Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE)
Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link differe...
        Saved in:
      
    
          | Published in | BMC genomics Vol. 20; no. Suppl 11; pp. 944 - 11 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        20.12.2019
     BioMed Central Ltd Springer Nature B.V BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2164 1471-2164  | 
| DOI | 10.1186/s12864-019-6285-x | 
Cover
| Abstract | Background
Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the “big p, small n” problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging.
Results
We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables.
Conclusions
To alleviate the overfitting problem in deep learning on multi-omics data with the “big p, small n” problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features. | 
    
|---|---|
| AbstractList | Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. To alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features. Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging.BACKGROUNDComprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging.We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables.RESULTSWe developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables.To alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.CONCLUSIONSTo alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features. Abstract Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the “big p, small n” problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. Results We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. Conclusions To alleviate the overfitting problem in deep learning on multi-omics data with the “big p, small n” problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features. Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. Results We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. Conclusions To alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features. Keywords: Multi-omics data, Biological interaction networks, Deep learning, Multi-view learning, Autoencoder, Data integration, Graph regularization Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the “big p, small n” problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. Results We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. Conclusions To alleviate the overfitting problem in deep learning on multi-omics data with the “big p, small n” problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features. Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the “big p, small n” problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. Results We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. Conclusions To alleviate the overfitting problem in deep learning on multi-omics data with the “big p, small n” problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features. Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases. Machine learning approaches to mining multi-omics data hold great promises in uncovering intricate relationships among molecular features. However, due to the "big p, small n" problem (i.e., small sample sizes with high-dimensional features), training a large-scale generalizable deep learning model with multi-omics data alone is very challenging. We developed a method called Multi-view Factorization AutoEncoder (MAE) with network constraints that can seamlessly integrate multi-omics data and domain knowledge such as molecular interaction networks. Our method learns feature and patient embeddings simultaneously with deep representation learning. Both feature representations and patient representations are subject to certain constraints specified as regularization terms in the training objective. By incorporating domain knowledge into the training objective, we implicitly introduced a good inductive bias into the machine learning model, which helps improve model generalizability. We performed extensive experiments on the TCGA datasets and demonstrated the power of integrating multi-omics data and biological interaction networks using our proposed method for predicting target clinical variables. To alleviate the overfitting problem in deep learning on multi-omics data with the "big p, small n" problem, it is helpful to incorporate biological domain knowledge into the model as inductive biases. It is very promising to design machine learning models that facilitate the seamless integration of large-scale multi-omics data and biomedical domain knowledge for uncovering intricate relationships among molecular features and clinical features.  | 
    
| ArticleNumber | 944 | 
    
| Audience | Academic | 
    
| Author | Zhang, Aidong Ma, Tianle  | 
    
| Author_xml | – sequence: 1 givenname: Tianle surname: Ma fullname: Ma, Tianle organization: Department of Computer Science and Engineering, University at Buffalo – sequence: 2 givenname: Aidong surname: Zhang fullname: Zhang, Aidong email: aidong@virginia.edu organization: Department of Computer Science, University of Virginia  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31856727$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkktv1DAUhSNURB_wA9igSGzaRYof8SMbpFE1hZFaIfFYW47jpB4y9mA7nSm_Hs9kaDsVIJRFLPs7x9fn3uPswDqrs-w1BOcQcvouQMRpWQBYFRRxUqyfZUewZLBAkJYHj9aH2XEIcwAg44i8yA4x5IQyxI6y5cxG3XkZdb4Y-mgKtzAq5I2MMl-ZeJPXxvWuM0r2uUmolyoaZ3Or48r57yEfgrFdfr3V3hq9yi8T4bz5KbfcZIhuapVrtM9PryfTs5fZ81b2Qb_a_U-yb5fTrxcfi6tPH2YXk6tCUcxiUTWNbDFpIVESlrRlVDeKcgW0qtMS163EDICKsgpACjHBgNe8IbBWWMkEnGSz0bdxci6W3iykvxNOGrHdcL4T0kejei04I6jlijRlSUteYdngqioVaGhdEtiy5IVGr8Eu5d1K9v29IQRi0woxtkKkVohNK8Q6id6PouVQL1Lx2kYv-71K9k-suRGduxW0QpgjkAxOdwbe_Rh0iGJhgtJ9L612QxAIo4phxDlO6Nsn6NwN3qZ8E1UCjhkB5IHqZHq1sa1L96qNqZhQCNJQULR57PkfqPQ1Oo1GGsDWpP09wdmeIDFRr2MnhxDE7MvnffbN41Du0_g9kAmAI6C8C8Hr9r-SZk80ysTt-KXKTf9P5a6xId1iO-0fcvu76BcI3hPc | 
    
| CitedBy_id | crossref_primary_10_1186_s12911_024_02582_4 crossref_primary_10_1016_j_inffus_2023_102077 crossref_primary_10_1038_s41416_024_02706_7 crossref_primary_10_1016_j_eswa_2024_124108 crossref_primary_10_1016_j_jbi_2023_104512 crossref_primary_10_61186_ijbc_15_3_13 crossref_primary_10_1186_s13059_022_02739_2 crossref_primary_10_1007_s12038_022_00253_y crossref_primary_10_1109_ACCESS_2023_3234294 crossref_primary_10_1038_s41467_023_39729_2 crossref_primary_10_1093_bib_bbab569 crossref_primary_10_3389_fonc_2020_588221 crossref_primary_10_3389_fmolb_2022_962799 crossref_primary_10_1007_s10489_024_05821_3 crossref_primary_10_3390_life11040364 crossref_primary_10_1080_10643389_2024_2320753 crossref_primary_10_3390_biology13050338 crossref_primary_10_1016_j_semcancer_2023_02_009 crossref_primary_10_1177_15353702211065010 crossref_primary_10_1093_bioinformatics_btad162 crossref_primary_10_1109_RBME_2024_3503761 crossref_primary_10_1093_bib_bbab159 crossref_primary_10_1089_omi_2024_0110 crossref_primary_10_1016_j_jgg_2021_05_008 crossref_primary_10_1016_j_mec_2022_e00209 crossref_primary_10_1093_bib_bbad411 crossref_primary_10_3390_genes12071098 crossref_primary_10_1016_j_ymeth_2020_08_001 crossref_primary_10_1128_msystems_01105_20 crossref_primary_10_1007_s11633_023_1442_8 crossref_primary_10_1016_j_csbj_2024_04_053 crossref_primary_10_1002_med_21847 crossref_primary_10_34133_2020_8051764 crossref_primary_10_3390_nano11092385 crossref_primary_10_1016_j_jbi_2021_103854 crossref_primary_10_1093_bib_bbab024 crossref_primary_10_3390_ijms221910891 crossref_primary_10_1016_j_csbj_2023_10_016 crossref_primary_10_1186_s13040_024_00391_z crossref_primary_10_1007_s10237_020_01410_8 crossref_primary_10_1038_s43588_021_00086_z crossref_primary_10_3390_ijms232012272 crossref_primary_10_1186_s12859_023_05622_4 crossref_primary_10_3389_fonc_2022_998222 crossref_primary_10_1128_msystems_01303_23 crossref_primary_10_1360_TB_2024_0416 crossref_primary_10_1109_TNB_2024_3456797 crossref_primary_10_3389_fgene_2022_854752 crossref_primary_10_3389_fmolb_2021_648012  | 
    
| Cites_doi | 10.1016/j.celrep.2018.05.039 10.1093/nar/gkt1102 10.1109/TPAMI.2018.2798607 10.1109/CVPR.2017.243 10.1038/ncomms13091 10.1038/nmeth.2651 10.1016/j.cell.2018.03.034 10.1109/BIBM.2017.8217682 10.1371/journal.pone.0035236 10.1038/nmeth.4627 10.1371/journal.pone.0178751 10.1038/nbt.3300 10.1186/s12859-016-0912-1 10.1007/978-3-319-31750-2_3 10.1109/CVPR.2016.90 10.1093/nar/gku1003 10.1109/TKDE.2018.2872063 10.1038/nmeth.2810 10.1038/nature14539 10.1016/j.cell.2018.03.042 10.1016/j.cell.2018.02.052 10.1016/j.inffus.2017.02.007 10.1109/BIBM.2018.8621379 10.1016/j.celrep.2018.03.046 10.1093/database/bau069  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2019 COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s12864-019-6285-x | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2164 | 
    
| EndPage | 11 | 
    
| ExternalDocumentID | oai_doaj_org_article_8752f8c5d4464893ad3994c0d6b451f7 10.1186/s12864-019-6285-x PMC6923820 A610318627 31856727 10_1186_s12864_019_6285_x  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO EJD FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM 2VQ 4.4 ADRAZ ADTOC AHSBF C1A H13 IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c637t-9ddaf35f15ca146f76edc68c0ecb6ed3bfa37009679016135308b8d51bc3caed3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1471-2164 | 
    
| IngestDate | Tue Oct 14 19:00:27 EDT 2025 Sun Oct 26 04:12:13 EDT 2025 Tue Sep 30 16:10:40 EDT 2025 Thu Oct 02 06:48:22 EDT 2025 Tue Oct 07 05:28:24 EDT 2025 Mon Oct 20 22:35:11 EDT 2025 Mon Oct 20 16:45:09 EDT 2025 Thu Oct 16 15:00:09 EDT 2025 Thu Apr 03 07:04:44 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Wed Oct 01 01:08:11 EDT 2025 Sat Sep 06 07:21:46 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | Suppl 11 | 
    
| Keywords | Deep learning Graph regularization Multi-omics data Autoencoder Data integration Biological interaction networks Multi-view learning  | 
    
| Language | English | 
    
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c637t-9ddaf35f15ca146f76edc68c0ecb6ed3bfa37009679016135308b8d51bc3caed3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://doaj.org/article/8752f8c5d4464893ad3994c0d6b451f7 | 
    
| PMID | 31856727 | 
    
| PQID | 2340837505 | 
    
| PQPubID | 44682 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8752f8c5d4464893ad3994c0d6b451f7 unpaywall_primary_10_1186_s12864_019_6285_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_6923820 proquest_miscellaneous_2329732883 proquest_journals_2340837505 gale_infotracmisc_A610318627 gale_infotracacademiconefile_A610318627 gale_incontextgauss_ISR_A610318627 pubmed_primary_31856727 crossref_primary_10_1186_s12864_019_6285_x crossref_citationtrail_10_1186_s12864_019_6285_x springer_journals_10_1186_s12864_019_6285_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-12-20 | 
    
| PublicationDateYYYYMMDD | 2019-12-20 | 
    
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-20 day: 20  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC genomics | 
    
| PublicationTitleAbbrev | BMC Genomics | 
    
| PublicationTitleAlternate | BMC Genomics | 
    
| PublicationYear | 2019 | 
    
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC  | 
    
| References | 6285_CR30 J Liu (6285_CR31) 2018; 173 6285_CR3 C Hutter (6285_CR1) 2018; 173 6285_CR32 J Zhao (6285_CR4) 2017; 38 M Hofree (6285_CR15) 2013; 10 6285_CR14 6285_CR18 R Bell (6285_CR5) 2009; 42 H Shen (6285_CR6) 2018; 23 C Angione (6285_CR9) 2016; 17 GP Way (6285_CR8) 2018; 23 TM Malta (6285_CR7) 2018; 173 V. J. Henry (6285_CR11) 2014; 2014 Trang Pham (6285_CR19) 2016 J Ma (6285_CR21) 2018; 15 Yingming Li (6285_CR25) 2019; 31 Y LeCun (6285_CR2) 2015; 521 6285_CR20 DD Lee (6285_CR28) 2001 D Szklarczyk (6285_CR26) 2014; 43 B Wang (6285_CR13) 2014; 11 6285_CR24 J Ngiam (6285_CR23) 2011 A Ebrahim (6285_CR10) 2016; 7 R Shen (6285_CR12) 2012; 7 V Boža (6285_CR17) 2017; 12 6285_CR29 D Croft (6285_CR27) 2013; 42 Tadas Baltrusaitis (6285_CR22) 2019; 41 B Alipanahi (6285_CR16) 2015; 33  | 
    
| References_xml | – volume: 23 start-page: 3392 issue: 11 year: 2018 ident: 6285_CR6 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.05.039 – volume: 42 start-page: 472 issue: D1 year: 2013 ident: 6285_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1102 – volume: 41 start-page: 423 issue: 2 year: 2019 ident: 6285_CR22 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2018.2798607 – ident: 6285_CR30 doi: 10.1109/CVPR.2017.243 – volume-title: Advances in Neural Information Processing Systems year: 2001 ident: 6285_CR28 – volume: 7 start-page: 13091 year: 2016 ident: 6285_CR10 publication-title: Nat Commun doi: 10.1038/ncomms13091 – volume: 10 start-page: 1108 issue: 11 year: 2013 ident: 6285_CR15 publication-title: Nat Methods doi: 10.1038/nmeth.2651 – volume: 173 start-page: 338 issue: 2 year: 2018 ident: 6285_CR7 publication-title: Cell doi: 10.1016/j.cell.2018.03.034 – ident: 6285_CR14 doi: 10.1109/BIBM.2017.8217682 – ident: 6285_CR20 – volume: 7 start-page: 35236 issue: 4 year: 2012 ident: 6285_CR12 publication-title: PLoS ONE doi: 10.1371/journal.pone.0035236 – volume: 15 start-page: 290 issue: 4 year: 2018 ident: 6285_CR21 publication-title: Nat Methods doi: 10.1038/nmeth.4627 – volume: 12 start-page: 0178751 issue: 6 year: 2017 ident: 6285_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0178751 – volume: 33 start-page: 831 issue: 8 year: 2015 ident: 6285_CR16 publication-title: Nat Biotechnol doi: 10.1038/nbt.3300 – volume: 17 start-page: 83 issue: 4 year: 2016 ident: 6285_CR9 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0912-1 – start-page: 30 volume-title: Advances in Knowledge Discovery and Data Mining year: 2016 ident: 6285_CR19 doi: 10.1007/978-3-319-31750-2_3 – ident: 6285_CR29 doi: 10.1109/CVPR.2016.90 – ident: 6285_CR24 – ident: 6285_CR32 – volume: 43 start-page: 447 issue: D1 year: 2014 ident: 6285_CR26 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1003 – volume: 31 start-page: 1863 issue: 10 year: 2019 ident: 6285_CR25 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2872063 – volume: 11 start-page: 333 issue: 3 year: 2014 ident: 6285_CR13 publication-title: Nat Methods doi: 10.1038/nmeth.2810 – volume-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11) year: 2011 ident: 6285_CR23 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 6285_CR2 publication-title: nature doi: 10.1038/nature14539 – volume: 173 start-page: 283 issue: 2 year: 2018 ident: 6285_CR1 publication-title: Cell doi: 10.1016/j.cell.2018.03.042 – ident: 6285_CR18 – volume: 173 start-page: 400 issue: 2 year: 2018 ident: 6285_CR31 publication-title: Cell doi: 10.1016/j.cell.2018.02.052 – volume: 38 start-page: 43 year: 2017 ident: 6285_CR4 publication-title: Inf Fusion doi: 10.1016/j.inffus.2017.02.007 – volume: 42 start-page: 30 year: 2009 ident: 6285_CR5 publication-title: Computer – ident: 6285_CR3 doi: 10.1109/BIBM.2018.8621379 – volume: 23 start-page: 172 issue: 1 year: 2018 ident: 6285_CR8 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.03.046 – volume: 2014 start-page: bau069 issue: 0 year: 2014 ident: 6285_CR11 publication-title: Database doi: 10.1093/database/bau069  | 
    
| SSID | ssj0017825 | 
    
| Score | 2.541479 | 
    
| Snippet | Background
Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data... Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to... Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data... Abstract Background Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 944 | 
    
| SubjectTerms | Algorithms Animal Genetics and Genomics Autoencoder Bias Biochemistry Biological interaction networks Biomedical and Life Sciences Biomedical data Cancer Clustering Criminal investigation Data analysis Data integration Data Mining Databases, Genetic Deep learning Deoxyribonucleic acid DNA DNA methylation Domains Factorization Gene expression Genes Genomics Humans Knowledge Knowledge Bases Learning algorithms Learning strategies Life Sciences Machine Learning Methylation Microarrays Microbial Genetics and Genomics MicroRNA Mining industry miRNA Models, Biological Molecular interactions Multi-omics data Multi-view learning Natural language processing Neoplasms - genetics Neoplasms - mortality Neoplasms - pathology Networks Patients Plant Genetics and Genomics Proteins Proteomics Regularization Representations Ribonucleic acid RNA Systems Biology - methods Training  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3raxNBEF9qiqgfxLenVVYRfJSj99q9zQeRVBJaoUGqhX5b9vYRhXAXczls_3tn7tWeQvwSQnYOsjvv25nfEPJmbLTSInK-CeEjMRrsoLGZLxLBrHU6dBH2Dp_M-dFZ8uWcne-QedcLg2WVnU2sDbUpNL4jP4jiBKIF8G_s0-qXj1Oj8Ha1G6Gh2tEK5mMNMXaD7EaIjDUiu4fT-dfT_l4B_CFr7zZDwQ9KsM4cqzDGPrYS-hcD71SD-P9rqq_5qr_rKPvL1DvkVpWv1OVvtVxe81eze-RuG2jSSSMZ98mOzR-Qm83oycuHZHXc4UTQuqbQx-7kkmLBKMV3s7RBZ0IWUoSUWDcNEDRvysZLigXzC1r37_p4dHRWT-5p2zrppNoU0xwb5tf03clk-v4ROZtNv38-8tvpC77mcbrxx8YoFzMXMq3AnLqUw0a50IHVGXyNM6fiFDOgdIxhY8ziQGTCsDDTsVZA8JiM8iK3TwkFB8hUkEVWp5C_ZUKFdqwCZ7kNMy5Y4pGgO3WpW2hynJCxlHWKIrhsGCWBURIZJS888qF_ZNXgcmwjPkRW9oQIqV3_UKwXstVQCYlb5IRmBhJkRORRBmK3RAeGZwkLXeqR1ygIEkEzcqzKWaiqLOXxt1M54TgsA3JDIHrbErkCdgB60DQ5wDkgztaAcm9ACVqth8udvMnWqpTySgc88qpfxiexUi63RYU0UQ3AJGKPPGnEs983dsrjzbtH0oHgDg5muJL__FFjjnNIBCBY9Mh-J-JXf2vLue_3WvB_Lj3bvuXn5HaEihpGYNn3yGizruwLCAg32ctWy_8An85fQA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamIQQ8IK5bYCCDkLhMYbnZcR4QKqjVhlQegEp7sxzHLkhVUpJGrP-ec3LbAtN44aWq6hOp9rnH53yHkBdJppUWgXUzHz6iTIMdzEzqikgwY6z2bYC9w_PP_HgRfTplpzukH2_VHWB1aWqH86QW5ert2c_te1D4d43CC35UgY3lWEuRuNgQ6EJIeQ0cVYKTHObR-aUCOEPWXWxe-tjINTUI_n_b6QuO6s8iyuEm9Ra5Uedrtf2lVqsLzmp2h9zuokw6acXiLtkx-T1yvZ07ub1P1ic9SARtCgpdbE2uKFaLUnwxS1toJuQfRTyJsu1-oHlbM15RrJZf0qZ518W7BTprxvZ0PZ10Um-KaY7d8iV9NZ9MXz8gi9n028djtxu94Goexhs3yTJlQ2Z9phXYUhtz2CgX2jM6ha9halUYY_oTJxgzhiz0RCoy5qc61AoIHpLdvMjNPqHg_Zjy0sDoGJK3VCjfJMqzhhs_5YJFDvH6U5e6wyXH8Rgr2eQngsuWURIYJZFR8swhb4ZH1i0ox1XEH5CVAyHiaTc_FOVSduopIWsLrNAsg-wY4XhUBoFbpL2MpxHzbeyQ5ygIEhEzcizJWaq6quTJ1y9ywnFSBiSGQPSyI7IF7ACUoO1wgHNAkK0R5cGIElRaj5d7eZO9RsggjCBchgCPOeTZsIxPYplcbooaaYIGfUmEDtlrxXPYN7bJ47W7Q-KR4I4OZryS__jeAI5zyAIgUnTIYS_i53_rinM_HLTg31x69D-49JjcDFCd_QCM_wHZ3ZS1eQIx4yZ92liC3zonaKA priority: 102 providerName: Scholars Portal – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA9yIuoH8XlXPSWK4OMo11fS9OMqu9wJ5wd14b6FJE1WYWmX7Ra9_96Z9OFV5cQvS9lMyibzyMzOzC-EvCxKo4xIXFjG8JGVBuxgaXUoMsGsdSZ2CfYOn33kJ8vswzk77_u4m6HafUhJekvt1Vrw4wYsKceKiSLEtr8QHMfrDNG8QIiXyWxMHcCRx_r05V-nTQ4gj9P_pzW-dBz9Xio55ktvk5tttVEX39V6felIWtwld3pfks465t8j12x1n9zobpe8eEA2pwMUBPVlgyE2IDcUa0Ip_v1KOwAm5BJF1Iht1-NAq64yvKFYE7-ivkU3xAwCXfjLefrOTTprd_W8wp74LX19Npu_eUiWi_mX9ydhf8FCaHia78KiLJVLmYuZUWAxXc5hoVyYyBoNj6l2Ks0xyMkL9AxTlkZCi5LF2qRGAcEjslfVlT0gFM44piKdWJNDiKaFim2hIme5jTUXLAtINOy6ND36OF6CsZY-ChFcdoySwCiJjJI_AvJ2nLLpoDeuIn6HrBwJETXbf1FvV7JXQgmxWeKEYSXEwAi6o0pwzzITlVxnLHZ5QF6gIEjExaiw8Gal2qaRp58_yRnH-zAg_AOiVz2Rq2EFIOpdHwPsA0JpTSgPJ5SguGY6PMib7A1HI5M0A6cY3DgWkOfjMM7EYrjK1i3SJB5jSaQB2e_Ec1w3NsNjcj0g-URwJxszHam-ffWw4hx8ffAHA3I0iPivn3XFvh-NWvBvLj3-r3c_IbcS1Ns4AVt-SPZ229Y-BRdwp595lf8Jh7lV-g priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdQJwR84P0IDGQQEo8pXV523I8FtdqQNiGg0vhk2Y5dxrq0ahrB-Ou5S9LQDDSExJcqqs9qfL4739V3vyPk-SAzyojI-VkIH0lmwA5mVvsiEcxaZ0IXYe3wwSHfmyTvjthRAymEtTD61CA46emxKfqbBeizymrDgznZXWSuVnbBdwuwrxzzKAY-FgP64E5ucQZueY9sTQ7fDz9X1UVp6EcQFzS3mn-c1zmXKvj-3430xil1PoOyvUa9Rq6U-UKdfVOz2cZJNb5Bvq7XWCeonPTLle6bH-fgH_8LE26S640_S4e1AN4il2x-m1yuO1ye3SGL_TUcBa1SF_3q5yjmpVL8C5jWIFAoKRSRK5Z1nQXN6-z0gmJe_pRWZcI-3mLQcdUgqKkepcNyNR_lWJe_pC8PhqNXd8lkPPr0ds9vmjz4hsfpyh9kmXIxcyEzCqy2SzmslgsTWKPhMdZOxSkGWukAvdOYxYHQImOhNrFRQHCP9PJ5bh8QCtvMVKAja1IIE7VQoR2owFluQ80FSzwSrLdYmgYBHRtxzGQVCQkua0ZKYKRERsrvHnndTlnU8B8XEb9BuWkJEbm7-mK-nMrGEEiIDyMnDMsgDkfgH5WBi5iYIOM6YaFLPfIMpU4iNkeOyT9TVRaF3P_4QQ459uSAEBSIXjREbo7ioJpaCuADwnl1KLc7lGA8THd4LdyyMV6FjOIEHHNwJZlHnrbDOBMT8nI7L5EmqnCeROyR-7UutOvGgny84PdI2tGSDmO6I_nxlwranEO8AT6pR3bW-vTrtS7g-06rcn_fpYf_RP2IXI1Qr8IIzpNt0lstS_sY3NCVftIYmJ-sxoOF priority: 102 providerName: Unpaywall  | 
    
| Title | Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE) | 
    
| URI | https://link.springer.com/article/10.1186/s12864-019-6285-x https://www.ncbi.nlm.nih.gov/pubmed/31856727 https://www.proquest.com/docview/2340837505 https://www.proquest.com/docview/2329732883 https://pubmed.ncbi.nlm.nih.gov/PMC6923820 https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-019-6285-x https://doaj.org/article/8752f8c5d4464893ad3994c0d6b451f7  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgEwIeEN8ERmUQErApWr7sOI9d1WpDajUNKpUny3HsgVSlVdOK7b_nLk5DA9L2wouV1hep9p3vo777HSEfskIrLSLrFyEMSaFBDxYm90UimDFWhzbC2uHxhJ9Oky8zNttp9YU5YQ4e2G3cMfjTkRWaFRC3IFCKKsCkJjooeJ6w0NZ15IHItsFUc38Ado81d5ih4McVaGGO2RaZjyWD_lXHCtVg_f-q5B2b9He-ZHtp-pDc35RLdf1Lzec7dmn0mDxqHEradwt5Qu6Y8im551pMXj8jy7MtHgStcwd9rEKuKCaGUvwPljoUJmQVReiIlSt0oKVLD68oJsZf0rpO18drBDqqO_Q05Zu0v1kvhiUWxq_op3F_-Pk5mY6G3wanftNlwdc8Ttd-VhTKxsyGTCtQmzblsFAudGB0Do9xblWcYqSTZugexiwORC4KFuY61goIXpC9clGaV4SCoWMqyCOjU4jTcqFCk6nAGm7CnAuWeCTY7rrUDQQ5dsKYyzoUEVw6RklglERGySuPHLavLB3-xk3EJ8jKlhChs-svQKBkI1DyNoHyyHsUBIngGCVm31yqTVXJs68Xss-xKQbEgED0sSGyC1gByLsrZoB9QDytDuVBhxJOr-5Ob-VNNtqjklGcgGcMvhzzyLt2Gt_EjLjSLDZIE9VASyL2yEsnnu26sSIeb9g9knYEt7Mx3Zny548aW5yDww9OoUeOtiL-52fdsO9H7Sm4nUuv_weX3pAHER7nMAI9f0D21quNeQvu4TrvkbvpLO2R_ZPh5PwCPg34oFdrBxjHiYBxGsHz_nRy3v_-G3OyZ0I | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVqjwgLgxFFgQiKOy6nO9eahQCokS2lSoh9S3Zb27DkiRHeJEbf4cv40ZX61BCk99iazs2PLuzM7hnfmGkDcdraTiXmJrF34CrUAPahPbPOChMYlyEw9rh0eHbHAafD0Lz9bI77oWBtMqa51YKGqdKfxGvuP5AXgLYN_CT9NfNnaNwtPVuoWGrFor6N0CYqwq7Ng3y3MI4fLd4Rfg91vP6_dOPg_sqsuArZgfze2O1jLxw8QNlQS1kUTMaMW4coyK4dKPE-lH6OlHHXSP_NB3eMx16MbKVxII4Lk3yEbgBx0I_jb2eoffjppzDLC_YXWW6nK2k4M1YJj10bGxdNG-aFnDomnAv6bhim38O2-zOby9TTYX6VQuz-VkcsU-9u-SO5VjS7ulJN4jaya9T26WrS6XD8h0WONS0CKH0cZq6JxigirFb8G0RINCkaEIYTErCy5oWqap5xQT9Me0qBe2kVW0X3QKqspIaXcxz3opFujP6PtRt_fhITm9Fj48IutplponhILBDaUTe0ZFEC_GXLqmI53EMOPGjIeBRZx61YWqoNCxI8dEFCERZ6JklABGCWSUuLDIx-aWaYkDsop4D1nZECKEd_FHNhuLSiMICBS9hKtQQ0COCEBSg68YKEezOAjdJLLIaxQEgSAdKWYBjeUiz8Xw-Eh0GTbngFgUiN5VREkGM4B9VxZVwDogrleLcqtFCVpEtYdreROVFsvF5Z6zyKtmGO_EzLzUZAuk8QrAJ-5b5HEpns28sTIfT_otErUEt7Uw7ZH0548C45xB4AHOqUW2axG_fK0V677d7IL_c-np6im_JJuDk9GBOBge7j8jtzzctK4HVmWLrM9nC_McnNF5_KLa8ZR8v24l8wcSf512 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELbQIq4HxE1gAYOQOFbR5rLjPpbSagvsCgEr7Zvl-ChIVVo1qWD_PTNxEjaAFvFSVfWkqj13PfMNIc9HRistEheaGF4yo8EOGluEIhPMWqdjl2Dv8OERPzjO3p2wk3bOadVVu3dXkr6nAVGaynp_bZxXccH3K7CqHKsnRiG2AIYQRF7MwLnhCIMJn_TXCOD-WHuV-dfHBs6owez_0zKfcU2_l032d6fXyJVtuVan39VyecY9zW6Q621cScdeEG6SC7a8RS75SZOnt8l63sFC0KaEMMRm5IpifSjFv2KpB2NCjlFEkNj4fgda-irximJ9_II27boh3ibQWTOop-3ipONtvZqW2B-_oS8Px9NXd8jxbPplchC2wxZCzdO8DkfGKJcyFzOtwHq6nMNGudCR1QW8TQun0hwTnnyEUWLK0kgUwrC40KlWQHCX7JSr0t4nFPwdU1GRWJ1DulYIFduRipzlNi64YFlAou7UpW6RyHEgxlI2GYng0jNKAqMkMkr-CMjr_pG1h-E4j_gNsrInRATt5oPVZiFbhZSQpyVOaGYgH0YAHmUgVMt0ZHiRsdjlAXmGgiARI6PEIpyF2laVnH_-JMccZ2NAKghEL1oit4IdgNj7ngY4B4TVGlDuDihBifVwuZM32RqRSiYpyHQKIR0LyNN-GZ_EwrjSrrZIkzR4SyINyD0vnv2-sTEeL9oDkg8Ed3Aww5Xy29cGYpxD3A-xYUD2OhH_9bPOOfe9Xgv-zaUH__XdT8jlj29n8sP86P1DcjVBFY4TMPG7ZKfebO0jiAzr4nGj_T8BejRdDA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdQJwR84P0IDGQQEo8pXV523I8FtdqQNiGg0vhk2Y5dxrq0ahrB-Ou5S9LQDDSExJcqqs9qfL4739V3vyPk-SAzyojI-VkIH0lmwA5mVvsiEcxaZ0IXYe3wwSHfmyTvjthRAymEtTD61CA46emxKfqbBeizymrDgznZXWSuVnbBdwuwrxzzKAY-FgP64E5ucQZueY9sTQ7fDz9X1UVp6EcQFzS3mn-c1zmXKvj-3430xil1PoOyvUa9Rq6U-UKdfVOz2cZJNb5Bvq7XWCeonPTLle6bH-fgH_8LE26S640_S4e1AN4il2x-m1yuO1ye3SGL_TUcBa1SF_3q5yjmpVL8C5jWIFAoKRSRK5Z1nQXN6-z0gmJe_pRWZcI-3mLQcdUgqKkepcNyNR_lWJe_pC8PhqNXd8lkPPr0ds9vmjz4hsfpyh9kmXIxcyEzCqy2SzmslgsTWKPhMdZOxSkGWukAvdOYxYHQImOhNrFRQHCP9PJ5bh8QCtvMVKAja1IIE7VQoR2owFluQ80FSzwSrLdYmgYBHRtxzGQVCQkua0ZKYKRERsrvHnndTlnU8B8XEb9BuWkJEbm7-mK-nMrGEEiIDyMnDMsgDkfgH5WBi5iYIOM6YaFLPfIMpU4iNkeOyT9TVRaF3P_4QQ459uSAEBSIXjREbo7ioJpaCuADwnl1KLc7lGA8THd4LdyyMV6FjOIEHHNwJZlHnrbDOBMT8nI7L5EmqnCeROyR-7UutOvGgny84PdI2tGSDmO6I_nxlwranEO8AT6pR3bW-vTrtS7g-06rcn_fpYf_RP2IXI1Qr8IIzpNt0lstS_sY3NCVftIYmJ-sxoOF | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrate+multi-omics+data+with+biological+interaction+networks+using+Multi-view+Factorization+AutoEncoder+%28MAE%29&rft.jtitle=BMC+genomics&rft.au=Tianle+Ma&rft.au=Aidong+Zhang&rft.date=2019-12-20&rft.pub=BMC&rft.eissn=1471-2164&rft.volume=20&rft.issue=S11&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1186%2Fs12864-019-6285-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8752f8c5d4464893ad3994c0d6b451f7 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |