Comparison of HRV indices obtained from ECG and SCG signals from CEBS database

Background Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording a...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 18; no. 1; pp. 69 - 15
Main Authors Siecinski, Szymon, Tkacz, Ewaryst J., Kostka, Pawel S.
Format Journal Article
LanguageEnglish
Published London BioMed Central 01.06.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1475-925X
1475-925X
DOI10.1186/s12938-019-0687-5

Cover

Abstract Background Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzing vibrations generated by the heart using an accelerometer. In this study, we compare HRV indices obtained from SCG and ECG on signals from combined measurement of ECG, breathing and seismocardiogram (CEBS) database and determine the influence of heart beat detector on SCG signals. Methods We considered two heart beat detectors on SCG signals: reference detector using R waves from ECG signal to detect heart beats in SCG and a heart beat detector using only SCG signal. We performed HRV analysis and calculated time and frequency features. Results Beat detection performance of tested algorithm on all SCG signals is quite good on 85,954 beats ( Se = 0.930 , PPV = 0.934 ) despite lower performance on noisy signals. Correlation between HRV indices was calculated as coefficient of determination ( R 2 ) to determine goodness of fit to linear model. The highest R 2 values were obtained for mean interbeat interval ( R 2 = 1.000 for reference algorithm, R 2 = 0.9249 in the worst case), PSD LF and PSD HF ( R 2 = 1.000 for the best case, R 2 = 0.9846 for the worst case) and the lowest were obtained for PSD VLF ( R 2 = 0.0009 in the worst case). Using robust model improved achieved correlation between HRV indices obtained from ECG and SCG signals except the R 2 values of pNN50 values in signals p001–p020 and for all analyzed signals. Conclusions Calculated HRV indices derived from ECG and SCG are similar using two analyzed beat detectors, except SDNN, RMSSD, NN50, pNN50, and PSD VLF . Relationship of HRV indices derived from ECG and SCG was influenced by used beat detection method on SCG signal.
AbstractList Abstract Background Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzing vibrations generated by the heart using an accelerometer. In this study, we compare HRV indices obtained from SCG and ECG on signals from combined measurement of ECG, breathing and seismocardiogram (CEBS) database and determine the influence of heart beat detector on SCG signals. Methods We considered two heart beat detectors on SCG signals: reference detector using R waves from ECG signal to detect heart beats in SCG and a heart beat detector using only SCG signal. We performed HRV analysis and calculated time and frequency features. Results Beat detection performance of tested algorithm on all SCG signals is quite good on 85,954 beats ($$\text {Se}=0.930$$ Se=0.930 , $$\text {PPV}=0.934$$ PPV=0.934 ) despite lower performance on noisy signals. Correlation between HRV indices was calculated as coefficient of determination ($$R^2$$ R2 ) to determine goodness of fit to linear model. The highest $$R^2$$ R2 values were obtained for mean interbeat interval ($$R^2 = 1.000$$ R2=1.000 for reference algorithm, $$R^2 = 0.9249$$ R2=0.9249 in the worst case), $${{\text{PSD}}}_{{\text{LF}}}$$ PSDLF and $${{\text{PSD}}}_{{\text{HF}}}$$ PSDHF ($$R^2 = 1.000$$ R2=1.000 for the best case, $$R^2 = 0.9846$$ R2=0.9846 for the worst case) and the lowest were obtained for $${{\text{PSD}}}_{{\text{VLF}}}$$ PSDVLF ($$R^2 = 0.0009$$ R2=0.0009 in the worst case). Using robust model improved achieved correlation between HRV indices obtained from ECG and SCG signals except the $$R^2$$ R2 values of pNN50 values in signals p001–p020 and for all analyzed signals. Conclusions Calculated HRV indices derived from ECG and SCG are similar using two analyzed beat detectors, except SDNN, RMSSD, NN50, pNN50, and $${{\text{PSD}}}_{{\text{VLF}}}$$ PSDVLF . Relationship of HRV indices derived from ECG and SCG was influenced by used beat detection method on SCG signal.
Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzing vibrations generated by the heart using an accelerometer. In this study, we compare HRV indices obtained from SCG and ECG on signals from combined measurement of ECG, breathing and seismocardiogram (CEBS) database and determine the influence of heart beat detector on SCG signals. We considered two heart beat detectors on SCG signals: reference detector using R waves from ECG signal to detect heart beats in SCG and a heart beat detector using only SCG signal. We performed HRV analysis and calculated time and frequency features. Beat detection performance of tested algorithm on all SCG signals is quite good on 85,954 beats (Se=0.930 $$\text {Se}=0.930$$ , PPV=0.934 $$\text {PPV}=0.934$$ ) despite lower performance on noisy signals. Correlation between HRV indices was calculated as coefficient of determination (R2 $$R^2$$ ) to determine goodness of fit to linear model. The highest R2 $$R^2$$ values were obtained for mean interbeat interval (R2=1.000 $$R^2 = 1.000$$ for reference algorithm, R2=0.9249 $$R^2 = 0.9249$$ in the worst case), PSDLF $${{\text{PSD}}}_{{\text{LF}}}$$ and PSDHF $${{\text{PSD}}}_{{\text{HF}}}$$ (R2=1.000 $$R^2 = 1.000$$ for the best case, R2=0.9846 $$R^2 = 0.9846$$ for the worst case) and the lowest were obtained for PSDVLF $${{\text{PSD}}}_{{\text{VLF}}}$$ (R2=0.0009 $$R^2 = 0.0009$$ in the worst case). Using robust model improved achieved correlation between HRV indices obtained from ECG and SCG signals except the R2 $$R^2$$ values of pNN50 values in signals p001-p020 and for all analyzed signals. Calculated HRV indices derived from ECG and SCG are similar using two analyzed beat detectors, except SDNN, RMSSD, NN50, pNN50, and PSDVLF $${{\text{PSD}}}_{{\text{VLF}}}$$ . Relationship of HRV indices derived from ECG and SCG was influenced by used beat detection method on SCG signal.
Background Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzing vibrations generated by the heart using an accelerometer. In this study, we compare HRV indices obtained from SCG and ECG on signals from combined measurement of ECG, breathing and seismocardiogram (CEBS) database and determine the influence of heart beat detector on SCG signals. Methods We considered two heart beat detectors on SCG signals: reference detector using R waves from ECG signal to detect heart beats in SCG and a heart beat detector using only SCG signal. We performed HRV analysis and calculated time and frequency features. Results Beat detection performance of tested algorithm on all SCG signals is quite good on 85,954 beats (Se=0.930 $$\text {Se}=0.930$$ , PPV=0.934 $$\text {PPV}=0.934$$ ) despite lower performance on noisy signals. Correlation between HRV indices was calculated as coefficient of determination (R2 $$R^2$$ ) to determine goodness of fit to linear model. The highest R2 $$R^2$$ values were obtained for mean interbeat interval (R2=1.000 $$R^2 = 1.000$$ for reference algorithm, R2=0.9249 $$R^2 = 0.9249$$ in the worst case), PSDLF $${{\text{PSD}}}_{{\text{LF}}}$$ and PSDHF $${{\text{PSD}}}_{{\text{HF}}}$$ (R2=1.000 $$R^2 = 1.000$$ for the best case, R2=0.9846 $$R^2 = 0.9846$$ for the worst case) and the lowest were obtained for PSDVLF $${{\text{PSD}}}_{{\text{VLF}}}$$ (R2=0.0009 $$R^2 = 0.0009$$ in the worst case). Using robust model improved achieved correlation between HRV indices obtained from ECG and SCG signals except the R2 $$R^2$$ values of pNN50 values in signals p001-p020 and for all analyzed signals. Conclusions Calculated HRV indices derived from ECG and SCG are similar using two analyzed beat detectors, except SDNN, RMSSD, NN50, pNN50, and PSDVLF $${{\text{PSD}}}_{{\text{VLF}}}$$ . Relationship of HRV indices derived from ECG and SCG was influenced by used beat detection method on SCG signal. Keywords: Seismocardiography, Heart rate variability, HRV analysis
Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzing vibrations generated by the heart using an accelerometer. In this study, we compare HRV indices obtained from SCG and ECG on signals from combined measurement of ECG, breathing and seismocardiogram (CEBS) database and determine the influence of heart beat detector on SCG signals.BACKGROUNDHeart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzing vibrations generated by the heart using an accelerometer. In this study, we compare HRV indices obtained from SCG and ECG on signals from combined measurement of ECG, breathing and seismocardiogram (CEBS) database and determine the influence of heart beat detector on SCG signals.We considered two heart beat detectors on SCG signals: reference detector using R waves from ECG signal to detect heart beats in SCG and a heart beat detector using only SCG signal. We performed HRV analysis and calculated time and frequency features.METHODSWe considered two heart beat detectors on SCG signals: reference detector using R waves from ECG signal to detect heart beats in SCG and a heart beat detector using only SCG signal. We performed HRV analysis and calculated time and frequency features.Beat detection performance of tested algorithm on all SCG signals is quite good on 85,954 beats ([Formula: see text], [Formula: see text]) despite lower performance on noisy signals. Correlation between HRV indices was calculated as coefficient of determination ([Formula: see text]) to determine goodness of fit to linear model. The highest [Formula: see text] values were obtained for mean interbeat interval ([Formula: see text] for reference algorithm, [Formula: see text] in the worst case), [Formula: see text] and [Formula: see text] ([Formula: see text] for the best case, [Formula: see text] for the worst case) and the lowest were obtained for [Formula: see text] ([Formula: see text] in the worst case). Using robust model improved achieved correlation between HRV indices obtained from ECG and SCG signals except the [Formula: see text] values of pNN50 values in signals p001-p020 and for all analyzed signals.RESULTSBeat detection performance of tested algorithm on all SCG signals is quite good on 85,954 beats ([Formula: see text], [Formula: see text]) despite lower performance on noisy signals. Correlation between HRV indices was calculated as coefficient of determination ([Formula: see text]) to determine goodness of fit to linear model. The highest [Formula: see text] values were obtained for mean interbeat interval ([Formula: see text] for reference algorithm, [Formula: see text] in the worst case), [Formula: see text] and [Formula: see text] ([Formula: see text] for the best case, [Formula: see text] for the worst case) and the lowest were obtained for [Formula: see text] ([Formula: see text] in the worst case). Using robust model improved achieved correlation between HRV indices obtained from ECG and SCG signals except the [Formula: see text] values of pNN50 values in signals p001-p020 and for all analyzed signals.Calculated HRV indices derived from ECG and SCG are similar using two analyzed beat detectors, except SDNN, RMSSD, NN50, pNN50, and [Formula: see text]. Relationship of HRV indices derived from ECG and SCG was influenced by used beat detection method on SCG signal.CONCLUSIONSCalculated HRV indices derived from ECG and SCG are similar using two analyzed beat detectors, except SDNN, RMSSD, NN50, pNN50, and [Formula: see text]. Relationship of HRV indices derived from ECG and SCG was influenced by used beat detection method on SCG signal.
Background Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzing vibrations generated by the heart using an accelerometer. In this study, we compare HRV indices obtained from SCG and ECG on signals from combined measurement of ECG, breathing and seismocardiogram (CEBS) database and determine the influence of heart beat detector on SCG signals. Methods We considered two heart beat detectors on SCG signals: reference detector using R waves from ECG signal to detect heart beats in SCG and a heart beat detector using only SCG signal. We performed HRV analysis and calculated time and frequency features. Results Beat detection performance of tested algorithm on all SCG signals is quite good on 85,954 beats ( Se = 0.930 , PPV = 0.934 ) despite lower performance on noisy signals. Correlation between HRV indices was calculated as coefficient of determination ( R 2 ) to determine goodness of fit to linear model. The highest R 2 values were obtained for mean interbeat interval ( R 2 = 1.000 for reference algorithm, R 2 = 0.9249 in the worst case), PSD LF and PSD HF ( R 2 = 1.000 for the best case, R 2 = 0.9846 for the worst case) and the lowest were obtained for PSD VLF ( R 2 = 0.0009 in the worst case). Using robust model improved achieved correlation between HRV indices obtained from ECG and SCG signals except the R 2 values of pNN50 values in signals p001–p020 and for all analyzed signals. Conclusions Calculated HRV indices derived from ECG and SCG are similar using two analyzed beat detectors, except SDNN, RMSSD, NN50, pNN50, and PSD VLF . Relationship of HRV indices derived from ECG and SCG was influenced by used beat detection method on SCG signal.
Background Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzing vibrations generated by the heart using an accelerometer. In this study, we compare HRV indices obtained from SCG and ECG on signals from combined measurement of ECG, breathing and seismocardiogram (CEBS) database and determine the influence of heart beat detector on SCG signals. Methods We considered two heart beat detectors on SCG signals: reference detector using R waves from ECG signal to detect heart beats in SCG and a heart beat detector using only SCG signal. We performed HRV analysis and calculated time and frequency features. Results Beat detection performance of tested algorithm on all SCG signals is quite good on 85,954 beats (\(\text {Se}=0.930\), \(\text {PPV}=0.934\)) despite lower performance on noisy signals. Correlation between HRV indices was calculated as coefficient of determination (\(R^2\)) to determine goodness of fit to linear model. The highest \(R^2\) values were obtained for mean interbeat interval (\(R^2 = 1.000\) for reference algorithm, \(R^2 = 0.9249\) in the worst case), \({{\text{PSD}}}_{{\text{LF}}}\) and \({{\text{PSD}}}_{{\text{HF}}}\) (\(R^2 = 1.000\) for the best case, \(R^2 = 0.9846\) for the worst case) and the lowest were obtained for \({{\text{PSD}}}_{{\text{VLF}}}\) (\(R^2 = 0.0009\) in the worst case). Using robust model improved achieved correlation between HRV indices obtained from ECG and SCG signals except the \(R^2\) values of pNN50 values in signals p001–p020 and for all analyzed signals. Conclusions Calculated HRV indices derived from ECG and SCG are similar using two analyzed beat detectors, except SDNN, RMSSD, NN50, pNN50, and \({{\text{PSD}}}_{{\text{VLF}}}\). Relationship of HRV indices derived from ECG and SCG was influenced by used beat detection method on SCG signal.
Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there has been interest in heart rate monitoring without electrodes. Seismocardiography (SCG) is a non-invasive technique of recording and analyzing vibrations generated by the heart using an accelerometer. In this study, we compare HRV indices obtained from SCG and ECG on signals from combined measurement of ECG, breathing and seismocardiogram (CEBS) database and determine the influence of heart beat detector on SCG signals. We considered two heart beat detectors on SCG signals: reference detector using R waves from ECG signal to detect heart beats in SCG and a heart beat detector using only SCG signal. We performed HRV analysis and calculated time and frequency features. Beat detection performance of tested algorithm on all SCG signals is quite good on 85,954 beats ([Formula: see text], [Formula: see text]) despite lower performance on noisy signals. Correlation between HRV indices was calculated as coefficient of determination ([Formula: see text]) to determine goodness of fit to linear model. The highest [Formula: see text] values were obtained for mean interbeat interval ([Formula: see text] for reference algorithm, [Formula: see text] in the worst case), [Formula: see text] and [Formula: see text] ([Formula: see text] for the best case, [Formula: see text] for the worst case) and the lowest were obtained for [Formula: see text] ([Formula: see text] in the worst case). Using robust model improved achieved correlation between HRV indices obtained from ECG and SCG signals except the [Formula: see text] values of pNN50 values in signals p001-p020 and for all analyzed signals. Calculated HRV indices derived from ECG and SCG are similar using two analyzed beat detectors, except SDNN, RMSSD, NN50, pNN50, and [Formula: see text]. Relationship of HRV indices derived from ECG and SCG was influenced by used beat detection method on SCG signal.
ArticleNumber 69
Audience Academic
Author Kostka, Pawel S.
Tkacz, Ewaryst J.
Siecinski, Szymon
Author_xml – sequence: 1
  givenname: Szymon
  surname: Siecinski
  fullname: Siecinski, Szymon
  organization: Department of Biosensors and Biomedical Signal Processing, Faculty of Biomedical Engineering, Silesian University of Technology
– sequence: 2
  givenname: Ewaryst J.
  surname: Tkacz
  fullname: Tkacz, Ewaryst J.
  email: etkacz@polsl.pl
  organization: Department of Biosensors and Biomedical Signal Processing, Faculty of Biomedical Engineering, Silesian University of Technology, Katowice School of Technology
– sequence: 3
  givenname: Pawel S.
  surname: Kostka
  fullname: Kostka, Pawel S.
  organization: Department of Biosensors and Biomedical Signal Processing, Faculty of Biomedical Engineering, Silesian University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31153383$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wA9igSGxgkeJHHCcbpDIa2pEqkFpA7KxrxwkeJfbUToD-e5xmaDsVIOSFLd_vnGsf-zDZs87qJHmO0THGZfEmYFLRMkO4ylBR8ow9Sg5wzllWEfZ17956PzkMYY0QQaioniT7FGNGaUkPkg8L12_Am-Bs6pr07OJLamxtlA6pkwMYq-u08a5Pl4vTFGydXsY5mNZCF-bCYvnuMq1hAAlBP00eN7Gin23no-Tz--WnxVl2_vF0tTg5z1RB-ZBVWFHCVE1JWZSVrAspeUMQ5qCQLm5O2ZSS1bXEkciBa6wk47muKdOSKHqUrGbf2sFabLzpwV8LB0bcbDjfCvCDUZ0WhaKgGoZkBTpnDIADKUtaASGqkbKIXmT2Gu0Grn9A190aYiSmoMUctIhBiylowaLo7SzajLLXtdJ28NDtnGS3Ys030brvomA5IwRFg1dbA--uRh0G0ZugdNeB1W4MghCa52WOeBnRlw_QtRv99AKRygkvOKLsjmoh3trYxsW-ajIVJ6xCnBBcTZc9_gMVR617o-L3akzc3xG83hFEZtA_hxbGEMTq8mKXfXE_lNs0fn-3COAZUN6F4HXzX0nzBxplBhiMm3I13T-V24cNsYtttb_L7e-iX1_uBE4
CitedBy_id crossref_primary_10_3390_s23031615
crossref_primary_10_3390_s20092663
crossref_primary_10_1080_10641963_2023_2238923
crossref_primary_10_1109_JBHI_2024_3370394
crossref_primary_10_1109_TIM_2023_3346511
crossref_primary_10_3390_math9182243
crossref_primary_10_1109_LSP_2022_3152448
crossref_primary_10_3390_s23042152
crossref_primary_10_3390_s23104684
crossref_primary_10_1016_j_bspc_2023_105484
crossref_primary_10_3390_s20164522
crossref_primary_10_3390_s23198114
Cites_doi 10.1109/EHB.2017.7995406
10.1109/JBHI.2014.2361732
10.1109/IEMBS.2011.6091063
10.1088/0967-3334/33/10/1643
10.1109/EMBC.2016.7590755
10.1109/MeMeA.2015.7145210
10.1007/978-3-319-73450-7_83
10.1109/TLA.2016.7795816
10.1161/01.STR.27.8.1319
10.1161/01.CIR.101.23.e215
10.1109/IHMSC.2015.157
10.1016/S0167-5273(02)00057-8
10.1109/CBMS.1991.128936
10.1007/978-3-319-00846-2_238
10.1161/01.CIR.90.2.878
10.1161/01.CIR.96.3.842
10.1109/JBHI.2017.2688473
10.1161/01.CIR.94.11.2850
10.1109/CIC.1991.169042
10.1088/0967-3334/37/11/1885
10.1016/j.neubiorev.2008.07.006
10.1161/01.CIR.88.1.180
10.1253/circj.67.753
10.1155/2014/690124
10.1109/TBME.1986.325695
10.1161/01.CIR.93.5.1043
10.1161/01.STR.27.11.2059
10.1109/EMBC.2013.6611170
10.1161/01.STR.30.5.1008
10.1109/EMBC.2012.6347274
10.1080/00140137308924479
10.1109/EMBC.2015.7319761
10.1161/01.STR.25.4.787
10.1109/IEMBS.2007.4353199
10.1007/978-0-387-32833-1_225
10.1109/TBME.1985.325532
10.1109/EMBC.2018.8513551
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12938-019-0687-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science Database
Engineering Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 15
ExternalDocumentID oai_doaj_org_article_6c3acf50b9ae455aa7a28839a22cfbb6
10.1186/s12938-019-0687-5
PMC6545220
A590722196
31153383
10_1186_s12938_019_0687_5
Genre Journal Article
GeographicLocations Poland
GeographicLocations_xml – name: Poland
GrantInformation_xml – fundername: Silesian University of Technology
– fundername: ;
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
4.4
ADTOC
AHSBF
C1A
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c637t-91c325cd328689bd6bb7f2017ac0e620069f8b5ddb12864a7e1cb574ed35eb2c3
IEDL.DBID M48
ISSN 1475-925X
IngestDate Tue Oct 14 19:09:52 EDT 2025
Sun Oct 26 03:06:38 EDT 2025
Tue Sep 30 15:59:07 EDT 2025
Fri Sep 05 14:05:47 EDT 2025
Tue Oct 07 05:19:55 EDT 2025
Mon Oct 20 21:59:22 EDT 2025
Mon Oct 20 16:37:18 EDT 2025
Thu Oct 16 15:10:33 EDT 2025
Wed Feb 19 02:35:29 EST 2025
Thu Apr 24 22:59:46 EDT 2025
Wed Oct 01 00:48:14 EDT 2025
Sat Sep 06 07:30:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords HRV analysis
Heart rate variability
Seismocardiography
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-91c325cd328689bd6bb7f2017ac0e620069f8b5ddb12864a7e1cb574ed35eb2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-019-0687-5
PMID 31153383
PQID 2242767035
PQPubID 42562
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_6c3acf50b9ae455aa7a28839a22cfbb6
unpaywall_primary_10_1186_s12938_019_0687_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6545220
proquest_miscellaneous_2234484078
proquest_journals_2242767035
gale_infotracmisc_A590722196
gale_infotracacademiconefile_A590722196
gale_incontextgauss_ISR_A590722196
pubmed_primary_31153383
crossref_primary_10_1186_s12938_019_0687_5
crossref_citationtrail_10_1186_s12938_019_0687_5
springer_journals_10_1186_s12938_019_0687_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References Nicola Montano (687_CR3) 2009; 33
JT Korpelainen (687_CR14) 1999; 30
H Tsuji (687_CR7) 1994; 90
K Pandia (687_CR36) 2012; 33
687_CR31
687_CR35
687_CR34
687_CR15
MJ Tadi (687_CR37) 2014; 2014
PS Hamilton (687_CR32) 1986; 33
687_CR17
687_CR39
J Korpelainen (687_CR13) 1996; 27
Ewaryst Tkacz (687_CR16) 2018
687_CR29
O Lahdenoja (687_CR42) 2018; 22
H Tsuji (687_CR8) 1996; 94
E Kawahara (687_CR10) 2003; 67
OT Inan (687_CR23) 2015; 19
N Watanabe (687_CR11) 1996; 27
J Korpelainen (687_CR12) 1994; 25
687_CR40
687_CR20
687_CR22
I Rivero Pouymiro (687_CR41) 2016; 14
687_CR21
Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology: Heart rate variability (687_CR2) 1996; 93
V Barauskiene (687_CR9) 2016; 4
687_CR26
687_CR25
687_CR28
687_CR27
687_CR19
687_CR18
J Pumprla (687_CR4) 2002; 84
MJ Tadi (687_CR24) 2016; 37
KKL Ho (687_CR5) 1997; 96
J Pan (687_CR33) 1985; 32
B Saykrs (687_CR1) 1973; 16
A Algra (687_CR6) 1993; 88
M. A. García-González (687_CR30) 2014
AV Oppenheim (687_CR38) 1999
References_xml – ident: 687_CR27
  doi: 10.1109/EHB.2017.7995406
– volume: 19
  start-page: 1414
  issue: 4
  year: 2015
  ident: 687_CR23
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2014.2361732
– ident: 687_CR21
  doi: 10.1109/IEMBS.2011.6091063
– volume: 33
  start-page: 1643
  issue: 10
  year: 2012
  ident: 687_CR36
  publication-title: Physiol Measure
  doi: 10.1088/0967-3334/33/10/1643
– ident: 687_CR26
  doi: 10.1109/EMBC.2016.7590755
– ident: 687_CR25
  doi: 10.1109/MeMeA.2015.7145210
– ident: 687_CR29
– start-page: 874
  volume-title: Proceedings of the International Conference on Information Technology & Systems (ICITS 2018)
  year: 2018
  ident: 687_CR16
  doi: 10.1007/978-3-319-73450-7_83
– volume: 14
  start-page: 4468
  issue: 11
  year: 2016
  ident: 687_CR41
  publication-title: IEEE Latin Am Trans
  doi: 10.1109/TLA.2016.7795816
– volume: 27
  start-page: 1319
  issue: 6
  year: 1996
  ident: 687_CR11
  publication-title: Stroke
  doi: 10.1161/01.STR.27.8.1319
– ident: 687_CR31
  doi: 10.1161/01.CIR.101.23.e215
– ident: 687_CR39
  doi: 10.1109/IHMSC.2015.157
– volume: 84
  start-page: 1
  issue: 1
  year: 2002
  ident: 687_CR4
  publication-title: Int J Cardiol
  doi: 10.1016/S0167-5273(02)00057-8
– ident: 687_CR19
  doi: 10.1109/CBMS.1991.128936
– start-page: 962
  volume-title: IFMBE Proceedings
  year: 2014
  ident: 687_CR30
  doi: 10.1007/978-3-319-00846-2_238
– volume: 90
  start-page: 878
  year: 1994
  ident: 687_CR7
  publication-title: Circulation
  doi: 10.1161/01.CIR.90.2.878
– volume: 96
  start-page: 842
  year: 1997
  ident: 687_CR5
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.3.842
– volume: 22
  start-page: 108
  issue: 1
  year: 2018
  ident: 687_CR42
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2688473
– ident: 687_CR34
– volume: 94
  start-page: 2850
  issue: 11
  year: 1996
  ident: 687_CR8
  publication-title: Circulation
  doi: 10.1161/01.CIR.94.11.2850
– ident: 687_CR35
  doi: 10.1109/CIC.1991.169042
– volume: 37
  start-page: 1885
  issue: 11
  year: 2016
  ident: 687_CR24
  publication-title: Physiol Measure
  doi: 10.1088/0967-3334/37/11/1885
– volume: 33
  start-page: 71
  issue: 2
  year: 2009
  ident: 687_CR3
  publication-title: Neuroscience & Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2008.07.006
– volume: 88
  start-page: 180
  year: 1993
  ident: 687_CR6
  publication-title: Circulation
  doi: 10.1161/01.CIR.88.1.180
– volume: 67
  start-page: 753
  issue: 9
  year: 2003
  ident: 687_CR10
  publication-title: Circ J
  doi: 10.1253/circj.67.753
– volume: 2014
  start-page: 1
  issue: 690124
  year: 2014
  ident: 687_CR37
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2014/690124
– volume: 33
  start-page: 1157
  issue: 12
  year: 1986
  ident: 687_CR32
  publication-title: IEEE Trans Biomed Eng BME
  doi: 10.1109/TBME.1986.325695
– volume: 93
  start-page: 1043
  year: 1996
  ident: 687_CR2
  publication-title: Circulation
  doi: 10.1161/01.CIR.93.5.1043
– volume: 27
  start-page: 2059
  issue: 11
  year: 1996
  ident: 687_CR13
  publication-title: Stroke
  doi: 10.1161/01.STR.27.11.2059
– ident: 687_CR22
  doi: 10.1109/EMBC.2013.6611170
– volume: 30
  start-page: 1008
  issue: 5
  year: 1999
  ident: 687_CR14
  publication-title: Stroke
  doi: 10.1161/01.STR.30.5.1008
– ident: 687_CR18
  doi: 10.1109/EMBC.2012.6347274
– volume: 16
  start-page: 17
  issue: 1
  year: 1973
  ident: 687_CR1
  publication-title: Ergonomics
  doi: 10.1080/00140137308924479
– volume-title: Discrete-time signal processing
  year: 1999
  ident: 687_CR38
– ident: 687_CR15
  doi: 10.1109/EMBC.2015.7319761
– volume: 25
  start-page: 787
  issue: 4
  year: 1994
  ident: 687_CR12
  publication-title: Stroke
  doi: 10.1161/01.STR.25.4.787
– ident: 687_CR17
– ident: 687_CR20
  doi: 10.1109/IEMBS.2007.4353199
– ident: 687_CR40
  doi: 10.1007/978-0-387-32833-1_225
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  ident: 687_CR33
  publication-title: IEEE Trans Biomed Eng BME
  doi: 10.1109/TBME.1985.325532
– volume: 4
  start-page: 1080
  issue: 6
  year: 2016
  ident: 687_CR9
  publication-title: J Cardiol Clin Res
– ident: 687_CR28
  doi: 10.1109/EMBC.2018.8513551
SSID ssj0020069
Score 2.3092177
Snippet Background Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent...
Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent years, there...
Background Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the recent...
Abstract Background Heart rate variability (HRV) has become a useful tool of assessing the function of the heart and of the autonomic nervous system. Over the...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 69
SubjectTerms Accelerometers
Algorithms
Angina pectoris
Autonomic nervous system
Bands
Bioengineering
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Cardiac arrhythmia
Cardiography
Cardiology
Cardiovascular research
Comparative analysis
Data bases
Detectors
Echocardiography
EKG
Electrocardiography
Engineering
Goodness of fit
Heart rate
Heart rate variability
HRV analysis
International conferences
Measurement
Medical electronics
Musical recordings
Noise
Physiology
Recording
Seismocardiography
Sensors
Signal processing
Smartphones
Very Low Frequencies
Vibrations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQHgZ7QGN8BTZkEBISU7XEju3kcas6CtL2sDK0N8tfGUhVMtFWiP-eu8TNGpC2F54qxZeovjvfh33-HSHvsVc0x7LBnHvcumF8BE7YjQJjhedOpbLCu8Nn53J6mX-5Elcbrb6wJqyDB-4YdyQdN64SqS1NyIUwRhlskFsaxlxlbQu2nRblOpmKqRYC8MYzzKyQRwv0ali0hTfuYVWJgRdqwfr_NckbPunvesn-0HSHPFzVN-b3LzOfb_il013yOAaU9LibyBPyINR7ZGcDZnCPbJ_FA_Sn5Hzc9x2kTUWnF98oHlqDsaCNxV2C4CneOKGT8Sdqak9n8Is1HqCl3cB4cjKjWFeK_u8ZuTydfB1PR7GlwshJrpZg2hxnwnnOClmU1ktrVQUxgDIuDbJlW1VY4b0FvyVzo0LmrFB58FxADu74c7JVN3V4SSiEFoXLTGoEjBtmIXFy8JHMQwQgqjRLSLpmsXYRbxzbXsx1m3cUUndS0SAVjVLRIiEf-1duOrCNu4hPUG49IeJktw9Ae3TUHn2f9iTkHUpdIxJGjaU212a1WOjPswt9LMpUMTDoQPQhElUNzMCZeHMB-IDgWQPK_QElLFU3HF4rl46mYqEhhmJKguGFGb3th_FNLH-rQ7NCGg5pNB65JuRFp4v9vBEuCfcZEqIGWjpgzHCk_vG9BRKX2GCepQk5XOvz7d-6g--HvcrfL6VX_0NKr8kj1q1dWML7ZGv5cxUOIBZc2jftsv8DlmlU6g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9NAEB_OHqj3IHp-RU-JIgge5dLd7iZ9ELmWnlW4Iq0n97bsR3IKJanXFvG_dybZ5BqF-lTITkJ352tnZ_Y3AG-oVzSnssE-d3R0w3gXnbDtpowljts4khndHT6fyslF__OluNyDaX0Xhsoqa5tYGmpXWDojP0FXw2KJ8ik-LH92qWsUZVfrFhrat1Zw70uIsVuwzwgZqwP7w_H0y6wJwQiY1-c2e4k8WZG3o2IuuomP2iZa3qkE8f_XVG_5qr_rKJtk6gHc2eRL_fuXXiy2_NXZfbjnN5rhaSUZD2AvzQ_hYAt-8BBun_vE-kOYjpp-hGGRhZPZt5CS2WhEwsLQ6UHqQrqJEo5HH0Odu3COv1T7gdJbDYzGw3lI9abkFx_Bxdn462jS9a0WulbyeI0mz3ImrOMskcnAOGlMnOHeINY2SmW5bFlihHMG_Zns6zjtWSPifuq4wNjc8sfQyYs8fQohbjkS29ORFjiumcGAyuJHeg53BiKLegFE9RIr63HIqR3GQpXxSCJVxRWFXFHEFSUCeNe8sqxAOHYRD4lvDSHhZ5cPiusr5dVRScu1zURkBjrtC6F1rKnt8kAzZjNjZACvieuKEDJyKsG50pvVSn2az9SpGEQxQ0OPRG89UVbgDKz2NxpwHQhUq0V51KJEFbbt4Vq4lDchK3Uj8AG8aobpTSqLy9NiQzQcw2tKxQbwpJLFZt4Eo0TnDwHELSltLUx7JP_xvQQYl9R4nkUBHNfyfPO3dqz7cSPy_-fSs91Tfg53WaWVqJxH0Flfb9IXuPtbm5depf8A-N1Ruw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0BPUeRM-v6ilRBMFjsU2apPt4t-y5CncPt57cW8hHq8LSHu4u4n_vTJutW5UTnwrNpDSZryQz-Q3AK6oVLShtMBeBjm64GKET9qOS8yIIr1NV0d3hk1M1O88_XMiLCBZNd2G24_dZod4uyR9RuhXdlUd9kNfhBvoo1cZl1aTfWxHibgxa_rXbwO206Px_2uAtJ_R7gmQfJd2FW-v60v74bheLLUd0fBfuxBUkO-xYfg-ulfUe7G7hCu7BzZMYMb8Pp5O-0CBrKjY7-8QoSo3WgTWOjgXKwOiKCZtO3jFbBzbHJyV1oFh2DZPp0ZxRIik5vAdwfjz9OJmNYg2FkVdCr9CWecGlD4IXqhi7oJzTFTp9bX1aqnbaqsLJEBw6KpVbXWbeSZ2XQUjcdHvxEHbqpi4fA8O1ROEzm1qJ7ZY73Cl5_EgW0OXLKs0SSDdTbHwEGKc6FwvTbjQKZTquGOSKIa4YmcCbvstlh65xFfER8a0nJGDs9gXKi4l6ZpQX1lcydWNb5lJaqy3VUx5bzn3lnErgJXHdEPRFTbk1n-16uTTv52fmUI5TzdGCI9HrSFQ1OAJv41UFnAdCyxpQ7g8oUTf9sHkjXCbahqXBRRPXCi0tjuhF30w9Kd-tLps10QjcN1OMNYFHnSz24yZ8JDpYSEAPpHQwMcOW-uuXFjlcUUV5niZwsJHnX791xbwf9CL_by49-a9vP4XbvFNS1NV92Fl9W5fPcJW3cs9b_f4JFAVDzQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgL2wMf4CgwUEBISU7rUiZ30sas6CtIqtFJUxINlO85Aq5JqbYVA_PHcJWnWDDTEA0-teufKPvs-bN_9DPCS3ooOKG0wDBI6umGBh07YeJaxOAlM5IuUaoePR2I4Cd9N-XQLPq9rYcqic-qfZy8A-bwSNqK9WZI-K-w4fjFnB_MkLdU_FgcL8mCUoEXV9ahB_BpsC46Begu2J6P3vU9FvVHEsU98Wt1z_rFdw1MVgP6_m-0Nv3U5p7K-WN2BG6tsrr5_U7PZhu86ug0_16MuU1bO2qulbpsflwAh_5NY7sCtKuZ1e-UivQtbNtuFnQ0kxF24flzd8d-DUb9-GtHNU3d48tGle3W0Z26u6SDDJi4VxbiD_htXZYk7xk9KQ0FFKgn9weHYpdRXctH3YXI0-NAfetWrD54RQbRE62sCxk0SsFjEXZ0IraMUw5RIGd8KOgHpprHmSaLRtYpQRbZjNI9CmwTcamaCB9DK8sw-Ahejn9h0lK840hXTuLcz-CedBIMUnvodB_z1DEtTQaLTyxwzWWyNYiFLqUmUmiSpSe7A67rJvMQDuYr5kJZNzUhQ3sUP-fmprCyDFCZQJuW-7iobcq5UpOgF6K5izKRaCwde0KKTBNaRUTbQqVotFvLt-ET2eNePGPocZHpVMaU5zb2qiitQDoTv1eDca3CiNTFN8npty8qaLSSGeSwS6BtwRM9rMrWkDL3M5iviCXCnT7fCDjwsVaEeNyE60VGIA1FDSRqCaVKyr18KrHPBCfLfd2B_rU4X3bpC7vu1xv19lh7_E_cTuMlKJUJd2oPW8nxln2JcutTPKvvyC3_ng2w
  priority: 102
  providerName: Unpaywall
Title Comparison of HRV indices obtained from ECG and SCG signals from CEBS database
URI https://link.springer.com/article/10.1186/s12938-019-0687-5
https://www.ncbi.nlm.nih.gov/pubmed/31153383
https://www.proquest.com/docview/2242767035
https://www.proquest.com/docview/2234484078
https://pubmed.ncbi.nlm.nih.gov/PMC6545220
https://biomedical-engineering-online.biomedcentral.com/track/pdf/10.1186/s12938-019-0687-5
https://doaj.org/article/6c3acf50b9ae455aa7a28839a22cfbb6
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO - Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ADMLS
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M48
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: AAJSJ
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: C6C
  dateStart: 20020112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1db9Mw0NqHBOwBwYARGFVACCSmstSJ7eQBoTZqV5BaTS1F5cmynWQgVUnXD8H-PXdJGhqYykur9q5RfR--O9_5jpDXOCvaxbJBz43w6Ia6TTDCphlT6keuEQ5P8O7wYMj7E-_zlE33yCZ7XhJweWtoh_OkJovZ-1_XNx9B4T_kCu_z8yXaLCzJwvv0oDPszfy6iXOlMP9aDtnYJ4dguwIc7jDwqjwDxtNBmeu89Uk1a5U39f93696yXX_XVVbJ1SNyd53O1c1PNZtt2a_eA3K_dDztdiEpD8lenB6To612hMfkzqBMtD8iw7CaT2hnid0ffbUxuQ2bip1pPE2IIxtvptjd8MJWaWSP4R1rQYCqBSDsdsY21p-inXxMJr3ul7DfLEcvNA13xQq2QONSZiKX-twPdMS1Fgn4CkIZJ-Y52RJfsyjSYN-4p0TcMpoJL45cBrG6cZ-QgzRL46fEBhfENy3lKAZwRTUEWAYe0orAU2CJ07KIsyGxNGVfchyPMZN5fOJzWXBFAlckckUyi7yrfjIvmnLsQu4g3ypE7Kedf5EtrmSpnpIbV5mEOTpQsceYUkLhGOZAUWoSrblFXiHXJXbMSLEk50qtl0v5aTySbRY4gsLGD0hvS6QkgxUYVd5wADpgk60a5mkNE1Ta1MEb4ZIbjZDga1HBYYOGFb2swPhLLJNL42yNOC6E25iatchJIYvVurGtEp5HWETUpLRGmDok_fE9bzjOcRA9dSxytpHnP39rB93PKpH_P5ee7V7yc3KPFloJynlKDlaLdfwCvMGVbpB9MRXw6vcuGuSw0x1ejuBTyMNGfr7SyBUeIJPhZfvbb42tXLA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DSGxNgDgvEVGBAQCImpWmrHTvqA0FY6Wrb2Yd1Q34ztJAOpSsraatqf4jdyl6RpA1J52lOk-BzF9-nzne8A3lKvaE5pgz6P6OiG8QYaYduIGQsjbgNPJnR3uD-Q3XP_60iMNuD34i4MpVUudGKuqKPM0hn5PpoaFkjkT_Fp8qtBXaMourpooVGwxXF8fYUu2_Rj7zPS9x1jR52zdrdRdhVoWMmDGUq35UzYiLNQhi0TSWOCBM1goK0XS_KwW0loRBQZVN3S10HctEYEfhxxgW6o5fjdW3Db56hLUH6C0dLBo7ll5LQZyv0p2VJKFaN7_ijLomb78hYB_xqCFUv4d5ZmFardhq15OtHXV3o8XrGGR_fhXrmNdQ8KvnsAG3G6A9srxQ134E6_DNs_hEG76nboZonbPf3mUqgcVZSbGTqbiCOX7rm4nfYXV6eRO8QnZZagbBQD7c7h0KVsVrK6j-D8RlD-GDbTLI2fgosbmtA2tacFjmtm0F2z-JFmhPsOkXhNB7wFipUtq5xTs42xyr2dUKqCKgqpoogqSjjwoZoyKUp8rAM-JLpVgFSdO3-RXV6oUtiVtFzbRHimpWNfCK0DTU2dW5oxmxgjHXhDVFdUfyOlBJ8LPZ9OVW94qg5EywsYmhEEel8CJRmuwOryvgTigUp21SB3a5CoIGx9eMFcqlRQU7UUJwdeV8M0k5Lu0jibEwxH550CvQ48KXixWjcVaaLTDQeCGpfWEFMfSX_-yMuXS2przzwH9hb8vPytNXjfq1j-_1R6tn7Jr2Cre9Y_USe9wfFzuMsKCUVB3YXN2eU8foH7zJl5mQu3C99vWpv8AWh_iCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BkAZ7QDC-AgMMQkJiqpbasZM-bqGlA1ahlaG9Wf5IBlKVVGsrxH_PXZKGBtAQT5XiS1T7Pu07_w7gFfWKFlQ2GAlPRzdc9NAJu17GeeKFi0OV093hk4kan0Xvz-V50-d0sa52X6ck6zsNhNJULA_mPq9VPFEHC_JSVIRFN-hRS-R1uBGhc6MWBqlK2x0X4fA2qcy_vtZxRhVm_5-WecM1_V422eZOd-DmqpibH9_NbLbhnkZ34HYTV7LDWhDuwrWs2IWdDbTBXdg-afLo92CStu0HWZmz8ekXRrlrtBmstHRYkHlGF0_YMH3HTOHZFH-p1AOFtR5Ih0dTRuWl5Abvw9lo-Dkd95rOCj2nRLxEC-cEl84LnqhkYL2yNs4xFIiNCzNVLVueWOm9RfelIhNnfWdlHGVeSNyKO_EAtoqyyB4BwwgjcX0TGonjhlvcPzn8SN9jICDzsB9AuF5i7RrYcep-MdPV9iNRuuaKRq5o4oqWAbxpX5nXmBtXER8R31pCgsuuHpSXF7rRPq2cMC6XoR2YLJLSmNhQl-WB4dzl1qoAXhLXNQFiFFRxc2FWi4U-np7qQzkIY452HYleN0R5iTNwprnAgOtAGFodyr0OJWqs6w6vhUs3FmOhMZTisUL7izN60Q7Tm1QFV2TlimgE7qYp8xrAw1oW23kTahIdNwQQd6S0szDdkeLb1wpPXFGfeR4GsL-W519_64p1329F_t9cevxf334O25_ejvTH48mHJ3CL1_qKarsHW8vLVfYUw8ClfVap-k8_x08D
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgL2wMf4CgwUEBISU7rUiZ30sas6CtIqtFJUxINlO85Aq5JqbYVA_PHcJWnWDDTEA0-teufKPvs-bN_9DPCS3ooOKG0wDBI6umGBh07YeJaxOAlM5IuUaoePR2I4Cd9N-XQLPq9rYcqic-qfZy8A-bwSNqK9WZI-K-w4fjFnB_MkLdU_FgcL8mCUoEXV9ahB_BpsC46Begu2J6P3vU9FvVHEsU98Wt1z_rFdw1MVgP6_m-0Nv3U5p7K-WN2BG6tsrr5_U7PZhu86ug0_16MuU1bO2qulbpsflwAh_5NY7sCtKuZ1e-UivQtbNtuFnQ0kxF24flzd8d-DUb9-GtHNU3d48tGle3W0Z26u6SDDJi4VxbiD_htXZYk7xk9KQ0FFKgn9weHYpdRXctH3YXI0-NAfetWrD54RQbRE62sCxk0SsFjEXZ0IraMUw5RIGd8KOgHpprHmSaLRtYpQRbZjNI9CmwTcamaCB9DK8sw-Ahejn9h0lK840hXTuLcz-CedBIMUnvodB_z1DEtTQaLTyxwzWWyNYiFLqUmUmiSpSe7A67rJvMQDuYr5kJZNzUhQ3sUP-fmprCyDFCZQJuW-7iobcq5UpOgF6K5izKRaCwde0KKTBNaRUTbQqVotFvLt-ET2eNePGPocZHpVMaU5zb2qiitQDoTv1eDca3CiNTFN8npty8qaLSSGeSwS6BtwRM9rMrWkDL3M5iviCXCnT7fCDjwsVaEeNyE60VGIA1FDSRqCaVKyr18KrHPBCfLfd2B_rU4X3bpC7vu1xv19lh7_E_cTuMlKJUJd2oPW8nxln2JcutTPKvvyC3_ng2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+HRV+indices+obtained+from+ECG+and+SCG+signals+from+CEBS+database&rft.jtitle=Biomedical+engineering+online&rft.au=Siecinski%2C+Szymon&rft.au=Tkacz%2C+Ewaryst+J&rft.au=Kostka%2C+Pawel+S&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.eissn=1475-925X&rft.volume=18&rft_id=info:doi/10.1186%2Fs12938-019-0687-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon