BTR: training asynchronous Boolean models using single-cell expression data

Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 17; no. 1; p. 355
Main Authors Lim, Chee Yee, Wang, Huange, Woodhouse, Steven, Piterman, Nir, Wernisch, Lorenz, Fisher, Jasmin, Göttgens, Berthold
Format Journal Article
LanguageEnglish
Published London BioMed Central 06.09.2016
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-016-1235-y

Cover

Abstract Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present. Results Here we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights. Conclusions BTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research.
AbstractList Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present. Here we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights. BTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research.
Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present. Results Here we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights. Conclusions BTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research.
Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present. Results Here we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights. Conclusions BTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research.
BACKGROUNDRapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present.RESULTSHere we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights.CONCLUSIONSBTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research.
ArticleNumber 355
Audience Academic
Author Woodhouse, Steven
Piterman, Nir
Wernisch, Lorenz
Fisher, Jasmin
Wang, Huange
Göttgens, Berthold
Lim, Chee Yee
Author_xml – sequence: 1
  givenname: Chee Yee
  surname: Lim
  fullname: Lim, Chee Yee
  organization: Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, University of Cambridge
– sequence: 2
  givenname: Huange
  surname: Wang
  fullname: Wang, Huange
  organization: Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, University of Cambridge
– sequence: 3
  givenname: Steven
  surname: Woodhouse
  fullname: Woodhouse, Steven
  organization: Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, University of Cambridge
– sequence: 4
  givenname: Nir
  surname: Piterman
  fullname: Piterman, Nir
  organization: Department of Computer Science, University of Leicester
– sequence: 5
  givenname: Lorenz
  surname: Wernisch
  fullname: Wernisch, Lorenz
  organization: Biostatistics Unit, Medical Research Council
– sequence: 6
  givenname: Jasmin
  surname: Fisher
  fullname: Fisher, Jasmin
  organization: Microsoft Research Cambridge, Department of Biochemistry, University of Cambridge
– sequence: 7
  givenname: Berthold
  surname: Göttgens
  fullname: Göttgens, Berthold
  email: bg200@cam.ac.uk
  organization: Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, University of Cambridge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27600248$$D View this record in MEDLINE/PubMed
BookMark eNqNkltv1DAQRi1URC_wA3hBkXiBhxSPE1_CA1JbcamohFTKszXrOKmrrL2NE2j-PY52obsVIBTJiZzzjTMnc0j2fPCWkOdAjwGUeBOBKV7lFEQOrOD59IgcQCkhZ0D53tbzPjmM8YZSkIryJ2SfSUEpK9UB-Xx6dfk2G3p03vk2wzh5c90HH8aYnYbQWfTZMtS2i9kYZ2JeOpsb23WZvVv1NkYXfFbjgE_J4wa7aJ9t7kfk24f3V2ef8osvH8_PTi5yIwo55KIojYAaeY0MFlgwWSohSsGNMlIisPTFDai6wAoaTssFIAesUBphVF2XxRFh67qjX-H0A7tOr3q3xH7SQPVsRq_N6GRGz2b0lELv1qHVuFja2lifmr4PBnR6941317oN3zWnwKgsUoFXmwJ9uB1tHPTSxVkDeptsaVDJbqEYm9GXD9CbMPY-OUkUK6vUMOf3VIud1c43IZ1r5qL6pBSsqlQl5maP_0Clq7ZLZ9I8NC7t7wRe7wQSM9i7ocUxRn3-9XKXfbEt5beNX_ORAFgDpg8x9rb5L9PyQca4AYc0JfOYdf9Mbn5sTKf41vZb3v4a-glAKeyL
CitedBy_id crossref_primary_10_1038_s41467_023_38637_9
crossref_primary_10_1093_bioinformatics_btx575
crossref_primary_10_1016_j_bbagrm_2019_194430
crossref_primary_10_1016_j_stem_2025_02_013
crossref_primary_10_2174_1574893617666220823114108
crossref_primary_10_1186_s12918_018_0581_y
crossref_primary_10_1111_raq_12806
crossref_primary_10_1016_j_mbs_2024_109284
crossref_primary_10_1371_journal_pcbi_1007900
crossref_primary_10_1007_s12551_023_01090_5
crossref_primary_10_1093_bioinformatics_btx194
crossref_primary_10_1073_pnas_2113178118
crossref_primary_10_1016_j_coisb_2021_100386
crossref_primary_10_1038_s41467_018_03933_2
crossref_primary_10_1093_bfgp_elx046
crossref_primary_10_1007_s12539_021_00478_9
crossref_primary_10_1016_j_bpj_2022_05_035
crossref_primary_10_1093_bib_bbad326
crossref_primary_10_1186_s13059_022_02601_5
crossref_primary_10_1186_s12859_018_2217_z
crossref_primary_10_1093_bfgp_elx029
crossref_primary_10_1038_s41540_022_00246_5
crossref_primary_10_1080_19768354_2024_2449518
crossref_primary_10_1186_s12859_019_2798_1
crossref_primary_10_1007_s00109_017_1535_3
crossref_primary_10_1093_bib_bbaa190
crossref_primary_10_1177_11779322241287120
crossref_primary_10_1093_bioinformatics_btab295
crossref_primary_10_1093_bioinformatics_btz563
crossref_primary_10_1093_nargab_lqad068
crossref_primary_10_1093_bib_bbac156
crossref_primary_10_1093_bioinformatics_btab099
crossref_primary_10_1016_j_compbiomed_2024_108835
crossref_primary_10_1042_ETLS20180176
crossref_primary_10_1093_bioinformatics_btad158
crossref_primary_10_1089_cmb_2021_0437
crossref_primary_10_3389_fcell_2023_1198359
crossref_primary_10_1038_s41540_024_00372_2
crossref_primary_10_1186_s13059_019_1713_4
crossref_primary_10_1109_TCYB_2020_3022430
crossref_primary_10_1002_advs_202412503
crossref_primary_10_3389_fcvm_2018_00167
crossref_primary_10_3389_fgene_2021_655536
crossref_primary_10_1038_s41592_019_0690_6
crossref_primary_10_1093_g3journal_jkad004
crossref_primary_10_1186_s13046_021_01955_1
crossref_primary_10_1186_s13024_022_00517_z
crossref_primary_10_3389_fgene_2020_591461
Cites_doi 10.1038/nsmb.2660
10.1038/ng.375
10.1371/journal.pone.0012776
10.1371/journal.pone.0033624
10.1038/nmeth.2016
10.1093/bioinformatics/btr373
10.1002/wsbm.93
10.1371/journal.pone.0022649
10.18637/jss.v035.i03
10.1093/bioinformatics/btt243
10.1093/bioinformatics/btq124
10.1186/1752-0509-1-37
10.1016/j.ymeth.2010.01.002
10.1023/A:1023905711304
10.1089/10665270252833208
10.1371/journal.pgen.0020159
10.1371/journal.pcbi.1003165
10.1371/journal.pone.0019358
10.1186/1471-2105-7-S1-S7
10.1038/nbt.3154
10.1073/pnas.0305937101
10.1038/nmeth.2967
10.1371/journal.pbio.0050008
10.1073/pnas.1533293100
10.1038/ncb2442
10.1126/science.1069883
10.1016/j.stem.2010.07.016
10.1016/j.celrep.2014.04.011
10.1016/j.stem.2015.04.004
10.1038/ncb2709
10.1126/science.1248882
10.1093/bioinformatics/btn336
10.1038/ni.1978
10.1038/nrg3542
10.1007/978-0-387-98141-3
10.1371/journal.pcbi.1000936
10.1038/nbt.3102
10.1186/1471-2105-13-S15-S14
10.1093/bioinformatics/btu777
10.1038/nn.3881
10.1038/nmeth.1315
10.1038/nbt1356
10.1101/gr.1239303
10.1093/bioinformatics/btl210
ContentType Journal Article
Copyright The Author(s). 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
Copyright_xml – notice: The Author(s). 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12859-016-1235-y
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 355
ExternalDocumentID 10.1186/s12859-016-1235-y
PMC5012073
4200901741
A462998964
27600248
10_1186_s12859_016_1235_y
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Microsoft Research
  grantid: 2012-023
  funderid: http://dx.doi.org/10.13039/100006112
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/I00050X/1
  funderid: http://dx.doi.org/10.13039/501100000268
– fundername: Cambridge Institute for Medical Research, University of Cambridge
  grantid: RP-PG-0310-1002
  funderid: http://dx.doi.org/10.13039/501100000580
– fundername: Bloodwise
  grantid: 12029
  funderid: http://dx.doi.org/10.13039/501100007903
– fundername: Wellcome Trust
  grantid: 100140/Z/12/Z; 097922/Z/11/Z
  funderid: http://dx.doi.org/10.13039/100004440
– fundername: Medical Research Council
  grantid: MC_PC_12009
– fundername: Medical Research Council
  grantid: MR/M008975/1
– fundername: Cancer Research UK
  grantid: 12765
– fundername: ;
  grantid: BB/I00050X/1
– fundername: ;
  grantid: RP-PG-0310-1002
– fundername: ;
  grantid: 12029
– fundername: ;
  grantid: 100140/Z/12/Z; 097922/Z/11/Z
– fundername: ;
  grantid: 2012-023
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
ADTOC
AFFHD
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c637t-634c61da5da21ba3274866465c8c77a12210f18d3a91f504b1a51a9a7c6c8dd43
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Oct 29 11:57:42 EDT 2025
Tue Sep 30 16:55:32 EDT 2025
Wed Oct 01 13:53:35 EDT 2025
Mon Oct 06 18:39:17 EDT 2025
Mon Oct 20 22:49:47 EDT 2025
Mon Oct 20 16:56:13 EDT 2025
Thu Oct 16 16:22:10 EDT 2025
Mon Jul 21 06:01:33 EDT 2025
Wed Oct 01 04:15:28 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Sat Sep 06 07:21:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Executable model
BOOLEAN scoring function
Single-cell gene expression
Network reconstruction
Model learning
Asynchronous Boolean model
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-634c61da5da21ba3274866465c8c77a12210f18d3a91f504b1a51a9a7c6c8dd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-016-1235-y
PMID 27600248
PQID 1824974855
PQPubID 44065
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_s12859_016_1235_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012073
proquest_miscellaneous_1817838223
proquest_journals_1824974855
gale_infotracmisc_A462998964
gale_infotracacademiconefile_A462998964
gale_incontextgauss_ISR_A462998964
pubmed_primary_27600248
crossref_primary_10_1186_s12859_016_1235_y
crossref_citationtrail_10_1186_s12859_016_1235_y
springer_journals_10_1186_s12859_016_1235_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-06
PublicationDateYYYYMMDD 2016-09-06
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-06
  day: 06
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References L Yan (1235_CR8) 2013; 20
1235_CR49
D Marbach (1235_CR13) 2012; 9
M Andrecut (1235_CR16) 2011; 6
1235_CR42
P Shannon (1235_CR46) 2003; 13
R Opgen-Rhein (1235_CR33) 2007; 1
M Scutari (1235_CR43) 2010; 35
H Wickham (1235_CR45) 2009
T Schaffter (1235_CR28) 2011; 27
NK Wilson (1235_CR10) 2015; 16
J Fisher (1235_CR19) 2007; 25
1235_CR34
F Li (1235_CR20) 2004; 101
H Bolouri (1235_CR15) 2003; 100
R de Matos Simoes (1235_CR32) 2012; 7
GR Warnes (1235_CR47) 2015
H Xu (1235_CR1) 2010; 2
C Müssel (1235_CR44) 2010; 26
L Li (1235_CR41) 2011; 12
F Buettner (1235_CR11) 2015; 33
H Lähdesmäki (1235_CR29) 2003; 52
NK Wilson (1235_CR40) 2010; 7
M Sokolova (1235_CR35) 2006
V Moignard (1235_CR2) 2015; 33
D Usoskin (1235_CR12) 2014; 18
C Pina (1235_CR36) 2012; 14
N Bonzanni (1235_CR38) 2013; 29
F Tang (1235_CR7) 2009; 6
1235_CR22
A Garg (1235_CR48) 2008; 24
AM Carvalho (1235_CR27) 2009
H Suzuki (1235_CR3) 2009; 41
C Li (1235_CR17) 2013; 9
H Chen (1235_CR25) 2014; 31
H de Jong (1235_CR18) 2002; 9
E Shapiro (1235_CR4) 2013; 14
AA Margolin (1235_CR30) 2006; 7
A Ståhlberg (1235_CR6) 2010; 50
V Moignard (1235_CR37) 2013; 15
EH Davidson (1235_CR14) 2002; 295
Z Liu (1235_CR26) 2012; 13
A Fauré (1235_CR21) 2006; 22
PV Kharchenko (1235_CR24) 2014; 11
CA Ramos (1235_CR5) 2006; 2
B Mahata (1235_CR9) 2014; 7
JJ Faith (1235_CR31) 2007; 5
1235_CR50
S-J Dunn (1235_CR23) 2014; 344
J Krumsiek (1235_CR39) 2011; 6
References_xml – volume: 20
  start-page: 1131
  year: 2013
  ident: 1235_CR8
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2660
– ident: 1235_CR42
– volume: 41
  start-page: 553
  year: 2009
  ident: 1235_CR3
  publication-title: Nat Genet
  doi: 10.1038/ng.375
– ident: 1235_CR34
  doi: 10.1371/journal.pone.0012776
– volume: 7
  start-page: e33624
  year: 2012
  ident: 1235_CR32
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033624
– volume: 9
  start-page: 796
  year: 2012
  ident: 1235_CR13
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2016
– volume: 27
  start-page: 2263
  year: 2011
  ident: 1235_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr373
– volume: 2
  start-page: 708
  year: 2010
  ident: 1235_CR1
  publication-title: Wiley Interdiscip Rev Syst Biol Med
  doi: 10.1002/wsbm.93
– volume: 6
  start-page: e22649
  year: 2011
  ident: 1235_CR39
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022649
– volume-title: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation
  year: 2006
  ident: 1235_CR35
– volume: 35
  start-page: 1
  year: 2010
  ident: 1235_CR43
  publication-title: J Stat Softw
  doi: 10.18637/jss.v035.i03
– volume: 29
  start-page: i80
  year: 2013
  ident: 1235_CR38
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt243
– volume: 26
  start-page: 1378
  year: 2010
  ident: 1235_CR44
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq124
– volume: 1
  start-page: 37
  year: 2007
  ident: 1235_CR33
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-1-37
– volume: 50
  start-page: 282
  year: 2010
  ident: 1235_CR6
  publication-title: Methods
  doi: 10.1016/j.ymeth.2010.01.002
– volume: 52
  start-page: 147
  year: 2003
  ident: 1235_CR29
  publication-title: Mach Learn
  doi: 10.1023/A:1023905711304
– volume: 9
  start-page: 67
  year: 2002
  ident: 1235_CR18
  publication-title: J Comput Biol
  doi: 10.1089/10665270252833208
– volume: 2
  start-page: e159
  year: 2006
  ident: 1235_CR5
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020159
– volume-title: gplots: various R programming tools for plotting data
  year: 2015
  ident: 1235_CR47
– volume: 9
  start-page: e1003165
  year: 2013
  ident: 1235_CR17
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003165
– volume: 6
  start-page: e19358
  year: 2011
  ident: 1235_CR16
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019358
– volume: 7
  start-page: S7
  issue: Suppl 1
  year: 2006
  ident: 1235_CR30
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-S1-S7
– volume: 33
  start-page: 269
  year: 2015
  ident: 1235_CR2
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3154
– volume: 101
  start-page: 4781
  year: 2004
  ident: 1235_CR20
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0305937101
– volume: 11
  start-page: 740
  year: 2014
  ident: 1235_CR24
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2967
– volume: 5
  start-page: e8
  year: 2007
  ident: 1235_CR31
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050008
– start-page: 54
  volume-title: INESC-ID Tec. Rep
  year: 2009
  ident: 1235_CR27
– volume: 100
  start-page: 9371
  year: 2003
  ident: 1235_CR15
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1533293100
– volume: 14
  start-page: 287
  year: 2012
  ident: 1235_CR36
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2442
– volume: 295
  start-page: 1669
  year: 2002
  ident: 1235_CR14
  publication-title: Science
  doi: 10.1126/science.1069883
– ident: 1235_CR50
– volume: 7
  start-page: 532
  year: 2010
  ident: 1235_CR40
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.07.016
– volume: 7
  start-page: 1130
  year: 2014
  ident: 1235_CR9
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.04.011
– volume: 16
  start-page: 712
  year: 2015
  ident: 1235_CR10
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.04.004
– volume: 15
  start-page: 363
  year: 2013
  ident: 1235_CR37
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2709
– volume: 344
  start-page: 1156
  year: 2014
  ident: 1235_CR23
  publication-title: Science
  doi: 10.1126/science.1248882
– volume: 24
  start-page: 1917
  year: 2008
  ident: 1235_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn336
– volume: 12
  start-page: 129
  year: 2011
  ident: 1235_CR41
  publication-title: Nat Immunol
  doi: 10.1038/ni.1978
– volume: 14
  start-page: 618
  year: 2013
  ident: 1235_CR4
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3542
– volume-title: ggplot2: elegant graphics for data analysis
  year: 2009
  ident: 1235_CR45
  doi: 10.1007/978-0-387-98141-3
– ident: 1235_CR22
  doi: 10.1371/journal.pcbi.1000936
– volume: 33
  start-page: 155
  year: 2015
  ident: 1235_CR11
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3102
– volume: 13
  start-page: S14
  issue: Suppl 15
  year: 2012
  ident: 1235_CR26
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-S15-S14
– volume: 31
  start-page: 1060
  year: 2014
  ident: 1235_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu777
– ident: 1235_CR49
– volume: 18
  start-page: 145
  year: 2014
  ident: 1235_CR12
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3881
– volume: 6
  start-page: 377
  year: 2009
  ident: 1235_CR7
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1315
– volume: 25
  start-page: 1239
  year: 2007
  ident: 1235_CR19
  publication-title: Nat Biotech
  doi: 10.1038/nbt1356
– volume: 13
  start-page: 2498
  year: 2003
  ident: 1235_CR46
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume: 22
  start-page: e124
  year: 2006
  ident: 1235_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl210
SSID ssj0017805
Score 2.4630182
Snippet Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics...
Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such...
Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics...
BACKGROUNDRapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis....
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 355
SubjectTerms Algorithms
Animals
Bayes Theorem
Bioinformatics
Biomedical and Life Sciences
Cells - chemistry
Cells - cytology
Cells - metabolism
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Gene expression
Gene Expression Profiling
Gene Regulatory Networks
Genetic algorithms
Humans
Life Sciences
Methodology
Methodology Article
Microarrays
Models, Genetic
Networks analysis
Physiological aspects
Single-Cell Analysis
Technological change
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEB_OPUR9EL_Oq54SRRA8yjVNmqaCyK3ccSoust7BvZU0TU-hpHt2F93_3ky_3B54vuxLpu1m8ksyk5n8BuBVxoVy0DHON8EwYxhSP0so853lrJMiMrEs8Lzjy0ycnPFP59H5Fsz6uzCYVtmvic1CnVcaz8gPnB3Mne0ro-j94tLHqlEYXe1LaKiutEL-rqEYuwHbITJjTWB7ejT7Oh_iCsjg38U2qRQHNUX-NudOYy0aFvnr0e50dY3e2KSuJlAOUdQ7cGtlF2r9S5XlxkZ1fA_udhYmOWwhcR-2jH0AN9uak-uH8Hl6On9L-soQRNVrq5Egt1rVZFpVpVGWNOVxaoI58RcEf0rj4wk_Mb-7vFlLMLX0EZwdH51-OPG7igq-Fixe-oJxLWiuolyFNFPMuaRSCC4iLXUcK-qGKiiozJlKaBEFPKMqoipRsRZa5jlnOzCxlTW7QKRmhjvnhTkl8ECqTBodh8xkIuM64YEHQa_JVHd049i3Mm3cDinSVvkpppih8tO1B2-GRxYt18Z1wi9xeFLksLCYJHOhVnWdfvw2Tw-5cJusTAT34HUnVFTu41p1dw5cF5D2aiS5N5J0k0yPm3sUpN0kr9O_kPTgxdCMT2LimjVu4JyMwxxzVhjz4HELmqFvYRMU5dKDeASnQQCpv8ct9sf3hgI8wjvPsXvnfg-8jb_1b5XtD9j8v4KfXN_lp3A7xHmDsTWxB5Plz5V55uyzZfa8m3R_AEPmNqE
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI9gCAEHxDeFgQJCQmKq1jQfTbltE9MAwWFs0m5RmqYDqcqb6HuC_vfYbV71OvEhLr3ESRvbqePY-ZmQV5VQFlTHg2-CYcY8Z2lVMp7CztmVjfSFbvC849NndXQqPpzJswgWjXdhNuP3TKvdjiHCGji8WC2Gy7S_Sq6BjVJDXFYdTAEDhOaPQcvfdpuZncs_3w3rczkzcgqP3iI3VuHC9j9s225YoMM75HbcOtK9UdZ3yRUf7pHrYzHJ_j75uH9y_JauSz5Q2_XBIfItuPZ0f7FovQ10qHvTUUx2P6f4aH2KR_fU_4wJsYFizugDcnr47uTgKI2lElKneLFMFRdOsdrK2uasshx8Ta2UUNJpVxSWgQyyhuma25I1MhMVs5LZ0hZOOV3Xgj8kW2ER_GNCteNegFfCgQki07bS3hU595WqhCtFlpBszUnjIo44zq01gz-hlRmZbzB3DJlv-oS8mbpcjCAafyN-ieIxCE4RMPvl3K66zrz_cmz2hALrqUslEvI6EjULeLmz8TIBTAHxrGaU2zNKWD1u3rzWAhNXb2fA5xLgZ2kpE_JiasaemJEWPAgOaEDnOGyveEIejUozzS0fop1CJ6SYqdNEgJje85bw7euA7S3xMnMBY-6sFW_js_7Msp1JN__N4Cf_NfZTcjPHZYQxNLVNtpbfV_4Z7MOW1fNhBf4C5v4pBw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEB_qFVE_-H5Eq0QRBEuut9lHNn67iqUqVqk9qJ_C7mZTS2NymDv0_OvdyYtL8YHglyOws-FmdnZ3JjPzG4CnmgnlVMc63wTDjGFIAh0TGjjL2cQZt5HM8HvHuwOxP2NvjvnxBrzvamH0F6NPyxY0FIGKx-tl6Hl9drsHc7YzT7Nmy0uxUxHEYXNuMfaUoTxYXYBNwZ1xPoLN2cGH6ae6xigigXNweBvb_OW8we10_oxeu6TOJ1D2UdQrcGlZzNXqm8rztYtq7xrMOxab_JSz8XKhx-bHOfTH_yiD63C1NWr9aaOFN2DDFjfhYtPmcnUL3u4eHb7wu2YUvqpWhUFM3nJZ-btlmVtV-HVHnsrHNPwTH39yG2BQwbff21Tdwsds1tsw23t19HI_aJs4BEbQaBEIyowgqeKpColW1HnBUggmuJEmihRx2jHJiEypiknGJ0wTxYmKVWSEkWnK6B0YFWVh74EvDbXM-UvUSYJNpNLSmiikVgvNTMwmHky6xUtMi3COvOVJ7elIkTQySjCrDWWUrDx43k-ZN_AefyJ-ghqRIGxGgXk5J2pZVcnrj4fJlAl3r8tYMA-etURZiYuk2jIHxwIibQ0otwaUbl-b4XCneEl7rlSJ8waZ8wAl5x487odxJubKFdYtnKMhkaTO8KMe3G30tOctrOOwTHoQDTS4J0C08eFIcfq5Rh3nWGYduXdud7q-9rd-L7Ltfjv8XcD3_4n6AVwOUdsxuie2YLT4urQPnYW40I_aXf8TdzZfvw
  priority: 102
  providerName: Unpaywall
Title BTR: training asynchronous Boolean models using single-cell expression data
URI https://link.springer.com/article/10.1186/s12859-016-1235-y
https://www.ncbi.nlm.nih.gov/pubmed/27600248
https://www.proquest.com/docview/1824974855
https://www.proquest.com/docview/1817838223
https://pubmed.ncbi.nlm.nih.gov/PMC5012073
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-016-1235-y
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_uA1EfxG-jZ4kiCB7RJrvZbASRtlw9K1eO3hXqU9hstqcQkvPS4uW_dyZNYnucCr6k0J1tsjO_6ezsTGYAXsVcKISOQd-Ewoye5zpx6DIHd846nPsmkHM67zgai8MpH8382RY07a1qBhbXunbUT2p6kb69_FF-RIX_UCm8FO8Kl6qwoVNMHWWY75TbsIuGKqRODkf8d1CByvfXgc1rp1Fh4CpORc2A1qzU1f_qNWN1NZGyjabehpvL7FyVP1Warhms4V24U-807d4KGvdgy2T34caq92T5AL70Tyfv7aZDhK2KMtNUKDdfFnY_z1OjMrtqk1PYlBt_ZtMlNQ6d9Nvmss6fzWxKMX0I0-HB6eDQqTsrOFqwYOEIxrVwE-UnynNjxdA1lUJw4Wupg0C5KLLu3JUJU6E797s8dpXvqlAFWmiZJJw9gp0sz8wTsKVmhqMTw5AJvCtVLI0OPGZiEXMd8q4F3YaTka7LjtPa0qhyP6SIVnKIKNWM5BCVFrxpp5yvam78jfgliSeiWhYZJcucqWVRRJ9PJlGPCzS2MhTcgtc10TzHm2tVv3uAS6DyVxuUexuUqGx6c7hBQdRgNUIXjaNbJn3fghftMM2kBLbMoOCQBuHHcDfGLHi8Ak27tgZ0FgQbcGoJqAT45kj2_VtVCtynd58D_M39Bnhrj_Vnlu232Pw3g5_-91M9g1seaReF38Qe7CwuluY5buEWcQe2g1mAVzn81IHdXm90MsLP_sH4eILfDsSgUx2OdCoFxpHp-Lj39RcnuUj5
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8CBQwCIVFFXceO4yAh1ALVLn0cylbam3Ecb0FaJQvZVcmf4jcykxebSpRTL7l48vD4G89MZjxDyMtESAPQceCbYJgxCJifxIz7YDnbeBq6SE3xf8fhkRyeiM-TcLJGfrdnYTCtst0Tq406zS3-I98GO1iA7avC8P38h49dozC62rbQqGGx78ozcNmKd6OPsL6vgmDv0_jD0G-6CvhW8mjhSy6sZKkJUxOwxHBwy5SUQoZW2SgyDD53MGUq5SZm03AgEmZCZmITWWlVmgoOz71CrgoOewnITzTpHDyG_QGayClTcrtgWB0OnHXsdMNDv-zpvvMaYEUFnk_P7GK0N8jGMpub8szMZitqcO8WudnYr3SnBtxtsuayO-Ra3dGyvEv2d8fHb2nbd4Kaoswslt_NlwXdzfOZMxmtmu8UFDPuTyleZs7H-AF1v5qs3Ixi4uo9cnIpnL1P1rM8cw8JVZY7Aa4RByaIgTKJcjYKuEtkImwsBh4ZtJzUtilmjnOb6cqpUVLXzNeYwIbM16VH3nS3zOtKHhcRv8Dl0VghI8MUnFOzLAo9-nKsd4QEFa5iKTzyuiGa5vBya5oTDTAFLKrVo9zsUYII2_5wiwLdbCGF_gt4jzzvhvFOTIvLHCwc0ADmONh43CMPatB0cwuqkKtQHol6cOoIsLB4fyT7_q0qMB7iieoInrnVAm_ls_7Nsq0Om_9n8KOLp_yMbAzHhwf6YHS0_5hcD1CGMIonN8n64ufSPQFLcJE8rcSPkq-XLe9_AAeCa9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagiOsBcRMoEBASElXUdXzE4a1dWLUUKlRaqW-W4zhtpci7IruC_HtmcmlTcYiXvHjsxOOZjMcz_oaQNxmXBkTHgW-CYcY4plGWUhbBztmmhXCJKvC848uh3Dvhn07FaVfntOqz3fuQZHunAVGa_HJ7kRetiiu5XVHEXQM3GGvIMBHVV8k1DsYNSxhM5XQIIyBgfxfK_G23kTG6_Etes0mX8yWHoOltcnPlF6b-YcpyzS7N7pI73YYy3Gkl4B654vx9cr0tMVk_IAe7x0fvw74QRGiq2lvEwwWHP9ydz0tnfNhUw6lCTIE_C_FRuggP9EP3s0uT9SFmkj4kJ7OPx9O9qCugEFnJkmUkGbeS5kbkJqaZYeCBKim5FFbZJDEUVmZSUJUzk9JCTHhGjaAmNYmVVuU5Z4_Ihp9794SEyjLHwVdhwATgtMmUs0nMXCYzblM-Ccik56S2Hbo4zq3UjZehpG6ZrzGjDJmv64C8G7osWmiNvxG_xuXRCFnhMSfmzKyqSu9_O9I7XIJNVankAXnbERVzeLk13RUDmAKiXI0oN0eUoFN23NxLge50utLgiXHwvpQQAXk1NGNPzFPzDhYOaEDmGGy6WEAet0IzzC1uYqBcBSQZidNAgEjf4xZ_cd4gfgu84pzAmFu94K191p9ZtjXI5r8Z_PS_xn5Jbnz9MNOf9w8PnpFbMWoUBtnkJtlYfl-557BRW2YvGmX8BcMBND0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEB_qFVE_-H5Eq0QRBEuut9lHNn67iqUqVqk9qJ_C7mZTS2NymDv0_OvdyYtL8YHglyOws-FmdnZ3JjPzG4CnmgnlVMc63wTDjGFIAh0TGjjL2cQZt5HM8HvHuwOxP2NvjvnxBrzvamH0F6NPyxY0FIGKx-tl6Hl9drsHc7YzT7Nmy0uxUxHEYXNuMfaUoTxYXYBNwZ1xPoLN2cGH6ae6xigigXNweBvb_OW8we10_oxeu6TOJ1D2UdQrcGlZzNXqm8rztYtq7xrMOxab_JSz8XKhx-bHOfTH_yiD63C1NWr9aaOFN2DDFjfhYtPmcnUL3u4eHb7wu2YUvqpWhUFM3nJZ-btlmVtV-HVHnsrHNPwTH39yG2BQwbff21Tdwsds1tsw23t19HI_aJs4BEbQaBEIyowgqeKpColW1HnBUggmuJEmihRx2jHJiEypiknGJ0wTxYmKVWSEkWnK6B0YFWVh74EvDbXM-UvUSYJNpNLSmiikVgvNTMwmHky6xUtMi3COvOVJ7elIkTQySjCrDWWUrDx43k-ZN_AefyJ-ghqRIGxGgXk5J2pZVcnrj4fJlAl3r8tYMA-etURZiYuk2jIHxwIibQ0otwaUbl-b4XCneEl7rlSJ8waZ8wAl5x487odxJubKFdYtnKMhkaTO8KMe3G30tOctrOOwTHoQDTS4J0C08eFIcfq5Rh3nWGYduXdud7q-9rd-L7Ltfjv8XcD3_4n6AVwOUdsxuie2YLT4urQPnYW40I_aXf8TdzZfvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BTR%3A+training+asynchronous+Boolean+models+using+single-cell+expression+data&rft.jtitle=BMC+bioinformatics&rft.au=Lim%2C+Chee+Yee&rft.au=Wang%2C+Huange&rft.au=Woodhouse%2C+Steven&rft.au=Piterman%2C+Nir&rft.date=2016-09-06&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-016-1235-y&rft_id=info%3Apmid%2F27600248&rft.externalDocID=PMC5012073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon