GiniClust3: a fast and memory-efficient tool for rare cell type identification
Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets...
Saved in:
| Published in | BMC bioinformatics Vol. 21; no. 1; pp. 158 - 7 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
25.04.2020
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-020-3482-1 |
Cover
| Abstract | Background
With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions.
Results
Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters.
Conclusions
Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at
https://github.com/rdong08/GiniClust3
. |
|---|---|
| AbstractList | With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3. With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3. Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Results Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Conclusions Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3 . With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions.BACKGROUNDWith the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions.Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters.RESULTSUsing GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters.Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3.CONCLUSIONSTaken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3. Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Results Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Conclusions Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at Keywords: Scalability, Rare cell identification, Gini index, Single cell RNA-seq Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Results Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Conclusions Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3. Abstract Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Results Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Conclusions Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3. |
| ArticleNumber | 158 |
| Audience | Academic |
| Author | Dong, Rui Yuan, Guo-Cheng |
| Author_xml | – sequence: 1 givenname: Rui surname: Dong fullname: Dong, Rui organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School – sequence: 2 givenname: Guo-Cheng surname: Yuan fullname: Yuan, Guo-Cheng email: gcyuan@ds.dfci.harvard.edu organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32334526$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB_wA9igSGxgkeJnboZFpWoEZaQKJB5ry-PH4CqxB9sB5t_jdIa2UwFCkRzLPufcmy_3uDrwwZuqeorRKcZd-yph0vFZgwhqKOtIgx9UR5gBbghG_ODO_rA6TukKIQwd4o-qQ0ooZZy0R9X7C-fdvB9Tpq9rWVuZci29rgczhLhpjLVOOeNznUPoaxtiHWU0tTJ9X-fN2tROl1tXVDK74B9XD63sk3mye59UX96--Tx_11x-uFjMzy8b1VLITaeWSlJSFkYIaM2pspjKFpZ0xiQGSgiFVhHOtGUGlAEOoK0CxDFYROlJtdjm6iCvxDq6QcaNCNKJ64MQV0LG7FRvBNJKY4VbjTgwDqSTrVx2VDM5AwwtKVlkmzX6tdz8kH1_E4iRmECLLWhRQIsJtMDFdLY1rcflYLQqEKLs9zrZv_Huq1iF7wJwR1s8VX2xC4jh22hSFoNLE1bpTRiTIHTGCZ8Bb4v0-T3pVRijL3wFYYgRjhnrblUrWb7aeRtKXTWFivOWAAXC6ATu9A-q8mgzOFXGy7pyvmd4uWcommx-5pUcUxKLTx_3tc_uQrmh8XvcigBvBSqGlKKx_0Ua7nmUy9fDVjp3_T-dux-bShW_MvGW299NvwB5KQRI |
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btad449 crossref_primary_10_1093_bib_bbae101 crossref_primary_10_1093_bib_bbac387 crossref_primary_10_1093_bib_bbad475 crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_1242_dev_201264 crossref_primary_10_1089_cmb_2022_0118 crossref_primary_10_1093_bib_bbac317 crossref_primary_10_3389_fgene_2023_1183099 crossref_primary_10_1186_s13059_021_02367_2 crossref_primary_10_3390_cimb43030119 crossref_primary_10_1002_ctd2_95 crossref_primary_10_1093_bioinformatics_btab239 crossref_primary_10_1038_s41580_024_00768_2 crossref_primary_10_1186_s13059_024_03339_y crossref_primary_10_1093_bfgp_elac002 crossref_primary_10_1038_s41467_024_51891_9 crossref_primary_10_1186_s12859_021_04262_w crossref_primary_10_1186_s13059_023_02998_7 crossref_primary_10_1093_bib_bbad042 crossref_primary_10_1016_j_neuron_2023_03_010 crossref_primary_10_1093_bioinformatics_btae371 crossref_primary_10_1093_nargab_lqaa082 crossref_primary_10_1186_s12859_024_05926_z crossref_primary_10_35414_akufemubid_870835 |
| Cites_doi | 10.1038/nature14966 10.1016/j.cels.2019.05.003 10.1038/nri.2017.76 10.1038/nbt.4096 10.1016/j.molcel.2015.04.005 10.1038/nprot.2017.149 10.1016/j.stem.2016.05.010 10.1038/550451a 10.1186/s13059-017-1382-0 10.1186/s13059-016-1010-4 10.1093/jn/130.4.1007S 10.1186/s13059-017-1218-y 10.1038/ncomms14049 10.1016/j.cels.2018.11.005 10.1038/s41467-018-07234-6 10.1016/j.cell.2018.05.012 10.1016/j.cell.2018.06.021 10.1038/s41598-019-41695-z 10.1038/nrg3833 10.1186/s13059-018-1431-3 10.1007/s00702-014-1180-8 10.1088/1742-5468/2008/10/P10008 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s). 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-020-3482-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 7 |
| ExternalDocumentID | oai_doaj_org_article_0dcd1c16d05745728a6ab83d4a971762 10.1186/s12859-020-3482-1 PMC7183612 A627372433 32334526 10_1186_s12859_020_3482_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIH Office of the Director grantid: UG3HL145609 funderid: http://dx.doi.org/10.13039/100000052 – fundername: NIH Office of the Director grantid: UG3HL145609 – fundername: ; grantid: UG3HL145609 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c637t-8cbca32bca4227dd53cf13a67b394a17322376c254df4e7ce7577dfc70517f033 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:20:00 EDT 2025 Sun Oct 26 03:52:54 EDT 2025 Tue Sep 30 16:39:13 EDT 2025 Fri Sep 05 10:53:55 EDT 2025 Mon Oct 06 18:34:14 EDT 2025 Mon Oct 20 22:21:09 EDT 2025 Mon Oct 20 16:28:00 EDT 2025 Thu Oct 16 14:47:37 EDT 2025 Wed Feb 19 02:30:48 EST 2025 Thu Apr 24 23:11:50 EDT 2025 Wed Oct 01 04:15:34 EDT 2025 Sat Sep 06 07:27:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gini index Scalability Rare cell identification Single cell RNA-seq |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c637t-8cbca32bca4227dd53cf13a67b394a17322376c254df4e7ce7577dfc70517f033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-020-3482-1 |
| PMID | 32334526 |
| PQID | 2404251448 |
| PQPubID | 44065 |
| PageCount | 7 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0dcd1c16d05745728a6ab83d4a971762 unpaywall_primary_10_1186_s12859_020_3482_1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183612 proquest_miscellaneous_2395259756 proquest_journals_2404251448 gale_infotracmisc_A627372433 gale_infotracacademiconefile_A627372433 gale_incontextgauss_ISR_A627372433 pubmed_primary_32334526 crossref_primary_10_1186_s12859_020_3482_1 crossref_citationtrail_10_1186_s12859_020_3482_1 springer_journals_10_1186_s12859_020_3482_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-25 |
| PublicationDateYYYYMMDD | 2020-04-25 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | L Jiang (3482_CR11) 2016; 17 D Tsoucas (3482_CR12) 2018; 19 X Han (3482_CR14) 2018; 173 AA Kolodziejczyk (3482_CR2) 2015; 58 B Hie (3482_CR13) 2019; 8 V Svensson (3482_CR23) 2018; 13 E Papalexi (3482_CR4) 2018; 18 A Butler (3482_CR6) 2018; 36 SL Wolock (3482_CR19) 2019; 8 BS Meldrum (3482_CR21) 2000; 130 GC Yuan (3482_CR3) 2017; 18 GX Zheng (3482_CR5) 2017; 8 D Grun (3482_CR9) 2015; 525 O Rozenblatt-Rosen (3482_CR16) 2017; 550 FA Wolf (3482_CR7) 2018; 19 VA Traag (3482_CR17) 2019; 9 O Stegle (3482_CR1) 2015; 16 A Jindal (3482_CR8) 2018; 9 D Grun (3482_CR10) 2016; 19 VD Blondel (3482_CR18) 2008; 2008 H Sun (3482_CR20) 1935; 2019 A Zeisel (3482_CR15) 2018; 174 Y Zhou (3482_CR22) 2014; 121 |
| References_xml | – volume: 525 start-page: 251 issue: 7568 year: 2015 ident: 3482_CR9 publication-title: Nature doi: 10.1038/nature14966 – volume: 8 start-page: 483 issue: 6 year: 2019 ident: 3482_CR13 publication-title: Cell Syst doi: 10.1016/j.cels.2019.05.003 – volume: 18 start-page: 35 issue: 1 year: 2018 ident: 3482_CR4 publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.76 – volume: 36 start-page: 411 issue: 5 year: 2018 ident: 3482_CR6 publication-title: Nat Biotechnol doi: 10.1038/nbt.4096 – volume: 58 start-page: 610 issue: 4 year: 2015 ident: 3482_CR2 publication-title: Mol Cell doi: 10.1016/j.molcel.2015.04.005 – volume: 13 start-page: 599 issue: 4 year: 2018 ident: 3482_CR23 publication-title: Nat Protoc doi: 10.1038/nprot.2017.149 – volume: 19 start-page: 266 issue: 2 year: 2016 ident: 3482_CR10 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.05.010 – volume: 550 start-page: 451 issue: 7677 year: 2017 ident: 3482_CR16 publication-title: Nature doi: 10.1038/550451a – volume: 19 start-page: 15 issue: 1 year: 2018 ident: 3482_CR7 publication-title: Genome Biol doi: 10.1186/s13059-017-1382-0 – volume: 17 start-page: 144 issue: 1 year: 2016 ident: 3482_CR11 publication-title: Genome Biol doi: 10.1186/s13059-016-1010-4 – volume: 2019 start-page: 91 year: 1935 ident: 3482_CR20 publication-title: Methods Mol Biol – volume: 130 start-page: 1007S issue: 4S Suppl year: 2000 ident: 3482_CR21 publication-title: J Nutr doi: 10.1093/jn/130.4.1007S – volume: 18 start-page: 84 issue: 1 year: 2017 ident: 3482_CR3 publication-title: Genome Biol doi: 10.1186/s13059-017-1218-y – volume: 8 start-page: 14049 year: 2017 ident: 3482_CR5 publication-title: Nat Commun doi: 10.1038/ncomms14049 – volume: 8 start-page: 281 issue: 4 year: 2019 ident: 3482_CR19 publication-title: Cell Syst doi: 10.1016/j.cels.2018.11.005 – volume: 9 start-page: 4719 issue: 1 year: 2018 ident: 3482_CR8 publication-title: Nat Commun doi: 10.1038/s41467-018-07234-6 – volume: 173 start-page: 1307 issue: 5 year: 2018 ident: 3482_CR14 publication-title: Cell doi: 10.1016/j.cell.2018.05.012 – volume: 174 start-page: 999 issue: 4 year: 2018 ident: 3482_CR15 publication-title: Cell doi: 10.1016/j.cell.2018.06.021 – volume: 9 start-page: 5233 issue: 1 year: 2019 ident: 3482_CR17 publication-title: Sci Rep doi: 10.1038/s41598-019-41695-z – volume: 16 start-page: 133 issue: 3 year: 2015 ident: 3482_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg3833 – volume: 19 start-page: 58 issue: 1 year: 2018 ident: 3482_CR12 publication-title: Genome Biol doi: 10.1186/s13059-018-1431-3 – volume: 121 start-page: 799 issue: 8 year: 2014 ident: 3482_CR22 publication-title: J Neural Transm (Vienna) doi: 10.1007/s00702-014-1180-8 – volume: 2008 start-page: P10008 issue: 10 year: 2008 ident: 3482_CR18 publication-title: J Stat Mech doi: 10.1088/1742-5468/2008/10/P10008 |
| SSID | ssj0017805 |
| Score | 2.4680955 |
| Snippet | Background
With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of... With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods... Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of... Abstract Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 158 |
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Cell cycle Clustering Clusters Computational Biology/Bioinformatics Computer Appl. in Life Sciences Datasets Efficiency Gene sequencing Genes Genomics Gini index Granulocytes Life Sciences Mapping Methods Microarrays Neurons Perturbation methods Population Principal components analysis Rare cell identification Ribonucleic acid RNA RNA sequencing Scalability Single cell RNA-seq Software Source code Transcriptome analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yIOpB_G11lSiC4FK2TdKk9bYurqvgHtSFvYU0SdcHtV1si7z_3pk2r74q7F68vEMzpS8zXyYzzfQbQl5lSiRlWgJ4rWGxYKWJDec-lsxzaQwT1fiF9-cTeXwqPp1lZ1utvrAmbKIHnhS3nzjrUptKB4GFyBTLjTRlzp0wBWQik_dN8mKTTIXzA2TqD2eYaS73uxR52mJMlZDMJU4Xu9BI1v-vS97ak_6ul5wPTW-RG0NzYda_TF1v7UtHd8jtEFDSg2kid8k139wj16cWk-v75OTDqlkd1kPX87fU0Mp0PTWNoz-wwnYd-5FBAh5I-7atKUSwFLJnT_F9PsXXs3TlQj3RaMIH5PTo_bfD4zj0UIit5KqPc1tawxn8CMaUcxm3VcqNVCUvhEkVrGdwMRbSRFcJr6xXmVKusgq5u6qE84dkp2kb_5hQn2fKFqryRWlFZlVRelEkwiAjmxc5j0iy0am2gWAc-1zUekw0cqknM2gwg0Yz6DQib-ZbLiZ2jcuE36GhZkEkxh4vAFx0gIu-Ci4ReYlm1kh90WBtzbkZuk5__PpFH0iGPXsEh5m8DkJVCzOwJnyqAHpAtqyF5O5CEtamXQ5v0KSDb-g0xFDgKCGRzSPyYh7GO7HerfHtADK8yCAxVZmMyKMJfPO8OeMcG8NHRC1guVDMcqRZfR-ZwyEQ4RDSRmRvA-A_f-sSve_NGL_aSk_-h5WekpsMF2siYpbtkp3-5-CfQfDXl8_Hdf4bvEBPzA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9UwFA_zDlEfxK9pdUoUQXCUtUmatILINjan4EWmg72FNEnnhWt7XXuR-997Tm_brQrzpQ_NCW1yPnJOcvI7hLxOlIjyOAfhtYaFguUmNJz7UDLPpTFMFO0N7y9TeXwqPp8lZxtk2t-FwbTK3ia2htpVFvfId2HlAfEC9z_9sPgVYtUoPF3tS2iYrrSCe99CjN0gmwyRsSZkc_9w-vVkOFdABP_ubDNO5W4dI35biCEUgryE8Wh1akH8_zXVV9aqv_Moh8PUO-TWslyY1W8zn19Zr47ukbudo0n31pJxn2z48gG5uS49uXpIph9n5exgvqwb_o4aWpi6oaZ09Cdm3q5C3yJLwAdpU1VzCp4thajaU9znp7htS2euyzNqWfuInB4dfj84DrvaCqGVXDVhanNrOIOHYEw5l3BbxNxIlfNMmFiBnoPpsRA-ukJ4Zb1KlHKFVYjpVUScb5FJWZX-CaE-TZTNVOGz3IrEqiz3IouEQaQ2L1IekKifU2074HGsfzHXbQCSSr1mgwY2aGSDjgPyduiyWKNuXEe8j4waCBEwu31RXZzrTv905KyLbSwd-KciUSw10uQpd8JkENBKFpBXyGaNkBgl5tycm2Vd60_fTvSeZFjLR3AYyZuOqKhgBNZ0VxhgHhBFa0S5PaIEnbXj5l6adGczan0p4QF5OTRjT8yDK321BBqeJRCwqkQG5PFa-IZxc8Y5FowPiBqJ5Whixi3l7EeLKA4OCgdXNyA7vQBf_tY1874zyPj_ufT0-iE_I7cZqmEkQpZsk0lzsfTPwd1r8hedDv8B3bRObQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA-yIroH8Xurq0QRBJeybZImrbf14boK7kFd2FtIk1QfPNvFtsj7751p8-qryoqXHppJ22RmkpnO5DeEPM-USMq0BOG1hsWClSY2nPtYMs-lMUxUwwnvD6fy5Ey8P8_OA1g0noXZjt-nuTxsU0RYi9HJQRiWGBydq7BHySEuKxdTwACh-UPQ8q_dZtvOgM7_5xq8tQn9niA5RUl3yfW-vjDrH2a12tqIjm-Rm8GCpEcjy2-TK76-Q66NNSXXd8np22W9XKz6tuOvqKGVaTtqake_YUrtOvYDZAS8kHZNs6JgslJwlz3FH_gU_8fSpQsJRAPP7pGz4zefFydxKJoQW8lVF-e2tIYzuAjGlHMZt1XKjVQlL4RJFSgwrCkW_EJXCa-sV5lSrrIKwbqqhPP7ZKduar9HqM8zZQtV-aK0IrOqKL0oEmEQgs2LnEck2cyptgFRHAtbrPTgWeRSj2zQwAaNbNBpRF5OXS5GOI3LiF8joyZCRMIeboCA6KBYOnHWpTaVDgxPkSmWG2nKnDthCvBUJYvIM2SzRqyLGpNpvpi-bfW7Tx_1kWRYpEdwGMmLQFQ1MAJrwtkEmAeEx5pR7s8oQRntvHkjTTosBq0GowlWRvBc84g8nZqxJya41b7pgYYXGXiiKpMReTAK3zRuzjjHSvARUTOxnE3MvKVefh2gwsHy4GDDRuRgI8C_PuuSeT-YZPzfXHr4X89-RG4w1MpExCzbJzvd994_BrOuK58MCv0TiRtAaw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTgh44PsjMJBBSEhM6RLbsRPeysQYSBQEVBpPlu04o1qWVEsiVP56zklamoGGkHipqvqsxue781189zuEnkWCBTrUILxGEZ8RrXxFqfU5sZQrRVjWVni_n_LDGXt3FB1toQ-rWhh9avS87EFDHVDxeLMMPW9tN3wxJ3uLNOtUPuZ7Vehw2HwXCjmwFh_CoW0egXM-Qtuz6cfJ17bGSIQ-BDhRf7f5x3mD06kF8f_dVG-cVefzKNeXqVfR5aZYqOV3lecb59XBdbRYrbRLUzkZN7Uemx_nQCD_IytuoGu9b4snnTDeRFu2uIUudd0ul7fR9M28mO_nTVXTl1jhTFU1VkWKT12y79K3LZgF_CuuyzLH8DwYAnmL3dUCdm-K8TztU5taabqDZgevv-wf-n07B99wKmo_NtooSuCDESLSNKImC6niQtOEqVCAaQFrZyBiTTNmhbEiEiLNjHAwYllA6V00KsrC3kfYxpEwichsog2LjEi0ZUnAlAOHsyymHgpW2yhNj3XuWm7kso15Yi47Nklgk3RskqGHXqynLDqgj4uIXznZWBM6jO72h_LsWPYqL4PUpKEJeQouMYsEiRVXOqYpUwnE0Jx46KmTLOlQOAqX5nOsmqqSbz9_khNOXPsgRmElz3uirHSbrfqqCeCDA-4aUO4MKMFMmOHwSoBlb6YqCe4c2GyIqWMPPVkPu5ku9a6wZQM0NIkgRhYR99C9Tt7X66aEUtej3kNioAkDxgxHivm3FsQcfCIK3rWHdlc68-uxLuD77lqt_r5LD_6J-iG6QpzWBMwn0Q4a1WeNfQQOZ60f90bkJ8_Hdtw priority: 102 providerName: Unpaywall |
| Title | GiniClust3: a fast and memory-efficient tool for rare cell type identification |
| URI | https://link.springer.com/article/10.1186/s12859-020-3482-1 https://www.ncbi.nlm.nih.gov/pubmed/32334526 https://www.proquest.com/docview/2404251448 https://www.proquest.com/docview/2395259756 https://pubmed.ncbi.nlm.nih.gov/PMC7183612 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-020-3482-1 https://doaj.org/article/0dcd1c16d05745728a6ab83d4a971762 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELfGJgR8QLwJjCogJCSmQGI7doKEUFftQaVV00al8slyHGdUCsloU0H_e-7SNFtgGuJLIsWXtL6HfWeff0fI61ByPwkSUF6jqcdpoj3NmPUEtUxoTXlWn_A-GonDMR9OwskGWZe3ahg4vzK0w3pS41n-7teP5Scw-I-1wUfi_TxAFDYPAyGEavEgGNqCiSrGSg5H_GJTAeH768NGMvAg0gmbTc4rP9GZpmo0_7_H7EuT1p8Jle2u6h1ya1Gc6-VPneeXJq79e-Ru43G6_ZWK3CcbtnhAbq5qUC4fktHBtJgO8sW8Yh9c7WZ6Xrm6SN3vmIK79GwNMQE_6FZlmbvg4roQXlsXF_xdXL91p2mTcFTL-BEZ7-99GRx6TZEFzwgmKy8yidGMwoVTKtM0ZCYLmBYyYTHXgQSDhzHIQByZZtxKY2UoZZoZieBemc_YY7JZlIV9SlwbhdLEMrNxYnhoZJxYHvtcI2Sb5RFziL_mqTINAjkWwshVHYlEQq3EoEAMCsWgAoe8bV85X8FvXEe8i4JqCRE5u35Qzs5UY4jKT00amECk4KjyUNJIC51ELOU6hshWUIe8QjErxMYoMPnmTC_mc_X59ET1BcWiPpxBT940RFkJPTC6OcsAfEA4rQ7ldocSjNd0m9fapNa6r0B3YSSFSDdyyMu2Gd_EhLjClgugYXEIkasMhUOerJSv7TejjGHleIfIjlp2GNNtKabfamhx8FQY-LwO2Vkr8MXfuobvO62O_1tKz_5HpM_JbYpG6XOPhttks5ot7AvwAqukR27IiYRrtH_QI1v9_vB0CPfdvdHxCTwdiEGvXl_p1WMAtIxHx_2vvwFXlVjO |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamITR4QPwcgQEGgZCYoiW2EydICI3BaNnWB9ikvhnHcUalkpQl1dR_ir-RuyTNFpDK01760FzU2vfd-c4-f0fIy0AKL_ETAK_RzBUs0a7m3LohszzUmomsvuF9NAoHJ-LLOBivkd_LuzBYVrn0ibWjTguDe-Q7sPIAvCD8j97PfrnYNQpPV5ctNBpYHNjFOaRs5bvhR9DvK8b2Px3vDdy2q4BrQi4rNzKJ0ZzBh2BMpmnATeZzHcqEx0L7EhAORmcgcUozYaWxMpAyzYxENqvMww1QcPnXBAdfAvYjx12C52N_gPbk1I_CndJHdjgXEzSkkHH93tpXtwj4dyG4tBL-XaXZHdXeJBvzfKYX53o6vbQa7t8mt9owlu42uLtD1mx-l1xvGlsu7pHR50k-2ZvOy4q_pZpmuqyozlP6E-t6F66teSvgB2lVFFMKcTOFnN1SPEWguClMJ2lbxVQD5z45uZI5fkDW8yK3Dwm1USBNLDMbJ0YERsaJFbEnNPLAWRFxh3jLOVWmpTXH7hpTVac3UagaNShQg0I1KN8hb7pXZg2nxyrhD6ioThDpuOsvirNT1Vq38lKT-sYPU4h-RSBZpEOdRDwVOoZ0OWQOeYFqVki4kWNFz6mel6UafvuqdkOGnYIEh5G8boWyAkZgdHtBAuYBObp6kls9SfAIpv94iSbVeqRSXdiPQ553j_FNrLLLbTEHGR4HkA7LIHTIZgO-btyccY7t6B0ie7DsTUz_ST75UfOVQ_jDIZB2yPYSwBd_a8W8b3cY_7-WHq0e8jOyMTg-OlSHw9HBY3KDoUl6wmXBFlmvzub2CQSWVfK0tmZKvl-1-_gDB4GEeA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEa8D4lUIFDAICYkqamI7dsKtLCwtjxUCKvVmObZTVlqSVZMV2n_PTJINDaAiLjnE4ySehz0Tj78h5FmiRJTHOSivNSwULDeh4dyHknkujWGiaE94f5zJgyPx7jg57uuc1pts982WZHemAVGaymZv6YrOxFO5V8eIuxZi6IPgLCGEPxcFLG5YwmAiJ8M2AgL291uZf-02WoxazP4_Z-YzS9PvaZPD3uk1cmVVLs36h1kszixP0xvkeu9X0v1OEW6SC768RS51lSbXt8ns7bycTxaruuEvqaGFqRtqSke_Y6LtOvQtkAS8kDZVtaDgyFIIoj3F3_oU_9LSuevTilpJ3iFH0zdfJwdhX0ohtJKrJkxtbg1ncBGMKecSbouYG6lyngkTKzBrmGksRIuuEF5ZrxKlXGEVQngVEefbZKusSn-PUJ8mymaq8FluRWJVlnuRRcIgMJsXKQ9ItOGptj3OOJa7WOg23kil7sSgQQwaxaDjgLwYuiw7kI3ziF-hoAZCxMdub1SnJ7o3Nx0562IbSwfuqEgUS400ecqdMBnEr5IF5CmKWSMCRokpNidmVdf68MtnvS8Zlu4RHEbyvCcqKhiBNf2JBeADgmaNKHdGlGCidty80SbdTxG1BlcK5kuIZ9OAPBmasSemvZW-WgENzxKIT1UiA3K3U75h3JxxjvXhA6JGajlizLilnH9rAcTBH-Hg2QZkd6PAvz7rHL7vDjr-bynd_69nPyaXP72e6g-Hs_cPyFWGBhqJkCU7ZKs5XfmH4Pc1-aPWtn8CILdLoQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTgh44PsjMJBBSEhM6RLbsRPeysQYSBQEVBpPlu04o1qWVEsiVP56zklamoGGkHipqvqsxue781189zuEnkWCBTrUILxGEZ8RrXxFqfU5sZQrRVjWVni_n_LDGXt3FB1toQ-rWhh9avS87EFDHVDxeLMMPW9tN3wxJ3uLNOtUPuZ7Vehw2HwXCjmwFh_CoW0egXM-Qtuz6cfJ17bGSIQ-BDhRf7f5x3mD06kF8f_dVG-cVefzKNeXqVfR5aZYqOV3lecb59XBdbRYrbRLUzkZN7Uemx_nQCD_IytuoGu9b4snnTDeRFu2uIUudd0ul7fR9M28mO_nTVXTl1jhTFU1VkWKT12y79K3LZgF_CuuyzLH8DwYAnmL3dUCdm-K8TztU5taabqDZgevv-wf-n07B99wKmo_NtooSuCDESLSNKImC6niQtOEqVCAaQFrZyBiTTNmhbEiEiLNjHAwYllA6V00KsrC3kfYxpEwichsog2LjEi0ZUnAlAOHsyymHgpW2yhNj3XuWm7kso15Yi47Nklgk3RskqGHXqynLDqgj4uIXznZWBM6jO72h_LsWPYqL4PUpKEJeQouMYsEiRVXOqYpUwnE0Jx46KmTLOlQOAqX5nOsmqqSbz9_khNOXPsgRmElz3uirHSbrfqqCeCDA-4aUO4MKMFMmOHwSoBlb6YqCe4c2GyIqWMPPVkPu5ku9a6wZQM0NIkgRhYR99C9Tt7X66aEUtej3kNioAkDxgxHivm3FsQcfCIK3rWHdlc68-uxLuD77lqt_r5LD_6J-iG6QpzWBMwn0Q4a1WeNfQQOZ60f90bkJ8_Hdtw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GiniClust3%3A+a+fast+and+memory-efficient+tool+for+rare+cell+type+identification&rft.jtitle=BMC+bioinformatics&rft.au=Dong%2C+Rui&rft.au=Yuan%2C+Guo-Cheng&rft.date=2020-04-25&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-020-3482-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_020_3482_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |