNR_lWJe_pC8PhqNXd8lkPPr0ds9vmjz4hsfpyh9kmXIxcyEzCqy2SzmslgsTWKPhMdZOxSkGWukAvdOYxYHQImOhNrFRQHCP9PJ5bh8QCtvMVKAja1IIE7VQoR2owFluQ80FSzwSrLdYmgYBHRtxzGQVCQkua0ZKYKRERsrvHnndTlnU8B8XEb9BuWkJEbm7-mK-nMrGEEiIDyMnDMsgDkfgH5WBi5iYIOM6YaFLPfIMpU4iNkeOyT9TVRaF3P_4QQ459uSAEBSIXjREbo7ioJpaCuADwnl1KLc7lGA8THd4LdyyMV6FjOIEHHNwJZlHnrbDOBMT8nI7L5EmqnCeROyR-7UutOvGgny84PdI2tGSDmO6I_nxlwranEO8AT6pR3bW-vTrtS7g-06rcn_fpYf_RP2IXI1Qr8IIzpNt0lstS_sY3NCVftIYmJ-sxoOF
  priority: 102
  providerName: Unpaywall
Title Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE)
URI https://link.springer.com/article/10.1186/s12864-019-6285-x
https://www.ncbi.nlm.nih.gov/pubmed/31856727
https://www.proquest.com/docview/2340837505
https://www.proquest.com/docview/2329732883
https://pubmed.ncbi.nlm.nih.gov/PMC6923820
https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-019-6285-x
https://doaj.org/article/8752f8c5d4464893ad3994c0d6b451f7
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgEwIeEN8ERmUQErApWr7sOI9d1WpDajUNKpUny3HsgVSlVdOK7b_nLk5DA9L2wouV1hep9p3vo777HSEfskIrLSLrFyEMSaFBDxYm90UimDFWhzbC2uHxhJ9Oky8zNttp9YU5YQ4e2G3cMfjTkRWaFRC3IFCKKsCkJjooeJ6w0NZ15IHItsFUc38Ado81d5ih4McVaGGO2RaZjyWD_lXHCtVg_f-q5B2b9He-ZHtp-pDc35RLdf1Lzec7dmn0mDxqHEradwt5Qu6Y8im551pMXj8jy7MtHgStcwd9rEKuKCaGUvwPljoUJmQVReiIlSt0oKVLD68oJsZf0rpO18drBDqqO_Q05Zu0v1kvhiUWxq_op3F_-Pk5mY6G3wanftNlwdc8Ttd-VhTKxsyGTCtQmzblsFAudGB0Do9xblWcYqSTZugexiwORC4KFuY61goIXpC9clGaV4SCoWMqyCOjU4jTcqFCk6nAGm7CnAuWeCTY7rrUDQQ5dsKYyzoUEVw6RklglERGySuPHLavLB3-xk3EJ8jKlhChs-svQKBkI1DyNoHyyHsUBIngGCVm31yqTVXJs68Xss-xKQbEgED0sSGyC1gByLsrZoB9QDytDuVBhxJOr-5Ob-VNNtqjklGcgGcMvhzzyLt2Gt_EjLjSLDZIE9VASyL2yEsnnu26sSIeb9g9knYEt7Mx3Zny548aW5yDww9OoUeOtiL-52fdsO9H7Sm4nUuv_weX3pAHER7nMAI9f0D21quNeQvu4TrvkbvpLO2R_ZPh5PwCPg34oFdrBxjHiYBxGsHz_nRy3v_-G3OyZ0I
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVqjwgLgxFFgQiKOy6nO9eahQCokS2lSoh9S3Zb27DkiRHeJEbf4cv40ZX61BCk99iazs2PLuzM7hnfmGkDcdraTiXmJrF34CrUAPahPbPOChMYlyEw9rh0eHbHAafD0Lz9bI77oWBtMqa51YKGqdKfxGvuP5AXgLYN_CT9NfNnaNwtPVuoWGrFor6N0CYqwq7Ng3y3MI4fLd4Rfg91vP6_dOPg_sqsuArZgfze2O1jLxw8QNlQS1kUTMaMW4coyK4dKPE-lH6OlHHXSP_NB3eMx16MbKVxII4Lk3yEbgBx0I_jb2eoffjppzDLC_YXWW6nK2k4M1YJj10bGxdNG-aFnDomnAv6bhim38O2-zOby9TTYX6VQuz-VkcsU-9u-SO5VjS7ulJN4jaya9T26WrS6XD8h0WONS0CKH0cZq6JxigirFb8G0RINCkaEIYTErCy5oWqap5xQT9Me0qBe2kVW0X3QKqspIaXcxz3opFujP6PtRt_fhITm9Fj48IutplponhILBDaUTe0ZFEC_GXLqmI53EMOPGjIeBRZx61YWqoNCxI8dEFCERZ6JklABGCWSUuLDIx-aWaYkDsop4D1nZECKEd_FHNhuLSiMICBS9hKtQQ0COCEBSg68YKEezOAjdJLLIaxQEgSAdKWYBjeUiz8Xw-Eh0GTbngFgUiN5VREkGM4B9VxZVwDogrleLcqtFCVpEtYdreROVFsvF5Z6zyKtmGO_EzLzUZAuk8QrAJ-5b5HEpns28sTIfT_otErUEt7Uw7ZH0548C45xB4AHOqUW2axG_fK0V677d7IL_c-np6im_JJuDk9GBOBge7j8jtzzctK4HVmWLrM9nC_McnNF5_KLa8ZR8v24l8wcSf512
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELbQIq4HxE1gAYOQOFbR5rLjPpbSagvsCgEr7Zvl-ChIVVo1qWD_PTNxEjaAFvFSVfWkqj13PfMNIc9HRistEheaGF4yo8EOGluEIhPMWqdjl2Dv8OERPzjO3p2wk3bOadVVu3dXkr6nAVGaynp_bZxXccH3K7CqHKsnRiG2AIYQRF7MwLnhCIMJn_TXCOD-WHuV-dfHBs6owez_0zKfcU2_l032d6fXyJVtuVan39VyecY9zW6Q621cScdeEG6SC7a8RS75SZOnt8l63sFC0KaEMMRm5IpifSjFv2KpB2NCjlFEkNj4fgda-irximJ9_II27boh3ibQWTOop-3ipONtvZqW2B-_oS8Px9NXd8jxbPplchC2wxZCzdO8DkfGKJcyFzOtwHq6nMNGudCR1QW8TQun0hwTnnyEUWLK0kgUwrC40KlWQHCX7JSr0t4nFPwdU1GRWJ1DulYIFduRipzlNi64YFlAou7UpW6RyHEgxlI2GYng0jNKAqMkMkr-CMjr_pG1h-E4j_gNsrInRATt5oPVZiFbhZSQpyVOaGYgH0YAHmUgVMt0ZHiRsdjlAXmGgiARI6PEIpyF2laVnH_-JMccZ2NAKghEL1oit4IdgNj7ngY4B4TVGlDuDihBifVwuZM32RqRSiYpyHQKIR0LyNN-GZ_EwrjSrrZIkzR4SyINyD0vnv2-sTEeL9oDkg8Ed3Aww5Xy29cGYpxD3A-xYUD2OhH_9bPOOfe9Xgv-zaUH__XdT8jlj29n8sP86P1DcjVBFY4TMPG7ZKfebO0jiAzr4nGj_T8BejRdDA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdQJwR84P0IDGQQEo8pXV523I8FtdqQNiGg0vhk2Y5dxrq0ahrB-Ou5S9LQDDSExJcqqs9qfL4739V3vyPk-SAzyojI-VkIH0lmwA5mVvsiEcxaZ0IXYe3wwSHfmyTvjthRAymEtTD61CA46emxKfqbBeizymrDgznZXWSuVnbBdwuwrxzzKAY-FgP64E5ucQZueY9sTQ7fDz9X1UVp6EcQFzS3mn-c1zmXKvj-3430xil1PoOyvUa9Rq6U-UKdfVOz2cZJNb5Bvq7XWCeonPTLle6bH-fgH_8LE26S640_S4e1AN4il2x-m1yuO1ye3SGL_TUcBa1SF_3q5yjmpVL8C5jWIFAoKRSRK5Z1nQXN6-z0gmJe_pRWZcI-3mLQcdUgqKkepcNyNR_lWJe_pC8PhqNXd8lkPPr0ds9vmjz4hsfpyh9kmXIxcyEzCqy2SzmslgsTWKPhMdZOxSkGWukAvdOYxYHQImOhNrFRQHCP9PJ5bh8QCtvMVKAja1IIE7VQoR2owFluQ80FSzwSrLdYmgYBHRtxzGQVCQkua0ZKYKRERsrvHnndTlnU8B8XEb9BuWkJEbm7-mK-nMrGEEiIDyMnDMsgDkfgH5WBi5iYIOM6YaFLPfIMpU4iNkeOyT9TVRaF3P_4QQ459uSAEBSIXjREbo7ioJpaCuADwnl1KLc7lGA8THd4LdyyMV6FjOIEHHNwJZlHnrbDOBMT8nI7L5EmqnCeROyR-7UutOvGgny84PdI2tGSDmO6I_nxlwranEO8AT6pR3bW-vTrtS7g-06rcn_fpYf_RP2IXI1Qr8IIzpNt0lstS_sY3NCVftIYmJ-sxoOF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrate+multi-omics+data+with+biological+interaction+networks+using+Multi-view+Factorization+AutoEncoder+%28MAE%29&rft.jtitle=BMC+genomics&rft.au=Tianle+Ma&rft.au=Aidong+Zhang&rft.date=2019-12-20&rft.pub=BMC&rft.eissn=1471-2164&rft.volume=20&rft.issue=S11&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1186%2Fs12864-019-6285-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8752f8c5d4464893ad3994c0d6b451f7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon