iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks
Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To add...
Saved in:
| Published in | BMC genomics Vol. 20; no. Suppl 9; pp. 951 - 10 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
24.12.2019
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2164 1471-2164 |
| DOI | 10.1186/s12864-019-6336-3 |
Cover
| Abstract | Background
Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and
k
-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.’s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance.
Results
Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews’s correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively.
Conclusions
iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models. |
|---|---|
| AbstractList | Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.’s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Results Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews’s correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. Conclusions iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models. Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.'s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Results Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews's correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. Conclusions iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models. Keywords: Enhancer, Identification, Classification, Ensemble, One-hot encoding, Convolutional neural network, Deep learning Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k -mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.’s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Results Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews’s correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. Conclusions iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models. Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.'s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews's correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models. Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.'s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews's correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models. Abstract Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.’s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance. Results Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews’s correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively. Conclusions iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models. Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.'s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance.BACKGROUNDEnhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free scattering in 98% of non-encoding genomes, enhancer identification is, therefore, more complicated than other genetic factors. To address this biological issue, several in silico studies have been done to identify and classify enhancer sequences among a myriad of DNA sequences using computational advances. Although recent studies have come up with improved performance, shortfalls in these learning models still remain. To overcome limitations of existing learning models, we introduce iEnhancer-ECNN, an efficient prediction framework using one-hot encoding and k-mers for data transformation and ensembles of convolutional neural networks for model construction, to identify enhancers and classify their strength. The benchmark dataset from Liu et al.'s study was used to develop and evaluate the ensemble models. A comparative analysis between iEnhancer-ECNN and existing state-of-the-art methods was done to fairly assess the model performance.Our experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews's correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively.RESULTSOur experimental results demonstrates that iEnhancer-ECNN has better performance compared to other state-of-the-art methods using the same dataset. The accuracy of the ensemble model for enhancer identification (layer 1) and enhancer classification (layer 2) are 0.769 and 0.678, respectively. Compared to other related studies, improvements in the Area Under the Receiver Operating Characteristic Curve (AUC), sensitivity, and Matthews's correlation coefficient (MCC) of our models are remarkable, especially for the model of layer 2 with about 11.0%, 46.5%, and 65.0%, respectively.iEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models.CONCLUSIONSiEnhancer-ECNN outperforms other previously proposed methods with significant improvement in most of the evaluation metrics. Strong growths in the MCC of both layers are highly meaningful in assuring the stability of our models. |
| ArticleNumber | 951 |
| Audience | Academic |
| Author | Do, Trang T.T. Rahardja, Susanto Nguyen, Quang H. Nguyen, Binh P. Le, Nguyen Quoc Khanh Nguyen-Vo, Thanh-Hoang |
| Author_xml | – sequence: 1 givenname: Quang H. surname: Nguyen fullname: Nguyen, Quang H. organization: School of Information and Communication Technology, Hanoi University of Science and Technology – sequence: 2 givenname: Thanh-Hoang surname: Nguyen-Vo fullname: Nguyen-Vo, Thanh-Hoang organization: School of Mathematics and Statistics, Victoria University of Wellington – sequence: 3 givenname: Nguyen Quoc Khanh surname: Le fullname: Le, Nguyen Quoc Khanh organization: Professional Master Program in Artificial Intelligence in Medicine, Taipei Medical University – sequence: 4 givenname: Trang T.T. surname: Do fullname: Do, Trang T.T. organization: Institute of Research and Development – sequence: 5 givenname: Susanto surname: Rahardja fullname: Rahardja, Susanto email: susantorahardja@ieee.org organization: School of Marine Science and Technology, Northwestern Polytechnical University – sequence: 6 givenname: Binh P. surname: Nguyen fullname: Nguyen, Binh P. email: binh.p.nguyen@vuw.ac.nz organization: School of Mathematics and Statistics, Victoria University of Wellington |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31874637$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAYhSNURC_wAGxQJDawSInja1ggVaMBRqqKxGVteXzJeMjYxXZa5u1xmqHtVIBQFo7s75z8OcfHxYHzThfFc1CfAsDImwgaRlBVg7YiEJIKPiqOAKKgagBBB_feD4vjGNd1DShr8JPiEAJGEYH0qLB27lbCSR2q-ezi4m1plXbJmq11Xal3R7EUTpVppW0oYwradWlVDnFCot4sex1Lb0rp3ZXvh2S9E33p9BBulnTtw_f4tHhsRB_1s916Unx7P_86-1idf_qwmJ2dVzIPlCq8xFDVuGaUYSUNEhgL0CikyBIRCcGSYsgIwZRCbBQyjTHYNKrBElICawpPisXkq7xY88tgNyJsuReW32z40HERkpW95kYQRg3BQiqAoBRLxkADkGACKllrlL2ayWtwl2J7Lfr-1hDUfOyATx3w3AEfO-Awi95NosthudFK5jxzDnuT7J84u-Kdv-KkbVrEQDZ4tTMI_segY-IbG6Xue-G0HyJvIKxx2yI8oi8foGs_hJz-SKGa4ZbA9o7qRP5r64zP35WjKT8joG5ojm30Ov0DlR-lNzZXq43N-3uC13uCzCT9M3ViiJEvvnzeZ1_cD-U2jd83MQN0AmTwMQZtuLRJjFcpT2H7f-YNHij_p6NdsTGzrtPhLre_i34B6QIPqA |
| CitedBy_id | crossref_primary_10_3390_info14120636 crossref_primary_10_1021_acs_jcim_1c00628 crossref_primary_10_1021_acs_jcim_4c00546 crossref_primary_10_1038_s41420_025_02366_3 crossref_primary_10_1093_bib_bbae083 crossref_primary_10_1093_bib_bbab252 crossref_primary_10_1016_j_bpc_2022_106822 crossref_primary_10_1016_j_jmb_2023_168314 crossref_primary_10_2174_1574893616666211123094301 crossref_primary_10_1016_j_ygeno_2022_110454 crossref_primary_10_1109_TCBB_2022_3204365 crossref_primary_10_3390_ijms22073589 crossref_primary_10_1007_s11030_021_10225_3 crossref_primary_10_3390_ijms22063079 crossref_primary_10_1093_bioadv_vbad043 crossref_primary_10_1155_2022_7518779 crossref_primary_10_3390_ijms252312942 crossref_primary_10_3390_ani13182935 crossref_primary_10_3390_ijms22115521 crossref_primary_10_1002_pmic_202200409 crossref_primary_10_3389_fgene_2021_665498 crossref_primary_10_1016_j_ymeth_2023_01_007 crossref_primary_10_1038_s41598_022_19099_3 crossref_primary_10_1186_s12859_021_04437_5 crossref_primary_10_3390_biom12070995 crossref_primary_10_1016_j_csbj_2022_12_041 crossref_primary_10_3390_ijms242417548 crossref_primary_10_2139_ssrn_4006124 crossref_primary_10_1016_j_ab_2021_114318 crossref_primary_10_1016_j_eswa_2024_125981 crossref_primary_10_1007_s12539_022_00503_5 crossref_primary_10_1186_s12864_024_10154_z crossref_primary_10_1186_s12864_022_08829_6 crossref_primary_10_3390_biom11060872 crossref_primary_10_1155_2020_8852258 crossref_primary_10_3390_insects12070591 crossref_primary_10_1016_j_isci_2024_110030 crossref_primary_10_1007_s11103_020_01102_y crossref_primary_10_1093_bfgp_elac057 crossref_primary_10_1016_j_csbj_2021_12_014 crossref_primary_10_1186_s12859_022_05033_x crossref_primary_10_1186_s12864_023_09796_2 crossref_primary_10_1016_j_compbiolchem_2024_108284 crossref_primary_10_3389_fgene_2023_1132018 crossref_primary_10_1016_j_jmb_2025_168961 crossref_primary_10_1155_2021_4921825 crossref_primary_10_1016_j_ygeno_2024_110906 crossref_primary_10_1111_age_13135 crossref_primary_10_3934_mbe_2021434 crossref_primary_10_1111_ppl_13421 |
| Cites_doi | 10.1093/bioinformatics/btv604 10.1093/bioinformatics/bts565 10.1038/nrg3458 10.1038/srep32476 10.1038/msb.2010.112 10.1038/nature09652 10.1371/journal.pcbi.1003677 10.1038/srep38741 10.1186/s12859-017-1878-3 10.1016/j.cell.2014.11.015 10.1038/nbt1010-1045 10.1016/j.semcdb.2006.12.014 10.1038/ng1966 10.1038/nature11247 10.1186/gb-2012-13-9-r48 10.1128/MCB.01127-12 10.1093/nar/18.20.6097 10.1093/bioinformatics/bty1050 10.1093/nar/gkx920 10.1186/s13040-017-0155-3 10.1093/bioinformatics/btq248 10.1038/s41467-018-03766-z 10.1186/s12859-017-1828-0 10.1002/bies.201600106 10.1093/bioinformatics/bty458 10.1242/dev.160663 10.1186/s13073-014-0085-3 10.1101/gr.849004 10.1038/nature07730 10.1371/journal.pone.0169249 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12864-019-6336-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_fa687f65acd143cab881214a8a3dc0e4 10.1186/s12864-019-6336-3 PMC6929481 A610270731 31874637 10_1186_s12864_019_6336_3 |
| Genre | Evaluation Study Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO EJD FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI RC3 7X8 5PM 2VQ 4.4 ADRAZ ADTOC AHSBF C1A H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c637t-5b53d0508785dcf4a55a12d4d6b46c31b75386657735fd4f2ff5f2d25c3763073 |
| IEDL.DBID | M48 |
| ISSN | 1471-2164 |
| IngestDate | Fri Oct 03 12:39:08 EDT 2025 Sun Oct 26 03:48:51 EDT 2025 Tue Sep 30 16:52:52 EDT 2025 Fri Sep 05 11:31:22 EDT 2025 Tue Oct 07 05:25:30 EDT 2025 Mon Oct 20 22:35:07 EDT 2025 Mon Oct 20 16:37:49 EDT 2025 Thu Oct 16 15:00:07 EDT 2025 Thu Apr 03 06:59:06 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Wed Oct 01 01:08:11 EDT 2025 Sat Sep 06 07:21:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 9 |
| Keywords | Deep learning One-hot encoding Enhancer Convolutional neural network Classification Ensemble Identification |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c637t-5b53d0508785dcf4a55a12d4d6b46c31b75386657735fd4f2ff5f2d25c3763073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2340859639?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 31874637 |
| PQID | 2340859639 |
| PQPubID | 44682 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fa687f65acd143cab881214a8a3dc0e4 unpaywall_primary_10_1186_s12864_019_6336_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6929481 proquest_miscellaneous_2330599451 proquest_journals_2340859639 gale_infotracmisc_A610270731 gale_infotracacademiconefile_A610270731 gale_incontextgauss_ISR_A610270731 pubmed_primary_31874637 crossref_citationtrail_10_1186_s12864_019_6336_3 crossref_primary_10_1186_s12864_019_6336_3 springer_journals_10_1186_s12864_019_6336_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-24 |
| PublicationDateYYYYMMDD | 2019-12-24 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2019 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | BE Bernstein (6336_CR15) 2010; 28 Y Fang (6336_CR19) 2016; 6 HA Firpi (6336_CR20) 2010; 26 Y-T Lai (6336_CR12) 2018; 145 6336_CR22 GE Crooks (6336_CR28) 2004; 14 A Visel (6336_CR10) 2007; 18 KY Yip (6336_CR14) 2012; 13 ND Heintzman (6336_CR3) 2007; 39 H-M Herz (6336_CR8) 2016; 38 M Rabani (6336_CR16) 2014; 159 G Zhang (6336_CR6) 2017; 46 LS Churchman (6336_CR18) 2011; 469 A Visel (6336_CR4) 2009; 457 The ENCODE Project Consortium (6336_CR13) 2012; 489 B Zacher (6336_CR11) 2017; 12 M Boyd (6336_CR9) 2018; 9 6336_CR31 6336_CR34 O Corradin (6336_CR7) 2014; 6 OI Kulaeva (6336_CR5) 2012; 32 L Fu (6336_CR33) 2012; 28 GD Erwin (6336_CR21) 2014; 10 X Min (6336_CR24) 2017; 18 B Liu (6336_CR25) 2015; 32 B Liu (6336_CR2) 2015; 32 T D.Schneider (6336_CR29) 1990; 18 D Chicco (6336_CR30) 2017; 10 LA Pennacchio (6336_CR1) 2013; 14 X Min (6336_CR32) 2017; 18 6336_CR17 C Jiaa (6336_CR26) 2016; 6 H Bu (6336_CR23) 2017; 18 B Liu (6336_CR27) 2018; 34 |
| References_xml | – volume: 32 start-page: 362 issue: 3 year: 2015 ident: 6336_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv604 – volume: 28 start-page: 3150 issue: 23 year: 2012 ident: 6336_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts565 – ident: 6336_CR34 – volume: 14 start-page: 288 issue: 4 year: 2013 ident: 6336_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg3458 – volume: 6 start-page: 32476 year: 2016 ident: 6336_CR19 publication-title: Sci Rep doi: 10.1038/srep32476 – ident: 6336_CR17 doi: 10.1038/msb.2010.112 – volume: 32 start-page: 362 issue: 3 year: 2015 ident: 6336_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv604 – volume: 469 start-page: 368 issue: 7330 year: 2011 ident: 6336_CR18 publication-title: Nature doi: 10.1038/nature09652 – volume: 10 start-page: 1003677 issue: 6 year: 2014 ident: 6336_CR21 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003677 – volume: 6 start-page: 38741 year: 2016 ident: 6336_CR26 publication-title: Sci Rep doi: 10.1038/srep38741 – volume: 18 start-page: 478 issue: 13 year: 2017 ident: 6336_CR32 publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1878-3 – volume: 159 start-page: 1698 issue: 7 year: 2014 ident: 6336_CR16 publication-title: Cell doi: 10.1016/j.cell.2014.11.015 – volume: 28 start-page: 1045 issue: 10 year: 2010 ident: 6336_CR15 publication-title: Nat Biotechnol doi: 10.1038/nbt1010-1045 – volume: 18 start-page: 140 issue: 1 year: 2007 ident: 6336_CR10 publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2006.12.014 – volume: 39 start-page: 311 issue: 3 year: 2007 ident: 6336_CR3 publication-title: Nat Genet doi: 10.1038/ng1966 – volume: 489 start-page: 57 issue: 7414 year: 2012 ident: 6336_CR13 publication-title: Nature doi: 10.1038/nature11247 – volume: 13 start-page: 48 issue: 9 year: 2012 ident: 6336_CR14 publication-title: Genome Biol doi: 10.1186/gb-2012-13-9-r48 – volume: 32 start-page: 4892 issue: 24 year: 2012 ident: 6336_CR5 publication-title: Mol Cell Biol doi: 10.1128/MCB.01127-12 – volume: 18 start-page: 6097 issue: 20 year: 1990 ident: 6336_CR29 publication-title: Nucleic Acids Res doi: 10.1093/nar/18.20.6097 – ident: 6336_CR31 doi: 10.1093/bioinformatics/bty1050 – volume: 46 start-page: 78 issue: D1 year: 2017 ident: 6336_CR6 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx920 – volume: 10 start-page: 35 issue: 1 year: 2017 ident: 6336_CR30 publication-title: BioData Min doi: 10.1186/s13040-017-0155-3 – volume: 26 start-page: 1579 issue: 13 year: 2010 ident: 6336_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq248 – volume: 9 start-page: 1661 issue: 1 year: 2018 ident: 6336_CR9 publication-title: Nat Commun doi: 10.1038/s41467-018-03766-z – ident: 6336_CR22 doi: 10.1371/journal.pcbi.1003677 – volume: 18 start-page: 418 issue: 12 year: 2017 ident: 6336_CR23 publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1828-0 – volume: 38 start-page: 1003 issue: 10 year: 2016 ident: 6336_CR8 publication-title: BioEssays doi: 10.1002/bies.201600106 – volume: 18 start-page: 478 issue: 13 year: 2017 ident: 6336_CR24 publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1878-3 – volume: 34 start-page: 3835 issue: 22 year: 2018 ident: 6336_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty458 – volume: 145 start-page: 160663 issue: 7 year: 2018 ident: 6336_CR12 publication-title: Development doi: 10.1242/dev.160663 – volume: 6 start-page: 85 issue: 10 year: 2014 ident: 6336_CR7 publication-title: Genome Med doi: 10.1186/s13073-014-0085-3 – volume: 14 start-page: 1188 issue: 6 year: 2004 ident: 6336_CR28 publication-title: Genome Res doi: 10.1101/gr.849004 – volume: 457 start-page: 854 issue: 7231 year: 2009 ident: 6336_CR4 publication-title: Nature doi: 10.1038/nature07730 – volume: 12 start-page: 0169249 issue: 1 year: 2017 ident: 6336_CR11 publication-title: PloS ONE doi: 10.1371/journal.pone.0169249 |
| SSID | ssj0017825 |
| Score | 2.5420346 |
| Snippet | Background
Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation... Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation and free... Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational variation... Abstract Background Enhancers are non-coding DNA fragments which are crucial in gene regulation (e.g. transcription and translation). Having high locational... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 951 |
| SubjectTerms | Accuracy Algorithms Analysis Animal Genetics and Genomics Artificial neural networks Benchmarking Biomedical and Life Sciences Cable television broadcasting industry Classification Comparative analysis Computer applications Convolutional neural network Correlation coefficient Correlation coefficients Datasets Deoxyribonucleic acid DNA DNA sequencing Enhancer Enhancer Elements, Genetic Enhancers Ensemble Gene expression Gene regulation Gene sequencing Genes Genetic factors Genetic regulation Genetic research Genetic transformation Genomes Genomics Identification Learning Life Sciences Microarrays Microbial Genetics and Genomics Model accuracy Neural networks Neural Networks, Computer Noncoding DNA Nucleotide sequence One-hot encoding Plant Genetics and Genomics Proteomics Scientists Sequence Analysis, DNA - methods Studies Support vector machines Transcription Transcription (Genetics) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIOqD-N3YKlEEwRKaZD-y8a2WK9WHe1ALfVs2-9E7OHOluUP633dmsxcvCu2LTwe3k7vMx87MsjO_IeRDmcuKSUczqS3NsFUzA0rY7tbrSuY2132V71ScnrFv5_x8a9QX1oT18MC94A69FrLygmtjIbQb3UgISQXTUlNrcheQQHNZbw5T8f4A4h6Pd5iFFIcdeGGB1RZ1JigVGR1FoQDW_69L3opJf9dLDpemj8iDdXupr3_rxWIrLp08IY9jQpke9Yw8Jfdc-4zc70dMXj8n8_mknaFmr7LJ8XT6OZ2HztzQ3ZS6uNSlurVpuDNIsXmkvVjNUqyIR5LO_WoWrkuXPsUS9Wiq8JcIhRk-QiF594KcnUx-Hp9mcbxCZgStVhlvOLU5JGiV5NZ4pjnXRWmZFQ0ThhYNnGQQDa-qKPeW-dJ77ktbcoNOCVzDS7LTLlu3S1JnmibnrpDacabrQhpphZN5bYuaG14kJN-IW5mIPY4jMBYqnEGkUL2GFGhIoYYUTcin4ZHLHnjjNuIvqMOBEDGzwxdgSSpakrrLkhLyHi1AISpGi2U3F3rdderrj-_qCJLMsgKWgZOPkcgvgQOjYxcDyAGBtEaU-yNK2LZmvLwxNBXdRqdKGgDnIGtMyLthGZ_EUrjWLddIQxFTh6FUX_V2OfBNccIiKDch1chiR4IZr7TzWQAVF5AnMwm_ebCx7T-vdYvcDwbzv1tLr_-HlvbIwxL3cVFmJdsnO6urtXsDeeGqeRtcwA3svVy0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBddytj2MPbdbN3wxmCwImpbH1YGY7QlpdtDGN0KfROyJCeBzE7jhNH_fjpZdusNsqeAdXZyuk9Hd79D6H0ai4wKS7BQhmBo1cSO0pm7KVQmYhOrpsp3ws8u6LdLdrmDJm0vDJRVtj7RO2pTafiP_DAlHovLBdQvyysMU6PgdLUdoaHCaAXz2UOM3UG7KSBjDdDu8Xjy_bw7V3DxkIWzzUTww9p5Zw5VGCPMCeGY9KKTB_H_11XfilV_11F2h6kP0L1NuVTXv9VicStenT5CD0OiGR01mvEY7djyCbrbjJ68form83E5A4mv8PhkMvkUzX3Hru96imxYqiNVmsifJUTQVFJO17MIKuWBpLa_8oWto6qIoHQ9qLD7SoDI9B--wLx-hi5Oxz9PznAYu4A1J9kas5wRE7vELRPM6IIqxlSSGmp4TrkmSe7ecAAlL8sIKwwt0qJgRWpSpsFZOZfxHA3KqrR7KLI6z2NmE6Eso2qUCC0MtyIemWTENEuGKG63W-qASQ6jMRbSv5sILhsJSSchCRKSZIg-drcsG0CObcTHIMOOELC0_YVqNZXBNGWhuMgKzpQ2LnnUKhcu6UmoEooYHVs6RO9AAySgZZRQjjNVm7qWX3-cyyOXfKaZY9lx8iEQFZXjQKvQ3eD2AQC2epT7PUpnzrq_3CqaDO6kljfKP0Rvu2W4E0rkSlttgIYA1g6FXX3R6GXHN4HJi064Q5T1NLa3Mf2Vcj7zYOPc5c9UuGcetLp987O27PtBp_7_l9LL7Sy_QvdTsNAkxSndR4P1amNfu0xwnb8J5v0Hsv5Z_w priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96IuqD-G31lCqC4FFs89Wsb-uxx-nDPqgL9xbSJN1dWLvHdhe5_96ZNFuvKic-FZpJ28xXpszML4S8obkqufIsU8axDFs1M6AEc3e1KVXuctNV-U7l6Yx_PhNnsY-73Ve771OSwVMHs1byfQueVGLFxCiTjMmMXSc3BKJ5gRLP6LhPHcCWJ2L68q_TBhtQwOn_0xtf2o5-L5Xs86V3yK1dc24ufpjV6tKWdHKP3I2xZDruhH-fXPPNA3KzO13y4iFZLifNAoW6ySbH0-mHdBmackNjU-rjUJuaxqUhXZBi30gz3y5SLIZHktZ_r1a-Tdd1itXpUUvhlYiCGS6hhrx9RGYnk2_Hp1k8WSGzkpXbTFSCuRxis1IJZ2tuhDAFddzJikvLigp-YhAIryyZqB2vaV2LmjoqLPoj8AqPyUGzbvxTknpbVbnwhTJecDMqlFVOepWPXDESVhQJyffs1jbCjuPpFysdfj-U1J2ENEhIo4Q0S8i7fsp5h7lxFfFHlGFPiHDZ4cZ6M9fR-nRtpCprKYx1EB9aUymIawpulGHO5p4n5DVqgEZAjAYrbuZm17b609cvegzxJS1hybCSt5GoXsMKrIkNDMAHxNAaUB4OKMFi7XB4r2g6eoxWUxaw5iBgTMirfhhnYhVc49c7pGEIp8ORq086vezXzfBwRRBuQsqBxg4YMxxplouAJy4hROYKnnm01-1fn3UF34969f-3lJ7917Ofk9sUDbagGeWH5GC72fkXEPttq5fB1n8CfdhQEQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA_aQ9QHvz-qp6wiCB7b2918bOpbPXqcPhRRC-dTyOajrdduS7dFzr_eTDat3VNOBJ-6NJNtM5mZ_EJmfkHoVZbwnHCDYy41jqFUM3aSzt21lTlPdCLrLN8BOxmSD6f0NFAKQS1MMVNATjqbqKqzW4A-9VHbPaizw4W2tbNzdli5-Mogj6IbM4xZjK-iPUYdLG-hveHgY--rry7K0zhz-4JwqvnHfo11ydP3_x6kd1apixmU22PUm-j6ulzI8-9yOt1ZqY5vo2-bMdYJKmed9aroqB8X6B__ixLuoFsBz0a92gDvoiumvIeu1Tdcnt9Hk0m_HINhLeP-0WDwNpr4wmBfXBWZ0FRFstSRP7KIoHalHK3GESTkg0hlZsXUVNHcRpAhHzzF_SQwcfoPn8dePUDD4_6Xo5M43O4QK4bzVUwLinXi8GHOqVaWSEplmmmiWUGYwmnhNlJAxpfnmFpNbGYttZnOqIKY6CLTQ9Qq56V5jCKjiiKhJuXSUCK7KVdcM8OTrk67VNG0jZLN3AoVqM_hBo6p8FsgzkStQeE0KECDArfRm22XRc37cZnwOzCYrSBQdvsv5suRCBFAWMl4bhmVSjuMqmTBHbZKieQSa5UY0kYvwdwEkHKUkPUzkuuqEu8_fxI9h3Gz3A3ZjeR1ELJzsAMZiiicHoDHqyG535B0UUM1mzdWLULUqkSGPd-dA61t9GLbDD0hE6808zXIYKD0IaDVR7UTbMeN4YJHN7ltlDfco6GYZks5GXtOc-ZgOuHunQcbR_r1ty7R-8HW1_4-S0_-SfopupGBQ6VZnJF91Fot1-aZw5-r4nmILD8Bcdh9VA priority: 102 providerName: Unpaywall |
| Title | iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks |
| URI | https://link.springer.com/article/10.1186/s12864-019-6336-3 https://www.ncbi.nlm.nih.gov/pubmed/31874637 https://www.proquest.com/docview/2340859639 https://www.proquest.com/docview/2330599451 https://pubmed.ncbi.nlm.nih.gov/PMC6929481 https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-019-6336-3 https://doaj.org/article/fa687f65acd143cab881214a8a3dc0e4 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwELe2VcD4gHhTGFVASEhMgSR-xEVCqKs6DSSqaVCp-2Q5ttNWKuloWkH_e-7ctGthjC99-dzE9_Cd4_PvCHmVRDJl0tFQaktDPKoZAiWYu811KiMb6WWWb1ec9NjnPu_vkFV5q4qB5ZVLO6wn1ZuO3_76sfgIBv_BG7wU70qYYwXmUjRDQakI6S6pgaNqYiWHL-xyUwGcIa82Nq_stk9uUixRJ7Ao-oaX8mD-f0_ZGz7rz3zK9abqbXJrXlzoxU89Hm_4reO75E4VcAatpYbcIzuuuE9uLEtQLh6Q0ahTDFHy07DT7nbfByN_cteffgpc1VQGurCB31MI8HBJMZgNA8yYR5LSfc_GrgwmeYAp7JUqwyURKtO_-UTz8iHpHXe-tU_CqvxCaIADs5BnnNoIArhUcmtypjnXcWKZFRkThsYZrHQQLS9NKc8ty5M853liE25w0oKp4xHZKyaFe0ICZ7Is4i6W2nGmm7E00gono6aNm9zwuE6iFbuVqbDJsUTGWPk1ihRqKSwFwlIoLEXr5M26y8USmOM64iOU4ZoQMbX9D5PpQFUmqnItZJoLro2FINLoTELwEzMtNbUmcqxOXqIGKETNKDAtZ6DnZak-fT1TLQhCkxSGDCN5XRHlExiB0dUpB-ADAm1tUR5sUYJZm-3mlaKplVWohHpAOogq6-TFuhl7Yqpc4SZzpKGIucOQq4-Xerke90q96yTd0tgtxmy3FKOhBx0XEEczCf95uNLty9u6hu-Ha_X_v5Se_vN-n5H9BO00TsKEHZC92XTunkMwOMsaZDftpw1SO-p0T8_gW1u0G_7BSsMbP7z2Evhc63VPW-e_AUAGXTY |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwpDAgIhMQULYkvcZEmtI1OKxsV2kXam3Fsp6tU0rG0mvrn-G2ck7rZAlJ52lOk-uRin6vrc75DyLskkimTjoZSWxpiqWYIlKDuNtepjGykZ1m-PbF3wr6e8tMl8nteC4NplXObWBlqOzL4H_lGQissLnCon89_hdg1Ck9X5y00tG-tYDcriDFf2LHvppewhSs3u1-A3--TZLdzvLMX-i4DoRE0HYc849RGEKekkluTM825jhPLrMiYMDTOIKBHULg0pTy3LE_ynOeJTbhB3QQNgefeIiuMsjZs_la2O73vh_U5Bvhf7s9SYyk2SvAGArM-2qGgVIS04Q2rpgH_uoZrvvHvvM368PYuWZ0U53p6qYfDa_5x9z655wPbYGsmiQ_IkisektuzVpfTR2Qw6BRnKGEXYWen1_sUDKoK4arKKnB-qAx0YYPq7CLAIpaiPz4LMDMfSUr3Mxu6MhjlAabKe5WBVyIkZ3WpEtrLx-TkRhjwhCwXo8I9I4EzWRZxF0vtONPtWBpphZNR28ZtbnjcItF8uZXxGOjYimOoqr2QFGrGIQUcUsghRVvkY33L-QwAZBHxNvKwJkTs7uqH0UVfeVOgci1kmguujYVg1ehMQpAVMy01tSZyrEXeogQoROcoMP2nrydlqbpHh2oLgt0khSnDTD54onwEMzDaV1PAOiCgV4NyrUEJ5sM0h-eCprz5KtWVsrXIm3oY78SUvMKNJkhDEduH4ao-ncllPW-KnR6BuS2SNiS2sTDNkWJwVoGbC4jXmYRnrs9l--qzFqz7ei3-_-fS88VTfk1W946_HaiDbm__BbmToLbGSZiwNbI8vpi4lxCFjrNXXtUD8uOmrcsfr2KVWw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9NAEF_0xNcH8XlWT40iCB7hkuwjW7-dteVOpYh6cN-WzT7aQm9bmha5_96ZJI0XlRM_FbqzaXdeO2FmfkPI6yyROZOOxlJbGmOrZgyUYO7W61wmNtF1le9YHJ2wj6f8tJlzWm6r3bcpybqnAVGawvpgaX1t4lIclOBVBVZP9GNBqYjpVXKNweWGIwwGYtCmEeD6400q86_bOpdRhdn_p2e-cDX9XjbZ5k5vk5ubsNTnP_R8fuF6Gt0ld5q4MjqsFeEeueLCfXK9njR5_oDMZsMwRQGv4uFgPH4XzaoG3arJKXLNUhnpYKMqdRBhD0mYrKcRFsYjSenOirkro4WPsFK90Vj4SUTErD6qevLyITkZDb8PjuJmykJsBM3XMS84tQnEabnk1nimOddpZpkVBROGpgW80CAoXp5T7i3zmffcZzbjBn0TeIhHZCcsgntMImeKIuEuldpxpvupNNIKJ5O-Tfvc8LRHki27lWkgyHESxlxVryJSqFpCCiSkUEKK9sjbdsuyxt-4jPg9yrAlROjs6ovFaqIaS1ReC5l7wbWxECsaXUjQm5Rpqak1iWM98go1QCE4RsDqm4nelKU6_vZVHUKsmeVwZDjJm4bIL-AERjfNDMAHxNPqUO51KMF6TXd5q2iq8R6lymiFOwfBY4-8bJdxJ1bEBbfYIA1FaB2GXN2t9bI9N8VBiyDcHsk7GtthTHclzKYVtriAcJlJeOb-Vrd__a1L-L7fqv-_pfTkv579gtz48mGkPh-PPz0ltzK03TSLM7ZHdtarjXsGIeG6eF6Z_U_-RVcj |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA_aQ9QHvz-qp6wiCB7b2918bOpbPXqcPhRRC-dTyOajrdduS7dFzr_eTDat3VNOBJ-6NJNtM5mZ_EJmfkHoVZbwnHCDYy41jqFUM3aSzt21lTlPdCLrLN8BOxmSD6f0NFAKQS1MMVNATjqbqKqzW4A-9VHbPaizw4W2tbNzdli5-Mogj6IbM4xZjK-iPUYdLG-hveHgY--rry7K0zhz-4JwqvnHfo11ydP3_x6kd1apixmU22PUm-j6ulzI8-9yOt1ZqY5vo2-bMdYJKmed9aroqB8X6B__ixLuoFsBz0a92gDvoiumvIeu1Tdcnt9Hk0m_HINhLeP-0WDwNpr4wmBfXBWZ0FRFstSRP7KIoHalHK3GESTkg0hlZsXUVNHcRpAhHzzF_SQwcfoPn8dePUDD4_6Xo5M43O4QK4bzVUwLinXi8GHOqVaWSEplmmmiWUGYwmnhNlJAxpfnmFpNbGYttZnOqIKY6CLTQ9Qq56V5jCKjiiKhJuXSUCK7KVdcM8OTrk67VNG0jZLN3AoVqM_hBo6p8FsgzkStQeE0KECDArfRm22XRc37cZnwOzCYrSBQdvsv5suRCBFAWMl4bhmVSjuMqmTBHbZKieQSa5UY0kYvwdwEkHKUkPUzkuuqEu8_fxI9h3Gz3A3ZjeR1ELJzsAMZiiicHoDHqyG535B0UUM1mzdWLULUqkSGPd-dA61t9GLbDD0hE6808zXIYKD0IaDVR7UTbMeN4YJHN7ltlDfco6GYZks5GXtOc-ZgOuHunQcbR_r1ty7R-8HW1_4-S0_-SfopupGBQ6VZnJF91Fot1-aZw5-r4nmILD8Bcdh9VA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iEnhancer-ECNN%3A+identifying+enhancers+and+their+strength+using+ensembles+of+convolutional+neural+networks&rft.jtitle=BMC+genomics&rft.au=Nguyen%2C+Quang+H&rft.au=Nguyen-Vo%2C+Thanh-Hoang&rft.au=Le%2C+Nguyen+Quoc+Khanh&rft.au=Do%2C+Trang+T+T&rft.date=2019-12-24&rft.eissn=1471-2164&rft.volume=20&rft.issue=Suppl+9&rft.spage=951&rft_id=info:doi/10.1186%2Fs12864-019-6336-3&rft_id=info%3Apmid%2F31874637&rft.externalDocID=31874637 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |