BTR: training asynchronous Boolean models using single-cell expression data
Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 17; no. 1; p. 355 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        06.09.2016
     BioMed Central Ltd Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/s12859-016-1235-y | 
Cover
| Abstract | Background
Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present.
Results
Here we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights.
Conclusions
BTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research. | 
    
|---|---|
| AbstractList | Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present.
Here we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights.
BTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research. Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present. Results Here we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights. Conclusions BTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research. Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present. Results Here we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights. Conclusions BTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research. BACKGROUNDRapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present.RESULTSHere we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights.CONCLUSIONSBTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research.  | 
    
| ArticleNumber | 355 | 
    
| Audience | Academic | 
    
| Author | Woodhouse, Steven Piterman, Nir Wernisch, Lorenz Fisher, Jasmin Wang, Huange Göttgens, Berthold Lim, Chee Yee  | 
    
| Author_xml | – sequence: 1 givenname: Chee Yee surname: Lim fullname: Lim, Chee Yee organization: Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, University of Cambridge – sequence: 2 givenname: Huange surname: Wang fullname: Wang, Huange organization: Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, University of Cambridge – sequence: 3 givenname: Steven surname: Woodhouse fullname: Woodhouse, Steven organization: Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, University of Cambridge – sequence: 4 givenname: Nir surname: Piterman fullname: Piterman, Nir organization: Department of Computer Science, University of Leicester – sequence: 5 givenname: Lorenz surname: Wernisch fullname: Wernisch, Lorenz organization: Biostatistics Unit, Medical Research Council – sequence: 6 givenname: Jasmin surname: Fisher fullname: Fisher, Jasmin organization: Microsoft Research Cambridge, Department of Biochemistry, University of Cambridge – sequence: 7 givenname: Berthold surname: Göttgens fullname: Göttgens, Berthold email: bg200@cam.ac.uk organization: Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, University of Cambridge  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27600248$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkltv1DAQRi1URC_wA3hBkXiBhxSPE1_CA1JbcamohFTKszXrOKmrrL2NE2j-PY52obsVIBTJiZzzjTMnc0j2fPCWkOdAjwGUeBOBKV7lFEQOrOD59IgcQCkhZ0D53tbzPjmM8YZSkIryJ2SfSUEpK9UB-Xx6dfk2G3p03vk2wzh5c90HH8aYnYbQWfTZMtS2i9kYZ2JeOpsb23WZvVv1NkYXfFbjgE_J4wa7aJ9t7kfk24f3V2ef8osvH8_PTi5yIwo55KIojYAaeY0MFlgwWSohSsGNMlIisPTFDai6wAoaTssFIAesUBphVF2XxRFh67qjX-H0A7tOr3q3xH7SQPVsRq_N6GRGz2b0lELv1qHVuFja2lifmr4PBnR6941317oN3zWnwKgsUoFXmwJ9uB1tHPTSxVkDeptsaVDJbqEYm9GXD9CbMPY-OUkUK6vUMOf3VIud1c43IZ1r5qL6pBSsqlQl5maP_0Clq7ZLZ9I8NC7t7wRe7wQSM9i7ocUxRn3-9XKXfbEt5beNX_ORAFgDpg8x9rb5L9PyQca4AYc0JfOYdf9Mbn5sTKf41vZb3v4a-glAKeyL | 
    
| CitedBy_id | crossref_primary_10_1038_s41467_023_38637_9 crossref_primary_10_1093_bioinformatics_btx575 crossref_primary_10_1016_j_bbagrm_2019_194430 crossref_primary_10_1016_j_stem_2025_02_013 crossref_primary_10_2174_1574893617666220823114108 crossref_primary_10_1186_s12918_018_0581_y crossref_primary_10_1111_raq_12806 crossref_primary_10_1016_j_mbs_2024_109284 crossref_primary_10_1371_journal_pcbi_1007900 crossref_primary_10_1007_s12551_023_01090_5 crossref_primary_10_1093_bioinformatics_btx194 crossref_primary_10_1073_pnas_2113178118 crossref_primary_10_1016_j_coisb_2021_100386 crossref_primary_10_1038_s41467_018_03933_2 crossref_primary_10_1093_bfgp_elx046 crossref_primary_10_1007_s12539_021_00478_9 crossref_primary_10_1016_j_bpj_2022_05_035 crossref_primary_10_1093_bib_bbad326 crossref_primary_10_1186_s13059_022_02601_5 crossref_primary_10_1186_s12859_018_2217_z crossref_primary_10_1093_bfgp_elx029 crossref_primary_10_1038_s41540_022_00246_5 crossref_primary_10_1080_19768354_2024_2449518 crossref_primary_10_1186_s12859_019_2798_1 crossref_primary_10_1007_s00109_017_1535_3 crossref_primary_10_1093_bib_bbaa190 crossref_primary_10_1177_11779322241287120 crossref_primary_10_1093_bioinformatics_btab295 crossref_primary_10_1093_bioinformatics_btz563 crossref_primary_10_1093_nargab_lqad068 crossref_primary_10_1093_bib_bbac156 crossref_primary_10_1093_bioinformatics_btab099 crossref_primary_10_1016_j_compbiomed_2024_108835 crossref_primary_10_1042_ETLS20180176 crossref_primary_10_1093_bioinformatics_btad158 crossref_primary_10_1089_cmb_2021_0437 crossref_primary_10_3389_fcell_2023_1198359 crossref_primary_10_1038_s41540_024_00372_2 crossref_primary_10_1186_s13059_019_1713_4 crossref_primary_10_1109_TCYB_2020_3022430 crossref_primary_10_1002_advs_202412503 crossref_primary_10_3389_fcvm_2018_00167 crossref_primary_10_3389_fgene_2021_655536 crossref_primary_10_1038_s41592_019_0690_6 crossref_primary_10_1093_g3journal_jkad004 crossref_primary_10_1186_s13046_021_01955_1 crossref_primary_10_1186_s13024_022_00517_z crossref_primary_10_3389_fgene_2020_591461  | 
    
| Cites_doi | 10.1038/nsmb.2660 10.1038/ng.375 10.1371/journal.pone.0012776 10.1371/journal.pone.0033624 10.1038/nmeth.2016 10.1093/bioinformatics/btr373 10.1002/wsbm.93 10.1371/journal.pone.0022649 10.18637/jss.v035.i03 10.1093/bioinformatics/btt243 10.1093/bioinformatics/btq124 10.1186/1752-0509-1-37 10.1016/j.ymeth.2010.01.002 10.1023/A:1023905711304 10.1089/10665270252833208 10.1371/journal.pgen.0020159 10.1371/journal.pcbi.1003165 10.1371/journal.pone.0019358 10.1186/1471-2105-7-S1-S7 10.1038/nbt.3154 10.1073/pnas.0305937101 10.1038/nmeth.2967 10.1371/journal.pbio.0050008 10.1073/pnas.1533293100 10.1038/ncb2442 10.1126/science.1069883 10.1016/j.stem.2010.07.016 10.1016/j.celrep.2014.04.011 10.1016/j.stem.2015.04.004 10.1038/ncb2709 10.1126/science.1248882 10.1093/bioinformatics/btn336 10.1038/ni.1978 10.1038/nrg3542 10.1007/978-0-387-98141-3 10.1371/journal.pcbi.1000936 10.1038/nbt.3102 10.1186/1471-2105-13-S15-S14 10.1093/bioinformatics/btu777 10.1038/nn.3881 10.1038/nmeth.1315 10.1038/nbt1356 10.1101/gr.1239303 10.1093/bioinformatics/btl210  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s). 2016 COPYRIGHT 2016 BioMed Central Ltd. Copyright BioMed Central 2016  | 
    
| Copyright_xml | – notice: The Author(s). 2016 – notice: COPYRIGHT 2016 BioMed Central Ltd. – notice: Copyright BioMed Central 2016  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1186/s12859-016-1235-y | 
    
| DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | 355 | 
    
| ExternalDocumentID | 10.1186/s12859-016-1235-y PMC5012073 4200901741 A462998964 27600248 10_1186_s12859_016_1235_y  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | United Kingdom | 
    
| GeographicLocations_xml | – name: United Kingdom | 
    
| GrantInformation_xml | – fundername: Microsoft Research grantid: 2012-023 funderid: http://dx.doi.org/10.13039/100006112 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/I00050X/1 funderid: http://dx.doi.org/10.13039/501100000268 – fundername: Cambridge Institute for Medical Research, University of Cambridge grantid: RP-PG-0310-1002 funderid: http://dx.doi.org/10.13039/501100000580 – fundername: Bloodwise grantid: 12029 funderid: http://dx.doi.org/10.13039/501100007903 – fundername: Wellcome Trust grantid: 100140/Z/12/Z; 097922/Z/11/Z funderid: http://dx.doi.org/10.13039/100004440 – fundername: Medical Research Council grantid: MC_PC_12009 – fundername: Medical Research Council grantid: MR/M008975/1 – fundername: Cancer Research UK grantid: 12765 – fundername: ; grantid: BB/I00050X/1 – fundername: ; grantid: RP-PG-0310-1002 – fundername: ; grantid: 12029 – fundername: ; grantid: 100140/Z/12/Z; 097922/Z/11/Z – fundername: ; grantid: 2012-023  | 
    
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ ADTOC AFFHD C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c637t-634c61da5da21ba3274866465c8c77a12210f18d3a91f504b1a51a9a7c6c8dd43 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Wed Oct 29 11:57:42 EDT 2025 Tue Sep 30 16:55:32 EDT 2025 Wed Oct 01 13:53:35 EDT 2025 Mon Oct 06 18:39:17 EDT 2025 Mon Oct 20 22:49:47 EDT 2025 Mon Oct 20 16:56:13 EDT 2025 Thu Oct 16 16:22:10 EDT 2025 Mon Jul 21 06:01:33 EDT 2025 Wed Oct 01 04:15:28 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Sat Sep 06 07:21:12 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Executable model BOOLEAN scoring function Single-cell gene expression Network reconstruction Model learning Asynchronous Boolean model  | 
    
| Language | English | 
    
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c637t-634c61da5da21ba3274866465c8c77a12210f18d3a91f504b1a51a9a7c6c8dd43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-016-1235-y | 
    
| PMID | 27600248 | 
    
| PQID | 1824974855 | 
    
| PQPubID | 44065 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | unpaywall_primary_10_1186_s12859_016_1235_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012073 proquest_miscellaneous_1817838223 proquest_journals_1824974855 gale_infotracmisc_A462998964 gale_infotracacademiconefile_A462998964 gale_incontextgauss_ISR_A462998964 pubmed_primary_27600248 crossref_primary_10_1186_s12859_016_1235_y crossref_citationtrail_10_1186_s12859_016_1235_y springer_journals_10_1186_s12859_016_1235_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-09-06 | 
    
| PublicationDateYYYYMMDD | 2016-09-06 | 
    
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-06 day: 06  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationSubtitle | BMC series – open, inclusive and trusted | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2016 | 
    
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V  | 
    
| References | L Yan (1235_CR8) 2013; 20 1235_CR49 D Marbach (1235_CR13) 2012; 9 M Andrecut (1235_CR16) 2011; 6 1235_CR42 P Shannon (1235_CR46) 2003; 13 R Opgen-Rhein (1235_CR33) 2007; 1 M Scutari (1235_CR43) 2010; 35 H Wickham (1235_CR45) 2009 T Schaffter (1235_CR28) 2011; 27 NK Wilson (1235_CR10) 2015; 16 J Fisher (1235_CR19) 2007; 25 1235_CR34 F Li (1235_CR20) 2004; 101 H Bolouri (1235_CR15) 2003; 100 R de Matos Simoes (1235_CR32) 2012; 7 GR Warnes (1235_CR47) 2015 H Xu (1235_CR1) 2010; 2 C Müssel (1235_CR44) 2010; 26 L Li (1235_CR41) 2011; 12 F Buettner (1235_CR11) 2015; 33 H Lähdesmäki (1235_CR29) 2003; 52 NK Wilson (1235_CR40) 2010; 7 M Sokolova (1235_CR35) 2006 V Moignard (1235_CR2) 2015; 33 D Usoskin (1235_CR12) 2014; 18 C Pina (1235_CR36) 2012; 14 N Bonzanni (1235_CR38) 2013; 29 F Tang (1235_CR7) 2009; 6 1235_CR22 A Garg (1235_CR48) 2008; 24 AM Carvalho (1235_CR27) 2009 H Suzuki (1235_CR3) 2009; 41 C Li (1235_CR17) 2013; 9 H Chen (1235_CR25) 2014; 31 H de Jong (1235_CR18) 2002; 9 E Shapiro (1235_CR4) 2013; 14 AA Margolin (1235_CR30) 2006; 7 A Ståhlberg (1235_CR6) 2010; 50 V Moignard (1235_CR37) 2013; 15 EH Davidson (1235_CR14) 2002; 295 Z Liu (1235_CR26) 2012; 13 A Fauré (1235_CR21) 2006; 22 PV Kharchenko (1235_CR24) 2014; 11 CA Ramos (1235_CR5) 2006; 2 B Mahata (1235_CR9) 2014; 7 JJ Faith (1235_CR31) 2007; 5 1235_CR50 S-J Dunn (1235_CR23) 2014; 344 J Krumsiek (1235_CR39) 2011; 6  | 
    
| References_xml | – volume: 20 start-page: 1131 year: 2013 ident: 1235_CR8 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2660 – ident: 1235_CR42 – volume: 41 start-page: 553 year: 2009 ident: 1235_CR3 publication-title: Nat Genet doi: 10.1038/ng.375 – ident: 1235_CR34 doi: 10.1371/journal.pone.0012776 – volume: 7 start-page: e33624 year: 2012 ident: 1235_CR32 publication-title: PLoS One doi: 10.1371/journal.pone.0033624 – volume: 9 start-page: 796 year: 2012 ident: 1235_CR13 publication-title: Nat Methods doi: 10.1038/nmeth.2016 – volume: 27 start-page: 2263 year: 2011 ident: 1235_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr373 – volume: 2 start-page: 708 year: 2010 ident: 1235_CR1 publication-title: Wiley Interdiscip Rev Syst Biol Med doi: 10.1002/wsbm.93 – volume: 6 start-page: e22649 year: 2011 ident: 1235_CR39 publication-title: PLoS One doi: 10.1371/journal.pone.0022649 – volume-title: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation year: 2006 ident: 1235_CR35 – volume: 35 start-page: 1 year: 2010 ident: 1235_CR43 publication-title: J Stat Softw doi: 10.18637/jss.v035.i03 – volume: 29 start-page: i80 year: 2013 ident: 1235_CR38 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt243 – volume: 26 start-page: 1378 year: 2010 ident: 1235_CR44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq124 – volume: 1 start-page: 37 year: 2007 ident: 1235_CR33 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-1-37 – volume: 50 start-page: 282 year: 2010 ident: 1235_CR6 publication-title: Methods doi: 10.1016/j.ymeth.2010.01.002 – volume: 52 start-page: 147 year: 2003 ident: 1235_CR29 publication-title: Mach Learn doi: 10.1023/A:1023905711304 – volume: 9 start-page: 67 year: 2002 ident: 1235_CR18 publication-title: J Comput Biol doi: 10.1089/10665270252833208 – volume: 2 start-page: e159 year: 2006 ident: 1235_CR5 publication-title: PLoS Genet doi: 10.1371/journal.pgen.0020159 – volume-title: gplots: various R programming tools for plotting data year: 2015 ident: 1235_CR47 – volume: 9 start-page: e1003165 year: 2013 ident: 1235_CR17 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003165 – volume: 6 start-page: e19358 year: 2011 ident: 1235_CR16 publication-title: PLoS One doi: 10.1371/journal.pone.0019358 – volume: 7 start-page: S7 issue: Suppl 1 year: 2006 ident: 1235_CR30 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-S1-S7 – volume: 33 start-page: 269 year: 2015 ident: 1235_CR2 publication-title: Nat Biotechnol doi: 10.1038/nbt.3154 – volume: 101 start-page: 4781 year: 2004 ident: 1235_CR20 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0305937101 – volume: 11 start-page: 740 year: 2014 ident: 1235_CR24 publication-title: Nat Methods doi: 10.1038/nmeth.2967 – volume: 5 start-page: e8 year: 2007 ident: 1235_CR31 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050008 – start-page: 54 volume-title: INESC-ID Tec. Rep year: 2009 ident: 1235_CR27 – volume: 100 start-page: 9371 year: 2003 ident: 1235_CR15 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1533293100 – volume: 14 start-page: 287 year: 2012 ident: 1235_CR36 publication-title: Nat Cell Biol doi: 10.1038/ncb2442 – volume: 295 start-page: 1669 year: 2002 ident: 1235_CR14 publication-title: Science doi: 10.1126/science.1069883 – ident: 1235_CR50 – volume: 7 start-page: 532 year: 2010 ident: 1235_CR40 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.07.016 – volume: 7 start-page: 1130 year: 2014 ident: 1235_CR9 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.04.011 – volume: 16 start-page: 712 year: 2015 ident: 1235_CR10 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.04.004 – volume: 15 start-page: 363 year: 2013 ident: 1235_CR37 publication-title: Nat Cell Biol doi: 10.1038/ncb2709 – volume: 344 start-page: 1156 year: 2014 ident: 1235_CR23 publication-title: Science doi: 10.1126/science.1248882 – volume: 24 start-page: 1917 year: 2008 ident: 1235_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn336 – volume: 12 start-page: 129 year: 2011 ident: 1235_CR41 publication-title: Nat Immunol doi: 10.1038/ni.1978 – volume: 14 start-page: 618 year: 2013 ident: 1235_CR4 publication-title: Nat Rev Genet doi: 10.1038/nrg3542 – volume-title: ggplot2: elegant graphics for data analysis year: 2009 ident: 1235_CR45 doi: 10.1007/978-0-387-98141-3 – ident: 1235_CR22 doi: 10.1371/journal.pcbi.1000936 – volume: 33 start-page: 155 year: 2015 ident: 1235_CR11 publication-title: Nat Biotechnol doi: 10.1038/nbt.3102 – volume: 13 start-page: S14 issue: Suppl 15 year: 2012 ident: 1235_CR26 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-S15-S14 – volume: 31 start-page: 1060 year: 2014 ident: 1235_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu777 – ident: 1235_CR49 – volume: 18 start-page: 145 year: 2014 ident: 1235_CR12 publication-title: Nat Neurosci doi: 10.1038/nn.3881 – volume: 6 start-page: 377 year: 2009 ident: 1235_CR7 publication-title: Nat Methods doi: 10.1038/nmeth.1315 – volume: 25 start-page: 1239 year: 2007 ident: 1235_CR19 publication-title: Nat Biotech doi: 10.1038/nbt1356 – volume: 13 start-page: 2498 year: 2003 ident: 1235_CR46 publication-title: Genome Res doi: 10.1101/gr.1239303 – volume: 22 start-page: e124 year: 2006 ident: 1235_CR21 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl210  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.4630182 | 
    
| Snippet | Background
Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics... Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such... Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics... BACKGROUNDRapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis....  | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 355 | 
    
| SubjectTerms | Algorithms Animals Bayes Theorem Bioinformatics Biomedical and Life Sciences Cells - chemistry Cells - cytology Cells - metabolism Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Gene expression Gene Expression Profiling Gene Regulatory Networks Genetic algorithms Humans Life Sciences Methodology Methodology Article Microarrays Models, Genetic Networks analysis Physiological aspects Single-Cell Analysis Technological change Training  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEB_OPUR9EL_Oq54SRRA8yjVNmqaCyK3ccSoust7BvZU0TU-hpHt2F93_3ky_3B54vuxLpu1m8ksyk5n8BuBVxoVy0DHON8EwYxhSP0so853lrJMiMrEs8Lzjy0ycnPFP59H5Fsz6uzCYVtmvic1CnVcaz8gPnB3Mne0ro-j94tLHqlEYXe1LaKiutEL-rqEYuwHbITJjTWB7ejT7Oh_iCsjg38U2qRQHNUX-NudOYy0aFvnr0e50dY3e2KSuJlAOUdQ7cGtlF2r9S5XlxkZ1fA_udhYmOWwhcR-2jH0AN9uak-uH8Hl6On9L-soQRNVrq5Egt1rVZFpVpVGWNOVxaoI58RcEf0rj4wk_Mb-7vFlLMLX0EZwdH51-OPG7igq-Fixe-oJxLWiuolyFNFPMuaRSCC4iLXUcK-qGKiiozJlKaBEFPKMqoipRsRZa5jlnOzCxlTW7QKRmhjvnhTkl8ECqTBodh8xkIuM64YEHQa_JVHd049i3Mm3cDinSVvkpppih8tO1B2-GRxYt18Z1wi9xeFLksLCYJHOhVnWdfvw2Tw-5cJusTAT34HUnVFTu41p1dw5cF5D2aiS5N5J0k0yPm3sUpN0kr9O_kPTgxdCMT2LimjVu4JyMwxxzVhjz4HELmqFvYRMU5dKDeASnQQCpv8ct9sf3hgI8wjvPsXvnfg-8jb_1b5XtD9j8v4KfXN_lp3A7xHmDsTWxB5Plz5V55uyzZfa8m3R_AEPmNqE priority: 102 providerName: ProQuest – databaseName: Springer Nature Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI9gCAEHxDeFgQJCQmKq1jQfTbltE9MAwWFs0m5RmqYDqcqb6HuC_vfYbV71OvEhLr3ESRvbqePY-ZmQV5VQFlTHg2-CYcY8Z2lVMp7CztmVjfSFbvC849NndXQqPpzJswgWjXdhNuP3TKvdjiHCGji8WC2Gy7S_Sq6BjVJDXFYdTAEDhOaPQcvfdpuZncs_3w3rczkzcgqP3iI3VuHC9j9s225YoMM75HbcOtK9UdZ3yRUf7pHrYzHJ_j75uH9y_JauSz5Q2_XBIfItuPZ0f7FovQ10qHvTUUx2P6f4aH2KR_fU_4wJsYFizugDcnr47uTgKI2lElKneLFMFRdOsdrK2uasshx8Ta2UUNJpVxSWgQyyhuma25I1MhMVs5LZ0hZOOV3Xgj8kW2ER_GNCteNegFfCgQki07bS3hU595WqhCtFlpBszUnjIo44zq01gz-hlRmZbzB3DJlv-oS8mbpcjCAafyN-ieIxCE4RMPvl3K66zrz_cmz2hALrqUslEvI6EjULeLmz8TIBTAHxrGaU2zNKWD1u3rzWAhNXb2fA5xLgZ2kpE_JiasaemJEWPAgOaEDnOGyveEIejUozzS0fop1CJ6SYqdNEgJje85bw7euA7S3xMnMBY-6sFW_js_7Msp1JN__N4Cf_NfZTcjPHZYQxNLVNtpbfV_4Z7MOW1fNhBf4C5v4pBw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEB_qFVE_-H5Eq0QRBEuut9lHNn67iqUqVqk9qJ_C7mZTS2NymDv0_OvdyYtL8YHglyOws-FmdnZ3JjPzG4CnmgnlVMc63wTDjGFIAh0TGjjL2cQZt5HM8HvHuwOxP2NvjvnxBrzvamH0F6NPyxY0FIGKx-tl6Hl9drsHc7YzT7Nmy0uxUxHEYXNuMfaUoTxYXYBNwZ1xPoLN2cGH6ae6xigigXNweBvb_OW8we10_oxeu6TOJ1D2UdQrcGlZzNXqm8rztYtq7xrMOxab_JSz8XKhx-bHOfTH_yiD63C1NWr9aaOFN2DDFjfhYtPmcnUL3u4eHb7wu2YUvqpWhUFM3nJZ-btlmVtV-HVHnsrHNPwTH39yG2BQwbff21Tdwsds1tsw23t19HI_aJs4BEbQaBEIyowgqeKpColW1HnBUggmuJEmihRx2jHJiEypiknGJ0wTxYmKVWSEkWnK6B0YFWVh74EvDbXM-UvUSYJNpNLSmiikVgvNTMwmHky6xUtMi3COvOVJ7elIkTQySjCrDWWUrDx43k-ZN_AefyJ-ghqRIGxGgXk5J2pZVcnrj4fJlAl3r8tYMA-etURZiYuk2jIHxwIibQ0otwaUbl-b4XCneEl7rlSJ8waZ8wAl5x487odxJubKFdYtnKMhkaTO8KMe3G30tOctrOOwTHoQDTS4J0C08eFIcfq5Rh3nWGYduXdud7q-9rd-L7Ltfjv8XcD3_4n6AVwOUdsxuie2YLT4urQPnYW40I_aXf8TdzZfvw priority: 102 providerName: Unpaywall  | 
    
| Title | BTR: training asynchronous Boolean models using single-cell expression data | 
    
| URI | https://link.springer.com/article/10.1186/s12859-016-1235-y https://www.ncbi.nlm.nih.gov/pubmed/27600248 https://www.proquest.com/docview/1824974855 https://www.proquest.com/docview/1817838223 https://pubmed.ncbi.nlm.nih.gov/PMC5012073 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-016-1235-y  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_uA1EfxG-jZ4kiCB7RJrvZbASRtlw9K1eO3hXqU9hstqcQkvPS4uW_dyZNYnucCr6k0J1tsjO_6ezsTGYAXsVcKISOQd-Ewoye5zpx6DIHd846nPsmkHM67zgai8MpH8382RY07a1qBhbXunbUT2p6kb69_FF-RIX_UCm8FO8Kl6qwoVNMHWWY75TbsIuGKqRODkf8d1CByvfXgc1rp1Fh4CpORc2A1qzU1f_qNWN1NZGyjabehpvL7FyVP1Warhms4V24U-807d4KGvdgy2T34caq92T5AL70Tyfv7aZDhK2KMtNUKDdfFnY_z1OjMrtqk1PYlBt_ZtMlNQ6d9Nvmss6fzWxKMX0I0-HB6eDQqTsrOFqwYOEIxrVwE-UnynNjxdA1lUJw4Wupg0C5KLLu3JUJU6E797s8dpXvqlAFWmiZJJw9gp0sz8wTsKVmhqMTw5AJvCtVLI0OPGZiEXMd8q4F3YaTka7LjtPa0qhyP6SIVnKIKNWM5BCVFrxpp5yvam78jfgliSeiWhYZJcucqWVRRJ9PJlGPCzS2MhTcgtc10TzHm2tVv3uAS6DyVxuUexuUqGx6c7hBQdRgNUIXjaNbJn3fghftMM2kBLbMoOCQBuHHcDfGLHi8Ak27tgZ0FgQbcGoJqAT45kj2_VtVCtynd58D_M39Bnhrj_Vnlu232Pw3g5_-91M9g1seaReF38Qe7CwuluY5buEWcQe2g1mAVzn81IHdXm90MsLP_sH4eILfDsSgUx2OdCoFxpHp-Lj39RcnuUj5 | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8CBQwCIVFFXceO4yAh1ALVLn0cylbam3Ecb0FaJQvZVcmf4jcykxebSpRTL7l48vD4G89MZjxDyMtESAPQceCbYJgxCJifxIz7YDnbeBq6SE3xf8fhkRyeiM-TcLJGfrdnYTCtst0Tq406zS3-I98GO1iA7avC8P38h49dozC62rbQqGGx78ozcNmKd6OPsL6vgmDv0_jD0G-6CvhW8mjhSy6sZKkJUxOwxHBwy5SUQoZW2SgyDD53MGUq5SZm03AgEmZCZmITWWlVmgoOz71CrgoOewnITzTpHDyG_QGayClTcrtgWB0OnHXsdMNDv-zpvvMaYEUFnk_P7GK0N8jGMpub8szMZitqcO8WudnYr3SnBtxtsuayO-Ra3dGyvEv2d8fHb2nbd4Kaoswslt_NlwXdzfOZMxmtmu8UFDPuTyleZs7H-AF1v5qs3Ixi4uo9cnIpnL1P1rM8cw8JVZY7Aa4RByaIgTKJcjYKuEtkImwsBh4ZtJzUtilmjnOb6cqpUVLXzNeYwIbM16VH3nS3zOtKHhcRv8Dl0VghI8MUnFOzLAo9-nKsd4QEFa5iKTzyuiGa5vBya5oTDTAFLKrVo9zsUYII2_5wiwLdbCGF_gt4jzzvhvFOTIvLHCwc0ADmONh43CMPatB0cwuqkKtQHol6cOoIsLB4fyT7_q0qMB7iieoInrnVAm_ls_7Nsq0Om_9n8KOLp_yMbAzHhwf6YHS0_5hcD1CGMIonN8n64ufSPQFLcJE8rcSPkq-XLe9_AAeCa9A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagiOsBcRMoEBASElXUdXzE4a1dWLUUKlRaqW-W4zhtpci7IruC_HtmcmlTcYiXvHjsxOOZjMcz_oaQNxmXBkTHgW-CYcY4plGWUhbBztmmhXCJKvC848uh3Dvhn07FaVfntOqz3fuQZHunAVGa_HJ7kRetiiu5XVHEXQM3GGvIMBHVV8k1DsYNSxhM5XQIIyBgfxfK_G23kTG6_Etes0mX8yWHoOltcnPlF6b-YcpyzS7N7pI73YYy3Gkl4B654vx9cr0tMVk_IAe7x0fvw74QRGiq2lvEwwWHP9ydz0tnfNhUw6lCTIE_C_FRuggP9EP3s0uT9SFmkj4kJ7OPx9O9qCugEFnJkmUkGbeS5kbkJqaZYeCBKim5FFbZJDEUVmZSUJUzk9JCTHhGjaAmNYmVVuU5Z4_Ihp9794SEyjLHwVdhwATgtMmUs0nMXCYzblM-Ccik56S2Hbo4zq3UjZehpG6ZrzGjDJmv64C8G7osWmiNvxG_xuXRCFnhMSfmzKyqSu9_O9I7XIJNVankAXnbERVzeLk13RUDmAKiXI0oN0eUoFN23NxLge50utLgiXHwvpQQAXk1NGNPzFPzDhYOaEDmGGy6WEAet0IzzC1uYqBcBSQZidNAgEjf4xZ_cd4gfgu84pzAmFu94K191p9ZtjXI5r8Z_PS_xn5Jbnz9MNOf9w8PnpFbMWoUBtnkJtlYfl-557BRW2YvGmX8BcMBND0 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEB_qFVE_-H5Eq0QRBEuut9lHNn67iqUqVqk9qJ_C7mZTS2NymDv0_OvdyYtL8YHglyOws-FmdnZ3JjPzG4CnmgnlVMc63wTDjGFIAh0TGjjL2cQZt5HM8HvHuwOxP2NvjvnxBrzvamH0F6NPyxY0FIGKx-tl6Hl9drsHc7YzT7Nmy0uxUxHEYXNuMfaUoTxYXYBNwZ1xPoLN2cGH6ae6xigigXNweBvb_OW8we10_oxeu6TOJ1D2UdQrcGlZzNXqm8rztYtq7xrMOxab_JSz8XKhx-bHOfTH_yiD63C1NWr9aaOFN2DDFjfhYtPmcnUL3u4eHb7wu2YUvqpWhUFM3nJZ-btlmVtV-HVHnsrHNPwTH39yG2BQwbff21Tdwsds1tsw23t19HI_aJs4BEbQaBEIyowgqeKpColW1HnBUggmuJEmihRx2jHJiEypiknGJ0wTxYmKVWSEkWnK6B0YFWVh74EvDbXM-UvUSYJNpNLSmiikVgvNTMwmHky6xUtMi3COvOVJ7elIkTQySjCrDWWUrDx43k-ZN_AefyJ-ghqRIGxGgXk5J2pZVcnrj4fJlAl3r8tYMA-etURZiYuk2jIHxwIibQ0otwaUbl-b4XCneEl7rlSJ8waZ8wAl5x487odxJubKFdYtnKMhkaTO8KMe3G30tOctrOOwTHoQDTS4J0C08eFIcfq5Rh3nWGYduXdud7q-9rd-L7Ltfjv8XcD3_4n6AVwOUdsxuie2YLT4urQPnYW40I_aXf8TdzZfvw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BTR%3A+training+asynchronous+Boolean+models+using+single-cell+expression+data&rft.jtitle=BMC+bioinformatics&rft.au=Lim%2C+Chee+Yee&rft.au=Wang%2C+Huange&rft.au=Woodhouse%2C+Steven&rft.au=Piterman%2C+Nir&rft.date=2016-09-06&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-016-1235-y&rft_id=info%3Apmid%2F27600248&rft.externalDocID=PMC5012073 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |