ODTbrain: a Python library for full-view, dense diffraction tomography

Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions,...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 16; no. 1; p. 367
Main Authors Müller, Paul, Schürmann, Mirjam, Guck, Jochen
Format Journal Article
LanguageEnglish
Published London BioMed Central 04.11.2015
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-015-0764-0

Cover

Abstract Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. Results We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. Conclusion The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.
AbstractList Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far.BACKGROUNDAnalyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far.We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells.RESULTSWe present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells.The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.CONCLUSIONThe present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.
Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.
Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. Results We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. Conclusion The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.
Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.
Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. Results We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. Conclusion The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language. Keywords: Refractive index, Single-cell analysis, Diffraction tomography, Backprojection, Backpropagation, Rytov, Born, Radon
Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. Results We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. Conclusion The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.
ArticleNumber 367
Audience Academic
Author Müller, Paul
Guck, Jochen
Schürmann, Mirjam
Author_xml – sequence: 1
  givenname: Paul
  surname: Müller
  fullname: Müller, Paul
  email: paul.mueller@biotec.tu-dresden.de
  organization: Biotechnology Center of the TU Dresden
– sequence: 2
  givenname: Mirjam
  surname: Schürmann
  fullname: Schürmann, Mirjam
  organization: Biotechnology Center of the TU Dresden
– sequence: 3
  givenname: Jochen
  surname: Guck
  fullname: Guck, Jochen
  organization: Biotechnology Center of the TU Dresden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26537417$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFDEYhoNU7EF_gDcy4I2CU3OYJDNeCKVaLRQqWq9DJofZlGyyTWZa99-bZVe7W1QkFwnJ834JT75DsBdiMAA8R_AYoZa9zQi3tKshojXkrKnhI3CAGo5qjCDd21rvg8OcryFEvIX0CdjHjBLeIH4Azi4_XPVJuvCuktWX5TiLofKu7KRlZWOq7OR9fevM3ZtKm5BNpZ21SarRFXCM8zgkuZgtn4LHVvpsnm3mI_D97OPV6ef64vLT-enJRa0Y4WNNIUa21b3GVFnNiLKyk7LjHBsE-95AyjrcM94zgkjLtNQakkK3SHGCTU-OAF7XncJCLu-k92KR3Ly8ViAoVlLEWoooUsRKioAl9H4dWkz93GhlwpjkfTBKJ3ZPgpuJId6KhpGmQ7wUeLUpkOLNZPIo5i4r470MJk5ZFATxDnNICvryAXodpxSKk0LxjrUUke6eGqQ3wgUby71qVVScNA3vOo4hLdTxH6gytJk7VVrBurK_E3i9EyjMaH6Mg5xyFuffvu6yL7al_LbxqzUKgNaASjHnZOx_meYPMsqNctUr5eXO_zO5-dhcbgmDSVve_hr6CTsn6c0
CitedBy_id crossref_primary_10_1039_C8TB01421C
crossref_primary_10_1002_jbio_201700145
crossref_primary_10_1002_jbio_201800095
crossref_primary_10_1137_22M1474382
crossref_primary_10_7567_JJAP_57_09SB03
crossref_primary_10_1364_OE_26_010729
crossref_primary_10_3390_polym10101055
crossref_primary_10_1364_AO_56_009247
crossref_primary_10_1364_OE_413230
crossref_primary_10_1002_lpor_202200237
crossref_primary_10_1038_s41377_019_0195_1
crossref_primary_10_1080_2331205X_2021_2012888
Cites_doi 10.1002/jbio.201200022
10.1137/1.9780898719277
10.1364/AO.37.002996
10.1364/JOSAA.25.001772
10.1016/0030-4018(69)90052-2
10.1016/j.cpc.2009.11.008
10.1103/PhysRevE.83.026701
10.1364/OL.37.002784
10.1364/OE.14.007005
10.1364/AO.34.006575
10.1364/AO.51.007934
10.1364/JOSA.47.000545
10.1364/OE.22.005731
10.1109/TMTT.1984.1132783
10.1364/AO.41.007437
10.1364/AO.51.008216
10.1177/016173468200400404
10.1146/annurev.bioeng.6.040803.140210
ContentType Journal Article
Copyright Müller et al. 2015
COPYRIGHT 2015 BioMed Central Ltd.
Copyright BioMed Central 2015
Copyright_xml – notice: Müller et al. 2015
– notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Copyright BioMed Central 2015
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12859-015-0764-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
ExternalDocumentID 10.1186/s12859-015-0764-0
PMC4634917
4016190911
A447997205
26537417
10_1186_s12859_015_0764_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Medical Research Council
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c637t-5021f8dbd25cfd63cfa9aa9772e10bbe05692b67b631386dadd03bd281c732eb3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Sun Oct 26 03:15:59 EDT 2025
Tue Sep 30 16:34:10 EDT 2025
Fri Sep 05 10:59:48 EDT 2025
Tue Oct 07 05:31:56 EDT 2025
Mon Oct 20 22:34:11 EDT 2025
Mon Oct 20 16:31:48 EDT 2025
Thu Oct 16 14:30:15 EDT 2025
Mon Jul 21 06:03:39 EDT 2025
Wed Oct 01 04:15:26 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Sat Sep 06 07:27:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Backpropagation
Single-cell analysis
Radon
Refractive index
Born
Backprojection
Rytov
Diffraction tomography
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-5021f8dbd25cfd63cfa9aa9772e10bbe05692b67b631386dadd03bd281c732eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-015-0764-0
PMID 26537417
PQID 1779685139
PQPubID 44065
ParticipantIDs unpaywall_primary_10_1186_s12859_015_0764_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4634917
proquest_miscellaneous_1731792703
proquest_journals_1779685139
gale_infotracmisc_A447997205
gale_infotracacademiconefile_A447997205
gale_incontextgauss_ISR_A447997205
pubmed_primary_26537417
crossref_primary_10_1186_s12859_015_0764_0
crossref_citationtrail_10_1186_s12859_015_0764_0
springer_journals_10_1186_s12859_015_0764_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-04
PublicationDateYYYYMMDD 2015-11-04
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-04
  day: 04
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2015
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References L Boyde (764_CR15) 2011; 83
J Sharpe (764_CR3) 2004; 6
TC Wedberg (764_CR10) 1995; 34
SY Wu (764_CR18) 2014
F Charrière (764_CR4) 2006; 14
AF Oskooi (764_CR14) 2010; 181
A Behrooz (764_CR25) 2012; 51
MA Herráez (764_CR12) 2002; 41
JW Su (764_CR24) 2013; 6
WJ Choi (764_CR20) 2012; 37
M Frigo (764_CR13) 1998
SJ LaRoque (764_CR23) 2008; 25
R Barer (764_CR1) 1957; 47
764_CR19
B Chen (764_CR11) 1998; 37
S Vertu (764_CR22) 2009; 7
AC Kak (764_CR5) 2001
J Kostencka (764_CR17) 2014; 22
M Slaney (764_CR7) 1984; 32
E Wolf (764_CR8) 1969; 1
AJ Devaney (764_CR9) 1982; 4
764_CR6
M Schürmann (764_CR2) 2015
L Boyde (764_CR16) 2012; 51
764_CR21
References_xml – ident: 764_CR6
– volume: 6
  start-page: 416
  issue: 5
  year: 2013
  ident: 764_CR24
  publication-title: J Biophoton
  doi: 10.1002/jbio.201200022
– volume-title: Principles of Computerized Tomographic Imaging
  year: 2001
  ident: 764_CR5
  doi: 10.1137/1.9780898719277
– volume: 37
  start-page: 2996
  issue: 14
  year: 1998
  ident: 764_CR11
  publication-title: Appl Opt
  doi: 10.1364/AO.37.002996
– volume: 25
  start-page: 1772
  issue: 7
  year: 2008
  ident: 764_CR23
  publication-title: J Opt Soc Am A
  doi: 10.1364/JOSAA.25.001772
– volume: 1
  start-page: 153
  issue: 4
  year: 1969
  ident: 764_CR8
  publication-title: Opt Commun
  doi: 10.1016/0030-4018(69)90052-2
– ident: 764_CR21
– volume: 181
  start-page: 687
  year: 2010
  ident: 764_CR14
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2009.11.008
– volume: 83
  start-page: 26701
  issue: 2
  year: 2011
  ident: 764_CR15
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.83.026701
– volume: 37
  start-page: 2784
  issue: 14
  year: 2012
  ident: 764_CR20
  publication-title: Opt Lett
  doi: 10.1364/OL.37.002784
– volume: 14
  start-page: 7005
  issue: 16
  year: 2006
  ident: 764_CR4
  publication-title: Opt Express
  doi: 10.1364/OE.14.007005
– volume: 34
  start-page: 6575
  issue: 28
  year: 1995
  ident: 764_CR10
  publication-title: Appl Opt
  doi: 10.1364/AO.34.006575
– volume: 51
  start-page: 7934
  issue: 33
  year: 2012
  ident: 764_CR16
  publication-title: Appl Opt
  doi: 10.1364/AO.51.007934
– volume: 47
  start-page: 545
  issue: 6
  year: 1957
  ident: 764_CR1
  publication-title: JOSA
  doi: 10.1364/JOSA.47.000545
– volume: 22
  start-page: 5731
  issue: 5
  year: 2014
  ident: 764_CR17
  publication-title: Opt Express
  doi: 10.1364/OE.22.005731
– volume-title: Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference On, vol. 3
  year: 1998
  ident: 764_CR13
– volume: 32
  start-page: 860
  issue: 8
  year: 1984
  ident: 764_CR7
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.1984.1132783
– volume: 41
  start-page: 7437
  issue: 35
  year: 2002
  ident: 764_CR12
  publication-title: Appl Opt
  doi: 10.1364/AO.41.007437
– volume: 51
  start-page: 8216
  issue: 34
  year: 2012
  ident: 764_CR25
  publication-title: Appl Opt
  doi: 10.1364/AO.51.008216
– volume: 7
  start-page: 22
  issue: 1
  year: 2009
  ident: 764_CR22
  publication-title: Central Eur J Phys
– ident: 764_CR19
– volume-title: Investigation of autofocus algorithms for Brightfield microscopy of Unstained cells
  year: 2014
  ident: 764_CR18
– volume: 4
  start-page: 336
  issue: 4
  year: 1982
  ident: 764_CR9
  publication-title: Ultrason Imaging
  doi: 10.1177/016173468200400404
– volume: 6
  start-page: 209
  issue: 1
  year: 2004
  ident: 764_CR3
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.6.040803.140210
– volume-title: Biophysical Methods in Cell Biology. Methods in Cell Biology, vol. 125
  year: 2015
  ident: 764_CR2
SSID ssj0017805
Score 2.333127
Snippet Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner...
Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a...
Background Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 367
SubjectTerms Algorithms
Analysis
Benchmarks
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer Simulation
image analysis and data visualization
Imaging
Imaging, Three-Dimensional
Life Sciences
Microarrays
Programming Languages
Python (Programming language)
Radon
Refractometry
Software
Time Factors
Tomography
Tomography - methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDLfGTQh4QHxTGKggJCS2am2SJi0SQgN2Gkgc09ikvUVpm7JJR3usd0L332Nf03KdxHiOozaO49ix_TPAK1kayYvIBioRFGY0SZCUtgxSTuhuwrJQUYHz14k8OBFfTuPTDZh0tTCUVtnpxJWiLuqc3sh3I6VSieYBT9_PfgXUNYqiq10LDeNaKxTvVhBj12CTETLWCDY_7E8Oj_q4AiH4u9hmlMjdJiL8NnSn4wD9eRGEg9vpso5eu6QuJ1D2UdRbcGNRzczyt5lO1y6q8R247SxMf68VibuwYat7cL3tObm8D-Nvn44z6gvx1jf-4ZKgA3z3lOOjAevTe3xAvNjxUSU11qcWKhdt-YM_r386iOsHcDLeP_54ELhmCkEuuZoHMV7mZVJkBYvzspA8L01qDFp_zEZhllk0hFKWSZVJHuE-Faj3Qo7USZQrztDlfgijqq7sY_AFy0OVMiO4QWcKXaYsKlKThTbi1hgTeRB2TNS5QxqnhhdTvfI4Eqlbvmvkuya-69CDN_2UWQuzcRXxS9oZTfAVFeXH_DCLptGfvx_pPSEUlQKHsQevHVFZ48dz48oNcAmEeDWg3BpQ4vnKh8OdAGh3vhv9Vxo9eNEP00zKWatsvSAatM1ShirVg0etvPRrYzLmaMspD9RAknoCQv0ejlTnZyv0byG5SGnmdidza7_1b5Zt92L5fwY_uXrJT-EmoyNDj-tiC0bzi4V9hqbZPHvuztsfmTI0Ew
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEA_SIuoH8e1qlSiCYA1uHpts_FaqRxV8oC30W0h2s61w7pXuHeX-e2duc8tt8YGfM9nHZCYzk8n8hpAXuvFa1jwyUypMM_qSlU1smJWI7qaiyA0WOH_6rA-O1Mfj4jiBRWMtzGb-npf6TccRYQ0C3oJBxK0YROfbYKP0Ki-r94eEAULzp6Tlb6eNzM7lzXfD-ly-GTmkR2-Qa4v2zC8v_HS6YYEmt8jN5DrSvX6tb5Mrsb1DrvbNJJd3yeTLu8OADR_eUk-_LhETgKYzGgqeKcWDdoaJgNcU9pouUuyNct7XNdD57GfCrr5HjibvD_cPWOqSwCotzZwVYKWbsg61KKqm1rJqvPUe3DoReR5CBA_HiqBN0JLDAtSwoeUSqEteGSkglr5PttpZGx8SqkSVGyu8kh6iJIiFAq-tD3nkMnrveUbyNRNdlSDEsZPF1K1CiVK7nu8O-O6Q7y7PyKthylmPn_E34ue4Mg5xKVq8-HLiF13nPnz_5vaUMljjmxcZeZmImhm8vPKpjgB-AaGsRpQ7I0pQnGo8vBYAlxS3c9wYq8ELlTYjz4ZhnImX0do4WyANOF1WwF6ZkQe9vAz_JnQhwUkzGTEjSRoIEM57PNL-OF3BeistlcWZu2uZ2_isP7NsdxDLfzP40X89-zG5LlCD8BBd7ZCt-fkiPgEXbB6erpTvF1hiJes
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9NnRDwwPdHYKCAkJAY6ZLYsRPeKqAaSGwTrNL2ZNmJA9O6pFpbofLXc9e4UVPxISTeKvms1Jfz-Xc53-8AXohSC1ZENpAppzSjToO0tGWQMWJ34zYOJRU4fzoQ-yP-8SQ52YLDVS2MucjNWe1IQ4mouL9ehj5e-m78kZ_vTYqy2fKp2JtGxMOGYXESYFzOA4zht0WC4LwH26ODo8HpssZIRgEGOInLbf5yXud02vTRa4fU5gXKNot6Ha7Oq4lefNfj8dpBNbwJk9USm_sp5_35zPTzHxvsj_9RB7fghgO1_qCxwtuwZas7cKVpc7m4C8PDd8eGWlG88bV_tCC2At99PfLx6T6lAAJKUbz20QtOrU9dWy6bigt_Vl84Vu17MBq-P367H7j-DUEumJwFCeKHMi1MESd5WQiWlzrTGgFnbKPQGIvYK4uNkEawCE2jQFcbMpROo1yyGKP8-9Cr6so-BJ_HeSizWHOmMX7DKM1ERaZNaCNmtdaRB-HqvanckZtTj42xWgY5qVCNehSqR5F6VOjBq3bKpGH2-JPwczIGRYwZFV3J-arn06n68OWzGnAuqfo4TDx46YTKmt6PdhUOuAQi2epI7nQkcUvn3eGVzSnnUqYqkjITiI9Z5sGzdphm0jW5ytZzkkE4mMXoxT140Jhou7ZYJAzho_RAdoy3FSCi8e5IdfZtSTjOBeMZzdxdmfna3_q9ynbbnfB3BT_6J-nHcC0mQ6fP-3wHerPLuX2C4HBmnroN_xMX_1xf
  priority: 102
  providerName: Unpaywall
Title ODTbrain: a Python library for full-view, dense diffraction tomography
URI https://link.springer.com/article/10.1186/s12859-015-0764-0
https://www.ncbi.nlm.nih.gov/pubmed/26537417
https://www.proquest.com/docview/1779685139
https://www.proquest.com/docview/1731792703
https://pubmed.ncbi.nlm.nih.gov/PMC4634917
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-015-0764-0
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals at publisher websites
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rj9MwDLfuIQR8QLwpHFNBCCSOQNukSYuE0Bg3jkk3prubND5VaZsC0uh2ewj232O3XVlPx-PLJi3Otrh2bMfxzwBPZKYlT13DVCAozagDFmQmYyEndDdhPEdRgfNRXx4ORW_kj7ZgnT2vGDi_MLSjflLD2fjlz7PVW1T4N4XCB_LV3CUUNgyKfYZRuWDO0-kZo75SlH-tmmxswy7arpCaOxyJ33kGQvQv6o-UyzD48au854Xf2rBc5_fvDQN2_nJlnWG9CpeX-VSvfujxeMOIda_Dtcr7tNuluNyALZPfhEtlP8rVLeh-en8aU8-I17a2ByuCFbCrYx4bnVubzuoZ5RJe2LhdzY1N7VVmZWmEvZh8r-Cvb8Owe3DaOWRVowWWSK4WzEdDnwVpnHp-kqWSJ5kOtUbP0DOuE8cGnaTQi6WKJXfxGaa4JzocqQM3UdzDcPwO7OST3NwDW3iJo0JPC64x0MJwKnbTUMeOcbnRWrsWOGsmRkmFQk7NMMZREY0EMir5HiHfI-J75FjwvJ4yLSE4_kb8mJ5MRNAWOd2d-aKX83n08eQ4aguhqEzY8S14VhFlE_zxRFelCLgEQsNqUO41KFH3kubwWgCitehGrlKhREeWhxY8qodpJt1ny81kSTTot4UebrcW3C3lpV6bJ32Ofp6yQDUkqSYgRPDmSP7ta4EMLiQXIc3cX8vcxt_6M8v2a7H8N4Pv_8eaHsAVj_SGTt_FHuwsZkvzEH23RdyCbTVS-Bp0P7Rgt93unfTw_d1Bf3CMn3Zkp1WcirQKNcWRYX_Q_vwLFjdEQw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBo8IO4EBhgEQmJEiy-xEySEJkbVsgtodFLfjJM4gFTSsrSa-qf4jZzTXGgmMZ727OMkPjlX2-c7hDxXuVUiY87XkcRjRhv5Ue5yPxaI7iYdDzQWOB8cqv6x_DgKR2vkd1MLg9cqG5u4NNTZJMU98m2mdawgPBDxu-kvH7tG4elq00KjEos9tziFlK18O9iF__uC896H4fu-X3cV8FMl9MwPwavlUZZkPEzzTIk0t7G1EAZxx4IkcRARxDxROlGCwQdnYAACAdQRS7XgkHvCcy-Ry1KALQH90aM2wWPYH6A-OWWR2i4ZosNBsh76gVbSDzq-76wHWHGBZ69ntme018jGvJjaxakdj1fcYO8GuV7Hr3SnEribZM0Vt8iVqqPl4jbpfdodJth14g219PMCgQlovVFEITymuNvvI6dfUzB4paPYoOWkKq6gs8nPGkD7Djm-EKbeJevFpHD3CZU8DXTMrRQWUjVIyBKWxTYJHBPOWss8EjRMNGmNY47tNMZmmc9EylR8N8B3g3w3gUdetVOmFYjHecTP8M8YBMco8PbNNzsvSzP4cmR2pNRYaByEHnlZE-UTeHlq62IGWALiaXUoNzuUoL1pd7gRAFNbj9L8lXWPPG2HcSbeiCvcZI40EPnFHAy2R-5V8tKujatQQKSoPaI7ktQSIKZ4d6T48X2JLS6VkDHO3GpkbuWz_s2yrVYs_8_gB-cv-QnZ6A8P9s3-4HDvIbnKUX1wG19ukvXZydw9giBwljxeah4lXy9a1f8AGrprLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9QwDLfQEK8PiDeFAQEhIbFVa5M0afk23ThtPMYEm7RvUdqmbNLRO609ofvvsa-56jrxEJ_j9OHYsR3HPwO8VpVVooxdqFNJaUabhmnlqjAThO4mHY80FTh_PlT7J_LDaXLq-5w2q9vuq5RkV9NAKE11uzMrq07FU7XTxIS7hmFwEmIcLkOM2a9KNG7UwmCkRn0agQD7fSrzt9MGxujylrxmky7fl-yTprfgxrye2cVPO5ms2aXxHbjtHUq220nAXbji6ntwrWsxubgP4y97xzm1gXjHLDtaEFIA8yc3DP1VRsfvIaUHthnuQI1j1DHloqt2YO30h0e0fgAn4_fHo_3Q904ICyV0GyZou6u0zEueFFWpRFHZzFp09riLozx36PdkPFc6VyLGZSlxm4sEUqdxoQXHCPshbNTT2j0GJnkR6YxbKSzGThgh5XGZ2TxysXDW2jiAaMVEU3hgcepvMTHLACNVpuO7Qb4b4ruJAnjbT5l1qBp_I35FK2MIraKm6zDf7bxpzMG3r2ZXSk2Vv1ESwBtPVE3x5YX11QX4CwRwNaDcHFCiOhXD4ZUAGK_OjYm1zhT6piIL4GU_TDPpilrtpnOiQVcs47iDBvCok5f-37hKBLpuOgA9kKSegEC-hyP1-dkS7FsqITOaubWSubXP-jPLtnqx_DeDn_zXs1_A9aO9sfl0cPjxKdzkpEx0yi43YaO9mLtn6KO1-fOlHv4C8hwxIQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9NnRDwwPdHYKCAkJAY6ZLYsRPeKqAaSGwTrNL2ZNmJA9O6pFpbofLXc9e4UVPxISTeKvms1Jfz-Xc53-8AXohSC1ZENpAppzSjToO0tGWQMWJ34zYOJRU4fzoQ-yP-8SQ52YLDVS2MucjNWe1IQ4mouL9ehj5e-m78kZ_vTYqy2fKp2JtGxMOGYXESYFzOA4zht0WC4LwH26ODo8HpssZIRgEGOInLbf5yXud02vTRa4fU5gXKNot6Ha7Oq4lefNfj8dpBNbwJk9USm_sp5_35zPTzHxvsj_9RB7fghgO1_qCxwtuwZas7cKVpc7m4C8PDd8eGWlG88bV_tCC2At99PfLx6T6lAAJKUbz20QtOrU9dWy6bigt_Vl84Vu17MBq-P367H7j-DUEumJwFCeKHMi1MESd5WQiWlzrTGgFnbKPQGIvYK4uNkEawCE2jQFcbMpROo1yyGKP8-9Cr6so-BJ_HeSizWHOmMX7DKM1ERaZNaCNmtdaRB-HqvanckZtTj42xWgY5qVCNehSqR5F6VOjBq3bKpGH2-JPwczIGRYwZFV3J-arn06n68OWzGnAuqfo4TDx46YTKmt6PdhUOuAQi2epI7nQkcUvn3eGVzSnnUqYqkjITiI9Z5sGzdphm0jW5ytZzkkE4mMXoxT140Jhou7ZYJAzho_RAdoy3FSCi8e5IdfZtSTjOBeMZzdxdmfna3_q9ynbbnfB3BT_6J-nHcC0mQ6fP-3wHerPLuX2C4HBmnroN_xMX_1xf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ODTbrain%3A+a+Python+library+for+full-view%2C+dense+diffraction+tomography&rft.jtitle=BMC+bioinformatics&rft.au=M%C3%BCller%2C+Paul&rft.au=Sch%C3%BCrmann%2C+Mirjam&rft.au=Guck%2C+Jochen&rft.date=2015-11-04&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=16&rft.spage=367&rft_id=info:doi/10.1186%2Fs12859-015-0764-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon