iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks

Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To add...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 20; no. Suppl 9; pp. 951 - 10
Main Authors Nguyen, Quang H., Nguyen-Vo, Thanh-Hoang, Le, Nguyen Quoc Khanh, Do, Trang T.T., Rahardja, Susanto, Nguyen, Binh P.
Format Journal Article
LanguageEnglish
Published London BioMed Central 24.12.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/s12864-019-6336-3

Cover

Abstract Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k -mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.’s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Results Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews’s correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. Conclusions iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models.
AbstractList Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.’s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Results Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews’s correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. Conclusions iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models.
Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.'s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Results Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews's correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. Conclusions iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models. Keywords: Enhancer, Identification, Classification, Ensemble, One-hot encoding, Convolutional neural network, Deep learning
Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k -mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.’s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Results Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews’s correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. Conclusions iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models.
Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.'s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews's correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models.
Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.'s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews's correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models.
Abstract Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.’s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Results Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews’s correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. Conclusions iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models.
Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.'s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance.BACKGROUNDEnhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.'s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance.Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews's correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively.RESULTSOur experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews's correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively.iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models.CONCLUSIONSiEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models.
ArticleNumber 951
Audience Academic
Author Do, Trang T.T.
Rahardja, Susanto
Nguyen, Quang H.
Nguyen, Binh P.
Le, Nguyen Quoc Khanh
Nguyen-Vo, Thanh-Hoang
Author_xml – sequence: 1
  givenname: Quang H.
  surname: Nguyen
  fullname: Nguyen, Quang H.
  organization: School of Information and Communication Technology, Hanoi University of Science and Technology
– sequence: 2
  givenname: Thanh-Hoang
  surname: Nguyen-Vo
  fullname: Nguyen-Vo, Thanh-Hoang
  organization: School of Mathematics and Statistics, Victoria University of Wellington
– sequence: 3
  givenname: Nguyen Quoc Khanh
  surname: Le
  fullname: Le, Nguyen Quoc Khanh
  organization: Professional Master Program in Artificial Intelligence in Medicine, Taipei Medical University
– sequence: 4
  givenname: Trang T.T.
  surname: Do
  fullname: Do, Trang T.T.
  organization: Institute of Research and Development
– sequence: 5
  givenname: Susanto
  surname: Rahardja
  fullname: Rahardja, Susanto
  email: susantorahardja@ieee.org
  organization: School of Marine Science and Technology, Northwestern Polytechnical University
– sequence: 6
  givenname: Binh P.
  surname: Nguyen
  fullname: Nguyen, Binh P.
  email: binh.p.nguyen@vuw.ac.nz
  organization: School of Mathematics and Statistics, Victoria University of Wellington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31874637$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAYhSNURC_wAGxQJDawSInja1ggVaMBRqqKxGVteXzJeMjYxXZa5u1xmqHtVIBQFo7s75z8OcfHxYHzThfFc1CfAsDImwgaRlBVg7YiEJIKPiqOAKKgagBBB_feD4vjGNd1DShr8JPiEAJGEYH0qLB27lbCSR2q-ezi4m1plXbJmq11Xal3R7EUTpVppW0oYwradWlVDnFCot4sex1Lb0rp3ZXvh2S9E33p9BBulnTtw_f4tHhsRB_1s916Unx7P_86-1idf_qwmJ2dVzIPlCq8xFDVuGaUYSUNEhgL0CikyBIRCcGSYsgIwZRCbBQyjTHYNKrBElICawpPisXkq7xY88tgNyJsuReW32z40HERkpW95kYQRg3BQiqAoBRLxkADkGACKllrlL2ayWtwl2J7Lfr-1hDUfOyATx3w3AEfO-Awi95NosthudFK5jxzDnuT7J84u-Kdv-KkbVrEQDZ4tTMI_segY-IbG6Xue-G0HyJvIKxx2yI8oi8foGs_hJz-SKGa4ZbA9o7qRP5r64zP35WjKT8joG5ojm30Ov0DlR-lNzZXq43N-3uC13uCzCT9M3ViiJEvvnzeZ1_cD-U2jd83MQN0AmTwMQZtuLRJjFcpT2H7f-YNHij_p6NdsTGzrtPhLre_i34B6QIPqA
CitedBy_id crossref_primary_10_3390_info14120636
crossref_primary_10_1021_acs_jcim_1c00628
crossref_primary_10_1021_acs_jcim_4c00546
crossref_primary_10_1038_s41420_025_02366_3
crossref_primary_10_1093_bib_bbae083
crossref_primary_10_1093_bib_bbab252
crossref_primary_10_1016_j_bpc_2022_106822
crossref_primary_10_1016_j_jmb_2023_168314
crossref_primary_10_2174_1574893616666211123094301
crossref_primary_10_1016_j_ygeno_2022_110454
crossref_primary_10_1109_TCBB_2022_3204365
crossref_primary_10_3390_ijms22073589
crossref_primary_10_1007_s11030_021_10225_3
crossref_primary_10_3390_ijms22063079
crossref_primary_10_1093_bioadv_vbad043
crossref_primary_10_1155_2022_7518779
crossref_primary_10_3390_ijms252312942
crossref_primary_10_3390_ani13182935
crossref_primary_10_3390_ijms22115521
crossref_primary_10_1002_pmic_202200409
crossref_primary_10_3389_fgene_2021_665498
crossref_primary_10_1016_j_ymeth_2023_01_007
crossref_primary_10_1038_s41598_022_19099_3
crossref_primary_10_1186_s12859_021_04437_5
crossref_primary_10_3390_biom12070995
crossref_primary_10_1016_j_csbj_2022_12_041
crossref_primary_10_3390_ijms242417548
crossref_primary_10_2139_ssrn_4006124
crossref_primary_10_1016_j_ab_2021_114318
crossref_primary_10_1016_j_eswa_2024_125981
crossref_primary_10_1007_s12539_022_00503_5
crossref_primary_10_1186_s12864_024_10154_z
crossref_primary_10_1186_s12864_022_08829_6
crossref_primary_10_3390_biom11060872
crossref_primary_10_1155_2020_8852258
crossref_primary_10_3390_insects12070591
crossref_primary_10_1016_j_isci_2024_110030
crossref_primary_10_1007_s11103_020_01102_y
crossref_primary_10_1093_bfgp_elac057
crossref_primary_10_1016_j_csbj_2021_12_014
crossref_primary_10_1186_s12859_022_05033_x
crossref_primary_10_1186_s12864_023_09796_2
crossref_primary_10_1016_j_compbiolchem_2024_108284
crossref_primary_10_3389_fgene_2023_1132018
crossref_primary_10_1016_j_jmb_2025_168961
crossref_primary_10_1155_2021_4921825
crossref_primary_10_1016_j_ygeno_2024_110906
crossref_primary_10_1111_age_13135
crossref_primary_10_3934_mbe_2021434
crossref_primary_10_1111_ppl_13421
Cites_doi 10.1093/bioinformatics/btv604
10.1093/bioinformatics/bts565
10.1038/nrg3458
10.1038/srep32476
10.1038/msb.2010.112
10.1038/nature09652
10.1371/journal.pcbi.1003677
10.1038/srep38741
10.1186/s12859-017-1878-3
10.1016/j.cell.2014.11.015
10.1038/nbt1010-1045
10.1016/j.semcdb.2006.12.014
10.1038/ng1966
10.1038/nature11247
10.1186/gb-2012-13-9-r48
10.1128/MCB.01127-12
10.1093/nar/18.20.6097
10.1093/bioinformatics/bty1050
10.1093/nar/gkx920
10.1186/s13040-017-0155-3
10.1093/bioinformatics/btq248
10.1038/s41467-018-03766-z
10.1186/s12859-017-1828-0
10.1002/bies.201600106
10.1093/bioinformatics/bty458
10.1242/dev.160663
10.1186/s13073-014-0085-3
10.1101/gr.849004
10.1038/nature07730
10.1371/journal.pone.0169249
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12864-019-6336-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database




MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 10
ExternalDocumentID oai_doaj_org_article_fa687f65acd143cab881214a8a3dc0e4
10.1186/s12864-019-6336-3
PMC6929481
A610270731
31874637
10_1186_s12864_019_6336_3
Genre Evaluation Study
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
EJD
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c637t-5b53d0508785dcf4a55a12d4d6b46c31b75386657735fd4f2ff5f2d25c3763073
IEDL.DBID M48
ISSN 1471-2164
IngestDate Fri Oct 03 12:39:08 EDT 2025
Sun Oct 26 03:48:51 EDT 2025
Tue Sep 30 16:52:52 EDT 2025
Fri Sep 05 11:31:22 EDT 2025
Tue Oct 07 05:25:30 EDT 2025
Mon Oct 20 22:35:07 EDT 2025
Mon Oct 20 16:37:49 EDT 2025
Thu Oct 16 15:00:07 EDT 2025
Thu Apr 03 06:59:06 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Wed Oct 01 01:08:11 EDT 2025
Sat Sep 06 07:21:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 9
Keywords Deep learning
One-hot encoding
Enhancer
Convolutional neural network
Classification
Ensemble
Identification
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-5b53d0508785dcf4a55a12d4d6b46c31b75386657735fd4f2ff5f2d25c3763073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2340859639?pq-origsite=%requestingapplication%&accountid=15518
PMID 31874637
PQID 2340859639
PQPubID 44682
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_fa687f65acd143cab881214a8a3dc0e4
unpaywall_primary_10_1186_s12864_019_6336_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6929481
proquest_miscellaneous_2330599451
proquest_journals_2340859639
gale_infotracmisc_A610270731
gale_infotracacademiconefile_A610270731
gale_incontextgauss_ISR_A610270731
pubmed_primary_31874637
crossref_citationtrail_10_1186_s12864_019_6336_3
crossref_primary_10_1186_s12864_019_6336_3
springer_journals_10_1186_s12864_019_6336_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-24
PublicationDateYYYYMMDD 2019-12-24
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References BE Bernstein (6336_CR15) 2010; 28
Y Fang (6336_CR19) 2016; 6
HA Firpi (6336_CR20) 2010; 26
Y-T Lai (6336_CR12) 2018; 145
6336_CR22
GE Crooks (6336_CR28) 2004; 14
A Visel (6336_CR10) 2007; 18
KY Yip (6336_CR14) 2012; 13
ND Heintzman (6336_CR3) 2007; 39
H-M Herz (6336_CR8) 2016; 38
M Rabani (6336_CR16) 2014; 159
G Zhang (6336_CR6) 2017; 46
LS Churchman (6336_CR18) 2011; 469
A Visel (6336_CR4) 2009; 457
The ENCODE Project Consortium (6336_CR13) 2012; 489
B Zacher (6336_CR11) 2017; 12
M Boyd (6336_CR9) 2018; 9
6336_CR31
6336_CR34
O Corradin (6336_CR7) 2014; 6
OI Kulaeva (6336_CR5) 2012; 32
L Fu (6336_CR33) 2012; 28
GD Erwin (6336_CR21) 2014; 10
X Min (6336_CR24) 2017; 18
B Liu (6336_CR25) 2015; 32
B Liu (6336_CR2) 2015; 32
T D.Schneider (6336_CR29) 1990; 18
D Chicco (6336_CR30) 2017; 10
LA Pennacchio (6336_CR1) 2013; 14
X Min (6336_CR32) 2017; 18
6336_CR17
C Jiaa (6336_CR26) 2016; 6
H Bu (6336_CR23) 2017; 18
B Liu (6336_CR27) 2018; 34
References_xml – volume: 32
  start-page: 362
  issue: 3
  year: 2015
  ident: 6336_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv604
– volume: 28
  start-page: 3150
  issue: 23
  year: 2012
  ident: 6336_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts565
– ident: 6336_CR34
– volume: 14
  start-page: 288
  issue: 4
  year: 2013
  ident: 6336_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3458
– volume: 6
  start-page: 32476
  year: 2016
  ident: 6336_CR19
  publication-title: Sci Rep
  doi: 10.1038/srep32476
– ident: 6336_CR17
  doi: 10.1038/msb.2010.112
– volume: 32
  start-page: 362
  issue: 3
  year: 2015
  ident: 6336_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv604
– volume: 469
  start-page: 368
  issue: 7330
  year: 2011
  ident: 6336_CR18
  publication-title: Nature
  doi: 10.1038/nature09652
– volume: 10
  start-page: 1003677
  issue: 6
  year: 2014
  ident: 6336_CR21
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003677
– volume: 6
  start-page: 38741
  year: 2016
  ident: 6336_CR26
  publication-title: Sci Rep
  doi: 10.1038/srep38741
– volume: 18
  start-page: 478
  issue: 13
  year: 2017
  ident: 6336_CR32
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1878-3
– volume: 159
  start-page: 1698
  issue: 7
  year: 2014
  ident: 6336_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.015
– volume: 28
  start-page: 1045
  issue: 10
  year: 2010
  ident: 6336_CR15
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1010-1045
– volume: 18
  start-page: 140
  issue: 1
  year: 2007
  ident: 6336_CR10
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2006.12.014
– volume: 39
  start-page: 311
  issue: 3
  year: 2007
  ident: 6336_CR3
  publication-title: Nat Genet
  doi: 10.1038/ng1966
– volume: 489
  start-page: 57
  issue: 7414
  year: 2012
  ident: 6336_CR13
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 13
  start-page: 48
  issue: 9
  year: 2012
  ident: 6336_CR14
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-9-r48
– volume: 32
  start-page: 4892
  issue: 24
  year: 2012
  ident: 6336_CR5
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01127-12
– volume: 18
  start-page: 6097
  issue: 20
  year: 1990
  ident: 6336_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/18.20.6097
– ident: 6336_CR31
  doi: 10.1093/bioinformatics/bty1050
– volume: 46
  start-page: 78
  issue: D1
  year: 2017
  ident: 6336_CR6
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx920
– volume: 10
  start-page: 35
  issue: 1
  year: 2017
  ident: 6336_CR30
  publication-title: BioData Min
  doi: 10.1186/s13040-017-0155-3
– volume: 26
  start-page: 1579
  issue: 13
  year: 2010
  ident: 6336_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq248
– volume: 9
  start-page: 1661
  issue: 1
  year: 2018
  ident: 6336_CR9
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03766-z
– ident: 6336_CR22
  doi: 10.1371/journal.pcbi.1003677
– volume: 18
  start-page: 418
  issue: 12
  year: 2017
  ident: 6336_CR23
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1828-0
– volume: 38
  start-page: 1003
  issue: 10
  year: 2016
  ident: 6336_CR8
  publication-title: BioEssays
  doi: 10.1002/bies.201600106
– volume: 18
  start-page: 478
  issue: 13
  year: 2017
  ident: 6336_CR24
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1878-3
– volume: 34
  start-page: 3835
  issue: 22
  year: 2018
  ident: 6336_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty458
– volume: 145
  start-page: 160663
  issue: 7
  year: 2018
  ident: 6336_CR12
  publication-title: Development
  doi: 10.1242/dev.160663
– volume: 6
  start-page: 85
  issue: 10
  year: 2014
  ident: 6336_CR7
  publication-title: Genome Med
  doi: 10.1186/s13073-014-0085-3
– volume: 14
  start-page: 1188
  issue: 6
  year: 2004
  ident: 6336_CR28
  publication-title: Genome Res
  doi: 10.1101/gr.849004
– volume: 457
  start-page: 854
  issue: 7231
  year: 2009
  ident: 6336_CR4
  publication-title: Nature
  doi: 10.1038/nature07730
– volume: 12
  start-page: 0169249
  issue: 1
  year: 2017
  ident: 6336_CR11
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0169249
SSID ssj0017825
Score 2.5420346
Snippet Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation...
Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free...
Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation...
Abstract Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 951
SubjectTerms Accuracy
Algorithms
Analysis
Animal Genetics and Genomics
Artificial neural networks
Benchmarking
Biomedical and Life Sciences
Cable television broadcasting industry
Classification
Comparative analysis
Computer applications
Convolutional neural network
Correlation coefficient
Correlation coefficients
Datasets
Deoxyribonucleic acid
DNA
DNA sequencing
Enhancer
Enhancer Elements, Genetic
Enhancers
Ensemble
Gene expression
Gene regulation
Gene sequencing
Genes
Genetic factors
Genetic regulation
Genetic research
Genetic transformation
Genomes
Genomics
Identification
Learning
Life Sciences
Microarrays
Microbial Genetics and Genomics
Model accuracy
Neural networks
Neural Networks, Computer
Noncoding DNA
Nucleotide sequence
One-hot encoding
Plant Genetics and Genomics
Proteomics
Scientists
Sequence Analysis, DNA - methods
Studies
Support vector machines
Transcription
Transcription (Genetics)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIOqD-N3YKlEEwRKaZD-y8a2WK9WHe1ALfVs2-9E7OHOluUP633dmsxcvCu2LTwe3k7vMx87MsjO_IeRDmcuKSUczqS3NsFUzA0rY7tbrSuY2132V71ScnrFv5_x8a9QX1oT18MC94A69FrLygmtjIbQb3UgISQXTUlNrcheQQHNZbw5T8f4A4h6Pd5iFFIcdeGGB1RZ1JigVGR1FoQDW_69L3opJf9dLDpemj8iDdXupr3_rxWIrLp08IY9jQpke9Yw8Jfdc-4zc70dMXj8n8_mknaFmr7LJ8XT6OZ2HztzQ3ZS6uNSlurVpuDNIsXmkvVjNUqyIR5LO_WoWrkuXPsUS9Wiq8JcIhRk-QiF594KcnUx-Hp9mcbxCZgStVhlvOLU5JGiV5NZ4pjnXRWmZFQ0ThhYNnGQQDa-qKPeW-dJ77ktbcoNOCVzDS7LTLlu3S1JnmibnrpDacabrQhpphZN5bYuaG14kJN-IW5mIPY4jMBYqnEGkUL2GFGhIoYYUTcin4ZHLHnjjNuIvqMOBEDGzwxdgSSpakrrLkhLyHi1AISpGi2U3F3rdderrj-_qCJLMsgKWgZOPkcgvgQOjYxcDyAGBtEaU-yNK2LZmvLwxNBXdRqdKGgDnIGtMyLthGZ_EUrjWLddIQxFTh6FUX_V2OfBNccIiKDch1chiR4IZr7TzWQAVF5AnMwm_ebCx7T-vdYvcDwbzv1tLr_-HlvbIwxL3cVFmJdsnO6urtXsDeeGqeRtcwA3svVy0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBddytj2MPbdbN3wxmCwImpbH1YGY7QlpdtDGN0KfROyJCeBzE7jhNH_fjpZdusNsqeAdXZyuk9Hd79D6H0ai4wKS7BQhmBo1cSO0pm7KVQmYhOrpsp3ws8u6LdLdrmDJm0vDJRVtj7RO2pTafiP_DAlHovLBdQvyysMU6PgdLUdoaHCaAXz2UOM3UG7KSBjDdDu8Xjy_bw7V3DxkIWzzUTww9p5Zw5VGCPMCeGY9KKTB_H_11XfilV_11F2h6kP0L1NuVTXv9VicStenT5CD0OiGR01mvEY7djyCbrbjJ68form83E5A4mv8PhkMvkUzX3Hru96imxYqiNVmsifJUTQVFJO17MIKuWBpLa_8oWto6qIoHQ9qLD7SoDI9B--wLx-hi5Oxz9PznAYu4A1J9kas5wRE7vELRPM6IIqxlSSGmp4TrkmSe7ecAAlL8sIKwwt0qJgRWpSpsFZOZfxHA3KqrR7KLI6z2NmE6Eso2qUCC0MtyIemWTENEuGKG63W-qASQ6jMRbSv5sILhsJSSchCRKSZIg-drcsG0CObcTHIMOOELC0_YVqNZXBNGWhuMgKzpQ2LnnUKhcu6UmoEooYHVs6RO9AAySgZZRQjjNVm7qWX3-cyyOXfKaZY9lx8iEQFZXjQKvQ3eD2AQC2epT7PUpnzrq_3CqaDO6kljfKP0Rvu2W4E0rkSlttgIYA1g6FXX3R6GXHN4HJi064Q5T1NLa3Mf2Vcj7zYOPc5c9UuGcetLp987O27PtBp_7_l9LL7Sy_QvdTsNAkxSndR4P1amNfu0xwnb8J5v0Hsv5Z_w
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96IuqD-G31lCqC4FFs89Wsb-uxx-nDPqgL9xbSJN1dWLvHdhe5_96ZNFuvKic-FZpJ28xXpszML4S8obkqufIsU8axDFs1M6AEc3e1KVXuctNV-U7l6Yx_PhNnsY-73Ve771OSwVMHs1byfQueVGLFxCiTjMmMXSc3BKJ5gRLP6LhPHcCWJ2L68q_TBhtQwOn_0xtf2o5-L5Xs86V3yK1dc24ufpjV6tKWdHKP3I2xZDruhH-fXPPNA3KzO13y4iFZLifNAoW6ySbH0-mHdBmackNjU-rjUJuaxqUhXZBi30gz3y5SLIZHktZ_r1a-Tdd1itXpUUvhlYiCGS6hhrx9RGYnk2_Hp1k8WSGzkpXbTFSCuRxis1IJZ2tuhDAFddzJikvLigp-YhAIryyZqB2vaV2LmjoqLPoj8AqPyUGzbvxTknpbVbnwhTJecDMqlFVOepWPXDESVhQJyffs1jbCjuPpFysdfj-U1J2ENEhIo4Q0S8i7fsp5h7lxFfFHlGFPiHDZ4cZ6M9fR-nRtpCprKYx1EB9aUymIawpulGHO5p4n5DVqgEZAjAYrbuZm17b609cvegzxJS1hybCSt5GoXsMKrIkNDMAHxNAaUB4OKMFi7XB4r2g6eoxWUxaw5iBgTMirfhhnYhVc49c7pGEIp8ORq086vezXzfBwRRBuQsqBxg4YMxxplouAJy4hROYKnnm01-1fn3UF34969f-3lJ7917Ofk9sUDbagGeWH5GC72fkXEPttq5fB1n8CfdhQEQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA_aQ9QHvz-qp6wiCB7b2918bOpbPXqcPhRRC-dTyOajrdduS7dFzr_eTDat3VNOBJ-6NJNtM5mZ_EJmfkHoVZbwnHCDYy41jqFUM3aSzt21lTlPdCLrLN8BOxmSD6f0NFAKQS1MMVNATjqbqKqzW4A-9VHbPaizw4W2tbNzdli5-Mogj6IbM4xZjK-iPUYdLG-hveHgY--rry7K0zhz-4JwqvnHfo11ydP3_x6kd1apixmU22PUm-j6ulzI8-9yOt1ZqY5vo2-bMdYJKmed9aroqB8X6B__ixLuoFsBz0a92gDvoiumvIeu1Tdcnt9Hk0m_HINhLeP-0WDwNpr4wmBfXBWZ0FRFstSRP7KIoHalHK3GESTkg0hlZsXUVNHcRpAhHzzF_SQwcfoPn8dePUDD4_6Xo5M43O4QK4bzVUwLinXi8GHOqVaWSEplmmmiWUGYwmnhNlJAxpfnmFpNbGYttZnOqIKY6CLTQ9Qq56V5jCKjiiKhJuXSUCK7KVdcM8OTrk67VNG0jZLN3AoVqM_hBo6p8FsgzkStQeE0KECDArfRm22XRc37cZnwOzCYrSBQdvsv5suRCBFAWMl4bhmVSjuMqmTBHbZKieQSa5UY0kYvwdwEkHKUkPUzkuuqEu8_fxI9h3Gz3A3ZjeR1ELJzsAMZiiicHoDHqyG535B0UUM1mzdWLULUqkSGPd-dA61t9GLbDD0hE6808zXIYKD0IaDVR7UTbMeN4YJHN7ltlDfco6GYZks5GXtOc-ZgOuHunQcbR_r1ty7R-8HW1_4-S0_-SfopupGBQ6VZnJF91Fot1-aZw5-r4nmILD8Bcdh9VA
  priority: 102
  providerName: Unpaywall
Title iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks
URI https://link.springer.com/article/10.1186/s12864-019-6336-3
https://www.ncbi.nlm.nih.gov/pubmed/31874637
https://www.proquest.com/docview/2340859639
https://www.proquest.com/docview/2330599451
https://pubmed.ncbi.nlm.nih.gov/PMC6929481
https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-019-6336-3
https://doaj.org/article/fa687f65acd143cab881214a8a3dc0e4
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwELe2VcD4gHhTGFVASEhMgSR-xEVCqKs6DSSqaVCp-2Q5ttNWKuloWkH_e-7ctGthjC99-dzE9_Cd4_PvCHmVRDJl0tFQaktDPKoZAiWYu811KiMb6WWWb1ec9NjnPu_vkFV5q4qB5ZVLO6wn1ZuO3_76sfgIBv_BG7wU70qYYwXmUjRDQakI6S6pgaNqYiWHL-xyUwGcIa82Nq_stk9uUixRJ7Ao-oaX8mD-f0_ZGz7rz3zK9abqbXJrXlzoxU89Hm_4reO75E4VcAatpYbcIzuuuE9uLEtQLh6Q0ahTDFHy07DT7nbfByN_cteffgpc1VQGurCB31MI8HBJMZgNA8yYR5LSfc_GrgwmeYAp7JUqwyURKtO_-UTz8iHpHXe-tU_CqvxCaIADs5BnnNoIArhUcmtypjnXcWKZFRkThsYZrHQQLS9NKc8ty5M853liE25w0oKp4xHZKyaFe0ICZ7Is4i6W2nGmm7E00gono6aNm9zwuE6iFbuVqbDJsUTGWPk1ihRqKSwFwlIoLEXr5M26y8USmOM64iOU4ZoQMbX9D5PpQFUmqnItZJoLro2FINLoTELwEzMtNbUmcqxOXqIGKETNKDAtZ6DnZak-fT1TLQhCkxSGDCN5XRHlExiB0dUpB-ADAm1tUR5sUYJZm-3mlaKplVWohHpAOogq6-TFuhl7Yqpc4SZzpKGIucOQq4-Xerke90q96yTd0tgtxmy3FKOhBx0XEEczCf95uNLty9u6hu-Ha_X_v5Se_vN-n5H9BO00TsKEHZC92XTunkMwOMsaZDftpw1SO-p0T8_gW1u0G_7BSsMbP7z2Evhc63VPW-e_AUAGXTY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwpDAgIhMQULYkvcZEmtI1OKxsV2kXam3Fsp6tU0rG0mvrn-G2ck7rZAlJ52lOk-uRin6vrc75DyLskkimTjoZSWxpiqWYIlKDuNtepjGykZ1m-PbF3wr6e8tMl8nteC4NplXObWBlqOzL4H_lGQissLnCon89_hdg1Ck9X5y00tG-tYDcriDFf2LHvppewhSs3u1-A3--TZLdzvLMX-i4DoRE0HYc849RGEKekkluTM825jhPLrMiYMDTOIKBHULg0pTy3LE_ynOeJTbhB3QQNgefeIiuMsjZs_la2O73vh_U5Bvhf7s9SYyk2SvAGArM-2qGgVIS04Q2rpgH_uoZrvvHvvM368PYuWZ0U53p6qYfDa_5x9z655wPbYGsmiQ_IkisektuzVpfTR2Qw6BRnKGEXYWen1_sUDKoK4arKKnB-qAx0YYPq7CLAIpaiPz4LMDMfSUr3Mxu6MhjlAabKe5WBVyIkZ3WpEtrLx-TkRhjwhCwXo8I9I4EzWRZxF0vtONPtWBpphZNR28ZtbnjcItF8uZXxGOjYimOoqr2QFGrGIQUcUsghRVvkY33L-QwAZBHxNvKwJkTs7uqH0UVfeVOgci1kmguujYVg1ehMQpAVMy01tSZyrEXeogQoROcoMP2nrydlqbpHh2oLgt0khSnDTD54onwEMzDaV1PAOiCgV4NyrUEJ5sM0h-eCprz5KtWVsrXIm3oY78SUvMKNJkhDEduH4ao-ncllPW-KnR6BuS2SNiS2sTDNkWJwVoGbC4jXmYRnrs9l--qzFqz7ei3-_-fS88VTfk1W946_HaiDbm__BbmToLbGSZiwNbI8vpi4lxCFjrNXXtUD8uOmrcsfr2KVWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9NAEF_0xNcH8XlWT40iCB7hkuwjW7-dteVOpYh6cN-WzT7aQm9bmha5_96ZJI0XlRM_FbqzaXdeO2FmfkPI6yyROZOOxlJbGmOrZgyUYO7W61wmNtF1le9YHJ2wj6f8tJlzWm6r3bcpybqnAVGawvpgaX1t4lIclOBVBVZP9GNBqYjpVXKNweWGIwwGYtCmEeD6400q86_bOpdRhdn_p2e-cDX9XjbZ5k5vk5ubsNTnP_R8fuF6Gt0ld5q4MjqsFeEeueLCfXK9njR5_oDMZsMwRQGv4uFgPH4XzaoG3arJKXLNUhnpYKMqdRBhD0mYrKcRFsYjSenOirkro4WPsFK90Vj4SUTErD6qevLyITkZDb8PjuJmykJsBM3XMS84tQnEabnk1nimOddpZpkVBROGpgW80CAoXp5T7i3zmffcZzbjBn0TeIhHZCcsgntMImeKIuEuldpxpvupNNIKJ5O-Tfvc8LRHki27lWkgyHESxlxVryJSqFpCCiSkUEKK9sjbdsuyxt-4jPg9yrAlROjs6ovFaqIaS1ReC5l7wbWxECsaXUjQm5Rpqak1iWM98go1QCE4RsDqm4nelKU6_vZVHUKsmeVwZDjJm4bIL-AERjfNDMAHxNPqUO51KMF6TXd5q2iq8R6lymiFOwfBY4-8bJdxJ1bEBbfYIA1FaB2GXN2t9bI9N8VBiyDcHsk7GtthTHclzKYVtriAcJlJeOb-Vrd__a1L-L7fqv-_pfTkv579gtz48mGkPh-PPz0ltzK03TSLM7ZHdtarjXsGIeG6eF6Z_U_-RVcj
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA_aQ9QHvz-qp6wiCB7b2918bOpbPXqcPhRRC-dTyOajrdduS7dFzr_eTDat3VNOBJ-6NJNtM5mZ_EJmfkHoVZbwnHCDYy41jqFUM3aSzt21lTlPdCLrLN8BOxmSD6f0NFAKQS1MMVNATjqbqKqzW4A-9VHbPaizw4W2tbNzdli5-Mogj6IbM4xZjK-iPUYdLG-hveHgY--rry7K0zhz-4JwqvnHfo11ydP3_x6kd1apixmU22PUm-j6ulzI8-9yOt1ZqY5vo2-bMdYJKmed9aroqB8X6B__ixLuoFsBz0a92gDvoiumvIeu1Tdcnt9Hk0m_HINhLeP-0WDwNpr4wmBfXBWZ0FRFstSRP7KIoHalHK3GESTkg0hlZsXUVNHcRpAhHzzF_SQwcfoPn8dePUDD4_6Xo5M43O4QK4bzVUwLinXi8GHOqVaWSEplmmmiWUGYwmnhNlJAxpfnmFpNbGYttZnOqIKY6CLTQ9Qq56V5jCKjiiKhJuXSUCK7KVdcM8OTrk67VNG0jZLN3AoVqM_hBo6p8FsgzkStQeE0KECDArfRm22XRc37cZnwOzCYrSBQdvsv5suRCBFAWMl4bhmVSjuMqmTBHbZKieQSa5UY0kYvwdwEkHKUkPUzkuuqEu8_fxI9h3Gz3A3ZjeR1ELJzsAMZiiicHoDHqyG535B0UUM1mzdWLULUqkSGPd-dA61t9GLbDD0hE6808zXIYKD0IaDVR7UTbMeN4YJHN7ltlDfco6GYZks5GXtOc-ZgOuHunQcbR_r1ty7R-8HW1_4-S0_-SfopupGBQ6VZnJF91Fot1-aZw5-r4nmILD8Bcdh9VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iEnhancer-ECNN%3A+identifying+enhancers+and+their+strength+using+ensembles+of+convolutional+neural+networks&rft.jtitle=BMC+genomics&rft.au=Nguyen%2C+Quang+H&rft.au=Nguyen-Vo%2C+Thanh-Hoang&rft.au=Le%2C+Nguyen+Quoc+Khanh&rft.au=Do%2C+Trang+T+T&rft.date=2019-12-24&rft.eissn=1471-2164&rft.volume=20&rft.issue=Suppl+9&rft.spage=951&rft_id=info:doi/10.1186%2Fs12864-019-6336-3&rft_id=info%3Apmid%2F31874637&rft.externalDocID=31874637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon