Adapting machine-learning algorithms to design gene circuits
Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), an...
Saved in:
| Published in | BMC bioinformatics Vol. 20; no. 1; pp. 214 - 13 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
27.04.2019
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-019-2788-3 |
Cover
| Abstract | Background
Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing’s model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery.
Results
We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events.
Conclusions
Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology
.
Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet. |
|---|---|
| AbstractList | Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet. Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery.BACKGROUNDGene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery.We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events.RESULTSWe use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events.Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.CONCLUSIONSOur computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet. Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. Results We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Conclusions Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet. Keywords: Gene circuits, Machine learning, Numerical screens Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing’s model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. Results We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Conclusions Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology . Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet. Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing’s model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. Results We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Conclusions Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet. Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet. Abstract Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing’s model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. Results We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Conclusions Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet. |
| ArticleNumber | 214 |
| Audience | Academic |
| Author | Hiscock, Tom W. |
| Author_xml | – sequence: 1 givenname: Tom W. orcidid: 0000-0002-0319-8679 surname: Hiscock fullname: Hiscock, Tom W. email: twh27@cam.ac.uk organization: Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31029103$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkluL1DAYhousuAf9Ad7IgDd60TWHNgeQhWHxMLAgeLgOaZp0MrTJmKTq_ntTO-5uFxXpRcvX533bPMlpceS800XxFIJzCBl5FSFiNS8B5CWijJX4QXECKwpLBEF9dOf5uDiNcQcApAzUj4pjDAHiEOCT4vW6lftkXbcapNpap8tey-Cmgew7H2zaDnGV_KrV0XZu1WmnV8oGNdoUHxcPjeyjfnK4nxVf3r75fPm-vPrwbnO5vioVwTSVNUAYN4jXDZIMEIaMwYZgw4kxEEvEWmwMywjjvGpVgxhoMJQMVaqhnLf4rNjMva2XO7EPdpDhWnhpxa-BD52QIVnVa0EhqRpGOMGkrRCjrIZYwcpUnDYKS5K70Nw1ur28_i77_qYQAjFpFbNWkbWKSavAOXQxh_ZjM-hWaZeC7Bd_snzj7FZ0_psgFaPZei54cSgI_uuoYxKDjUr3vXTaj1EgBAmluKIT-vweuvNjcNlvplBeGcIM31KdzKu2zvj8XTWVinXNSI0YZCxT53-g8tXqwap8mIzN80Xg5SKQmaR_pE6OMYrNp49L9tldKTc2fh-uDNAZUMHHGLQRyiaZrJ8c2f6fvuG95P_s0WFjY2Zdp8Ott7-HfgLYIP3n |
| CitedBy_id | crossref_primary_10_1021_acssynbio_0c00129 crossref_primary_10_1042_BST20221542 crossref_primary_10_1080_10408398_2020_1850415 crossref_primary_10_1038_s41540_024_00361_5 crossref_primary_10_1038_s41467_020_18676_2 crossref_primary_10_7554_eLife_92683 crossref_primary_10_1093_synbio_ysaa020 crossref_primary_10_1038_s41467_022_31245_z crossref_primary_10_7554_eLife_92683_4 crossref_primary_10_1016_j_biotechadv_2022_108069 crossref_primary_10_1098_rsif_2024_0467 crossref_primary_10_1016_j_semcdb_2022_04_009 crossref_primary_10_1021_acssynbio_1c00557 crossref_primary_10_3389_fbloc_2020_606413 crossref_primary_10_1002_ece3_9895 crossref_primary_10_1007_s00521_022_07532_7 crossref_primary_10_3390_biology11091294 crossref_primary_10_1021_acssynbio_4c00307 crossref_primary_10_1021_acssynbio_3c00120 crossref_primary_10_3389_fsybi_2025_1548572 crossref_primary_10_1016_j_compchemeng_2022_107952 crossref_primary_10_1109_JPROC_2021_3134169 crossref_primary_10_1103_PhysRevResearch_6_033208 crossref_primary_10_2139_ssrn_4163144 crossref_primary_10_1038_s41579_020_0372_5 |
| Cites_doi | 10.15252/msb.20145882 10.1038/nature02189 10.1126/science.1172005 10.1016/0925-2312(93)90006-O 10.1038/msb.2011.13 10.1371/journal.pcbi.0020051 10.1371/journal.pcbi.1005331 10.1016/j.cell.2008.01.053 10.1073/pnas.1517384113 10.1038/nrg1272 10.1016/j.semcdb.2014.06.012 10.1038/nrg2697 10.1126/science.1127647 10.1038/nature07389 10.1016/j.cell.2005.08.029 10.1016/0893-6080(89)90020-8 10.1016/S0022-2836(02)00994-4 10.1038/35002131 10.1016/j.devcel.2016.01.024 10.1371/journal.pbio.1000049 10.1242/dev.144196 10.1016/j.cels.2016.12.009 10.1152/physrev.1986.66.2.235 10.1016/j.cell.2007.05.026 10.1016/S0022-5193(69)80016-0 10.1038/msb.2010.74 10.1073/pnas.0404782102 10.1201/9781420011432 10.1073/pnas.1508521112 10.1038/35002125 10.1038/msb.2012.31 10.1088/1478-3975/5/2/026009 10.1038/nprot.2014.025 10.1016/S0955-0674(03)00017-6 10.1038/35036627 10.1016/j.cels.2017.06.013 10.1016/j.cell.2014.07.020 10.1126/science.298.5594.824 10.1073/pnas.2133841100 10.1016/j.jmb.2003.09.049 10.1038/nrg2955 10.1038/nature02678 10.1038/nrm2530 10.1038/nrg2398 10.1126/science.275.5302.986 10.1038/nrg2102 10.1016/j.cell.2009.06.013 10.1101/100651 10.1016/j.cell.2007.05.052 10.1371/journal.pone.0116258 10.1371/journal.pcbi.1003290 10.1126/science.1209042 10.1038/nature01061 10.1038/nature09645 10.1073/pnas.0304532101 10.1038/ng881 10.1038/nature14539 10.1016/j.celrep.2014.08.038 10.1002/cfg.82 10.1038/nature07059 10.1038/nrg2775 10.1101/gad.1528707 10.1073/pnas.71.10.4135 10.1371/journal.pcbi.1002589 10.1371/journal.pcbi.1000303 10.1534/genetics.104.027334 10.1126/science.aag0511 10.1126/science.1089072 10.1038/msb4100192 10.1186/s12918-017-0499-9 10.1016/j.cell.2012.08.040 10.1038/nature09333 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-019-2788-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_7164b869636d42878513c14f497bc3a6 10.1186/s12859-019-2788-3 PMC6487017 A586528188 31029103 10_1186_s12859_019_2788_3 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: European Molecular Biology Organization grantid: EMBO ALTF 606-2018 funderid: http://dx.doi.org/10.13039/100004410 – fundername: European Molecular Biology Organization grantid: EMBO ALTF 606-2018 – fundername: ; grantid: EMBO ALTF 606-2018 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c637t-50233b295b2a80682ff3f63f96ff13a28d3ff833b8994dcb280b31a824cb799d3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Tue Oct 14 19:08:33 EDT 2025 Sun Oct 26 03:44:28 EDT 2025 Tue Sep 30 16:56:43 EDT 2025 Thu Oct 02 05:33:54 EDT 2025 Tue Oct 07 05:14:12 EDT 2025 Mon Oct 20 21:56:06 EDT 2025 Mon Oct 20 16:22:25 EDT 2025 Thu Oct 16 15:20:27 EDT 2025 Thu Apr 03 07:00:59 EDT 2025 Wed Oct 01 04:15:32 EDT 2025 Thu Apr 24 23:06:48 EDT 2025 Sat Sep 06 07:27:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Numerical screens Machine learning Gene circuits |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c637t-50233b295b2a80682ff3f63f96ff13a28d3ff833b8994dcb280b31a824cb799d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0319-8679 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-019-2788-3 |
| PMID | 31029103 |
| PQID | 2226962383 |
| PQPubID | 44065 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7164b869636d42878513c14f497bc3a6 unpaywall_primary_10_1186_s12859_019_2788_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487017 proquest_miscellaneous_2216773477 proquest_journals_2226962383 gale_infotracmisc_A586528188 gale_infotracacademiconefile_A586528188 gale_incontextgauss_ISR_A586528188 pubmed_primary_31029103 crossref_citationtrail_10_1186_s12859_019_2788_3 crossref_primary_10_1186_s12859_019_2788_3 springer_journals_10_1186_s12859_019_2788_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-27 |
| PublicationDateYYYYMMDD | 2019-04-27 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2019 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | TS Gardner (2788_CR34) 2000; 403 N Noman (2788_CR50) 2015; 10 B Novak (2788_CR72) 2008; 9 H Jeong (2788_CR13) 2000; 407 H Li (2788_CR54) 2015 E Simon (2788_CR20) 1986; 66 D Ben-Zvi (2788_CR42) 2008; 453 JJ Tyson (2788_CR65) 2003; 15 DE Clyde (2788_CR69) 2003; 426 S Marcand (2788_CR74) 1997; 275 2788_CR77 2788_CR79 DY Rhee (2788_CR7) 2014; 8 J Stricker (2788_CR73) 2008; 456 L Wolpert (2788_CR68) 1969; 25 N Rosenfeld (2788_CR19) 2002; 323 S Mangan (2788_CR71) 2003; 334 X Zhu (2788_CR2) 2007; 21 AE Friedland (2788_CR75) 2009; 324 R Linding (2788_CR12) 2007; 129 AS Khalil (2788_CR31) 2010; 11 S-i Amari (2788_CR55) 1993; 5 Manu (2788_CR29) 2009; 5 S Mukherji (2788_CR30) 2009; 10 S Slomovic (2788_CR76) 2015; 112 AL Barabasi (2788_CR1) 2004; 5 S Palani (2788_CR66) 2011; 7 J Davies (2788_CR32) 2017; 144 Y LeCun (2788_CR53) 2015; 521 P Francois (2788_CR46) 2014; 35 CC Fowlkes (2788_CR24) 2008; 133 2788_CR43 P Francois (2788_CR48) 2004; 101 DK Goode (2788_CR3) 2016; 36 S Mangan (2788_CR9) 2003; 100 R Milo (2788_CR18) 2002; 298 U Stelzl (2788_CR10) 2005; 122 BI Shraiman (2788_CR21) 2005; 102 W Ma (2788_CR41) 2009; 138 T Gregor (2788_CR25) 2007; 130 Manu (2788_CR28) 2009; 7 TJ Perkins (2788_CR44) 2006; 2 L Lopez-Maury (2788_CR8) 2008; 9 U Alon (2788_CR16) 2003; 301 P Francois (2788_CR47) 2008; 5 SS Shen-Orr (2788_CR17) 2002; 31 O Fiehn (2788_CR14) 2001; 2 GE Hinton (2788_CR52) 2006; 313 A Eldar (2788_CR40) 2002; 419 2788_CR58 P Cahan (2788_CR5) 2014; 158 U Alon (2788_CR15) 2007; 8 J Cotterell (2788_CR38) 2010; 6 J Jaeger (2788_CR27) 2004; 430 2788_CR57 2788_CR56 A Crombach (2788_CR45) 2012; 8 RW Smith (2788_CR51) 2017; 11 J Liepe (2788_CR78) 2014; 9 K Hornik (2788_CR60) 1989; 2 C Liu (2788_CR35) 2011; 334 EJ Molinelli (2788_CR59) 2013; 9 J Jaeger (2788_CR26) 2004; 167 M Adler (2788_CR36) 2017; 4 2788_CR62 2788_CR61 JJ Hopfield (2788_CR70) 1974; 71 I Lestas (2788_CR22) 2010; 467 M Uzkudun (2788_CR64) 2015; 11 P Minguez (2788_CR11) 2012; 8 AH Chau (2788_CR39) 2012; 151 2788_CR23 K Plath (2788_CR4) 2011; 12 P Francois (2788_CR49) 2007; 3 F Frohlich (2788_CR63) 2017; 13 SL Brunton (2788_CR67) 2016; 113 MB Elowitz (2788_CR33) 2000; 403 EH Davidson (2788_CR6) 2010; 468 Z Li (2788_CR37) 2017; 5 |
| References_xml | – volume: 11 start-page: 815 issue: 7 year: 2015 ident: 2788_CR64 publication-title: Mol Syst Biol doi: 10.15252/msb.20145882 – volume: 426 start-page: 849 issue: 6968 year: 2003 ident: 2788_CR69 publication-title: Nature doi: 10.1038/nature02189 – volume: 324 start-page: 1199 issue: 5931 year: 2009 ident: 2788_CR75 publication-title: Science doi: 10.1126/science.1172005 – volume: 5 start-page: 185 issue: 4 year: 1993 ident: 2788_CR55 publication-title: Neurocomputing doi: 10.1016/0925-2312(93)90006-O – volume: 7 start-page: 480 year: 2011 ident: 2788_CR66 publication-title: Mol Syst Biol doi: 10.1038/msb.2011.13 – volume: 2 start-page: e51 issue: 5 year: 2006 ident: 2788_CR44 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020051 – volume: 13 issue: 1 year: 2017 ident: 2788_CR63 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005331 – ident: 2788_CR58 – volume: 133 start-page: 364 issue: 2 year: 2008 ident: 2788_CR24 publication-title: Cell doi: 10.1016/j.cell.2008.01.053 – volume: 113 start-page: 3932 issue: 15 year: 2016 ident: 2788_CR67 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1517384113 – volume: 5 start-page: 101 issue: 2 year: 2004 ident: 2788_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg1272 – volume: 35 start-page: 90 year: 2014 ident: 2788_CR46 publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2014.06.012 – volume: 10 start-page: 859 issue: 12 year: 2009 ident: 2788_CR30 publication-title: Nat Rev Genet doi: 10.1038/nrg2697 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 2788_CR52 publication-title: Science doi: 10.1126/science.1127647 – volume: 456 start-page: 516 issue: 7221 year: 2008 ident: 2788_CR73 publication-title: Nature doi: 10.1038/nature07389 – volume: 122 start-page: 957 issue: 6 year: 2005 ident: 2788_CR10 publication-title: Cell doi: 10.1016/j.cell.2005.08.029 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 2788_CR60 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 323 start-page: 785 issue: 5 year: 2002 ident: 2788_CR19 publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)00994-4 – volume: 403 start-page: 339 issue: 6767 year: 2000 ident: 2788_CR34 publication-title: Nature doi: 10.1038/35002131 – ident: 2788_CR61 – volume: 36 start-page: 572 issue: 5 year: 2016 ident: 2788_CR3 publication-title: Dev Cell doi: 10.1016/j.devcel.2016.01.024 – volume: 7 issue: 3 year: 2009 ident: 2788_CR28 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000049 – volume: 144 start-page: 1146 issue: 7 year: 2017 ident: 2788_CR32 publication-title: Development doi: 10.1242/dev.144196 – volume: 4 start-page: 171 issue: 2 year: 2017 ident: 2788_CR36 publication-title: Cell Syst doi: 10.1016/j.cels.2016.12.009 – volume: 66 start-page: 235 issue: 2 year: 1986 ident: 2788_CR20 publication-title: Physiol Rev doi: 10.1152/physrev.1986.66.2.235 – volume: 130 start-page: 141 issue: 1 year: 2007 ident: 2788_CR25 publication-title: Cell doi: 10.1016/j.cell.2007.05.026 – volume: 25 start-page: 1 issue: 1 year: 1969 ident: 2788_CR68 publication-title: J Theor Biol doi: 10.1016/S0022-5193(69)80016-0 – volume: 6 start-page: 425 year: 2010 ident: 2788_CR38 publication-title: Mol Syst Biol doi: 10.1038/msb.2010.74 – volume: 102 start-page: 3318 issue: 9 year: 2005 ident: 2788_CR21 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0404782102 – ident: 2788_CR23 doi: 10.1201/9781420011432 – volume: 112 start-page: 14429 issue: 47 year: 2015 ident: 2788_CR76 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1508521112 – volume: 403 start-page: 335 issue: 6767 year: 2000 ident: 2788_CR33 publication-title: Nature doi: 10.1038/35002125 – volume: 8 start-page: 599 year: 2012 ident: 2788_CR11 publication-title: Mol Syst Biol doi: 10.1038/msb.2012.31 – volume: 5 issue: 2 year: 2008 ident: 2788_CR47 publication-title: Phys Biol doi: 10.1088/1478-3975/5/2/026009 – volume: 9 start-page: 439 issue: 2 year: 2014 ident: 2788_CR78 publication-title: Nat Protoc doi: 10.1038/nprot.2014.025 – volume: 15 start-page: 221 issue: 2 year: 2003 ident: 2788_CR65 publication-title: Curr Opin Cell Biol doi: 10.1016/S0955-0674(03)00017-6 – volume: 407 start-page: 651 issue: 6804 year: 2000 ident: 2788_CR13 publication-title: Nature doi: 10.1038/35036627 – volume: 5 start-page: 72 issue: 1 year: 2017 ident: 2788_CR37 publication-title: Cell Syst doi: 10.1016/j.cels.2017.06.013 – volume: 158 start-page: 903 issue: 4 year: 2014 ident: 2788_CR5 publication-title: Cell doi: 10.1016/j.cell.2014.07.020 – volume: 298 start-page: 824 issue: 5594 year: 2002 ident: 2788_CR18 publication-title: Science doi: 10.1126/science.298.5594.824 – volume: 100 start-page: 11980 issue: 21 year: 2003 ident: 2788_CR9 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2133841100 – volume: 334 start-page: 197 issue: 2 year: 2003 ident: 2788_CR71 publication-title: J Mol Biol doi: 10.1016/j.jmb.2003.09.049 – volume: 12 start-page: 253 issue: 4 year: 2011 ident: 2788_CR4 publication-title: Nat Rev Genet doi: 10.1038/nrg2955 – ident: 2788_CR62 – volume: 430 start-page: 368 issue: 6997 year: 2004 ident: 2788_CR27 publication-title: Nature doi: 10.1038/nature02678 – ident: 2788_CR79 – volume: 9 start-page: 981 issue: 12 year: 2008 ident: 2788_CR72 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2530 – volume: 9 start-page: 583 issue: 8 year: 2008 ident: 2788_CR8 publication-title: Nat Rev Genet doi: 10.1038/nrg2398 – volume: 275 start-page: 986 issue: 5302 year: 1997 ident: 2788_CR74 publication-title: Science doi: 10.1126/science.275.5302.986 – volume: 8 start-page: 450 issue: 6 year: 2007 ident: 2788_CR15 publication-title: Nat Rev Genet doi: 10.1038/nrg2102 – volume: 138 start-page: 760 issue: 4 year: 2009 ident: 2788_CR41 publication-title: Cell doi: 10.1016/j.cell.2009.06.013 – start-page: 5325 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2015 ident: 2788_CR54 – ident: 2788_CR56 – ident: 2788_CR43 doi: 10.1101/100651 – volume: 129 start-page: 1415 issue: 7 year: 2007 ident: 2788_CR12 publication-title: Cell doi: 10.1016/j.cell.2007.05.052 – volume: 10 issue: 1 year: 2015 ident: 2788_CR50 publication-title: PLoS One doi: 10.1371/journal.pone.0116258 – volume: 9 issue: 12 year: 2013 ident: 2788_CR59 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003290 – volume: 334 start-page: 238 issue: 6053 year: 2011 ident: 2788_CR35 publication-title: Science doi: 10.1126/science.1209042 – volume: 419 start-page: 304 issue: 6904 year: 2002 ident: 2788_CR40 publication-title: Nature doi: 10.1038/nature01061 – volume: 468 start-page: 911 issue: 7326 year: 2010 ident: 2788_CR6 publication-title: Nature doi: 10.1038/nature09645 – volume: 101 start-page: 580 issue: 2 year: 2004 ident: 2788_CR48 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0304532101 – volume: 31 start-page: 64 issue: 1 year: 2002 ident: 2788_CR17 publication-title: Nat Genet doi: 10.1038/ng881 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2788_CR53 publication-title: Nature doi: 10.1038/nature14539 – volume: 8 start-page: 2031 issue: 6 year: 2014 ident: 2788_CR7 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.08.038 – volume: 2 start-page: 155 issue: 3 year: 2001 ident: 2788_CR14 publication-title: Comp Funct Genomics doi: 10.1002/cfg.82 – volume: 453 start-page: 1205 issue: 7199 year: 2008 ident: 2788_CR42 publication-title: Nature doi: 10.1038/nature07059 – volume: 11 start-page: 367 issue: 5 year: 2010 ident: 2788_CR31 publication-title: Nat Rev Genet doi: 10.1038/nrg2775 – volume: 21 start-page: 1010 issue: 9 year: 2007 ident: 2788_CR2 publication-title: Genes Dev doi: 10.1101/gad.1528707 – volume: 71 start-page: 4135 issue: 10 year: 1974 ident: 2788_CR70 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.71.10.4135 – volume: 8 issue: 7 year: 2012 ident: 2788_CR45 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002589 – ident: 2788_CR57 – volume: 5 issue: 3 year: 2009 ident: 2788_CR29 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000303 – volume: 167 start-page: 1721 issue: 4 year: 2004 ident: 2788_CR26 publication-title: Genetics doi: 10.1534/genetics.104.027334 – ident: 2788_CR77 doi: 10.1126/science.aag0511 – volume: 301 start-page: 1866 issue: 5641 year: 2003 ident: 2788_CR16 publication-title: Science doi: 10.1126/science.1089072 – volume: 3 start-page: 154 year: 2007 ident: 2788_CR49 publication-title: Mol Syst Biol doi: 10.1038/msb4100192 – volume: 11 start-page: 118 issue: 1 year: 2017 ident: 2788_CR51 publication-title: BMC Syst Biol doi: 10.1186/s12918-017-0499-9 – volume: 151 start-page: 320 issue: 2 year: 2012 ident: 2788_CR39 publication-title: Cell doi: 10.1016/j.cell.2012.08.040 – volume: 467 start-page: 174 issue: 7312 year: 2010 ident: 2788_CR22 publication-title: Nature doi: 10.1038/nature09333 |
| SSID | ssj0017805 |
| Score | 2.4360063 |
| Snippet | Background
Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate... Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell... Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate... Abstract Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 214 |
| SubjectTerms | Algorithms Artificial intelligence Bioinformatics Biological computing Biology Biomedical and Life Sciences Cell cycle Circuit design Circuits Complex systems Computation Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Computer simulation Data mining Design Dynamical systems Gene circuits Gene expression Genes Genetic algorithms Insects Learning algorithms Life Sciences Machine learning Machine Learning and Artificial Intelligence in Bioinformatics Mathematical models Methodology Methodology Article Methods Microarrays Numerical screens Optimization Optimization theory Oscillators Parameter estimation Proteins Social networks Synthetic biology Task complexity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIOqDeLfuKlUEwaVsm6S5gC-juKyCPqgL-xZyaWYHZtth2kH23-9Jm6lThd0XXycn0Jx8J_kOOfMdhN7KPHdcBMlZYUVGrS8zibHMXJ5X1GuGXd864dt3dnJKv56VZzutvkJN2CAPPDjuKPB5IxjghLlA74EhEFtQTyU3luhebDsXcptMxfeDoNQf3zALwY7aIui0QdosMww5X0Ymt1Av1v_vkbxzJ_1dLzk-mt5Ddzb1Sl_-1svlzr10_ADdj4QynQ0LeYhuVfUjdHtoMXn5GH2YOb0Kpc3pRV82WWWxT8Q81ct5s1505xdt2jWp60s5UsBTldrF2m4WXfsEnR5__vXpJIsdEzLLCO-yEm5gYrAsDdYiZwJ7TzwjXjLvC6KxcMR7ASaQZVFnDRa5IYUWmFrDpXTkKdqrm7p6jlLhMHe2KLk3nNqyMp5qOFUZZ4ZSJ2WC8q0HlY1y4qGrxVL1aYVganC6Aqer4HRFEvR-nLIatDSuM_4YtmU0DDLY_Q8ADhXBoW4CR4LehE1VQeiiDpU0c71pW_Xl5w81KwUrgxSWSNC7aOQbWIHV8Y8J4IegjTWxPJhYQiTa6fAWOyqeBK0C_gXfB8QIVvR6HA4zQ3VbXTWbYFMwzgnlPEHPBqiN6wb6jYHSwWw-AeHEMdORenHe64QzSEYhFBJ0uIXrn8-6xu-HI6Jv3qUX_2OX9tFdHEIzpxCdB2ivW2-ql0D1OvOqj-orkPdIUA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEF_qFdF-EF_VaJUogmAJTXY3-wBFrtJSBQ-pFvpt2exmrwfX5LzkKP3v3cklaaNwfs3OQnZ2npnJbxB6J-PYcgGQs8KIiBqXRhJjGdk4zqnTDNtmdML3CTs5o9_O0_MtNOn-hYG2ys4mNobalga-kR94P8ak99WCfF78jmBqFFRXuxEauh2tYD81EGN30DYGZKwR2j48mvw47esKgODf1jYTwQ6qBPDbfDotI-xzwYgMvFMD4v-vqb7lq_7uo-yLqTvo3qpY6OsrPZ_f8lfHD9GDNtAMx2vJeIS28uIxursePXn9BH0cW72AlufwsmmnzKN2fsQ01POpP3h9cVmFdRnapsUj9HKWh2a2NKtZXT1FZ8dHv76cRO0khcgwwuso9Z6ZZFimGdYiZgI7RxwjTjLnEqKxsMQ54Ul89kWtybCIM5JoganJuJSW7KJRURb5cxQKi7k1ScpdxqlJ88xR7a0t4yyj1EoZoLjjoDItzDhMu5irJt0QTK2ZrjzTFTBdkQB96Lcs1hgbm4gP4Vp6QoDHbh6Uy6lqtU1BEpgJLy-EWcgJfVhJTEIdlTwzRLMAvYVLVQCAUUCHzVSvqkp9_XmqxqlgKUBkiQC9b4lc6U9gdPvDgucDYGYNKPcGlF5DzXC5kx3VWohK3chzgN70y7ATut6KvFwBTcI4J5TzAD1bi1p_bh-WYx_q-d18IIQDxgxXitlFgx_OfJLqVSFA-5243rzWBr7v9xL9_1t6sfnIL9F9DEoXU693e2hUL1f5Kx_c1dnrVmP_AAUiR_U priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96IuqD-G31lCqC4FFskzQf4Mt6eJyCPqgH9xby0ewt7LXLtkXuv3fSzdatyomvzaQkk5nMDDP5DUKvZJ47LgLkrLAio9aXmcRYZi7PK-o1w25onfD5Czs-oZ9Oy9MIFh3ewuzm7wvB3rZFQFiDgFdmGKK1jFxF18BGsSEvyw7HhEGA5o9Jy79Om5idAZ3_zzt4xwj9XiA5ZklvoRt9vdIXP_RyuWOIju6g29GDTGebI7-LrlT1PXR901Py4j56N3N6FWqZ0_OhTrLKYmOIeaqX82a96M7O27RrUjfUbqQgQFVqF2vbL7r2ATo5-vD98DiLLRIyywjvshJMLjFYlgZrkTOBvSeeES-Z9wXRWDjivQASCKuoswaL3JBCC0yt4VI68hDt1U1dPUapcJg7W5TcG05tWRlPNVyjjDNDqZMyQfmWg8pG_PDQxmKphjhCMLVhugKmq8B0RRL0Zpyy2oBnXEb8PhzLSBhwr4cPIA4qqpEK0Z0RDG4N5kKwB_4isQX1VHJjiWYJehkOVQVkizqUzsx137bq47evalYKVgbsK5Gg15HIN7ADq-NLBOBDAMOaUO5PKEH17HR4Kzsqqn6rwOGC9YEnBDt6MQ6HmaGcra6aPtAUjHNCOU_Qo42ojfsGfxuDDwez-UQIJ4yZjtSLswEYnEH0CaqQoIOtuP5a1iV8Pxgl-t-n9OS__v0U3cRBB3MKariP9rp1Xz0DJ64zzwf1_QnGUjoF priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_nHqI--P1RPaWKIHh0r03SJAVfVvE4BU9RD86n0CTN3nK77bJtkfOvd9J26_aUE8G30kygmcxM5kcnv0HoeRKGhgtHOSu0CKi2cZBgnAQmDDNqU4ZN0zrhwyE7OKLvj-PjLfRxfRdGLbSaFR1pqCMqHm9eQ583sRse9One0tjW5QXbKyPHwwawOAkwYLqAXELbLIbkfIS2jw4_Tb41d4x4FADAibt_m3-cNzidGhL_30P1xll1vo6y_5l6DV2p82V69j2dzzfOq_0baLleaVumcjquKzXWP86RQP5HVdxE17vc1p-0xngLbWX5bXS57XZ5dge9mph06aqs_UVTwZkFXcuKqZ_Op8VqVp0sSr8qfNNUlfhg2pmvZytdz6ryLjraf_v1zUHQNW8INCO8CmJIBojCSaxwKkImsLXEMmITZm1EUiwMsVaACAA-arTCIlQkSgWmWvEkMeQeGuVFnj1AvjCYGx3F3CpOdZwpS1MI8IwzRalJEg-F602TumM2dw025rJBOILJVikSlCKdUiTx0Mt-yrKl9bhI-LWzhF7QMXI3L4rVVHYOLh3uVIJBPGPGwVDIZImOqKUJV5qkzEPPnB1Jx7mRu6KeaVqXpXz35bOcxILFjpVLeOhFJ2QLt7Vpd0cC9OBougaSOwNJCAp6OLw2V9kFpVJCKgjfBzkarOhpP-xmukK7PCtqJxMxzgnl3EP3W-vu1w1IAEN2CbP5wO4HihmO5LOThrKcAS6G2O-h3bWH_PqsC_S-2zvR33fp4T9JP0JXsfORkIKb7KBRtaqzx5BeVupJFzJ-AkPpcIg priority: 102 providerName: Unpaywall |
| Title | Adapting machine-learning algorithms to design gene circuits |
| URI | https://link.springer.com/article/10.1186/s12859-019-2788-3 https://www.ncbi.nlm.nih.gov/pubmed/31029103 https://www.proquest.com/docview/2226962383 https://www.proquest.com/docview/2216773477 https://pubmed.ncbi.nlm.nih.gov/PMC6487017 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-019-2788-3 https://doaj.org/article/7164b869636d42878513c14f497bc3a6 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2IQQ8IL4JjCogJCSmQGI7tiOBUFatjEqrpo1K5clynLir1CWlaQX97zmnabbANMRLIsXnyD7f-e7iy-8QehP5fsqFhZwVWnhUm9CLMI681PczahTDaVU64XjAjoa0PwpHW2hT3qpmYHltaGfrSQ3n0_e_fqw-g8J_qhResA9lYFHYICiOPAwRnUe20S4YqshWcjiml4cKFr6_-tmIBx5EOmF9yHntK1pmqkLz_3vPvmK0_kyobE5V76Lby3ymVj_VdHrFcPXuo3u1x-nGaxF5gLay_CG6ta5BuXqEPsapmtncZ_eiyqvMvLqQxNhV03ExnyzOL0p3UbhplevhgsBlrp7M9XKyKB-jYe_wW_fIq0sqeJoRvvBCMNEkwVGYYCV8JrAxxDBiImZMQBQWKTFGAAmEYTTVCRZ-QgIlMNUJj6KUPEE7eZFnz5ArUsxTHYTcJJzqMEsMVbDtMs4SStMocpC_4aDUNd64LXsxlVXcIZhcM10C06VluiQOetd0ma3BNm4iPrDL0hBanOzqQTEfy1rtpI0GE8Fgl2GpDQ7BvyQ6oIZGPNFEMQe9tosqLRJGblNtxmpZlvLr2amMQ8FCi5UlHPS2JjIFzECr-s8F4IMFz2pR7rUoQVV1u3kjO3Ij6RIcNBgfeE4wo1dNs-1p09_yrFhamoBxTijnDnq6FrVm3uCfY_D5oDdvCWGLMe2WfHJeAYkziFZBLRy0vxHXy2HdwPf9RqL_vUrP_2dJX6A72KqgT0EL99DOYr7MXoLPt0g6aJuPOFxF70sH7cZx_6wP94PDwckpPO2ybqf6mtKpNB5ahoOT-PtvLZpSaA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBo8IO4EBgQEQmKKltiO7UggVC5Tyy4PsEl9M4kdd5W6pDSppv4pfiPHuW0BqTztNT6O4uNzjY-_g9DryPc1FxZyVijhUWVCL8I48rTvp9TEDOuqdcLhERue0G_jcLyBfrd3YWxZZWsTK0Otc2X_ke-CH2MR-GpBPs5_ebZrlD1dbVto1GKxn67OIWUrPoy-wP6-wXjv6_Hnodd0FfAUI7z0QvBSJMFRmOBY-ExgY4hhxETMmIDEWGhijAASyESoVgkWfkKCWGCqEh5FmsB7r6HrlIAtAf3h4y7BC2x_gObkNBBstwgsOhwk65GHIdP0SM_3VS0C_nUElzzh31Wa3VHtLbS1zObx6jyezS55w7076HYTxrqDWu7uoo00u4du1I0tV_fR-4GO57ag2j2rijVTr-lOMXHj2QTYWp6eFW6Zu7oqIHFBilNXTRdqOS2LB-jkSjj6EG1meZY-Rq7QmGsVhNwknKowTQyNwZYzzhJKdRQ5yG85KFUDYm57acxklcwIJmumS2C6tEyXxEHvuinzGsFjHfEnuy0doQXfrh7ki4lsdFnaFDMRII2EaZtxQtBKVEANjXiiSMwc9MpuqrTwGpmt35nEy6KQox_f5SAULLQAXMJBbxsik8MKVNxchwA-WESuHuV2jxL0X_WHW9mRjf0p5IW2OOhlN2xn2pq6LM2XliZgnBPKuYMe1aLWrRuCfgyBJMzmPSHsMaY_kk1PK3RyBikwqIKDdlpxvfisNXzf6ST6_7v0ZP2SX6Ct4fHhgTwYHe0_RTexVUCfgg5uo81ysUyfQRhZJs8r3XXRz6s2Fn8A_mB9cg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA964uuD-LZ6ahVBuKNcm6RJCn5ZV5c7H4eoB_ct5NHsLey1y7ZF7r930nbrVeXEr82kJJOZzAwz-Q1Cr7I4tlx4yFlhRESNS6MM4yyycZxTpxi2beuEz4ds_4h-OE6P-z6n1abafZOS7N40eJSmot5bWdepuGB7VeJx1yAMziIMMVxELqMrFIybb2EwZdMhjeAB-_tU5l-njYxRi9n_5818zjT9XjY55E5voutNsVJnP9Ryec48zW6jW71fGU46QbiDLuXFXXS16zR5dg-9mVi18hXO4WlbPZlHfbuIeaiW83K9qE9Oq7AuQ9tWdIQgVnloFmvTLOrqPjqavf8-3Y_6xgmRYYTXUQqGmGicpRorETOBnSOOEZcx5xKisLDEOQEkEGxRazQWsSaJEpgazbPMkgdoqyiL_BEKhcXcmiTlTnNq0lw7quByZZxpSm2WBSjecFCaHlXcN7dYyja6EEx2TJfAdOmZLkmAdoYpqw5S4yLit_5YBkKPht1-KNdz2SuX9DGfFgzuEmZ9CAheJDEJdTTj2hDFAvTSH6r0eBeFL6iZq6aq5MG3r3KSCpZ6RCwRoNc9kSthB0b17xOADx4ia0S5PaIEhTTj4Y3syP5CqCS4YbA-8I9gRy-GYT_TF7kVedl4moRxTijnAXrYidqwb_DCMXh2MJuPhHDEmPFIsThp4cIZxKSgCgHa3Yjrr2VdwPfdQaL_fUqP_-vfz9G1L-9m8tPB4ccn6Ab26hhT0MhttFWvm_wpeHm1ftZq8k9xy0U7 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_nHqI--P1RPaWKIHh0r03SJAVfVvE4BU9RD86n0CTN3nK77bJtkfOvd9J26_aUE8G30kygmcxM5kcnv0HoeRKGhgtHOSu0CKi2cZBgnAQmDDNqU4ZN0zrhwyE7OKLvj-PjLfRxfRdGLbSaFR1pqCMqHm9eQ583sRse9One0tjW5QXbKyPHwwawOAkwYLqAXELbLIbkfIS2jw4_Tb41d4x4FADAibt_m3-cNzidGhL_30P1xll1vo6y_5l6DV2p82V69j2dzzfOq_0baLleaVumcjquKzXWP86RQP5HVdxE17vc1p-0xngLbWX5bXS57XZ5dge9mph06aqs_UVTwZkFXcuKqZ_Op8VqVp0sSr8qfNNUlfhg2pmvZytdz6ryLjraf_v1zUHQNW8INCO8CmJIBojCSaxwKkImsLXEMmITZm1EUiwMsVaACAA-arTCIlQkSgWmWvEkMeQeGuVFnj1AvjCYGx3F3CpOdZwpS1MI8IwzRalJEg-F602TumM2dw025rJBOILJVikSlCKdUiTx0Mt-yrKl9bhI-LWzhF7QMXI3L4rVVHYOLh3uVIJBPGPGwVDIZImOqKUJV5qkzEPPnB1Jx7mRu6KeaVqXpXz35bOcxILFjpVLeOhFJ2QLt7Vpd0cC9OBougaSOwNJCAp6OLw2V9kFpVJCKgjfBzkarOhpP-xmukK7PCtqJxMxzgnl3EP3W-vu1w1IAEN2CbP5wO4HihmO5LOThrKcAS6G2O-h3bWH_PqsC_S-2zvR33fp4T9JP0JXsfORkIKb7KBRtaqzx5BeVupJFzJ-AkPpcIg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adapting+machine-learning+algorithms+to+design+gene+circuits&rft.jtitle=BMC+bioinformatics&rft.au=Hiscock%2C+Tom+W.&rft.date=2019-04-27&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-2788-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_019_2788_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |