Predicting activities of daily living for cancer patients using an ontology-guided machine learning methodology

Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impa...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical semantics Vol. 8; no. 1; pp. 39 - 8
Main Authors Min, Hua, Mobahi, Hedyeh, Irvin, Katherine, Avramovic, Sanja, Wojtusiak, Janusz
Format Journal Article
LanguageEnglish
Published London BioMed Central 16.09.2017
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN2041-1480
2041-1480
DOI10.1186/s13326-017-0149-6

Cover

Abstract Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to “understand” biomedical data. Results This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient’s cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient’s race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels ( P  < 0.1) than methods without ontologies. Conclusions This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical.
AbstractList Abstract Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to “understand” biomedical data. Results This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient’s cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient’s race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies. Conclusions This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical.
Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data.BACKGROUNDBio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data.This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies.RESULTSThis retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies.This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical.CONCLUSIONSThis study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical.
Background: Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data.Results: This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies. Conclusions: This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical.
Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data. Results This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies. Conclusions This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical. Keywords: Machine learning, Bio-ontologies, Quality of life, Activities of daily living, SEER-MHOS
Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data. This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies. This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical.
Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to “understand” biomedical data. Results This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient’s cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient’s race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels ( P  < 0.1) than methods without ontologies. Conclusions This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical.
Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data. This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies. This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical.
ArticleNumber 39
Audience Academic
Author Irvin, Katherine
Avramovic, Sanja
Wojtusiak, Janusz
Min, Hua
Mobahi, Hedyeh
Author_xml – sequence: 1
  givenname: Hua
  orcidid: 0000-0003-2422-0043
  surname: Min
  fullname: Min, Hua
  email: hmin3@gmu.edu
  organization: Department of Health Administration and Policy, College of Health and Human Services, George Mason University
– sequence: 2
  givenname: Hedyeh
  surname: Mobahi
  fullname: Mobahi, Hedyeh
  organization: Department of Health Administration and Policy, College of Health and Human Services, George Mason University
– sequence: 3
  givenname: Katherine
  surname: Irvin
  fullname: Irvin, Katherine
  organization: Department of Health Administration and Policy, College of Health and Human Services, George Mason University
– sequence: 4
  givenname: Sanja
  surname: Avramovic
  fullname: Avramovic, Sanja
  organization: Department of Health Administration and Policy, College of Health and Human Services, George Mason University
– sequence: 5
  givenname: Janusz
  surname: Wojtusiak
  fullname: Wojtusiak, Janusz
  organization: Department of Health Administration and Policy, College of Health and Human Services, George Mason University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28915930$$D View this record in MEDLINE/PubMed
https://hal.science/hal-05009461$$DView record in HAL
BookMark eNqNUsGO0zAUjNAidln2A7igSFzgkMUvTpzkglStgF2pEhzgbL04TurKsYuddNW_x2nKqq0AkSiy9Twzz5l5L6MLY42MotdAbgFK9sEDpSlLCBThy6qEPYuuUpJBAllJLo72l9GN92sSHkqBlPRFdJmWFeQVJVeR_eZko8SgTBdjWLZqUNLHto0bVHoX61AJR611sUAjpIs3GBBm8PHo9yQTWzNYbbtd0o2qkU3co1gpI2Mt0ZkJ08thZZs95lX0vEXt5c1hvY5-fP70_e4-WX798nC3WCaC0WJIqGghFdCUIhW1oMiQCYkSIYO2yCkpa5ZmFalFSaFC2RS0JXWdT7gSKob0OnqYdRuLa75xqke34xYV3xes6zi6QQkteRCUlLVtjhlkGUOs04KgILRKS1lCHrTSWWs0G9w9otZPgkD4FAafw-AhDD6FwVkgfZxJm7HuZSOCZQ71yU1OT4xa8c5uec4IJdXU9f0ssDqj3S-WfKqRnJAqY7CFgH13aObsz1H6gffKC6k1GmlHz6HKCGEEyHSvt2fQtR2dCVlMqIoxWu6bH1AdBoeUaW24o5hE-SInFRBgOQ2o2z-gwtvIXokwrq0K9RPCm2NTnn7r9zwGAMwA4az3Trb_5XRxxhFqCENqJ1-V_ifzEKwPXUwn3ZEXfyX9ArFrEyg
CitedBy_id crossref_primary_10_1186_s13326_022_00261_9
crossref_primary_10_3390_cancers14081906
crossref_primary_10_1108_DTS_06_2023_0041
crossref_primary_10_1186_s12911_020_01368_8
Cites_doi 10.1016/j.eururo.2012.08.054
10.1055/s-0038-1634945
10.1093/bib/bbv011
10.1109/TAI.1991.167073
10.1136/jamia.2009.001560
10.1007/978-3-540-73451-2_5
10.1136/jamia.1998.0050041
10.1016/j.jbi.2003.11.001
10.1007/s11764-013-0299-1
10.1007/s11136-012-0214-7
10.1007/978-3-540-68856-3
10.1016/j.artmed.2014.03.001
10.1016/0743-1066(94)90035-3
10.1016/j.websem.2016.01.001
10.7551/mitpress/7432.001.0001
10.1186/s13326-015-0033-1
10.1055/s-0038-1638585
10.1016/j.juro.2012.11.132
10.1097/SLA.0b013e3180caa3fb
10.5121/ijnlc.2016.5201
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
Attribution
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: Attribution
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s13326-017-0149-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological science database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic




Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Mathematics
Statistics
Computer Science
EISSN 2041-1480
EndPage 8
ExternalDocumentID oai_doaj_org_article_f75e36ff5a41446aab270ac03928e815
10.1186/s13326-017-0149-6
PMC5603095
oai:HAL:hal-05009461v1
A509101653
28915930
10_1186_s13326_017_0149_6
Genre Journal Article
GrantInformation_xml – fundername: Thomas F. and Kate Miller Jeffress Memorial Trust
  funderid: http://dx.doi.org/10.13039/100006990
– fundername: ;
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
ML~
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMT
SOJ
TUS
UKHRP
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AHSBF
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
1XC
VOOES
5PM
2VQ
4.4
ADTOC
AFFHD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c637t-3cf12c1d8c2cbc3a6a6ceaea141f75308b62490bc8319aed73f0bb5a6a68196a3
IEDL.DBID M48
ISSN 2041-1480
IngestDate Fri Oct 03 12:48:20 EDT 2025
Wed Oct 29 12:03:57 EDT 2025
Tue Sep 30 15:58:23 EDT 2025
Tue Oct 14 20:43:48 EDT 2025
Fri Sep 05 08:20:03 EDT 2025
Sat Oct 18 23:46:22 EDT 2025
Mon Oct 20 22:16:38 EDT 2025
Mon Oct 20 16:29:51 EDT 2025
Thu Jan 02 23:10:15 EST 2025
Wed Oct 01 04:33:07 EDT 2025
Thu Apr 24 22:52:49 EDT 2025
Sat Sep 06 07:20:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Activities of daily living
Bio-ontologies
Machine learning
SEER-MHOS
Quality of life
Machine learning Bio-ontologies Quality of life Activities of daily living SEER-MHOS
Language English
License Attribution: http://creativecommons.org/licenses/by
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-3cf12c1d8c2cbc3a6a6ceaea141f75308b62490bc8319aed73f0bb5a6a68196a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2422-0043
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13326-017-0149-6
PMID 28915930
PQID 1949663895
PQPubID 2040220
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_f75e36ff5a41446aab270ac03928e815
unpaywall_primary_10_1186_s13326_017_0149_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5603095
hal_primary_oai_HAL_hal_05009461v1
proquest_miscellaneous_1940060106
proquest_journals_1949663895
gale_infotracmisc_A509101653
gale_infotracacademiconefile_A509101653
pubmed_primary_28915930
crossref_primary_10_1186_s13326_017_0149_6
crossref_citationtrail_10_1186_s13326_017_0149_6
springer_journals_10_1186_s13326_017_0149_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-16
PublicationDateYYYYMMDD 2017-09-16
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-16
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of biomedical semantics
PublicationTitleAbbrev J Biomed Semant
PublicationTitleAlternate J Biomed Semantics
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 149_CR4
149_CR16
149_CR38
SB Clauser (149_CR32) 2008; 29
149_CR11
149_CR1
R Hoehndorf (149_CR13) 2015; 16
T Amemiya (149_CR37) 2007; 246
149_CR2
149_CR3
CB Agborsangaya (149_CR36) 2013; 22
149_CR31
GK Savova (149_CR9) 2010; 17
J Geller (149_CR28) 2009; 2009
R Michalski (149_CR19) 2004
M Madsen (149_CR12) 2010; 151
C Lindberg (149_CR15) 1990; 61
J Wojtusiak (149_CR18) 2012
I Spasic (149_CR10) 2015; 6
J Wojtusiak (149_CR17) 2004
149_CR27
JJ Cimino (149_CR30) 2003; 36
149_CR22
149_CR23
Y Kassahun (149_CR6) 2014; 61
149_CR24
149_CR20
149_CR21
A Briganti (149_CR33) 2013; 63
SS Taneja (149_CR34) 2013; 189
P Ristoski (149_CR7) 2016; 36
DA Lindberg (149_CR14) 1993; 32
PA Vissers (149_CR35) 2013; 7
K Kaufman (149_CR25) 1999
S Muggleton (149_CR5) 1994; 19
JJ Cimino (149_CR29) 1998; 5
MS Devi (149_CR8) 2016; 5
G Cervone (149_CR26) 2010
24743020 - Artif Intell Med. 2014 Jun;61(2):79-88
8412823 - Methods Inf Med. 1993 Aug;32(4):281-91
20407155 - Stud Health Technol Inform. 2010;151:104-14
14759818 - J Biomed Inform. 2003 Dec;36(6):450-61
16779100 - AMIA Annu Symp Proc. 2005;:550-4
18660879 - Yearb Med Inform. 2008;:67-79
20351848 - AMIA Annu Symp Proc. 2009 Nov 14;2009:193-7
9452984 - J Am Med Inform Assoc. 1998 Jan-Feb;5(1):41-51
22684529 - Qual Life Res. 2013 May;22(4):791-9
17667500 - Ann Surg. 2007 Aug;246(2):222-8
26347806 - J Biomed Semantics. 2015 Sep 07;6:34
18773610 - Health Care Financ Rev. 2008 Summer;29(4):1-4
20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13
25863278 - Brief Bioinform. 2015 Nov;16(6):1069-80
10104531 - J Am Med Rec Assoc. 1990 May;61(5):40-2
23394638 - J Urol. 2013 Mar;189(3):901
22959192 - Eur Urol. 2013 Apr;63(4):693-701
23918453 - J Cancer Surviv. 2013 Dec;7(4):602-13
References_xml – volume: 151
  start-page: 104
  year: 2010
  ident: 149_CR12
  publication-title: Stud Health Technol Inform
– volume: 63
  start-page: 693
  issue: 4
  year: 2013
  ident: 149_CR33
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2012.08.054
– ident: 149_CR2
– volume: 32
  start-page: 281
  issue: 4
  year: 1993
  ident: 149_CR14
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1634945
– volume: 16
  start-page: 1069
  issue: 6
  year: 2015
  ident: 149_CR13
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv011
– ident: 149_CR20
  doi: 10.1109/TAI.1991.167073
– volume-title: AQ21 User’s guide
  year: 2004
  ident: 149_CR17
– ident: 149_CR38
– ident: 149_CR16
– volume: 17
  start-page: 507
  issue: 5
  year: 2010
  ident: 149_CR9
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2009.001560
– ident: 149_CR22
  doi: 10.1007/978-3-540-73451-2_5
– volume: 5
  start-page: 41
  issue: 1
  year: 1998
  ident: 149_CR29
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.1998.0050041
– volume: 36
  start-page: 450
  issue: 6
  year: 2003
  ident: 149_CR30
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2003.11.001
– volume: 7
  start-page: 602
  issue: 4
  year: 2013
  ident: 149_CR35
  publication-title: J Cancer Surviv
  doi: 10.1007/s11764-013-0299-1
– volume: 22
  start-page: 791
  issue: 4
  year: 2013
  ident: 149_CR36
  publication-title: Qual Life Res
  doi: 10.1007/s11136-012-0214-7
– ident: 149_CR3
  doi: 10.1007/978-3-540-68856-3
– ident: 149_CR24
– ident: 149_CR1
– volume: 61
  start-page: 79
  issue: 2
  year: 2014
  ident: 149_CR6
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2014.03.001
– ident: 149_CR27
– volume: 19
  start-page: 629
  year: 1994
  ident: 149_CR5
  publication-title: J Log Program
  doi: 10.1016/0743-1066(94)90035-3
– volume-title: The AQ18 Machine Learning and Data Mining System: an Implementation and User’s Guide
  year: 1999
  ident: 149_CR25
– volume-title: Reports of the Machine Learning and Inference Laboratory, MLI 04–2
  year: 2004
  ident: 149_CR19
– volume: 2009
  start-page: 193
  year: 2009
  ident: 149_CR28
  publication-title: AMIA Annu Symp Proc
– volume: 29
  start-page: 1
  issue: 4
  year: 2008
  ident: 149_CR32
  publication-title: Health Care Financ Rev
– volume: 36
  start-page: 1
  issue: C
  year: 2016
  ident: 149_CR7
  publication-title: Web Semant
  doi: 10.1016/j.websem.2016.01.001
– ident: 149_CR4
  doi: 10.7551/mitpress/7432.001.0001
– ident: 149_CR31
– volume: 6
  start-page: 34
  year: 2015
  ident: 149_CR10
  publication-title: J Biomed Semantics
  doi: 10.1186/s13326-015-0033-1
– ident: 149_CR11
  doi: 10.1055/s-0038-1638585
– ident: 149_CR21
– volume: 189
  start-page: 901
  issue: 3
  year: 2013
  ident: 149_CR34
  publication-title: J Urol
  doi: 10.1016/j.juro.2012.11.132
– volume: 246
  start-page: 222
  issue: 2
  year: 2007
  ident: 149_CR37
  publication-title: Ann Surg
  doi: 10.1097/SLA.0b013e3180caa3fb
– volume: 5
  start-page: 1
  issue: 2
  year: 2016
  ident: 149_CR8
  publication-title: Int J Nat Lang Comput (IJNLC)
  doi: 10.5121/ijnlc.2016.5201
– volume-title: American Medical Informatics Annual Symposium
  year: 2012
  ident: 149_CR18
– ident: 149_CR23
– volume: 61
  start-page: 40
  issue: 5
  year: 1990
  ident: 149_CR15
  publication-title: J Am Med Rec Assoc
– volume-title: Algorithm quasi-optimal (AQ) learning. Wiley Interdisciplinary Reviews: Computational Statistics
  year: 2010
  ident: 149_CR26
– reference: 23918453 - J Cancer Surviv. 2013 Dec;7(4):602-13
– reference: 16779100 - AMIA Annu Symp Proc. 2005;:550-4
– reference: 17667500 - Ann Surg. 2007 Aug;246(2):222-8
– reference: 18660879 - Yearb Med Inform. 2008;:67-79
– reference: 8412823 - Methods Inf Med. 1993 Aug;32(4):281-91
– reference: 9452984 - J Am Med Inform Assoc. 1998 Jan-Feb;5(1):41-51
– reference: 24743020 - Artif Intell Med. 2014 Jun;61(2):79-88
– reference: 22959192 - Eur Urol. 2013 Apr;63(4):693-701
– reference: 22684529 - Qual Life Res. 2013 May;22(4):791-9
– reference: 20407155 - Stud Health Technol Inform. 2010;151:104-14
– reference: 23394638 - J Urol. 2013 Mar;189(3):901
– reference: 26347806 - J Biomed Semantics. 2015 Sep 07;6:34
– reference: 14759818 - J Biomed Inform. 2003 Dec;36(6):450-61
– reference: 10104531 - J Am Med Rec Assoc. 1990 May;61(5):40-2
– reference: 20351848 - AMIA Annu Symp Proc. 2009 Nov 14;2009:193-7
– reference: 25863278 - Brief Bioinform. 2015 Nov;16(6):1069-80
– reference: 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13
– reference: 18773610 - Health Care Financ Rev. 2008 Summer;29(4):1-4
SSID ssj0000331083
Score 2.1659162
Snippet Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML...
Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that...
Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML...
Background: Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML...
Abstract Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents...
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39
SubjectTerms Activities of Daily Living
Aged
Aged, 80 and over
Algorithms
Analysis
Artificial Intelligence
Big Data
Bio-ontologies
Bioinformatics
Biological Ontologies
Biomedical data
BioOntologies SIG
Cancer
Cancer patients
Cohort Studies
Combinatorial Libraries
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer Science
Data analysis
Data Mining
Data Mining and Knowledge Discovery
Data processing
Diagnosis
Disabilities
Female
Health aspects
Histology
Humans
Information systems
International conferences
Knowledge discovery
Knowledge management
Knowledge representation
Language
Learning algorithms
Logic programming
Machine Learning
Male
Mathematical models
Mathematics
Mathematics and Statistics
Methods
Middle Aged
Minority & ethnic groups
Natural language processing
Neoplasms
Ontology
Patients
Pattern recognition
Performance prediction
Prostate cancer
Quality of life
Retrospective Studies
SEER-MHOS
Semantic web
Semantics
Smoking
Statistics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagF-CAeLaBggxCIFFFtePEcY4LolqhBXGgUm-W7TjtSiFb7aOo_54ZxxttVEEvXOOJXzNjz9jjbwh551mtTMZU2jQCHBRlWaqslWlVWc8L432e4dvhb9_l9DT_elac7aT6wpiwHh64n7jjpiy8kE1TmBxdF2NsVjLjGOzryqvwvByaqnacqbAGCzBblIjXmFzJ4xU4Yxk6zxhpmVepHG1EAa9_WJXvXmBQ5E2L82bg5HB7-oDc23SX5vq3adudDerkEXkYLUs66Uf0mNzx3ROyP4vnkSv6ns4GCOXVU7L4scQ7Gox6pvi44SpAq9JFQ2szb69pO8ejBgo2LXUoGUsaIVhXFGPl4aeOIvYBnsqn55t57Wv6K0RmehpTUZzTPj91oHlGTk--_Pw8TWP2hdRJUa5T4RqeOV4rlznrhJFGOm-84TkHngimrATXjVmnQIuNr0vRMGsLpAMrQxrxnOx1i84fEGqzzIncGsdZk5sa8XgYuFFYfekFLxLCtqzQLkKTY4aMVgcXRUndc08D9zRyT8uEfBx-uexxOf5F_An5OxAipHb4AIKmo6Dp2wQtIR9QOjQqPnTOmfh-AYaIEFp6EkwvLguRkMMRJSisGxW_BfkadWY6mWn8xgqM9JT8ikMdW_HTcVVZaV7l4J2CiQmdeTMUY_UYKdf5xSbQBIwdBqPe76V1aAqca7BeBUtIOZLjUV_GJd38ImCOg2EsGLZ7tJX4nW79fd6PBqW4nUsv_geXXpL7WdDxKuXykOytlxv_CszGtX0dVog_SThmLw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe27gF4QHxuhYEMQiAxRbPjxHUfEOrQpgqVaUJM2ptlO05XqSSlH0P777lz3bBoYrzGF8fO3dl35_PvCHnnWaFMylRSlgIcFGVZoqyVSb9vPc-N91mKd4e_ncrhefb1Ir_YIqebuzCYVrlZE8NCXdQOY-SH4GyDZQ7ba_559ivBqlF4uropoWFiaYXiU4AY2yY7KSJjdcjO0fHp2fcm6sIEmDNKxONNruThApy0FJ1qzMDM-olsbVABx79ZrbcvMVnytiV6O6GyOVV9QO6tqpm5_m2m0xsb18kj8jBanHSwFpHHZMtXT8juKMYpF_Q9HTXQyounpD6b49kNZkNTvPRwFSBXaV3Swkym13Q6wRAEBVuXOpSYOY3QrAuKOfTwUkUREwGj9cl4NSl8QX-GjE1PY4mKMV3XrQ40z8j5yfGPL8MkVmVInBS9ZSJcyVPHC-VSZ50w0kjnjTc84yX4PkxZCS4ds06Bdhtf9ETJrM2RDqwPacRz0qnqyu8RatPUicwax1mZmQJxehi4V9h9zwuedwnbsEK7CFmOlTOmOrguSuo19zRwTyP3tOySj80rszVex13ER8jfhhChtsODej7WUXM1TMoLWZa5ydB3NsamPWYcA8NSeYWD_IDSoXFBgME5E-81wBQRWksPgknGZS66ZL9FCYrsWs1vQb5agxkORhqfsRwzQCW_4tDHRvx0XG0W-q9udMmbphm7xwy6yterQBOwdxjMenctrc2nwOkGq1awLum15Lg1lnZLNbkMWORgMAuG3z3YSPyNYf37vx80SvF_Lr24e8ovyf00aG8_4XKfdJbzlX8FhuLSvo7a_wdimGSi
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYeIA9IBgwCgMZhEBiirDjxHEfy8RUoQ7xwKS9WbbjbJVCOjXt0P577hw3ajQ-xKt9ds65O_vOPv9MyFvPSmVSppKqEhCgKMsSZa1MxmPreW68z1K8O3z6VU7Psi_n-XkEi8a7MNvn91zJjy3EUCnGvJggmY0TuUPuwholw7msPO63U5gAP0WJeG7525aDlScA9PfT8M4lZkHedjFvZ0r2x6V75N66uTI3P01db61IJw_Jg-hK0kkn-0fkjm_2ycEsbkC29B2d9ZjJ7T7ZO-0RWtvHZPFtiUc0mPRM8W7DdUBWpYuKlmZe39B6jjsNFFxa6lAxljQisLYUU-WhUUMR-gA35ZOL9bz0Jf0REjM9jS9RXNDueepA84ScnXz-fjxN4uMLiZOiWCXCVTx1vFQuddYJI4103njDM15BiMOUlRC5MesUGLHxZSEqZm2OdOBkSCOekt1m0fhnhNo0dSKzxnFWZaZEOB4GURR2X3jB8xFhG8FoF5HJ8YGMWocIRUndyVKDLDXKUssR-dA3uepgOf5G_Aml3RMionYoAEXT0UA1DMoLWVW5yTBENsamBTOOgf-ovEIm36OuaLR7YM6ZeH0BhogIWnoSPC8uczEihwNKsFc3qH4D2jZgZjqZaSxjOSZ6Sn7NoY-NMuo4qbSajzMITsHDBGZe99XYPSbKNX6xDjQBYofBqA863e0_BbE1OK-CjUgx0OoBL8OaZn4ZIMfBLxYMv3u00f8ttv783496E_m3lJ7_V98vyP00mPY44fKQ7K6Wa_8S3MOVfRUmhl_-vFr2
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe27gF44JtRGMggBBJTOjtO3PSxIKYKlWkPTBpPlu04XVmXVk07NP567pwPNYwPIfEWJWfHH3eX38Xnnwl55Via6JAlQZYJCFASw4LEGBkMBsbxWDsXhbh3-NORHJ1EH0_j0y0yqvfCfC13nRfuore5_3zmnTZc2PODRZqVtp7IgwJCrBBDYsyfjAaB3CY7MgZU3iE7J0fHwy94thyLeACov17U_GW51mfJs_c3Pnr7DFMkr-PP62mUzVrqLXJjnS_01Tc9m218rg7vkGnd0TJL5by3Xpme_f4TB-T_GIm75HaFaemwVMJ7ZMvl98nuuPoTWtDXdNyQNxcPyPx4iatDmG9NcVvFpSd1pfOMpno6u6KzKf7koICmqUWdXNKK_LWgmKUPhXKKrAu4HhBM1tPUpfTC54Q6Wh2CMaHlydhe5iE5Ofzw-f0oqM59CKwU_VUgbMZDy9PEhtZYoaWW1mmnecQziK5YYiQEjczYBPyHdmlfZMyYGOUA30gtHpFOPs_dY0JNGFoRGW05yyKdIhMQgwAOq-87weMuYfW0K1uRouPZHDPlg6NEqnJcFYyrwnFVskveNkUWJSPIn4TfoS41gkjm7W_MlxNV-QYFnXJCZlmsI4zOtTZhn2nLALomLsFGvkFNVOhycOJ1tXMCuojkXWroQR-XseiSvZYkuArbevwSdLnVmNFwrPAeizHHVPJLDnXUqq4qf1YoPoggLgZwC4150TzG6jFHL3fztZfx7D4Mer1bWkbzKgjrATcL1iX9ls202tJ-kk_PPNs5QHLB8L37tXVtNOv3477fGODfZ-nJP0k_JTdDb2aDgMs90lkt1-4ZINOVeV45nR_WXIZg
  priority: 102
  providerName: Unpaywall
Title Predicting activities of daily living for cancer patients using an ontology-guided machine learning methodology
URI https://link.springer.com/article/10.1186/s13326-017-0149-6
https://www.ncbi.nlm.nih.gov/pubmed/28915930
https://www.proquest.com/docview/1949663895
https://www.proquest.com/docview/1940060106
https://hal.science/hal-05009461
https://pubmed.ncbi.nlm.nih.gov/PMC5603095
https://jbiomedsem.biomedcentral.com/track/pdf/10.1186/s13326-017-0149-6
https://doaj.org/article/f75e36ff5a41446aab270ac03928e815
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: RBZ
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: ABDBF
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: GX1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Health and Medical Complete
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: 8FG
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M48
  dateStart: 20100601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: AAJSJ
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: C6C
  dateStart: 20100112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfW7QH2gGDAKIzKIAQSU8CJE8d9QKirNqppmyqg0niybMfpKpV09GPQ_547N40WbYB4aaX47JzjO_vOPv-OkFeOZVJHTAZ5zsFBkYYF0hgRtNvGhYl2Lo7w7vDpmegN4uPz5HyDrNNblR9wdqtrh_mkBtPxu18_lh9B4T94hZfi_Qz8rAj9YgyijNuBaJAtWKjamMnhtLT2_cTMwZaRvDzbvLVmbXXyIP7VVN24wEjJm2bozWjK6kh1m9xZFJd6-VOPx9dWraP75F5pbtLOSj4ekA1X7JDdk3KTckZf05MKV3m2Q7ZPKxTX2UMy6U_xGAcDoynef7jy6Kt0ktNMj8ZLOh7hbgQFs5daFJ4pLVFaZxTD6aFSQREeATfug-FilLmMfvfBm46W2SqGdJXC2tM8IoOjw6_dXlAmaAis4Ok84DYPIxtm0kbWWK6FFtZpp8M4zMENYtII8O6YsRIUXbss5TkzJkE6MESE5o_JZjEp3BNCTRRZHhttQ5bHOkPIHgaeFjafOh4mTcLWA6NsiV6OSTTGynsxUqjVWCoYS4VjqUSTvK2qXK6gO_5GfICjXREi6rZ_MJkOVanECjrluMjzRMfoRmttopRpy8DGlE4ik29QVhRKKzBndXnFAbqIKFuq462zUCS8SfZqlKDTtlb8EqStxkyvc6LwGUswGFSEVyG0sRZGtdYbFbZjcGDBCgVmXlTF2DwG0xVusvA0HoaHQa93V7JbvQr8bzBwOWuStCbVNV7qJcXowsOSg-3MGb53fy3_19j683ffr1Tk36P09L_afkbuRl6120Eo9sjmfLpwz8GEnJsWaaTnKfzKo08tstXpHH85hv-Dw7P-Z3jaFd2W35xp-QkESgZn_c633yyBcfY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe28TB4QHyOwgCD-JA2RXPixEkfECofU8e6iYdN6puxHaerVJLStJv6T_E3cuekYdHEeNprfHHs3Pl85zv_jpA3lqWJCljiZRkHByXRzEu0Fl63q60fKWvDAO8OHx2L_mn4bRgN18jv1V0YTKtc6USnqNPC4Bn5HjjbYJnD9hp9nP7ysGoURldXJTQqsTi0ywtw2coPB1-Av2-DYP_ryee-V1cV8Izg8dzjJvMD46eJCYw2XAkljFVW-aGfge3OEi3AJWHaJCCdyqYxz5jWEdLB7ikUh37Xya2Qgy6B9RMP4-ZMh3EwlhJeB0_9ROyV4AIG6LJjfmfY9URr-3NVApq9YP0MUzGv2rlX0zWbmO0dsrnIp2p5oSaTS9vi_j1yt7Znaa8SwPtkzeYPyNagPgUt6Ts6aICby4ek-D7DyBDmWlO8UnHuAF1pkdFUjSdLOhnjAQcFS5oalMcZrYFfS4oZ-vBSThFxAWMB3mgxTm1Kf7p8UEvrAhgjWlXFdjSPyOmNcOcx2ciL3D4hVAeB4aFWxmdZqFJEAWLgvGH3seV-1CFsxQppakB0rMsxkc4xSoSsuCeBexK5J0WH7DSvTCs0kOuIPyF_G0IE8nYPitlI1npBwqQsF1kWqRA9c6V0EDNlGJitiU1wkO9ROiSqGxicUfWtCZgiAnfJnjP4fBHxDtluUYKaMK3m1yBfrcH0ewOJz1iE-aXCP_ehj5X4yVqXlfLvyuuQV00zdo_5ebktFo7GIfswmPVWJa3Np8ClB5uZsw6JW3LcGku7JR-fOaRzMMc5w-_uriT-0rD-_d93m0Xxfy49vX7KL8lm_-RoIAcHx4fPyO3AreSu54ttsjGfLexzMEnn-oXTA5T8uGnF8wdS6JwJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYkIA9IBiwFQYYhEBiimbHies-lkJVoJv2wKS9WbbjdJVKWjXtpv333DlptGh8iNf47Jxzd86dff4dIe88y5SJmYryXECAoiyLlLUy6vWs56nxPonx7vDxiRydJd_O0_O6zmm5yXbfHElWdxoQpalYHS2yvDJxJY9KiKxijIQxbTLpRXKL3E3g54YlDAZy0GyyMAHeixL1aeZve7b-RwG2v1mcty4wN_K243k7f7I5RN0h99fFwlxfmdnsxn9q-Ig8rB1M2q804jG544tdsjeutyVL-p6OGyTlcpfsHDe4reUTMj9d4sENpkJTvPFwGfBW6TynmZnOrulsivsPFBxd6lBdlrTGZS0pJtBDp4IiIAJu1UeT9TTzGf0Z0jU9retTTGhVtDrQPCVnwy8_BqOoLskQOSm6q0i4nMeOZ8rFzjphpJHOG294wnMIfJiyEuI5Zp0C0zY-64qcWZsiHbge0ohnZLuYF36fUBvHTiTWOM7yxGQI0sMgtsLhu17wtEPYRjDa1XjlWDZjpkPcoqSuZKlBlhplqWWHfGy6LCqwjr8Rf0JpN4SIsx0ezJcTXZuthkl5IfM8NQkGzsbYuMuMY-BVKq-QyQ-oKxpXA2DOmfpSA0wRcbV0P_hjXKaiQw5alGDFrtX8FrStxcyoP9b4jKWY_in5JYcxNsqo66Wm1LyXQMgKficw86ZpxuExfa7w83WgCcA7DGa9V-lu8yqIuMGlFaxDui2tbvHSbimmFwGIHLxlwfC9hxv9v8HWn7_7YWMi_5bS8_8a-zW5d_p5qMdfT76_IA_iYOW9iMsDsr1arv1L8B9X9lVYI34BM2JmLA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe27gF44JtRGMggBBJTOjtO3PSxIKYKlWkPTBpPlu04XVmXVk07NP567pwPNYwPIfEWJWfHH3eX38Xnnwl55Via6JAlQZYJCFASw4LEGBkMBsbxWDsXhbh3-NORHJ1EH0_j0y0yqvfCfC13nRfuore5_3zmnTZc2PODRZqVtp7IgwJCrBBDYsyfjAaB3CY7MgZU3iE7J0fHwy94thyLeACov17U_GW51mfJs_c3Pnr7DFMkr-PP62mUzVrqLXJjnS_01Tc9m218rg7vkGnd0TJL5by3Xpme_f4TB-T_GIm75HaFaemwVMJ7ZMvl98nuuPoTWtDXdNyQNxcPyPx4iatDmG9NcVvFpSd1pfOMpno6u6KzKf7koICmqUWdXNKK_LWgmKUPhXKKrAu4HhBM1tPUpfTC54Q6Wh2CMaHlydhe5iE5Ofzw-f0oqM59CKwU_VUgbMZDy9PEhtZYoaWW1mmnecQziK5YYiQEjczYBPyHdmlfZMyYGOUA30gtHpFOPs_dY0JNGFoRGW05yyKdIhMQgwAOq-87weMuYfW0K1uRouPZHDPlg6NEqnJcFYyrwnFVskveNkUWJSPIn4TfoS41gkjm7W_MlxNV-QYFnXJCZlmsI4zOtTZhn2nLALomLsFGvkFNVOhycOJ1tXMCuojkXWroQR-XseiSvZYkuArbevwSdLnVmNFwrPAeizHHVPJLDnXUqq4qf1YoPoggLgZwC4150TzG6jFHL3fztZfx7D4Mer1bWkbzKgjrATcL1iX9ls202tJ-kk_PPNs5QHLB8L37tXVtNOv3477fGODfZ-nJP0k_JTdDb2aDgMs90lkt1-4ZINOVeV45nR_WXIZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+activities+of+daily+living+for+cancer+patients+using+an+ontology-guided+machine+learning+methodology&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Min%2C+Hua&rft.au=Mobahi%2C+Hedyeh&rft.au=Irvin%2C+Katherine&rft.au=Avramovic%2C+Sanja&rft.date=2017-09-16&rft.pub=BioMed+Central&rft.eissn=2041-1480&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs13326-017-0149-6&rft.externalDocID=10_1186_s13326_017_0149_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon