ODTbrain: a Python library for full-view, dense diffraction tomography
Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions,...
Saved in:
| Published in | BMC bioinformatics Vol. 16; no. 1; p. 367 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
04.11.2015
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-015-0764-0 |
Cover
| Abstract | Background
Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far.
Results
We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells.
Conclusion
The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language. |
|---|---|
| AbstractList | Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far.BACKGROUNDAnalyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far.We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells.RESULTSWe present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells.The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.CONCLUSIONThe present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language. Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language. Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. Results We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. Conclusion The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language. Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language. Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. Results We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. Conclusion The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language. Keywords: Refractive index, Single-cell analysis, Diffraction tomography, Backprojection, Backpropagation, Rytov, Born, Radon Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. Results We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. Conclusion The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language. |
| ArticleNumber | 367 |
| Audience | Academic |
| Author | Müller, Paul Guck, Jochen Schürmann, Mirjam |
| Author_xml | – sequence: 1 givenname: Paul surname: Müller fullname: Müller, Paul email: paul.mueller@biotec.tu-dresden.de organization: Biotechnology Center of the TU Dresden – sequence: 2 givenname: Mirjam surname: Schürmann fullname: Schürmann, Mirjam organization: Biotechnology Center of the TU Dresden – sequence: 3 givenname: Jochen surname: Guck fullname: Guck, Jochen organization: Biotechnology Center of the TU Dresden |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26537417$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkltrFDEYhoNU7EF_gDcy4I2CU3OYJDNeCKVaLRQqWq9DJofZlGyyTWZa99-bZVe7W1QkFwnJ834JT75DsBdiMAA8R_AYoZa9zQi3tKshojXkrKnhI3CAGo5qjCDd21rvg8OcryFEvIX0CdjHjBLeIH4Azi4_XPVJuvCuktWX5TiLofKu7KRlZWOq7OR9fevM3ZtKm5BNpZ21SarRFXCM8zgkuZgtn4LHVvpsnm3mI_D97OPV6ef64vLT-enJRa0Y4WNNIUa21b3GVFnNiLKyk7LjHBsE-95AyjrcM94zgkjLtNQakkK3SHGCTU-OAF7XncJCLu-k92KR3Ly8ViAoVlLEWoooUsRKioAl9H4dWkz93GhlwpjkfTBKJ3ZPgpuJId6KhpGmQ7wUeLUpkOLNZPIo5i4r470MJk5ZFATxDnNICvryAXodpxSKk0LxjrUUke6eGqQ3wgUby71qVVScNA3vOo4hLdTxH6gytJk7VVrBurK_E3i9EyjMaH6Mg5xyFuffvu6yL7al_LbxqzUKgNaASjHnZOx_meYPMsqNctUr5eXO_zO5-dhcbgmDSVve_hr6CTsn6c0 |
| CitedBy_id | crossref_primary_10_1039_C8TB01421C crossref_primary_10_1002_jbio_201700145 crossref_primary_10_1002_jbio_201800095 crossref_primary_10_1137_22M1474382 crossref_primary_10_7567_JJAP_57_09SB03 crossref_primary_10_1364_OE_26_010729 crossref_primary_10_3390_polym10101055 crossref_primary_10_1364_AO_56_009247 crossref_primary_10_1364_OE_413230 crossref_primary_10_1002_lpor_202200237 crossref_primary_10_1038_s41377_019_0195_1 crossref_primary_10_1080_2331205X_2021_2012888 |
| Cites_doi | 10.1002/jbio.201200022 10.1137/1.9780898719277 10.1364/AO.37.002996 10.1364/JOSAA.25.001772 10.1016/0030-4018(69)90052-2 10.1016/j.cpc.2009.11.008 10.1103/PhysRevE.83.026701 10.1364/OL.37.002784 10.1364/OE.14.007005 10.1364/AO.34.006575 10.1364/AO.51.007934 10.1364/JOSA.47.000545 10.1364/OE.22.005731 10.1109/TMTT.1984.1132783 10.1364/AO.41.007437 10.1364/AO.51.008216 10.1177/016173468200400404 10.1146/annurev.bioeng.6.040803.140210 |
| ContentType | Journal Article |
| Copyright | Müller et al. 2015 COPYRIGHT 2015 BioMed Central Ltd. Copyright BioMed Central 2015 |
| Copyright_xml | – notice: Müller et al. 2015 – notice: COPYRIGHT 2015 BioMed Central Ltd. – notice: Copyright BioMed Central 2015 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12859-015-0764-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) ProQuest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| ExternalDocumentID | 10.1186/s12859-015-0764-0 PMC4634917 4016190911 A447997205 26537417 10_1186_s12859_015_0764_0 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust – fundername: Medical Research Council |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c637t-5021f8dbd25cfd63cfa9aa9772e10bbe05692b67b631386dadd03bd281c732eb3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Sun Oct 26 03:15:59 EDT 2025 Tue Sep 30 16:34:10 EDT 2025 Fri Sep 05 10:59:48 EDT 2025 Tue Oct 07 05:31:56 EDT 2025 Mon Oct 20 22:34:11 EDT 2025 Mon Oct 20 16:31:48 EDT 2025 Thu Oct 16 14:30:15 EDT 2025 Mon Jul 21 06:03:39 EDT 2025 Wed Oct 01 04:15:26 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Sat Sep 06 07:27:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Backpropagation Single-cell analysis Radon Refractive index Born Backprojection Rytov Diffraction tomography |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c637t-5021f8dbd25cfd63cfa9aa9772e10bbe05692b67b631386dadd03bd281c732eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-015-0764-0 |
| PMID | 26537417 |
| PQID | 1779685139 |
| PQPubID | 44065 |
| ParticipantIDs | unpaywall_primary_10_1186_s12859_015_0764_0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4634917 proquest_miscellaneous_1731792703 proquest_journals_1779685139 gale_infotracmisc_A447997205 gale_infotracacademiconefile_A447997205 gale_incontextgauss_ISR_A447997205 pubmed_primary_26537417 crossref_primary_10_1186_s12859_015_0764_0 crossref_citationtrail_10_1186_s12859_015_0764_0 springer_journals_10_1186_s12859_015_0764_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-11-04 |
| PublicationDateYYYYMMDD | 2015-11-04 |
| PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2015 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | L Boyde (764_CR15) 2011; 83 J Sharpe (764_CR3) 2004; 6 TC Wedberg (764_CR10) 1995; 34 SY Wu (764_CR18) 2014 F Charrière (764_CR4) 2006; 14 AF Oskooi (764_CR14) 2010; 181 A Behrooz (764_CR25) 2012; 51 MA Herráez (764_CR12) 2002; 41 JW Su (764_CR24) 2013; 6 WJ Choi (764_CR20) 2012; 37 M Frigo (764_CR13) 1998 SJ LaRoque (764_CR23) 2008; 25 R Barer (764_CR1) 1957; 47 764_CR19 B Chen (764_CR11) 1998; 37 S Vertu (764_CR22) 2009; 7 AC Kak (764_CR5) 2001 J Kostencka (764_CR17) 2014; 22 M Slaney (764_CR7) 1984; 32 E Wolf (764_CR8) 1969; 1 AJ Devaney (764_CR9) 1982; 4 764_CR6 M Schürmann (764_CR2) 2015 L Boyde (764_CR16) 2012; 51 764_CR21 |
| References_xml | – ident: 764_CR6 – volume: 6 start-page: 416 issue: 5 year: 2013 ident: 764_CR24 publication-title: J Biophoton doi: 10.1002/jbio.201200022 – volume-title: Principles of Computerized Tomographic Imaging year: 2001 ident: 764_CR5 doi: 10.1137/1.9780898719277 – volume: 37 start-page: 2996 issue: 14 year: 1998 ident: 764_CR11 publication-title: Appl Opt doi: 10.1364/AO.37.002996 – volume: 25 start-page: 1772 issue: 7 year: 2008 ident: 764_CR23 publication-title: J Opt Soc Am A doi: 10.1364/JOSAA.25.001772 – volume: 1 start-page: 153 issue: 4 year: 1969 ident: 764_CR8 publication-title: Opt Commun doi: 10.1016/0030-4018(69)90052-2 – ident: 764_CR21 – volume: 181 start-page: 687 year: 2010 ident: 764_CR14 publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2009.11.008 – volume: 83 start-page: 26701 issue: 2 year: 2011 ident: 764_CR15 publication-title: Phys Rev E doi: 10.1103/PhysRevE.83.026701 – volume: 37 start-page: 2784 issue: 14 year: 2012 ident: 764_CR20 publication-title: Opt Lett doi: 10.1364/OL.37.002784 – volume: 14 start-page: 7005 issue: 16 year: 2006 ident: 764_CR4 publication-title: Opt Express doi: 10.1364/OE.14.007005 – volume: 34 start-page: 6575 issue: 28 year: 1995 ident: 764_CR10 publication-title: Appl Opt doi: 10.1364/AO.34.006575 – volume: 51 start-page: 7934 issue: 33 year: 2012 ident: 764_CR16 publication-title: Appl Opt doi: 10.1364/AO.51.007934 – volume: 47 start-page: 545 issue: 6 year: 1957 ident: 764_CR1 publication-title: JOSA doi: 10.1364/JOSA.47.000545 – volume: 22 start-page: 5731 issue: 5 year: 2014 ident: 764_CR17 publication-title: Opt Express doi: 10.1364/OE.22.005731 – volume-title: Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference On, vol. 3 year: 1998 ident: 764_CR13 – volume: 32 start-page: 860 issue: 8 year: 1984 ident: 764_CR7 publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.1984.1132783 – volume: 41 start-page: 7437 issue: 35 year: 2002 ident: 764_CR12 publication-title: Appl Opt doi: 10.1364/AO.41.007437 – volume: 51 start-page: 8216 issue: 34 year: 2012 ident: 764_CR25 publication-title: Appl Opt doi: 10.1364/AO.51.008216 – volume: 7 start-page: 22 issue: 1 year: 2009 ident: 764_CR22 publication-title: Central Eur J Phys – ident: 764_CR19 – volume-title: Investigation of autofocus algorithms for Brightfield microscopy of Unstained cells year: 2014 ident: 764_CR18 – volume: 4 start-page: 336 issue: 4 year: 1982 ident: 764_CR9 publication-title: Ultrason Imaging doi: 10.1177/016173468200400404 – volume: 6 start-page: 209 issue: 1 year: 2004 ident: 764_CR3 publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev.bioeng.6.040803.140210 – volume-title: Biophysical Methods in Cell Biology. Methods in Cell Biology, vol. 125 year: 2015 ident: 764_CR2 |
| SSID | ssj0017805 |
| Score | 2.333127 |
| Snippet | Background
Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner... Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a... Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 367 |
| SubjectTerms | Algorithms Analysis Benchmarks Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer Simulation image analysis and data visualization Imaging Imaging, Three-Dimensional Life Sciences Microarrays Programming Languages Python (Programming language) Radon Refractometry Software Time Factors Tomography Tomography - methods |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDLfGTQh4QHxTGKggJCS2am2SJi0SQgN2Gkgc09ikvUVpm7JJR3usd0L332Nf03KdxHiOozaO49ix_TPAK1kayYvIBioRFGY0SZCUtgxSTuhuwrJQUYHz14k8OBFfTuPTDZh0tTCUVtnpxJWiLuqc3sh3I6VSieYBT9_PfgXUNYqiq10LDeNaKxTvVhBj12CTETLWCDY_7E8Oj_q4AiH4u9hmlMjdJiL8NnSn4wD9eRGEg9vpso5eu6QuJ1D2UdRbcGNRzczyt5lO1y6q8R247SxMf68VibuwYat7cL3tObm8D-Nvn44z6gvx1jf-4ZKgA3z3lOOjAevTe3xAvNjxUSU11qcWKhdt-YM_r386iOsHcDLeP_54ELhmCkEuuZoHMV7mZVJkBYvzspA8L01qDFp_zEZhllk0hFKWSZVJHuE-Faj3Qo7USZQrztDlfgijqq7sY_AFy0OVMiO4QWcKXaYsKlKThTbi1hgTeRB2TNS5QxqnhhdTvfI4Eqlbvmvkuya-69CDN_2UWQuzcRXxS9oZTfAVFeXH_DCLptGfvx_pPSEUlQKHsQevHVFZ48dz48oNcAmEeDWg3BpQ4vnKh8OdAGh3vhv9Vxo9eNEP00zKWatsvSAatM1ShirVg0etvPRrYzLmaMspD9RAknoCQv0ejlTnZyv0byG5SGnmdidza7_1b5Zt92L5fwY_uXrJT-EmoyNDj-tiC0bzi4V9hqbZPHvuztsfmTI0Ew priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEA_SIuoH8e1qlSiCYA1uHpts_FaqRxV8oC30W0h2s61w7pXuHeX-e2duc8tt8YGfM9nHZCYzk8n8hpAXuvFa1jwyUypMM_qSlU1smJWI7qaiyA0WOH_6rA-O1Mfj4jiBRWMtzGb-npf6TccRYQ0C3oJBxK0YROfbYKP0Ki-r94eEAULzp6Tlb6eNzM7lzXfD-ly-GTmkR2-Qa4v2zC8v_HS6YYEmt8jN5DrSvX6tb5Mrsb1DrvbNJJd3yeTLu8OADR_eUk-_LhETgKYzGgqeKcWDdoaJgNcU9pouUuyNct7XNdD57GfCrr5HjibvD_cPWOqSwCotzZwVYKWbsg61KKqm1rJqvPUe3DoReR5CBA_HiqBN0JLDAtSwoeUSqEteGSkglr5PttpZGx8SqkSVGyu8kh6iJIiFAq-tD3nkMnrveUbyNRNdlSDEsZPF1K1CiVK7nu8O-O6Q7y7PyKthylmPn_E34ue4Mg5xKVq8-HLiF13nPnz_5vaUMljjmxcZeZmImhm8vPKpjgB-AaGsRpQ7I0pQnGo8vBYAlxS3c9wYq8ELlTYjz4ZhnImX0do4WyANOF1WwF6ZkQe9vAz_JnQhwUkzGTEjSRoIEM57PNL-OF3BeistlcWZu2uZ2_isP7NsdxDLfzP40X89-zG5LlCD8BBd7ZCt-fkiPgEXbB6erpTvF1hiJes priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9NnRDwwPdHYKCAkJAY6ZLYsRPeKqAaSGwTrNL2ZNmJA9O6pFpbofLXc9e4UVPxISTeKvms1Jfz-Xc53-8AXohSC1ZENpAppzSjToO0tGWQMWJ34zYOJRU4fzoQ-yP-8SQ52YLDVS2MucjNWe1IQ4mouL9ehj5e-m78kZ_vTYqy2fKp2JtGxMOGYXESYFzOA4zht0WC4LwH26ODo8HpssZIRgEGOInLbf5yXud02vTRa4fU5gXKNot6Ha7Oq4lefNfj8dpBNbwJk9USm_sp5_35zPTzHxvsj_9RB7fghgO1_qCxwtuwZas7cKVpc7m4C8PDd8eGWlG88bV_tCC2At99PfLx6T6lAAJKUbz20QtOrU9dWy6bigt_Vl84Vu17MBq-P367H7j-DUEumJwFCeKHMi1MESd5WQiWlzrTGgFnbKPQGIvYK4uNkEawCE2jQFcbMpROo1yyGKP8-9Cr6so-BJ_HeSizWHOmMX7DKM1ERaZNaCNmtdaRB-HqvanckZtTj42xWgY5qVCNehSqR5F6VOjBq3bKpGH2-JPwczIGRYwZFV3J-arn06n68OWzGnAuqfo4TDx46YTKmt6PdhUOuAQi2epI7nQkcUvn3eGVzSnnUqYqkjITiI9Z5sGzdphm0jW5ytZzkkE4mMXoxT140Jhou7ZYJAzho_RAdoy3FSCi8e5IdfZtSTjOBeMZzdxdmfna3_q9ynbbnfB3BT_6J-nHcC0mQ6fP-3wHerPLuX2C4HBmnroN_xMX_1xf priority: 102 providerName: Unpaywall |
| Title | ODTbrain: a Python library for full-view, dense diffraction tomography |
| URI | https://link.springer.com/article/10.1186/s12859-015-0764-0 https://www.ncbi.nlm.nih.gov/pubmed/26537417 https://www.proquest.com/docview/1779685139 https://www.proquest.com/docview/1731792703 https://pubmed.ncbi.nlm.nih.gov/PMC4634917 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-015-0764-0 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals at publisher websites customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rj9MwDLfuIQR8QLwpHFNBCCSOQNukSYuE0Bg3jkk3prubND5VaZsC0uh2ewj232O3XVlPx-PLJi3Otrh2bMfxzwBPZKYlT13DVCAozagDFmQmYyEndDdhPEdRgfNRXx4ORW_kj7ZgnT2vGDi_MLSjflLD2fjlz7PVW1T4N4XCB_LV3CUUNgyKfYZRuWDO0-kZo75SlH-tmmxswy7arpCaOxyJ33kGQvQv6o-UyzD48au854Xf2rBc5_fvDQN2_nJlnWG9CpeX-VSvfujxeMOIda_Dtcr7tNuluNyALZPfhEtlP8rVLeh-en8aU8-I17a2ByuCFbCrYx4bnVubzuoZ5RJe2LhdzY1N7VVmZWmEvZh8r-Cvb8Owe3DaOWRVowWWSK4WzEdDnwVpnHp-kqWSJ5kOtUbP0DOuE8cGnaTQi6WKJXfxGaa4JzocqQM3UdzDcPwO7OST3NwDW3iJo0JPC64x0MJwKnbTUMeOcbnRWrsWOGsmRkmFQk7NMMZREY0EMir5HiHfI-J75FjwvJ4yLSE4_kb8mJ5MRNAWOd2d-aKX83n08eQ4aguhqEzY8S14VhFlE_zxRFelCLgEQsNqUO41KFH3kubwWgCitehGrlKhREeWhxY8qodpJt1ny81kSTTot4UebrcW3C3lpV6bJ32Ofp6yQDUkqSYgRPDmSP7ta4EMLiQXIc3cX8vcxt_6M8v2a7H8N4Pv_8eaHsAVj_SGTt_FHuwsZkvzEH23RdyCbTVS-Bp0P7Rgt93unfTw_d1Bf3CMn3Zkp1WcirQKNcWRYX_Q_vwLFjdEQw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBo8IO4EBhgEQmJEiy-xEySEJkbVsgtodFLfjJM4gFTSsrSa-qf4jZzTXGgmMZ727OMkPjlX2-c7hDxXuVUiY87XkcRjRhv5Ue5yPxaI7iYdDzQWOB8cqv6x_DgKR2vkd1MLg9cqG5u4NNTZJMU98m2mdawgPBDxu-kvH7tG4elq00KjEos9tziFlK18O9iF__uC896H4fu-X3cV8FMl9MwPwavlUZZkPEzzTIk0t7G1EAZxx4IkcRARxDxROlGCwQdnYAACAdQRS7XgkHvCcy-Ry1KALQH90aM2wWPYH6A-OWWR2i4ZosNBsh76gVbSDzq-76wHWHGBZ69ntme018jGvJjaxakdj1fcYO8GuV7Hr3SnEribZM0Vt8iVqqPl4jbpfdodJth14g219PMCgQlovVFEITymuNvvI6dfUzB4paPYoOWkKq6gs8nPGkD7Djm-EKbeJevFpHD3CZU8DXTMrRQWUjVIyBKWxTYJHBPOWss8EjRMNGmNY47tNMZmmc9EylR8N8B3g3w3gUdetVOmFYjHecTP8M8YBMco8PbNNzsvSzP4cmR2pNRYaByEHnlZE-UTeHlq62IGWALiaXUoNzuUoL1pd7gRAFNbj9L8lXWPPG2HcSbeiCvcZI40EPnFHAy2R-5V8tKujatQQKSoPaI7ktQSIKZ4d6T48X2JLS6VkDHO3GpkbuWz_s2yrVYs_8_gB-cv-QnZ6A8P9s3-4HDvIbnKUX1wG19ukvXZydw9giBwljxeah4lXy9a1f8AGrprLA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9QwDLfQEK8PiDeFAQEhIbFVa5M0afk23ThtPMYEm7RvUdqmbNLRO609ofvvsa-56jrxEJ_j9OHYsR3HPwO8VpVVooxdqFNJaUabhmnlqjAThO4mHY80FTh_PlT7J_LDaXLq-5w2q9vuq5RkV9NAKE11uzMrq07FU7XTxIS7hmFwEmIcLkOM2a9KNG7UwmCkRn0agQD7fSrzt9MGxujylrxmky7fl-yTprfgxrye2cVPO5ms2aXxHbjtHUq220nAXbji6ntwrWsxubgP4y97xzm1gXjHLDtaEFIA8yc3DP1VRsfvIaUHthnuQI1j1DHloqt2YO30h0e0fgAn4_fHo_3Q904ICyV0GyZou6u0zEueFFWpRFHZzFp09riLozx36PdkPFc6VyLGZSlxm4sEUqdxoQXHCPshbNTT2j0GJnkR6YxbKSzGThgh5XGZ2TxysXDW2jiAaMVEU3hgcepvMTHLACNVpuO7Qb4b4ruJAnjbT5l1qBp_I35FK2MIraKm6zDf7bxpzMG3r2ZXSk2Vv1ESwBtPVE3x5YX11QX4CwRwNaDcHFCiOhXD4ZUAGK_OjYm1zhT6piIL4GU_TDPpilrtpnOiQVcs47iDBvCok5f-37hKBLpuOgA9kKSegEC-hyP1-dkS7FsqITOaubWSubXP-jPLtnqx_DeDn_zXs1_A9aO9sfl0cPjxKdzkpEx0yi43YaO9mLtn6KO1-fOlHv4C8hwxIQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9NnRDwwPdHYKCAkJAY6ZLYsRPeKqAaSGwTrNL2ZNmJA9O6pFpbofLXc9e4UVPxISTeKvms1Jfz-Xc53-8AXohSC1ZENpAppzSjToO0tGWQMWJ34zYOJRU4fzoQ-yP-8SQ52YLDVS2MucjNWe1IQ4mouL9ehj5e-m78kZ_vTYqy2fKp2JtGxMOGYXESYFzOA4zht0WC4LwH26ODo8HpssZIRgEGOInLbf5yXud02vTRa4fU5gXKNot6Ha7Oq4lefNfj8dpBNbwJk9USm_sp5_35zPTzHxvsj_9RB7fghgO1_qCxwtuwZas7cKVpc7m4C8PDd8eGWlG88bV_tCC2At99PfLx6T6lAAJKUbz20QtOrU9dWy6bigt_Vl84Vu17MBq-P367H7j-DUEumJwFCeKHMi1MESd5WQiWlzrTGgFnbKPQGIvYK4uNkEawCE2jQFcbMpROo1yyGKP8-9Cr6so-BJ_HeSizWHOmMX7DKM1ERaZNaCNmtdaRB-HqvanckZtTj42xWgY5qVCNehSqR5F6VOjBq3bKpGH2-JPwczIGRYwZFV3J-arn06n68OWzGnAuqfo4TDx46YTKmt6PdhUOuAQi2epI7nQkcUvn3eGVzSnnUqYqkjITiI9Z5sGzdphm0jW5ytZzkkE4mMXoxT140Jhou7ZYJAzho_RAdoy3FSCi8e5IdfZtSTjOBeMZzdxdmfna3_q9ynbbnfB3BT_6J-nHcC0mQ6fP-3wHerPLuX2C4HBmnroN_xMX_1xf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ODTbrain%3A+a+Python+library+for+full-view%2C+dense+diffraction+tomography&rft.jtitle=BMC+bioinformatics&rft.au=M%C3%BCller%2C+Paul&rft.au=Sch%C3%BCrmann%2C+Mirjam&rft.au=Guck%2C+Jochen&rft.date=2015-11-04&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=16&rft.spage=367&rft_id=info:doi/10.1186%2Fs12859-015-0764-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |