GiniClust3: a fast and memory-efficient tool for rare cell type identification

Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 21; no. 1; pp. 158 - 7
Main Authors Dong, Rui, Yuan, Guo-Cheng
Format Journal Article
LanguageEnglish
Published London BioMed Central 25.04.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-020-3482-1

Cover

Abstract Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Results Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Conclusions Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3 .
AbstractList With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3.
With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3.
Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Results Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Conclusions Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3 .
With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions.BACKGROUNDWith the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions.Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters.RESULTSUsing GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters.Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3.CONCLUSIONSTaken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3.
Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Results Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Conclusions Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at Keywords: Scalability, Rare cell identification, Gini index, Single cell RNA-seq
Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Results Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Conclusions Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3.
Abstract Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Results Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Conclusions Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at https://github.com/rdong08/GiniClust3.
ArticleNumber 158
Audience Academic
Author Dong, Rui
Yuan, Guo-Cheng
Author_xml – sequence: 1
  givenname: Rui
  surname: Dong
  fullname: Dong, Rui
  organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 2
  givenname: Guo-Cheng
  surname: Yuan
  fullname: Yuan, Guo-Cheng
  email: gcyuan@ds.dfci.harvard.edu
  organization: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32334526$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wA9igSGxgkeJnboZFpWoEZaQKJB5ry-PH4CqxB9sB5t_jdIa2UwFCkRzLPufcmy_3uDrwwZuqeorRKcZd-yph0vFZgwhqKOtIgx9UR5gBbghG_ODO_rA6TukKIQwd4o-qQ0ooZZy0R9X7C-fdvB9Tpq9rWVuZci29rgczhLhpjLVOOeNznUPoaxtiHWU0tTJ9X-fN2tROl1tXVDK74B9XD63sk3mye59UX96--Tx_11x-uFjMzy8b1VLITaeWSlJSFkYIaM2pspjKFpZ0xiQGSgiFVhHOtGUGlAEOoK0CxDFYROlJtdjm6iCvxDq6QcaNCNKJ64MQV0LG7FRvBNJKY4VbjTgwDqSTrVx2VDM5AwwtKVlkmzX6tdz8kH1_E4iRmECLLWhRQIsJtMDFdLY1rcflYLQqEKLs9zrZv_Huq1iF7wJwR1s8VX2xC4jh22hSFoNLE1bpTRiTIHTGCZ8Bb4v0-T3pVRijL3wFYYgRjhnrblUrWb7aeRtKXTWFivOWAAXC6ATu9A-q8mgzOFXGy7pyvmd4uWcommx-5pUcUxKLTx_3tc_uQrmh8XvcigBvBSqGlKKx_0Ua7nmUy9fDVjp3_T-dux-bShW_MvGW299NvwB5KQRI
CitedBy_id crossref_primary_10_1093_bioinformatics_btad449
crossref_primary_10_1093_bib_bbae101
crossref_primary_10_1093_bib_bbac387
crossref_primary_10_1093_bib_bbad475
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1242_dev_201264
crossref_primary_10_1089_cmb_2022_0118
crossref_primary_10_1093_bib_bbac317
crossref_primary_10_3389_fgene_2023_1183099
crossref_primary_10_1186_s13059_021_02367_2
crossref_primary_10_3390_cimb43030119
crossref_primary_10_1002_ctd2_95
crossref_primary_10_1093_bioinformatics_btab239
crossref_primary_10_1038_s41580_024_00768_2
crossref_primary_10_1186_s13059_024_03339_y
crossref_primary_10_1093_bfgp_elac002
crossref_primary_10_1038_s41467_024_51891_9
crossref_primary_10_1186_s12859_021_04262_w
crossref_primary_10_1186_s13059_023_02998_7
crossref_primary_10_1093_bib_bbad042
crossref_primary_10_1016_j_neuron_2023_03_010
crossref_primary_10_1093_bioinformatics_btae371
crossref_primary_10_1093_nargab_lqaa082
crossref_primary_10_1186_s12859_024_05926_z
crossref_primary_10_35414_akufemubid_870835
Cites_doi 10.1038/nature14966
10.1016/j.cels.2019.05.003
10.1038/nri.2017.76
10.1038/nbt.4096
10.1016/j.molcel.2015.04.005
10.1038/nprot.2017.149
10.1016/j.stem.2016.05.010
10.1038/550451a
10.1186/s13059-017-1382-0
10.1186/s13059-016-1010-4
10.1093/jn/130.4.1007S
10.1186/s13059-017-1218-y
10.1038/ncomms14049
10.1016/j.cels.2018.11.005
10.1038/s41467-018-07234-6
10.1016/j.cell.2018.05.012
10.1016/j.cell.2018.06.021
10.1038/s41598-019-41695-z
10.1038/nrg3833
10.1186/s13059-018-1431-3
10.1007/s00702-014-1180-8
10.1088/1742-5468/2008/10/P10008
ContentType Journal Article
Copyright The Author(s). 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-020-3482-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed


MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 7
ExternalDocumentID oai_doaj_org_article_0dcd1c16d05745728a6ab83d4a971762
10.1186/s12859-020-3482-1
PMC7183612
A627372433
32334526
10_1186_s12859_020_3482_1
Genre Journal Article
GrantInformation_xml – fundername: NIH Office of the Director
  grantid: UG3HL145609
  funderid: http://dx.doi.org/10.13039/100000052
– fundername: NIH Office of the Director
  grantid: UG3HL145609
– fundername: ;
  grantid: UG3HL145609
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c637t-8cbca32bca4227dd53cf13a67b394a17322376c254df4e7ce7577dfc70517f033
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:20:00 EDT 2025
Sun Oct 26 03:52:54 EDT 2025
Tue Sep 30 16:39:13 EDT 2025
Fri Sep 05 10:53:55 EDT 2025
Mon Oct 06 18:34:14 EDT 2025
Mon Oct 20 22:21:09 EDT 2025
Mon Oct 20 16:28:00 EDT 2025
Thu Oct 16 14:47:37 EDT 2025
Wed Feb 19 02:30:48 EST 2025
Thu Apr 24 23:11:50 EDT 2025
Wed Oct 01 04:15:34 EDT 2025
Sat Sep 06 07:27:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gini index
Scalability
Rare cell identification
Single cell RNA-seq
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-8cbca32bca4227dd53cf13a67b394a17322376c254df4e7ce7577dfc70517f033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-020-3482-1
PMID 32334526
PQID 2404251448
PQPubID 44065
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_0dcd1c16d05745728a6ab83d4a971762
unpaywall_primary_10_1186_s12859_020_3482_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183612
proquest_miscellaneous_2395259756
proquest_journals_2404251448
gale_infotracmisc_A627372433
gale_infotracacademiconefile_A627372433
gale_incontextgauss_ISR_A627372433
pubmed_primary_32334526
crossref_primary_10_1186_s12859_020_3482_1
crossref_citationtrail_10_1186_s12859_020_3482_1
springer_journals_10_1186_s12859_020_3482_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-25
PublicationDateYYYYMMDD 2020-04-25
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References L Jiang (3482_CR11) 2016; 17
D Tsoucas (3482_CR12) 2018; 19
X Han (3482_CR14) 2018; 173
AA Kolodziejczyk (3482_CR2) 2015; 58
B Hie (3482_CR13) 2019; 8
V Svensson (3482_CR23) 2018; 13
E Papalexi (3482_CR4) 2018; 18
A Butler (3482_CR6) 2018; 36
SL Wolock (3482_CR19) 2019; 8
BS Meldrum (3482_CR21) 2000; 130
GC Yuan (3482_CR3) 2017; 18
GX Zheng (3482_CR5) 2017; 8
D Grun (3482_CR9) 2015; 525
O Rozenblatt-Rosen (3482_CR16) 2017; 550
FA Wolf (3482_CR7) 2018; 19
VA Traag (3482_CR17) 2019; 9
O Stegle (3482_CR1) 2015; 16
A Jindal (3482_CR8) 2018; 9
D Grun (3482_CR10) 2016; 19
VD Blondel (3482_CR18) 2008; 2008
H Sun (3482_CR20) 1935; 2019
A Zeisel (3482_CR15) 2018; 174
Y Zhou (3482_CR22) 2014; 121
References_xml – volume: 525
  start-page: 251
  issue: 7568
  year: 2015
  ident: 3482_CR9
  publication-title: Nature
  doi: 10.1038/nature14966
– volume: 8
  start-page: 483
  issue: 6
  year: 2019
  ident: 3482_CR13
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2019.05.003
– volume: 18
  start-page: 35
  issue: 1
  year: 2018
  ident: 3482_CR4
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2017.76
– volume: 36
  start-page: 411
  issue: 5
  year: 2018
  ident: 3482_CR6
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4096
– volume: 58
  start-page: 610
  issue: 4
  year: 2015
  ident: 3482_CR2
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.04.005
– volume: 13
  start-page: 599
  issue: 4
  year: 2018
  ident: 3482_CR23
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2017.149
– volume: 19
  start-page: 266
  issue: 2
  year: 2016
  ident: 3482_CR10
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.05.010
– volume: 550
  start-page: 451
  issue: 7677
  year: 2017
  ident: 3482_CR16
  publication-title: Nature
  doi: 10.1038/550451a
– volume: 19
  start-page: 15
  issue: 1
  year: 2018
  ident: 3482_CR7
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1382-0
– volume: 17
  start-page: 144
  issue: 1
  year: 2016
  ident: 3482_CR11
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1010-4
– volume: 2019
  start-page: 91
  year: 1935
  ident: 3482_CR20
  publication-title: Methods Mol Biol
– volume: 130
  start-page: 1007S
  issue: 4S Suppl
  year: 2000
  ident: 3482_CR21
  publication-title: J Nutr
  doi: 10.1093/jn/130.4.1007S
– volume: 18
  start-page: 84
  issue: 1
  year: 2017
  ident: 3482_CR3
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1218-y
– volume: 8
  start-page: 14049
  year: 2017
  ident: 3482_CR5
  publication-title: Nat Commun
  doi: 10.1038/ncomms14049
– volume: 8
  start-page: 281
  issue: 4
  year: 2019
  ident: 3482_CR19
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2018.11.005
– volume: 9
  start-page: 4719
  issue: 1
  year: 2018
  ident: 3482_CR8
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07234-6
– volume: 173
  start-page: 1307
  issue: 5
  year: 2018
  ident: 3482_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.012
– volume: 174
  start-page: 999
  issue: 4
  year: 2018
  ident: 3482_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.021
– volume: 9
  start-page: 5233
  issue: 1
  year: 2019
  ident: 3482_CR17
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41695-z
– volume: 16
  start-page: 133
  issue: 3
  year: 2015
  ident: 3482_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3833
– volume: 19
  start-page: 58
  issue: 1
  year: 2018
  ident: 3482_CR12
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1431-3
– volume: 121
  start-page: 799
  issue: 8
  year: 2014
  ident: 3482_CR22
  publication-title: J Neural Transm (Vienna)
  doi: 10.1007/s00702-014-1180-8
– volume: 2008
  start-page: P10008
  issue: 10
  year: 2008
  ident: 3482_CR18
  publication-title: J Stat Mech
  doi: 10.1088/1742-5468/2008/10/P10008
SSID ssj0017805
Score 2.4680955
Snippet Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of...
With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods...
Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of...
Abstract Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 158
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Cell cycle
Clustering
Clusters
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Datasets
Efficiency
Gene sequencing
Genes
Genomics
Gini index
Granulocytes
Life Sciences
Mapping
Methods
Microarrays
Neurons
Perturbation methods
Population
Principal components analysis
Rare cell identification
Ribonucleic acid
RNA
RNA sequencing
Scalability
Single cell RNA-seq
Software
Source code
Transcriptome analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yIOpB_G11lSiC4FK2TdKk9bYurqvgHtSFvYU0SdcHtV1si7z_3pk2r74q7F68vEMzpS8zXyYzzfQbQl5lSiRlWgJ4rWGxYKWJDec-lsxzaQwT1fiF9-cTeXwqPp1lZ1utvrAmbKIHnhS3nzjrUptKB4GFyBTLjTRlzp0wBWQik_dN8mKTTIXzA2TqD2eYaS73uxR52mJMlZDMJU4Xu9BI1v-vS97ak_6ul5wPTW-RG0NzYda_TF1v7UtHd8jtEFDSg2kid8k139wj16cWk-v75OTDqlkd1kPX87fU0Mp0PTWNoz-wwnYd-5FBAh5I-7atKUSwFLJnT_F9PsXXs3TlQj3RaMIH5PTo_bfD4zj0UIit5KqPc1tawxn8CMaUcxm3VcqNVCUvhEkVrGdwMRbSRFcJr6xXmVKusgq5u6qE84dkp2kb_5hQn2fKFqryRWlFZlVRelEkwiAjmxc5j0iy0am2gWAc-1zUekw0cqknM2gwg0Yz6DQib-ZbLiZ2jcuE36GhZkEkxh4vAFx0gIu-Ci4ReYlm1kh90WBtzbkZuk5__PpFH0iGPXsEh5m8DkJVCzOwJnyqAHpAtqyF5O5CEtamXQ5v0KSDb-g0xFDgKCGRzSPyYh7GO7HerfHtADK8yCAxVZmMyKMJfPO8OeMcG8NHRC1guVDMcqRZfR-ZwyEQ4RDSRmRvA-A_f-sSve_NGL_aSk_-h5WekpsMF2siYpbtkp3-5-CfQfDXl8_Hdf4bvEBPzA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9UwFA_zDlEfxK9pdUoUQXCUtUmatILINjan4EWmg72FNEnnhWt7XXuR-997Tm_brQrzpQ_NCW1yPnJOcvI7hLxOlIjyOAfhtYaFguUmNJz7UDLPpTFMFO0N7y9TeXwqPp8lZxtk2t-FwbTK3ia2htpVFvfId2HlAfEC9z_9sPgVYtUoPF3tS2iYrrSCe99CjN0gmwyRsSZkc_9w-vVkOFdABP_ubDNO5W4dI35biCEUgryE8Wh1akH8_zXVV9aqv_Moh8PUO-TWslyY1W8zn19Zr47ukbudo0n31pJxn2z48gG5uS49uXpIph9n5exgvqwb_o4aWpi6oaZ09Cdm3q5C3yJLwAdpU1VzCp4thajaU9znp7htS2euyzNqWfuInB4dfj84DrvaCqGVXDVhanNrOIOHYEw5l3BbxNxIlfNMmFiBnoPpsRA-ukJ4Zb1KlHKFVYjpVUScb5FJWZX-CaE-TZTNVOGz3IrEqiz3IouEQaQ2L1IekKifU2074HGsfzHXbQCSSr1mgwY2aGSDjgPyduiyWKNuXEe8j4waCBEwu31RXZzrTv905KyLbSwd-KciUSw10uQpd8JkENBKFpBXyGaNkBgl5tycm2Vd60_fTvSeZFjLR3AYyZuOqKhgBNZ0VxhgHhBFa0S5PaIEnbXj5l6adGczan0p4QF5OTRjT8yDK321BBqeJRCwqkQG5PFa-IZxc8Y5FowPiBqJ5Whixi3l7EeLKA4OCgdXNyA7vQBf_tY1874zyPj_ufT0-iE_I7cZqmEkQpZsk0lzsfTPwd1r8hedDv8B3bRObQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA-yIroH8Xurq0QRBJeybZImrbf14boK7kFd2FtIk1QfPNvFtsj7751p8-qryoqXHppJ22RmkpnO5DeEPM-USMq0BOG1hsWClSY2nPtYMs-lMUxUwwnvD6fy5Ey8P8_OA1g0noXZjt-nuTxsU0RYi9HJQRiWGBydq7BHySEuKxdTwACh-UPQ8q_dZtvOgM7_5xq8tQn9niA5RUl3yfW-vjDrH2a12tqIjm-Rm8GCpEcjy2-TK76-Q66NNSXXd8np22W9XKz6tuOvqKGVaTtqake_YUrtOvYDZAS8kHZNs6JgslJwlz3FH_gU_8fSpQsJRAPP7pGz4zefFydxKJoQW8lVF-e2tIYzuAjGlHMZt1XKjVQlL4RJFSgwrCkW_EJXCa-sV5lSrrIKwbqqhPP7ZKduar9HqM8zZQtV-aK0IrOqKL0oEmEQgs2LnEck2cyptgFRHAtbrPTgWeRSj2zQwAaNbNBpRF5OXS5GOI3LiF8joyZCRMIeboCA6KBYOnHWpTaVDgxPkSmWG2nKnDthCvBUJYvIM2SzRqyLGpNpvpi-bfW7Tx_1kWRYpEdwGMmLQFQ1MAJrwtkEmAeEx5pR7s8oQRntvHkjTTosBq0GowlWRvBc84g8nZqxJya41b7pgYYXGXiiKpMReTAK3zRuzjjHSvARUTOxnE3MvKVefh2gwsHy4GDDRuRgI8C_PuuSeT-YZPzfXHr4X89-RG4w1MpExCzbJzvd994_BrOuK58MCv0TiRtAaw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTgh44PsjMJBBSEhM6RLbsRPeysQYSBQEVBpPlu04o1qWVEsiVP56zklamoGGkHipqvqsxue781189zuEnkWCBTrUILxGEZ8RrXxFqfU5sZQrRVjWVni_n_LDGXt3FB1toQ-rWhh9avS87EFDHVDxeLMMPW9tN3wxJ3uLNOtUPuZ7Vehw2HwXCjmwFh_CoW0egXM-Qtuz6cfJ17bGSIQ-BDhRf7f5x3mD06kF8f_dVG-cVefzKNeXqVfR5aZYqOV3lecb59XBdbRYrbRLUzkZN7Uemx_nQCD_IytuoGu9b4snnTDeRFu2uIUudd0ul7fR9M28mO_nTVXTl1jhTFU1VkWKT12y79K3LZgF_CuuyzLH8DwYAnmL3dUCdm-K8TztU5taabqDZgevv-wf-n07B99wKmo_NtooSuCDESLSNKImC6niQtOEqVCAaQFrZyBiTTNmhbEiEiLNjHAwYllA6V00KsrC3kfYxpEwichsog2LjEi0ZUnAlAOHsyymHgpW2yhNj3XuWm7kso15Yi47Nklgk3RskqGHXqynLDqgj4uIXznZWBM6jO72h_LsWPYqL4PUpKEJeQouMYsEiRVXOqYpUwnE0Jx46KmTLOlQOAqX5nOsmqqSbz9_khNOXPsgRmElz3uirHSbrfqqCeCDA-4aUO4MKMFMmOHwSoBlb6YqCe4c2GyIqWMPPVkPu5ku9a6wZQM0NIkgRhYR99C9Tt7X66aEUtej3kNioAkDxgxHivm3FsQcfCIK3rWHdlc68-uxLuD77lqt_r5LD_6J-iG6QpzWBMwn0Q4a1WeNfQQOZ60f90bkJ8_Hdtw
  priority: 102
  providerName: Unpaywall
Title GiniClust3: a fast and memory-efficient tool for rare cell type identification
URI https://link.springer.com/article/10.1186/s12859-020-3482-1
https://www.ncbi.nlm.nih.gov/pubmed/32334526
https://www.proquest.com/docview/2404251448
https://www.proquest.com/docview/2395259756
https://pubmed.ncbi.nlm.nih.gov/PMC7183612
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-020-3482-1
https://doaj.org/article/0dcd1c16d05745728a6ab83d4a971762
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELfGJgR8QLwJjCogJCSmQGI7doKEUFftQaVV00al8slyHGdUCsloU0H_e-7SNFtgGuJLIsWXtL6HfWeff0fI61ByPwkSUF6jqcdpoj3NmPUEtUxoTXlWn_A-GonDMR9OwskGWZe3ahg4vzK0w3pS41n-7teP5Scw-I-1wUfi_TxAFDYPAyGEavEgGNqCiSrGSg5H_GJTAeH768NGMvAg0gmbTc4rP9GZpmo0_7_H7EuT1p8Jle2u6h1ya1Gc6-VPneeXJq79e-Ru43G6_ZWK3CcbtnhAbq5qUC4fktHBtJgO8sW8Yh9c7WZ6Xrm6SN3vmIK79GwNMQE_6FZlmbvg4roQXlsXF_xdXL91p2mTcFTL-BEZ7-99GRx6TZEFzwgmKy8yidGMwoVTKtM0ZCYLmBYyYTHXgQSDhzHIQByZZtxKY2UoZZoZieBemc_YY7JZlIV9SlwbhdLEMrNxYnhoZJxYHvtcI2Sb5RFziL_mqTINAjkWwshVHYlEQq3EoEAMCsWgAoe8bV85X8FvXEe8i4JqCRE5u35Qzs5UY4jKT00amECk4KjyUNJIC51ELOU6hshWUIe8QjErxMYoMPnmTC_mc_X59ET1BcWiPpxBT940RFkJPTC6OcsAfEA4rQ7ldocSjNd0m9fapNa6r0B3YSSFSDdyyMu2Gd_EhLjClgugYXEIkasMhUOerJSv7TejjGHleIfIjlp2GNNtKabfamhx8FQY-LwO2Vkr8MXfuobvO62O_1tKz_5HpM_JbYpG6XOPhttks5ot7AvwAqukR27IiYRrtH_QI1v9_vB0CPfdvdHxCTwdiEGvXl_p1WMAtIxHx_2vvwFXlVjO
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamITR4QPwcgQEGgZCYoiW2EydICI3BaNnWB9ikvhnHcUalkpQl1dR_ir-RuyTNFpDK01760FzU2vfd-c4-f0fIy0AKL_ETAK_RzBUs0a7m3LohszzUmomsvuF9NAoHJ-LLOBivkd_LuzBYVrn0ibWjTguDe-Q7sPIAvCD8j97PfrnYNQpPV5ctNBpYHNjFOaRs5bvhR9DvK8b2Px3vDdy2q4BrQi4rNzKJ0ZzBh2BMpmnATeZzHcqEx0L7EhAORmcgcUozYaWxMpAyzYxENqvMww1QcPnXBAdfAvYjx12C52N_gPbk1I_CndJHdjgXEzSkkHH93tpXtwj4dyG4tBL-XaXZHdXeJBvzfKYX53o6vbQa7t8mt9owlu42uLtD1mx-l1xvGlsu7pHR50k-2ZvOy4q_pZpmuqyozlP6E-t6F66teSvgB2lVFFMKcTOFnN1SPEWguClMJ2lbxVQD5z45uZI5fkDW8yK3Dwm1USBNLDMbJ0YERsaJFbEnNPLAWRFxh3jLOVWmpTXH7hpTVac3UagaNShQg0I1KN8hb7pXZg2nxyrhD6ioThDpuOsvirNT1Vq38lKT-sYPU4h-RSBZpEOdRDwVOoZ0OWQOeYFqVki4kWNFz6mel6UafvuqdkOGnYIEh5G8boWyAkZgdHtBAuYBObp6kls9SfAIpv94iSbVeqRSXdiPQ553j_FNrLLLbTEHGR4HkA7LIHTIZgO-btyccY7t6B0ie7DsTUz_ST75UfOVQ_jDIZB2yPYSwBd_a8W8b3cY_7-WHq0e8jOyMTg-OlSHw9HBY3KDoUl6wmXBFlmvzub2CQSWVfK0tmZKvl-1-_gDB4GEeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEa8D4lUIFDAICYkqamI7dsKtLCwtjxUCKvVmObZTVlqSVZMV2n_PTJINDaAiLjnE4ySehz0Tj78h5FmiRJTHOSivNSwULDeh4dyHknkujWGiaE94f5zJgyPx7jg57uuc1pts982WZHemAVGaymZv6YrOxFO5V8eIuxZi6IPgLCGEPxcFLG5YwmAiJ8M2AgL291uZf-02WoxazP4_Z-YzS9PvaZPD3uk1cmVVLs36h1kszixP0xvkeu9X0v1OEW6SC768RS51lSbXt8ns7bycTxaruuEvqaGFqRtqSke_Y6LtOvQtkAS8kDZVtaDgyFIIoj3F3_oU_9LSuevTilpJ3iFH0zdfJwdhX0ohtJKrJkxtbg1ncBGMKecSbouYG6lyngkTKzBrmGksRIuuEF5ZrxKlXGEVQngVEefbZKusSn-PUJ8mymaq8FluRWJVlnuRRcIgMJsXKQ9ItOGptj3OOJa7WOg23kil7sSgQQwaxaDjgLwYuiw7kI3ziF-hoAZCxMdub1SnJ7o3Nx0562IbSwfuqEgUS400ecqdMBnEr5IF5CmKWSMCRokpNidmVdf68MtnvS8Zlu4RHEbyvCcqKhiBNf2JBeADgmaNKHdGlGCidty80SbdTxG1BlcK5kuIZ9OAPBmasSemvZW-WgENzxKIT1UiA3K3U75h3JxxjvXhA6JGajlizLilnH9rAcTBH-Hg2QZkd6PAvz7rHL7vDjr-bynd_69nPyaXP72e6g-Hs_cPyFWGBhqJkCU7ZKs5XfmH4Pc1-aPWtn8CILdLoQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTgh44PsjMJBBSEhM6RLbsRPeysQYSBQEVBpPlu04o1qWVEsiVP56zklamoGGkHipqvqsxue781189zuEnkWCBTrUILxGEZ8RrXxFqfU5sZQrRVjWVni_n_LDGXt3FB1toQ-rWhh9avS87EFDHVDxeLMMPW9tN3wxJ3uLNOtUPuZ7Vehw2HwXCjmwFh_CoW0egXM-Qtuz6cfJ17bGSIQ-BDhRf7f5x3mD06kF8f_dVG-cVefzKNeXqVfR5aZYqOV3lecb59XBdbRYrbRLUzkZN7Uemx_nQCD_IytuoGu9b4snnTDeRFu2uIUudd0ul7fR9M28mO_nTVXTl1jhTFU1VkWKT12y79K3LZgF_CuuyzLH8DwYAnmL3dUCdm-K8TztU5taabqDZgevv-wf-n07B99wKmo_NtooSuCDESLSNKImC6niQtOEqVCAaQFrZyBiTTNmhbEiEiLNjHAwYllA6V00KsrC3kfYxpEwichsog2LjEi0ZUnAlAOHsyymHgpW2yhNj3XuWm7kso15Yi47Nklgk3RskqGHXqynLDqgj4uIXznZWBM6jO72h_LsWPYqL4PUpKEJeQouMYsEiRVXOqYpUwnE0Jx46KmTLOlQOAqX5nOsmqqSbz9_khNOXPsgRmElz3uirHSbrfqqCeCDA-4aUO4MKMFMmOHwSoBlb6YqCe4c2GyIqWMPPVkPu5ku9a6wZQM0NIkgRhYR99C9Tt7X66aEUtej3kNioAkDxgxHivm3FsQcfCIK3rWHdlc68-uxLuD77lqt_r5LD_6J-iG6QpzWBMwn0Q4a1WeNfQQOZ60f90bkJ8_Hdtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GiniClust3%3A+a+fast+and+memory-efficient+tool+for+rare+cell+type+identification&rft.jtitle=BMC+bioinformatics&rft.au=Dong%2C+Rui&rft.au=Yuan%2C+Guo-Cheng&rft.date=2020-04-25&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-020-3482-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_020_3482_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon