Adapting machine-learning algorithms to design gene circuits

Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), an...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 20; no. 1; pp. 214 - 13
Main Author Hiscock, Tom W.
Format Journal Article
LanguageEnglish
Published London BioMed Central 27.04.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-019-2788-3

Cover

Abstract Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing’s model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. Results We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Conclusions Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology . Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.
AbstractList Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.
Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery.BACKGROUNDGene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery.We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events.RESULTSWe use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events.Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.CONCLUSIONSOur computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.
Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. Results We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Conclusions Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet. Keywords: Gene circuits, Machine learning, Numerical screens
Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing’s model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. Results We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Conclusions Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology . Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.
Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing’s model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. Results We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Conclusions Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.
Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.
Abstract Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing’s model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. Results We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. Conclusions Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.
ArticleNumber 214
Audience Academic
Author Hiscock, Tom W.
Author_xml – sequence: 1
  givenname: Tom W.
  orcidid: 0000-0002-0319-8679
  surname: Hiscock
  fullname: Hiscock, Tom W.
  email: twh27@cam.ac.uk
  organization: Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31029103$$D View this record in MEDLINE/PubMed
BookMark eNqNkluL1DAYhousuAf9Ad7IgDd60TWHNgeQhWHxMLAgeLgOaZp0MrTJmKTq_ntTO-5uFxXpRcvX533bPMlpceS800XxFIJzCBl5FSFiNS8B5CWijJX4QXECKwpLBEF9dOf5uDiNcQcApAzUj4pjDAHiEOCT4vW6lftkXbcapNpap8tey-Cmgew7H2zaDnGV_KrV0XZu1WmnV8oGNdoUHxcPjeyjfnK4nxVf3r75fPm-vPrwbnO5vioVwTSVNUAYN4jXDZIMEIaMwYZgw4kxEEvEWmwMywjjvGpVgxhoMJQMVaqhnLf4rNjMva2XO7EPdpDhWnhpxa-BD52QIVnVa0EhqRpGOMGkrRCjrIZYwcpUnDYKS5K70Nw1ur28_i77_qYQAjFpFbNWkbWKSavAOXQxh_ZjM-hWaZeC7Bd_snzj7FZ0_psgFaPZei54cSgI_uuoYxKDjUr3vXTaj1EgBAmluKIT-vweuvNjcNlvplBeGcIM31KdzKu2zvj8XTWVinXNSI0YZCxT53-g8tXqwap8mIzN80Xg5SKQmaR_pE6OMYrNp49L9tldKTc2fh-uDNAZUMHHGLQRyiaZrJ8c2f6fvuG95P_s0WFjY2Zdp8Ott7-HfgLYIP3n
CitedBy_id crossref_primary_10_1021_acssynbio_0c00129
crossref_primary_10_1042_BST20221542
crossref_primary_10_1080_10408398_2020_1850415
crossref_primary_10_1038_s41540_024_00361_5
crossref_primary_10_1038_s41467_020_18676_2
crossref_primary_10_7554_eLife_92683
crossref_primary_10_1093_synbio_ysaa020
crossref_primary_10_1038_s41467_022_31245_z
crossref_primary_10_7554_eLife_92683_4
crossref_primary_10_1016_j_biotechadv_2022_108069
crossref_primary_10_1098_rsif_2024_0467
crossref_primary_10_1016_j_semcdb_2022_04_009
crossref_primary_10_1021_acssynbio_1c00557
crossref_primary_10_3389_fbloc_2020_606413
crossref_primary_10_1002_ece3_9895
crossref_primary_10_1007_s00521_022_07532_7
crossref_primary_10_3390_biology11091294
crossref_primary_10_1021_acssynbio_4c00307
crossref_primary_10_1021_acssynbio_3c00120
crossref_primary_10_3389_fsybi_2025_1548572
crossref_primary_10_1016_j_compchemeng_2022_107952
crossref_primary_10_1109_JPROC_2021_3134169
crossref_primary_10_1103_PhysRevResearch_6_033208
crossref_primary_10_2139_ssrn_4163144
crossref_primary_10_1038_s41579_020_0372_5
Cites_doi 10.15252/msb.20145882
10.1038/nature02189
10.1126/science.1172005
10.1016/0925-2312(93)90006-O
10.1038/msb.2011.13
10.1371/journal.pcbi.0020051
10.1371/journal.pcbi.1005331
10.1016/j.cell.2008.01.053
10.1073/pnas.1517384113
10.1038/nrg1272
10.1016/j.semcdb.2014.06.012
10.1038/nrg2697
10.1126/science.1127647
10.1038/nature07389
10.1016/j.cell.2005.08.029
10.1016/0893-6080(89)90020-8
10.1016/S0022-2836(02)00994-4
10.1038/35002131
10.1016/j.devcel.2016.01.024
10.1371/journal.pbio.1000049
10.1242/dev.144196
10.1016/j.cels.2016.12.009
10.1152/physrev.1986.66.2.235
10.1016/j.cell.2007.05.026
10.1016/S0022-5193(69)80016-0
10.1038/msb.2010.74
10.1073/pnas.0404782102
10.1201/9781420011432
10.1073/pnas.1508521112
10.1038/35002125
10.1038/msb.2012.31
10.1088/1478-3975/5/2/026009
10.1038/nprot.2014.025
10.1016/S0955-0674(03)00017-6
10.1038/35036627
10.1016/j.cels.2017.06.013
10.1016/j.cell.2014.07.020
10.1126/science.298.5594.824
10.1073/pnas.2133841100
10.1016/j.jmb.2003.09.049
10.1038/nrg2955
10.1038/nature02678
10.1038/nrm2530
10.1038/nrg2398
10.1126/science.275.5302.986
10.1038/nrg2102
10.1016/j.cell.2009.06.013
10.1101/100651
10.1016/j.cell.2007.05.052
10.1371/journal.pone.0116258
10.1371/journal.pcbi.1003290
10.1126/science.1209042
10.1038/nature01061
10.1038/nature09645
10.1073/pnas.0304532101
10.1038/ng881
10.1038/nature14539
10.1016/j.celrep.2014.08.038
10.1002/cfg.82
10.1038/nature07059
10.1038/nrg2775
10.1101/gad.1528707
10.1073/pnas.71.10.4135
10.1371/journal.pcbi.1002589
10.1371/journal.pcbi.1000303
10.1534/genetics.104.027334
10.1126/science.aag0511
10.1126/science.1089072
10.1038/msb4100192
10.1186/s12918-017-0499-9
10.1016/j.cell.2012.08.040
10.1038/nature09333
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-019-2788-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Publicly Available Content Database

PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 13
ExternalDocumentID oai_doaj_org_article_7164b869636d42878513c14f497bc3a6
10.1186/s12859-019-2788-3
PMC6487017
A586528188
31029103
10_1186_s12859_019_2788_3
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: European Molecular Biology Organization
  grantid: EMBO ALTF 606-2018
  funderid: http://dx.doi.org/10.13039/100004410
– fundername: European Molecular Biology Organization
  grantid: EMBO ALTF 606-2018
– fundername: ;
  grantid: EMBO ALTF 606-2018
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c637t-50233b295b2a80682ff3f63f96ff13a28d3ff833b8994dcb280b31a824cb799d3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Tue Oct 14 19:08:33 EDT 2025
Sun Oct 26 03:44:28 EDT 2025
Tue Sep 30 16:56:43 EDT 2025
Thu Oct 02 05:33:54 EDT 2025
Tue Oct 07 05:14:12 EDT 2025
Mon Oct 20 21:56:06 EDT 2025
Mon Oct 20 16:22:25 EDT 2025
Thu Oct 16 15:20:27 EDT 2025
Thu Apr 03 07:00:59 EDT 2025
Wed Oct 01 04:15:32 EDT 2025
Thu Apr 24 23:06:48 EDT 2025
Sat Sep 06 07:27:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Numerical screens
Machine learning
Gene circuits
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-50233b295b2a80682ff3f63f96ff13a28d3ff833b8994dcb280b31a824cb799d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0319-8679
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-019-2788-3
PMID 31029103
PQID 2226962383
PQPubID 44065
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_7164b869636d42878513c14f497bc3a6
unpaywall_primary_10_1186_s12859_019_2788_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6487017
proquest_miscellaneous_2216773477
proquest_journals_2226962383
gale_infotracmisc_A586528188
gale_infotracacademiconefile_A586528188
gale_incontextgauss_ISR_A586528188
pubmed_primary_31029103
crossref_citationtrail_10_1186_s12859_019_2788_3
crossref_primary_10_1186_s12859_019_2788_3
springer_journals_10_1186_s12859_019_2788_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-27
PublicationDateYYYYMMDD 2019-04-27
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-27
  day: 27
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References TS Gardner (2788_CR34) 2000; 403
N Noman (2788_CR50) 2015; 10
B Novak (2788_CR72) 2008; 9
H Jeong (2788_CR13) 2000; 407
H Li (2788_CR54) 2015
E Simon (2788_CR20) 1986; 66
D Ben-Zvi (2788_CR42) 2008; 453
JJ Tyson (2788_CR65) 2003; 15
DE Clyde (2788_CR69) 2003; 426
S Marcand (2788_CR74) 1997; 275
2788_CR77
2788_CR79
DY Rhee (2788_CR7) 2014; 8
J Stricker (2788_CR73) 2008; 456
L Wolpert (2788_CR68) 1969; 25
N Rosenfeld (2788_CR19) 2002; 323
S Mangan (2788_CR71) 2003; 334
X Zhu (2788_CR2) 2007; 21
AE Friedland (2788_CR75) 2009; 324
R Linding (2788_CR12) 2007; 129
AS Khalil (2788_CR31) 2010; 11
S-i Amari (2788_CR55) 1993; 5
Manu (2788_CR29) 2009; 5
S Mukherji (2788_CR30) 2009; 10
S Slomovic (2788_CR76) 2015; 112
AL Barabasi (2788_CR1) 2004; 5
S Palani (2788_CR66) 2011; 7
J Davies (2788_CR32) 2017; 144
Y LeCun (2788_CR53) 2015; 521
P Francois (2788_CR46) 2014; 35
CC Fowlkes (2788_CR24) 2008; 133
2788_CR43
P Francois (2788_CR48) 2004; 101
DK Goode (2788_CR3) 2016; 36
S Mangan (2788_CR9) 2003; 100
R Milo (2788_CR18) 2002; 298
U Stelzl (2788_CR10) 2005; 122
BI Shraiman (2788_CR21) 2005; 102
W Ma (2788_CR41) 2009; 138
T Gregor (2788_CR25) 2007; 130
Manu (2788_CR28) 2009; 7
TJ Perkins (2788_CR44) 2006; 2
L Lopez-Maury (2788_CR8) 2008; 9
U Alon (2788_CR16) 2003; 301
P Francois (2788_CR47) 2008; 5
SS Shen-Orr (2788_CR17) 2002; 31
O Fiehn (2788_CR14) 2001; 2
GE Hinton (2788_CR52) 2006; 313
A Eldar (2788_CR40) 2002; 419
2788_CR58
P Cahan (2788_CR5) 2014; 158
U Alon (2788_CR15) 2007; 8
J Cotterell (2788_CR38) 2010; 6
J Jaeger (2788_CR27) 2004; 430
2788_CR57
2788_CR56
A Crombach (2788_CR45) 2012; 8
RW Smith (2788_CR51) 2017; 11
J Liepe (2788_CR78) 2014; 9
K Hornik (2788_CR60) 1989; 2
C Liu (2788_CR35) 2011; 334
EJ Molinelli (2788_CR59) 2013; 9
J Jaeger (2788_CR26) 2004; 167
M Adler (2788_CR36) 2017; 4
2788_CR62
2788_CR61
JJ Hopfield (2788_CR70) 1974; 71
I Lestas (2788_CR22) 2010; 467
M Uzkudun (2788_CR64) 2015; 11
P Minguez (2788_CR11) 2012; 8
AH Chau (2788_CR39) 2012; 151
2788_CR23
K Plath (2788_CR4) 2011; 12
P Francois (2788_CR49) 2007; 3
F Frohlich (2788_CR63) 2017; 13
SL Brunton (2788_CR67) 2016; 113
MB Elowitz (2788_CR33) 2000; 403
EH Davidson (2788_CR6) 2010; 468
Z Li (2788_CR37) 2017; 5
References_xml – volume: 11
  start-page: 815
  issue: 7
  year: 2015
  ident: 2788_CR64
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20145882
– volume: 426
  start-page: 849
  issue: 6968
  year: 2003
  ident: 2788_CR69
  publication-title: Nature
  doi: 10.1038/nature02189
– volume: 324
  start-page: 1199
  issue: 5931
  year: 2009
  ident: 2788_CR75
  publication-title: Science
  doi: 10.1126/science.1172005
– volume: 5
  start-page: 185
  issue: 4
  year: 1993
  ident: 2788_CR55
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(93)90006-O
– volume: 7
  start-page: 480
  year: 2011
  ident: 2788_CR66
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.13
– volume: 2
  start-page: e51
  issue: 5
  year: 2006
  ident: 2788_CR44
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020051
– volume: 13
  issue: 1
  year: 2017
  ident: 2788_CR63
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005331
– ident: 2788_CR58
– volume: 133
  start-page: 364
  issue: 2
  year: 2008
  ident: 2788_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.053
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 2788_CR67
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1517384113
– volume: 5
  start-page: 101
  issue: 2
  year: 2004
  ident: 2788_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1272
– volume: 35
  start-page: 90
  year: 2014
  ident: 2788_CR46
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2014.06.012
– volume: 10
  start-page: 859
  issue: 12
  year: 2009
  ident: 2788_CR30
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2697
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 2788_CR52
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 456
  start-page: 516
  issue: 7221
  year: 2008
  ident: 2788_CR73
  publication-title: Nature
  doi: 10.1038/nature07389
– volume: 122
  start-page: 957
  issue: 6
  year: 2005
  ident: 2788_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.029
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 2788_CR60
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 323
  start-page: 785
  issue: 5
  year: 2002
  ident: 2788_CR19
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00994-4
– volume: 403
  start-page: 339
  issue: 6767
  year: 2000
  ident: 2788_CR34
  publication-title: Nature
  doi: 10.1038/35002131
– ident: 2788_CR61
– volume: 36
  start-page: 572
  issue: 5
  year: 2016
  ident: 2788_CR3
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2016.01.024
– volume: 7
  issue: 3
  year: 2009
  ident: 2788_CR28
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000049
– volume: 144
  start-page: 1146
  issue: 7
  year: 2017
  ident: 2788_CR32
  publication-title: Development
  doi: 10.1242/dev.144196
– volume: 4
  start-page: 171
  issue: 2
  year: 2017
  ident: 2788_CR36
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.12.009
– volume: 66
  start-page: 235
  issue: 2
  year: 1986
  ident: 2788_CR20
  publication-title: Physiol Rev
  doi: 10.1152/physrev.1986.66.2.235
– volume: 130
  start-page: 141
  issue: 1
  year: 2007
  ident: 2788_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.026
– volume: 25
  start-page: 1
  issue: 1
  year: 1969
  ident: 2788_CR68
  publication-title: J Theor Biol
  doi: 10.1016/S0022-5193(69)80016-0
– volume: 6
  start-page: 425
  year: 2010
  ident: 2788_CR38
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2010.74
– volume: 102
  start-page: 3318
  issue: 9
  year: 2005
  ident: 2788_CR21
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0404782102
– ident: 2788_CR23
  doi: 10.1201/9781420011432
– volume: 112
  start-page: 14429
  issue: 47
  year: 2015
  ident: 2788_CR76
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1508521112
– volume: 403
  start-page: 335
  issue: 6767
  year: 2000
  ident: 2788_CR33
  publication-title: Nature
  doi: 10.1038/35002125
– volume: 8
  start-page: 599
  year: 2012
  ident: 2788_CR11
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2012.31
– volume: 5
  issue: 2
  year: 2008
  ident: 2788_CR47
  publication-title: Phys Biol
  doi: 10.1088/1478-3975/5/2/026009
– volume: 9
  start-page: 439
  issue: 2
  year: 2014
  ident: 2788_CR78
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2014.025
– volume: 15
  start-page: 221
  issue: 2
  year: 2003
  ident: 2788_CR65
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/S0955-0674(03)00017-6
– volume: 407
  start-page: 651
  issue: 6804
  year: 2000
  ident: 2788_CR13
  publication-title: Nature
  doi: 10.1038/35036627
– volume: 5
  start-page: 72
  issue: 1
  year: 2017
  ident: 2788_CR37
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.06.013
– volume: 158
  start-page: 903
  issue: 4
  year: 2014
  ident: 2788_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2014.07.020
– volume: 298
  start-page: 824
  issue: 5594
  year: 2002
  ident: 2788_CR18
  publication-title: Science
  doi: 10.1126/science.298.5594.824
– volume: 100
  start-page: 11980
  issue: 21
  year: 2003
  ident: 2788_CR9
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2133841100
– volume: 334
  start-page: 197
  issue: 2
  year: 2003
  ident: 2788_CR71
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2003.09.049
– volume: 12
  start-page: 253
  issue: 4
  year: 2011
  ident: 2788_CR4
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2955
– ident: 2788_CR62
– volume: 430
  start-page: 368
  issue: 6997
  year: 2004
  ident: 2788_CR27
  publication-title: Nature
  doi: 10.1038/nature02678
– ident: 2788_CR79
– volume: 9
  start-page: 981
  issue: 12
  year: 2008
  ident: 2788_CR72
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2530
– volume: 9
  start-page: 583
  issue: 8
  year: 2008
  ident: 2788_CR8
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2398
– volume: 275
  start-page: 986
  issue: 5302
  year: 1997
  ident: 2788_CR74
  publication-title: Science
  doi: 10.1126/science.275.5302.986
– volume: 8
  start-page: 450
  issue: 6
  year: 2007
  ident: 2788_CR15
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2102
– volume: 138
  start-page: 760
  issue: 4
  year: 2009
  ident: 2788_CR41
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.013
– start-page: 5325
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2015
  ident: 2788_CR54
– ident: 2788_CR56
– ident: 2788_CR43
  doi: 10.1101/100651
– volume: 129
  start-page: 1415
  issue: 7
  year: 2007
  ident: 2788_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.052
– volume: 10
  issue: 1
  year: 2015
  ident: 2788_CR50
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0116258
– volume: 9
  issue: 12
  year: 2013
  ident: 2788_CR59
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003290
– volume: 334
  start-page: 238
  issue: 6053
  year: 2011
  ident: 2788_CR35
  publication-title: Science
  doi: 10.1126/science.1209042
– volume: 419
  start-page: 304
  issue: 6904
  year: 2002
  ident: 2788_CR40
  publication-title: Nature
  doi: 10.1038/nature01061
– volume: 468
  start-page: 911
  issue: 7326
  year: 2010
  ident: 2788_CR6
  publication-title: Nature
  doi: 10.1038/nature09645
– volume: 101
  start-page: 580
  issue: 2
  year: 2004
  ident: 2788_CR48
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0304532101
– volume: 31
  start-page: 64
  issue: 1
  year: 2002
  ident: 2788_CR17
  publication-title: Nat Genet
  doi: 10.1038/ng881
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2788_CR53
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 8
  start-page: 2031
  issue: 6
  year: 2014
  ident: 2788_CR7
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.08.038
– volume: 2
  start-page: 155
  issue: 3
  year: 2001
  ident: 2788_CR14
  publication-title: Comp Funct Genomics
  doi: 10.1002/cfg.82
– volume: 453
  start-page: 1205
  issue: 7199
  year: 2008
  ident: 2788_CR42
  publication-title: Nature
  doi: 10.1038/nature07059
– volume: 11
  start-page: 367
  issue: 5
  year: 2010
  ident: 2788_CR31
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2775
– volume: 21
  start-page: 1010
  issue: 9
  year: 2007
  ident: 2788_CR2
  publication-title: Genes Dev
  doi: 10.1101/gad.1528707
– volume: 71
  start-page: 4135
  issue: 10
  year: 1974
  ident: 2788_CR70
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.71.10.4135
– volume: 8
  issue: 7
  year: 2012
  ident: 2788_CR45
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002589
– ident: 2788_CR57
– volume: 5
  issue: 3
  year: 2009
  ident: 2788_CR29
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000303
– volume: 167
  start-page: 1721
  issue: 4
  year: 2004
  ident: 2788_CR26
  publication-title: Genetics
  doi: 10.1534/genetics.104.027334
– ident: 2788_CR77
  doi: 10.1126/science.aag0511
– volume: 301
  start-page: 1866
  issue: 5641
  year: 2003
  ident: 2788_CR16
  publication-title: Science
  doi: 10.1126/science.1089072
– volume: 3
  start-page: 154
  year: 2007
  ident: 2788_CR49
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100192
– volume: 11
  start-page: 118
  issue: 1
  year: 2017
  ident: 2788_CR51
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-017-0499-9
– volume: 151
  start-page: 320
  issue: 2
  year: 2012
  ident: 2788_CR39
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.040
– volume: 467
  start-page: 174
  issue: 7312
  year: 2010
  ident: 2788_CR22
  publication-title: Nature
  doi: 10.1038/nature09333
SSID ssj0017805
Score 2.4360063
Snippet Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate...
Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell...
Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate...
Abstract Background Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 214
SubjectTerms Algorithms
Artificial intelligence
Bioinformatics
Biological computing
Biology
Biomedical and Life Sciences
Cell cycle
Circuit design
Circuits
Complex systems
Computation
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Computer simulation
Data mining
Design
Dynamical systems
Gene circuits
Gene expression
Genes
Genetic algorithms
Insects
Learning algorithms
Life Sciences
Machine learning
Machine Learning and Artificial Intelligence in Bioinformatics
Mathematical models
Methodology
Methodology Article
Methods
Microarrays
Numerical screens
Optimization
Optimization theory
Oscillators
Parameter estimation
Proteins
Social networks
Synthetic biology
Task complexity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIOqDeLfuKlUEwaVsm6S5gC-juKyCPqgL-xZyaWYHZtth2kH23-9Jm6lThd0XXycn0Jx8J_kOOfMdhN7KPHdcBMlZYUVGrS8zibHMXJ5X1GuGXd864dt3dnJKv56VZzutvkJN2CAPPDjuKPB5IxjghLlA74EhEFtQTyU3luhebDsXcptMxfeDoNQf3zALwY7aIui0QdosMww5X0Ymt1Av1v_vkbxzJ_1dLzk-mt5Ddzb1Sl_-1svlzr10_ADdj4QynQ0LeYhuVfUjdHtoMXn5GH2YOb0Kpc3pRV82WWWxT8Q81ct5s1505xdt2jWp60s5UsBTldrF2m4WXfsEnR5__vXpJIsdEzLLCO-yEm5gYrAsDdYiZwJ7TzwjXjLvC6KxcMR7ASaQZVFnDRa5IYUWmFrDpXTkKdqrm7p6jlLhMHe2KLk3nNqyMp5qOFUZZ4ZSJ2WC8q0HlY1y4qGrxVL1aYVganC6Aqer4HRFEvR-nLIatDSuM_4YtmU0DDLY_Q8ADhXBoW4CR4LehE1VQeiiDpU0c71pW_Xl5w81KwUrgxSWSNC7aOQbWIHV8Y8J4IegjTWxPJhYQiTa6fAWOyqeBK0C_gXfB8QIVvR6HA4zQ3VbXTWbYFMwzgnlPEHPBqiN6wb6jYHSwWw-AeHEMdORenHe64QzSEYhFBJ0uIXrn8-6xu-HI6Jv3qUX_2OX9tFdHEIzpxCdB2ivW2-ql0D1OvOqj-orkPdIUA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEF_qFdF-EF_VaJUogmAJTXY3-wBFrtJSBQ-pFvpt2exmrwfX5LzkKP3v3cklaaNwfs3OQnZ2npnJbxB6J-PYcgGQs8KIiBqXRhJjGdk4zqnTDNtmdML3CTs5o9_O0_MtNOn-hYG2ys4mNobalga-kR94P8ak99WCfF78jmBqFFRXuxEauh2tYD81EGN30DYGZKwR2j48mvw47esKgODf1jYTwQ6qBPDbfDotI-xzwYgMvFMD4v-vqb7lq_7uo-yLqTvo3qpY6OsrPZ_f8lfHD9GDNtAMx2vJeIS28uIxursePXn9BH0cW72AlufwsmmnzKN2fsQ01POpP3h9cVmFdRnapsUj9HKWh2a2NKtZXT1FZ8dHv76cRO0khcgwwuso9Z6ZZFimGdYiZgI7RxwjTjLnEqKxsMQ54Ul89kWtybCIM5JoganJuJSW7KJRURb5cxQKi7k1ScpdxqlJ88xR7a0t4yyj1EoZoLjjoDItzDhMu5irJt0QTK2ZrjzTFTBdkQB96Lcs1hgbm4gP4Vp6QoDHbh6Uy6lqtU1BEpgJLy-EWcgJfVhJTEIdlTwzRLMAvYVLVQCAUUCHzVSvqkp9_XmqxqlgKUBkiQC9b4lc6U9gdPvDgucDYGYNKPcGlF5DzXC5kx3VWohK3chzgN70y7ATut6KvFwBTcI4J5TzAD1bi1p_bh-WYx_q-d18IIQDxgxXitlFgx_OfJLqVSFA-5243rzWBr7v9xL9_1t6sfnIL9F9DEoXU693e2hUL1f5Kx_c1dnrVmP_AAUiR_U
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96IuqD-G31lCqC4FFskzQf4Mt6eJyCPqgH9xby0ewt7LXLtkXuv3fSzdatyomvzaQkk5nMDDP5DUKvZJ47LgLkrLAio9aXmcRYZi7PK-o1w25onfD5Czs-oZ9Oy9MIFh3ewuzm7wvB3rZFQFiDgFdmGKK1jFxF18BGsSEvyw7HhEGA5o9Jy79Om5idAZ3_zzt4xwj9XiA5ZklvoRt9vdIXP_RyuWOIju6g29GDTGebI7-LrlT1PXR901Py4j56N3N6FWqZ0_OhTrLKYmOIeaqX82a96M7O27RrUjfUbqQgQFVqF2vbL7r2ATo5-vD98DiLLRIyywjvshJMLjFYlgZrkTOBvSeeES-Z9wXRWDjivQASCKuoswaL3JBCC0yt4VI68hDt1U1dPUapcJg7W5TcG05tWRlPNVyjjDNDqZMyQfmWg8pG_PDQxmKphjhCMLVhugKmq8B0RRL0Zpyy2oBnXEb8PhzLSBhwr4cPIA4qqpEK0Z0RDG4N5kKwB_4isQX1VHJjiWYJehkOVQVkizqUzsx137bq47evalYKVgbsK5Gg15HIN7ADq-NLBOBDAMOaUO5PKEH17HR4Kzsqqn6rwOGC9YEnBDt6MQ6HmaGcra6aPtAUjHNCOU_Qo42ojfsGfxuDDwez-UQIJ4yZjtSLswEYnEH0CaqQoIOtuP5a1iV8Pxgl-t-n9OS__v0U3cRBB3MKariP9rp1Xz0DJ64zzwf1_QnGUjoF
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_nHqI--P1RPaWKIHh0r03SJAVfVvE4BU9RD86n0CTN3nK77bJtkfOvd9J26_aUE8G30kygmcxM5kcnv0HoeRKGhgtHOSu0CKi2cZBgnAQmDDNqU4ZN0zrhwyE7OKLvj-PjLfRxfRdGLbSaFR1pqCMqHm9eQ583sRse9One0tjW5QXbKyPHwwawOAkwYLqAXELbLIbkfIS2jw4_Tb41d4x4FADAibt_m3-cNzidGhL_30P1xll1vo6y_5l6DV2p82V69j2dzzfOq_0baLleaVumcjquKzXWP86RQP5HVdxE17vc1p-0xngLbWX5bXS57XZ5dge9mph06aqs_UVTwZkFXcuKqZ_Op8VqVp0sSr8qfNNUlfhg2pmvZytdz6ryLjraf_v1zUHQNW8INCO8CmJIBojCSaxwKkImsLXEMmITZm1EUiwMsVaACAA-arTCIlQkSgWmWvEkMeQeGuVFnj1AvjCYGx3F3CpOdZwpS1MI8IwzRalJEg-F602TumM2dw025rJBOILJVikSlCKdUiTx0Mt-yrKl9bhI-LWzhF7QMXI3L4rVVHYOLh3uVIJBPGPGwVDIZImOqKUJV5qkzEPPnB1Jx7mRu6KeaVqXpXz35bOcxILFjpVLeOhFJ2QLt7Vpd0cC9OBougaSOwNJCAp6OLw2V9kFpVJCKgjfBzkarOhpP-xmukK7PCtqJxMxzgnl3EP3W-vu1w1IAEN2CbP5wO4HihmO5LOThrKcAS6G2O-h3bWH_PqsC_S-2zvR33fp4T9JP0JXsfORkIKb7KBRtaqzx5BeVupJFzJ-AkPpcIg
  priority: 102
  providerName: Unpaywall
Title Adapting machine-learning algorithms to design gene circuits
URI https://link.springer.com/article/10.1186/s12859-019-2788-3
https://www.ncbi.nlm.nih.gov/pubmed/31029103
https://www.proquest.com/docview/2226962383
https://www.proquest.com/docview/2216773477
https://pubmed.ncbi.nlm.nih.gov/PMC6487017
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-019-2788-3
https://doaj.org/article/7164b869636d42878513c14f497bc3a6
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2IQQ8IL4JjCogJCSmQGI7tiOBUFatjEqrpo1K5clynLir1CWlaQX97zmnabbANMRLIsXnyD7f-e7iy-8QehP5fsqFhZwVWnhUm9CLMI681PczahTDaVU64XjAjoa0PwpHW2hT3qpmYHltaGfrSQ3n0_e_fqw-g8J_qhResA9lYFHYICiOPAwRnUe20S4YqshWcjiml4cKFr6_-tmIBx5EOmF9yHntK1pmqkLz_3vPvmK0_kyobE5V76Lby3ymVj_VdHrFcPXuo3u1x-nGaxF5gLay_CG6ta5BuXqEPsapmtncZ_eiyqvMvLqQxNhV03ExnyzOL0p3UbhplevhgsBlrp7M9XKyKB-jYe_wW_fIq0sqeJoRvvBCMNEkwVGYYCV8JrAxxDBiImZMQBQWKTFGAAmEYTTVCRZ-QgIlMNUJj6KUPEE7eZFnz5ArUsxTHYTcJJzqMEsMVbDtMs4SStMocpC_4aDUNd64LXsxlVXcIZhcM10C06VluiQOetd0ma3BNm4iPrDL0hBanOzqQTEfy1rtpI0GE8Fgl2GpDQ7BvyQ6oIZGPNFEMQe9tosqLRJGblNtxmpZlvLr2amMQ8FCi5UlHPS2JjIFzECr-s8F4IMFz2pR7rUoQVV1u3kjO3Ij6RIcNBgfeE4wo1dNs-1p09_yrFhamoBxTijnDnq6FrVm3uCfY_D5oDdvCWGLMe2WfHJeAYkziFZBLRy0vxHXy2HdwPf9RqL_vUrP_2dJX6A72KqgT0EL99DOYr7MXoLPt0g6aJuPOFxF70sH7cZx_6wP94PDwckpPO2ybqf6mtKpNB5ahoOT-PtvLZpSaA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBo8IO4EBgQEQmKKltiO7UggVC5Tyy4PsEl9M4kdd5W6pDSppv4pfiPHuW0BqTztNT6O4uNzjY-_g9DryPc1FxZyVijhUWVCL8I48rTvp9TEDOuqdcLhERue0G_jcLyBfrd3YWxZZWsTK0Otc2X_ke-CH2MR-GpBPs5_ebZrlD1dbVto1GKxn67OIWUrPoy-wP6-wXjv6_Hnodd0FfAUI7z0QvBSJMFRmOBY-ExgY4hhxETMmIDEWGhijAASyESoVgkWfkKCWGCqEh5FmsB7r6HrlIAtAf3h4y7BC2x_gObkNBBstwgsOhwk65GHIdP0SM_3VS0C_nUElzzh31Wa3VHtLbS1zObx6jyezS55w7076HYTxrqDWu7uoo00u4du1I0tV_fR-4GO57ag2j2rijVTr-lOMXHj2QTYWp6eFW6Zu7oqIHFBilNXTRdqOS2LB-jkSjj6EG1meZY-Rq7QmGsVhNwknKowTQyNwZYzzhJKdRQ5yG85KFUDYm57acxklcwIJmumS2C6tEyXxEHvuinzGsFjHfEnuy0doQXfrh7ki4lsdFnaFDMRII2EaZtxQtBKVEANjXiiSMwc9MpuqrTwGpmt35nEy6KQox_f5SAULLQAXMJBbxsik8MKVNxchwA-WESuHuV2jxL0X_WHW9mRjf0p5IW2OOhlN2xn2pq6LM2XliZgnBPKuYMe1aLWrRuCfgyBJMzmPSHsMaY_kk1PK3RyBikwqIKDdlpxvfisNXzf6ST6_7v0ZP2SX6Ct4fHhgTwYHe0_RTexVUCfgg5uo81ysUyfQRhZJs8r3XXRz6s2Fn8A_mB9cg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA964uuD-LZ6ahVBuKNcm6RJCn5ZV5c7H4eoB_ct5NHsLey1y7ZF7r930nbrVeXEr82kJJOZzAwz-Q1Cr7I4tlx4yFlhRESNS6MM4yyycZxTpxi2beuEz4ds_4h-OE6P-z6n1abafZOS7N40eJSmot5bWdepuGB7VeJx1yAMziIMMVxELqMrFIybb2EwZdMhjeAB-_tU5l-njYxRi9n_5818zjT9XjY55E5voutNsVJnP9Ryec48zW6jW71fGU46QbiDLuXFXXS16zR5dg-9mVi18hXO4WlbPZlHfbuIeaiW83K9qE9Oq7AuQ9tWdIQgVnloFmvTLOrqPjqavf8-3Y_6xgmRYYTXUQqGmGicpRorETOBnSOOEZcx5xKisLDEOQEkEGxRazQWsSaJEpgazbPMkgdoqyiL_BEKhcXcmiTlTnNq0lw7quByZZxpSm2WBSjecFCaHlXcN7dYyja6EEx2TJfAdOmZLkmAdoYpqw5S4yLit_5YBkKPht1-KNdz2SuX9DGfFgzuEmZ9CAheJDEJdTTj2hDFAvTSH6r0eBeFL6iZq6aq5MG3r3KSCpZ6RCwRoNc9kSthB0b17xOADx4ia0S5PaIEhTTj4Y3syP5CqCS4YbA-8I9gRy-GYT_TF7kVedl4moRxTijnAXrYidqwb_DCMXh2MJuPhHDEmPFIsThp4cIZxKSgCgHa3Yjrr2VdwPfdQaL_fUqP_-vfz9G1L-9m8tPB4ccn6Ab26hhT0MhttFWvm_wpeHm1ftZq8k9xy0U7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_nHqI--P1RPaWKIHh0r03SJAVfVvE4BU9RD86n0CTN3nK77bJtkfOvd9J26_aUE8G30kygmcxM5kcnv0HoeRKGhgtHOSu0CKi2cZBgnAQmDDNqU4ZN0zrhwyE7OKLvj-PjLfRxfRdGLbSaFR1pqCMqHm9eQ583sRse9One0tjW5QXbKyPHwwawOAkwYLqAXELbLIbkfIS2jw4_Tb41d4x4FADAibt_m3-cNzidGhL_30P1xll1vo6y_5l6DV2p82V69j2dzzfOq_0baLleaVumcjquKzXWP86RQP5HVdxE17vc1p-0xngLbWX5bXS57XZ5dge9mph06aqs_UVTwZkFXcuKqZ_Op8VqVp0sSr8qfNNUlfhg2pmvZytdz6ryLjraf_v1zUHQNW8INCO8CmJIBojCSaxwKkImsLXEMmITZm1EUiwMsVaACAA-arTCIlQkSgWmWvEkMeQeGuVFnj1AvjCYGx3F3CpOdZwpS1MI8IwzRalJEg-F602TumM2dw025rJBOILJVikSlCKdUiTx0Mt-yrKl9bhI-LWzhF7QMXI3L4rVVHYOLh3uVIJBPGPGwVDIZImOqKUJV5qkzEPPnB1Jx7mRu6KeaVqXpXz35bOcxILFjpVLeOhFJ2QLt7Vpd0cC9OBougaSOwNJCAp6OLw2V9kFpVJCKgjfBzkarOhpP-xmukK7PCtqJxMxzgnl3EP3W-vu1w1IAEN2CbP5wO4HihmO5LOThrKcAS6G2O-h3bWH_PqsC_S-2zvR33fp4T9JP0JXsfORkIKb7KBRtaqzx5BeVupJFzJ-AkPpcIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adapting+machine-learning+algorithms+to+design+gene+circuits&rft.jtitle=BMC+bioinformatics&rft.au=Hiscock%2C+Tom+W.&rft.date=2019-04-27&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-2788-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_019_2788_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon