Predicting activities of daily living for cancer patients using an ontology-guided machine learning methodology
Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impa...
Saved in:
| Published in | Journal of biomedical semantics Vol. 8; no. 1; pp. 39 - 8 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
16.09.2017
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2041-1480 2041-1480 |
| DOI | 10.1186/s13326-017-0149-6 |
Cover
| Abstract | Background
Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to “understand” biomedical data.
Results
This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient’s cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient’s race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (
P
< 0.1) than methods without ontologies.
Conclusions
This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical. |
|---|---|
| AbstractList | Abstract Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to “understand” biomedical data. Results This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient’s cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient’s race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies. Conclusions This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical. Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data.BACKGROUNDBio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data.This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies.RESULTSThis retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies.This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical.CONCLUSIONSThis study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical. Background: Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data.Results: This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies. Conclusions: This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical. Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data. Results This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies. Conclusions This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical. Keywords: Machine learning, Bio-ontologies, Quality of life, Activities of daily living, SEER-MHOS Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data. This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies. This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical. Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to “understand” biomedical data. Results This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient’s cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient’s race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels ( P < 0.1) than methods without ontologies. Conclusions This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical. Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that incorporates bio-ontologies and its application to the SEER-MHOS dataset to discover patterns of patient characteristics that impact the ability to perform activities of daily living (ADLs). Bio-ontologies are used to provide computable knowledge for ML methods to "understand" biomedical data. This retrospective study included 723 cancer patients from the SEER-MHOS dataset. Two ML methods were applied to create predictive models for ADL disabilities for the first year after a patient's cancer diagnosis. The first method is a standard rule learning algorithm; the second is that same algorithm additionally equipped with methods for reasoning with ontologies. The models showed that a patient's race, ethnicity, smoking preference, treatment plan and tumor characteristics including histology, staging, cancer site, and morphology were predictors for ADL performance levels one year after cancer diagnosis. The ontology-guided ML method was more accurate at predicting ADL performance levels (P < 0.1) than methods without ontologies. This study demonstrated that bio-ontologies can be harnessed to provide medical knowledge for ML algorithms. The presented method demonstrates that encoding specific types of hierarchical relationships to guide rule learning is possible, and can be extended to other types of semantic relationships present in biomedical ontologies. The ontology-guided ML method achieved better performance than the method without ontologies. The presented method can also be used to promote the effectiveness and efficiency of ML in healthcare, in which use of background knowledge and consistency with existing clinical expertise is critical. |
| ArticleNumber | 39 |
| Audience | Academic |
| Author | Irvin, Katherine Avramovic, Sanja Wojtusiak, Janusz Min, Hua Mobahi, Hedyeh |
| Author_xml | – sequence: 1 givenname: Hua orcidid: 0000-0003-2422-0043 surname: Min fullname: Min, Hua email: hmin3@gmu.edu organization: Department of Health Administration and Policy, College of Health and Human Services, George Mason University – sequence: 2 givenname: Hedyeh surname: Mobahi fullname: Mobahi, Hedyeh organization: Department of Health Administration and Policy, College of Health and Human Services, George Mason University – sequence: 3 givenname: Katherine surname: Irvin fullname: Irvin, Katherine organization: Department of Health Administration and Policy, College of Health and Human Services, George Mason University – sequence: 4 givenname: Sanja surname: Avramovic fullname: Avramovic, Sanja organization: Department of Health Administration and Policy, College of Health and Human Services, George Mason University – sequence: 5 givenname: Janusz surname: Wojtusiak fullname: Wojtusiak, Janusz organization: Department of Health Administration and Policy, College of Health and Human Services, George Mason University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28915930$$D View this record in MEDLINE/PubMed https://hal.science/hal-05009461$$DView record in HAL |
| BookMark | eNqNUsGO0zAUjNAidln2A7igSFzgkMUvTpzkglStgF2pEhzgbL04TurKsYuddNW_x2nKqq0AkSiy9Twzz5l5L6MLY42MotdAbgFK9sEDpSlLCBThy6qEPYuuUpJBAllJLo72l9GN92sSHkqBlPRFdJmWFeQVJVeR_eZko8SgTBdjWLZqUNLHto0bVHoX61AJR611sUAjpIs3GBBm8PHo9yQTWzNYbbtd0o2qkU3co1gpI2Mt0ZkJ08thZZs95lX0vEXt5c1hvY5-fP70_e4-WX798nC3WCaC0WJIqGghFdCUIhW1oMiQCYkSIYO2yCkpa5ZmFalFSaFC2RS0JXWdT7gSKob0OnqYdRuLa75xqke34xYV3xes6zi6QQkteRCUlLVtjhlkGUOs04KgILRKS1lCHrTSWWs0G9w9otZPgkD4FAafw-AhDD6FwVkgfZxJm7HuZSOCZQ71yU1OT4xa8c5uec4IJdXU9f0ssDqj3S-WfKqRnJAqY7CFgH13aObsz1H6gffKC6k1GmlHz6HKCGEEyHSvt2fQtR2dCVlMqIoxWu6bH1AdBoeUaW24o5hE-SInFRBgOQ2o2z-gwtvIXokwrq0K9RPCm2NTnn7r9zwGAMwA4az3Trb_5XRxxhFqCENqJ1-V_ifzEKwPXUwn3ZEXfyX9ArFrEyg |
| CitedBy_id | crossref_primary_10_1186_s13326_022_00261_9 crossref_primary_10_3390_cancers14081906 crossref_primary_10_1108_DTS_06_2023_0041 crossref_primary_10_1186_s12911_020_01368_8 |
| Cites_doi | 10.1016/j.eururo.2012.08.054 10.1055/s-0038-1634945 10.1093/bib/bbv011 10.1109/TAI.1991.167073 10.1136/jamia.2009.001560 10.1007/978-3-540-73451-2_5 10.1136/jamia.1998.0050041 10.1016/j.jbi.2003.11.001 10.1007/s11764-013-0299-1 10.1007/s11136-012-0214-7 10.1007/978-3-540-68856-3 10.1016/j.artmed.2014.03.001 10.1016/0743-1066(94)90035-3 10.1016/j.websem.2016.01.001 10.7551/mitpress/7432.001.0001 10.1186/s13326-015-0033-1 10.1055/s-0038-1638585 10.1016/j.juro.2012.11.132 10.1097/SLA.0b013e3180caa3fb 10.5121/ijnlc.2016.5201 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2017 COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 Attribution |
| Copyright_xml | – notice: The Author(s). 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 – notice: Attribution |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 1XC VOOES 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s13326-017-0149-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological science database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Languages & Literatures Mathematics Statistics Computer Science |
| EISSN | 2041-1480 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_f75e36ff5a41446aab270ac03928e815 10.1186/s13326-017-0149-6 PMC5603095 oai:HAL:hal-05009461v1 A509101653 28915930 10_1186_s13326_017_0149_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Thomas F. and Kate Miller Jeffress Memorial Trust funderid: http://dx.doi.org/10.13039/100006990 – fundername: ; |
| GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU DIK E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH INR ITC KQ8 L6V LK8 M1P M48 M7P M7S ML~ M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SMT SOJ TUS UKHRP AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7XB 8FK AHSBF AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 1XC VOOES 5PM 2VQ 4.4 ADTOC AFFHD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c637t-3cf12c1d8c2cbc3a6a6ceaea141f75308b62490bc8319aed73f0bb5a6a68196a3 |
| IEDL.DBID | M48 |
| ISSN | 2041-1480 |
| IngestDate | Fri Oct 03 12:48:20 EDT 2025 Wed Oct 29 12:03:57 EDT 2025 Tue Sep 30 15:58:23 EDT 2025 Tue Oct 14 20:43:48 EDT 2025 Fri Sep 05 08:20:03 EDT 2025 Sat Oct 18 23:46:22 EDT 2025 Mon Oct 20 22:16:38 EDT 2025 Mon Oct 20 16:29:51 EDT 2025 Thu Jan 02 23:10:15 EST 2025 Wed Oct 01 04:33:07 EDT 2025 Thu Apr 24 22:52:49 EDT 2025 Sat Sep 06 07:20:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Activities of daily living Bio-ontologies Machine learning SEER-MHOS Quality of life Machine learning Bio-ontologies Quality of life Activities of daily living SEER-MHOS |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c637t-3cf12c1d8c2cbc3a6a6ceaea141f75308b62490bc8319aed73f0bb5a6a68196a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2422-0043 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13326-017-0149-6 |
| PMID | 28915930 |
| PQID | 1949663895 |
| PQPubID | 2040220 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f75e36ff5a41446aab270ac03928e815 unpaywall_primary_10_1186_s13326_017_0149_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5603095 hal_primary_oai_HAL_hal_05009461v1 proquest_miscellaneous_1940060106 proquest_journals_1949663895 gale_infotracmisc_A509101653 gale_infotracacademiconefile_A509101653 pubmed_primary_28915930 crossref_primary_10_1186_s13326_017_0149_6 crossref_citationtrail_10_1186_s13326_017_0149_6 springer_journals_10_1186_s13326_017_0149_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-16 |
| PublicationDateYYYYMMDD | 2017-09-16 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Journal of biomedical semantics |
| PublicationTitleAbbrev | J Biomed Semant |
| PublicationTitleAlternate | J Biomed Semantics |
| PublicationYear | 2017 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | 149_CR4 149_CR16 149_CR38 SB Clauser (149_CR32) 2008; 29 149_CR11 149_CR1 R Hoehndorf (149_CR13) 2015; 16 T Amemiya (149_CR37) 2007; 246 149_CR2 149_CR3 CB Agborsangaya (149_CR36) 2013; 22 149_CR31 GK Savova (149_CR9) 2010; 17 J Geller (149_CR28) 2009; 2009 R Michalski (149_CR19) 2004 M Madsen (149_CR12) 2010; 151 C Lindberg (149_CR15) 1990; 61 J Wojtusiak (149_CR18) 2012 I Spasic (149_CR10) 2015; 6 J Wojtusiak (149_CR17) 2004 149_CR27 JJ Cimino (149_CR30) 2003; 36 149_CR22 149_CR23 Y Kassahun (149_CR6) 2014; 61 149_CR24 149_CR20 149_CR21 A Briganti (149_CR33) 2013; 63 SS Taneja (149_CR34) 2013; 189 P Ristoski (149_CR7) 2016; 36 DA Lindberg (149_CR14) 1993; 32 PA Vissers (149_CR35) 2013; 7 K Kaufman (149_CR25) 1999 S Muggleton (149_CR5) 1994; 19 JJ Cimino (149_CR29) 1998; 5 MS Devi (149_CR8) 2016; 5 G Cervone (149_CR26) 2010 24743020 - Artif Intell Med. 2014 Jun;61(2):79-88 8412823 - Methods Inf Med. 1993 Aug;32(4):281-91 20407155 - Stud Health Technol Inform. 2010;151:104-14 14759818 - J Biomed Inform. 2003 Dec;36(6):450-61 16779100 - AMIA Annu Symp Proc. 2005;:550-4 18660879 - Yearb Med Inform. 2008;:67-79 20351848 - AMIA Annu Symp Proc. 2009 Nov 14;2009:193-7 9452984 - J Am Med Inform Assoc. 1998 Jan-Feb;5(1):41-51 22684529 - Qual Life Res. 2013 May;22(4):791-9 17667500 - Ann Surg. 2007 Aug;246(2):222-8 26347806 - J Biomed Semantics. 2015 Sep 07;6:34 18773610 - Health Care Financ Rev. 2008 Summer;29(4):1-4 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13 25863278 - Brief Bioinform. 2015 Nov;16(6):1069-80 10104531 - J Am Med Rec Assoc. 1990 May;61(5):40-2 23394638 - J Urol. 2013 Mar;189(3):901 22959192 - Eur Urol. 2013 Apr;63(4):693-701 23918453 - J Cancer Surviv. 2013 Dec;7(4):602-13 |
| References_xml | – volume: 151 start-page: 104 year: 2010 ident: 149_CR12 publication-title: Stud Health Technol Inform – volume: 63 start-page: 693 issue: 4 year: 2013 ident: 149_CR33 publication-title: Eur Urol doi: 10.1016/j.eururo.2012.08.054 – ident: 149_CR2 – volume: 32 start-page: 281 issue: 4 year: 1993 ident: 149_CR14 publication-title: Methods Inf Med doi: 10.1055/s-0038-1634945 – volume: 16 start-page: 1069 issue: 6 year: 2015 ident: 149_CR13 publication-title: Brief Bioinform doi: 10.1093/bib/bbv011 – ident: 149_CR20 doi: 10.1109/TAI.1991.167073 – volume-title: AQ21 User’s guide year: 2004 ident: 149_CR17 – ident: 149_CR38 – ident: 149_CR16 – volume: 17 start-page: 507 issue: 5 year: 2010 ident: 149_CR9 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2009.001560 – ident: 149_CR22 doi: 10.1007/978-3-540-73451-2_5 – volume: 5 start-page: 41 issue: 1 year: 1998 ident: 149_CR29 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.1998.0050041 – volume: 36 start-page: 450 issue: 6 year: 2003 ident: 149_CR30 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2003.11.001 – volume: 7 start-page: 602 issue: 4 year: 2013 ident: 149_CR35 publication-title: J Cancer Surviv doi: 10.1007/s11764-013-0299-1 – volume: 22 start-page: 791 issue: 4 year: 2013 ident: 149_CR36 publication-title: Qual Life Res doi: 10.1007/s11136-012-0214-7 – ident: 149_CR3 doi: 10.1007/978-3-540-68856-3 – ident: 149_CR24 – ident: 149_CR1 – volume: 61 start-page: 79 issue: 2 year: 2014 ident: 149_CR6 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2014.03.001 – ident: 149_CR27 – volume: 19 start-page: 629 year: 1994 ident: 149_CR5 publication-title: J Log Program doi: 10.1016/0743-1066(94)90035-3 – volume-title: The AQ18 Machine Learning and Data Mining System: an Implementation and User’s Guide year: 1999 ident: 149_CR25 – volume-title: Reports of the Machine Learning and Inference Laboratory, MLI 04–2 year: 2004 ident: 149_CR19 – volume: 2009 start-page: 193 year: 2009 ident: 149_CR28 publication-title: AMIA Annu Symp Proc – volume: 29 start-page: 1 issue: 4 year: 2008 ident: 149_CR32 publication-title: Health Care Financ Rev – volume: 36 start-page: 1 issue: C year: 2016 ident: 149_CR7 publication-title: Web Semant doi: 10.1016/j.websem.2016.01.001 – ident: 149_CR4 doi: 10.7551/mitpress/7432.001.0001 – ident: 149_CR31 – volume: 6 start-page: 34 year: 2015 ident: 149_CR10 publication-title: J Biomed Semantics doi: 10.1186/s13326-015-0033-1 – ident: 149_CR11 doi: 10.1055/s-0038-1638585 – ident: 149_CR21 – volume: 189 start-page: 901 issue: 3 year: 2013 ident: 149_CR34 publication-title: J Urol doi: 10.1016/j.juro.2012.11.132 – volume: 246 start-page: 222 issue: 2 year: 2007 ident: 149_CR37 publication-title: Ann Surg doi: 10.1097/SLA.0b013e3180caa3fb – volume: 5 start-page: 1 issue: 2 year: 2016 ident: 149_CR8 publication-title: Int J Nat Lang Comput (IJNLC) doi: 10.5121/ijnlc.2016.5201 – volume-title: American Medical Informatics Annual Symposium year: 2012 ident: 149_CR18 – ident: 149_CR23 – volume: 61 start-page: 40 issue: 5 year: 1990 ident: 149_CR15 publication-title: J Am Med Rec Assoc – volume-title: Algorithm quasi-optimal (AQ) learning. Wiley Interdisciplinary Reviews: Computational Statistics year: 2010 ident: 149_CR26 – reference: 23918453 - J Cancer Surviv. 2013 Dec;7(4):602-13 – reference: 16779100 - AMIA Annu Symp Proc. 2005;:550-4 – reference: 17667500 - Ann Surg. 2007 Aug;246(2):222-8 – reference: 18660879 - Yearb Med Inform. 2008;:67-79 – reference: 8412823 - Methods Inf Med. 1993 Aug;32(4):281-91 – reference: 9452984 - J Am Med Inform Assoc. 1998 Jan-Feb;5(1):41-51 – reference: 24743020 - Artif Intell Med. 2014 Jun;61(2):79-88 – reference: 22959192 - Eur Urol. 2013 Apr;63(4):693-701 – reference: 22684529 - Qual Life Res. 2013 May;22(4):791-9 – reference: 20407155 - Stud Health Technol Inform. 2010;151:104-14 – reference: 23394638 - J Urol. 2013 Mar;189(3):901 – reference: 26347806 - J Biomed Semantics. 2015 Sep 07;6:34 – reference: 14759818 - J Biomed Inform. 2003 Dec;36(6):450-61 – reference: 10104531 - J Am Med Rec Assoc. 1990 May;61(5):40-2 – reference: 20351848 - AMIA Annu Symp Proc. 2009 Nov 14;2009:193-7 – reference: 25863278 - Brief Bioinform. 2015 Nov;16(6):1069-80 – reference: 20819853 - J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13 – reference: 18773610 - Health Care Financ Rev. 2008 Summer;29(4):1-4 |
| SSID | ssj0000331083 |
| Score | 2.1659162 |
| Snippet | Background
Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML... Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML approach that... Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML... Background: Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents a ML... Abstract Background Bio-ontologies are becoming increasingly important in knowledge representation and in the machine learning (ML) fields. This paper presents... |
| SourceID | doaj unpaywall pubmedcentral hal proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 39 |
| SubjectTerms | Activities of Daily Living Aged Aged, 80 and over Algorithms Analysis Artificial Intelligence Big Data Bio-ontologies Bioinformatics Biological Ontologies Biomedical data BioOntologies SIG Cancer Cancer patients Cohort Studies Combinatorial Libraries Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer Science Data analysis Data Mining Data Mining and Knowledge Discovery Data processing Diagnosis Disabilities Female Health aspects Histology Humans Information systems International conferences Knowledge discovery Knowledge management Knowledge representation Language Learning algorithms Logic programming Machine Learning Male Mathematical models Mathematics Mathematics and Statistics Methods Middle Aged Minority & ethnic groups Natural language processing Neoplasms Ontology Patients Pattern recognition Performance prediction Prostate cancer Quality of life Retrospective Studies SEER-MHOS Semantic web Semantics Smoking Statistics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagF-CAeLaBggxCIFFFtePEcY4LolqhBXGgUm-W7TjtSiFb7aOo_54ZxxttVEEvXOOJXzNjz9jjbwh551mtTMZU2jQCHBRlWaqslWlVWc8L432e4dvhb9_l9DT_elac7aT6wpiwHh64n7jjpiy8kE1TmBxdF2NsVjLjGOzryqvwvByaqnacqbAGCzBblIjXmFzJ4xU4Yxk6zxhpmVepHG1EAa9_WJXvXmBQ5E2L82bg5HB7-oDc23SX5vq3adudDerkEXkYLUs66Uf0mNzx3ROyP4vnkSv6ns4GCOXVU7L4scQ7Gox6pvi44SpAq9JFQ2szb69pO8ejBgo2LXUoGUsaIVhXFGPl4aeOIvYBnsqn55t57Wv6K0RmehpTUZzTPj91oHlGTk--_Pw8TWP2hdRJUa5T4RqeOV4rlznrhJFGOm-84TkHngimrATXjVmnQIuNr0vRMGsLpAMrQxrxnOx1i84fEGqzzIncGsdZk5sa8XgYuFFYfekFLxLCtqzQLkKTY4aMVgcXRUndc08D9zRyT8uEfBx-uexxOf5F_An5OxAipHb4AIKmo6Dp2wQtIR9QOjQqPnTOmfh-AYaIEFp6EkwvLguRkMMRJSisGxW_BfkadWY6mWn8xgqM9JT8ikMdW_HTcVVZaV7l4J2CiQmdeTMUY_UYKdf5xSbQBIwdBqPe76V1aAqca7BeBUtIOZLjUV_GJd38ImCOg2EsGLZ7tJX4nW79fd6PBqW4nUsv_geXXpL7WdDxKuXykOytlxv_CszGtX0dVog_SThmLw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe27gF4QHxuhYEMQiAxRbPjxHUfEOrQpgqVaUJM2ptlO05XqSSlH0P777lz3bBoYrzGF8fO3dl35_PvCHnnWaFMylRSlgIcFGVZoqyVSb9vPc-N91mKd4e_ncrhefb1Ir_YIqebuzCYVrlZE8NCXdQOY-SH4GyDZQ7ba_559ivBqlF4uropoWFiaYXiU4AY2yY7KSJjdcjO0fHp2fcm6sIEmDNKxONNruThApy0FJ1qzMDM-olsbVABx79ZrbcvMVnytiV6O6GyOVV9QO6tqpm5_m2m0xsb18kj8jBanHSwFpHHZMtXT8juKMYpF_Q9HTXQyounpD6b49kNZkNTvPRwFSBXaV3Swkym13Q6wRAEBVuXOpSYOY3QrAuKOfTwUkUREwGj9cl4NSl8QX-GjE1PY4mKMV3XrQ40z8j5yfGPL8MkVmVInBS9ZSJcyVPHC-VSZ50w0kjnjTc84yX4PkxZCS4ds06Bdhtf9ETJrM2RDqwPacRz0qnqyu8RatPUicwax1mZmQJxehi4V9h9zwuedwnbsEK7CFmOlTOmOrguSuo19zRwTyP3tOySj80rszVex13ER8jfhhChtsODej7WUXM1TMoLWZa5ydB3NsamPWYcA8NSeYWD_IDSoXFBgME5E-81wBQRWksPgknGZS66ZL9FCYrsWs1vQb5agxkORhqfsRwzQCW_4tDHRvx0XG0W-q9udMmbphm7xwy6yterQBOwdxjMenctrc2nwOkGq1awLum15Lg1lnZLNbkMWORgMAuG3z3YSPyNYf37vx80SvF_Lr24e8ovyf00aG8_4XKfdJbzlX8FhuLSvo7a_wdimGSi priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYeIA9IBgwCgMZhEBiirDjxHEfy8RUoQ7xwKS9WbbjbJVCOjXt0P577hw3ajQ-xKt9ds65O_vOPv9MyFvPSmVSppKqEhCgKMsSZa1MxmPreW68z1K8O3z6VU7Psi_n-XkEi8a7MNvn91zJjy3EUCnGvJggmY0TuUPuwholw7msPO63U5gAP0WJeG7525aDlScA9PfT8M4lZkHedjFvZ0r2x6V75N66uTI3P01db61IJw_Jg-hK0kkn-0fkjm_2ycEsbkC29B2d9ZjJ7T7ZO-0RWtvHZPFtiUc0mPRM8W7DdUBWpYuKlmZe39B6jjsNFFxa6lAxljQisLYUU-WhUUMR-gA35ZOL9bz0Jf0REjM9jS9RXNDueepA84ScnXz-fjxN4uMLiZOiWCXCVTx1vFQuddYJI4103njDM15BiMOUlRC5MesUGLHxZSEqZm2OdOBkSCOekt1m0fhnhNo0dSKzxnFWZaZEOB4GURR2X3jB8xFhG8FoF5HJ8YGMWocIRUndyVKDLDXKUssR-dA3uepgOf5G_Aml3RMionYoAEXT0UA1DMoLWVW5yTBENsamBTOOgf-ovEIm36OuaLR7YM6ZeH0BhogIWnoSPC8uczEihwNKsFc3qH4D2jZgZjqZaSxjOSZ6Sn7NoY-NMuo4qbSajzMITsHDBGZe99XYPSbKNX6xDjQBYofBqA863e0_BbE1OK-CjUgx0OoBL8OaZn4ZIMfBLxYMv3u00f8ttv783496E_m3lJ7_V98vyP00mPY44fKQ7K6Wa_8S3MOVfRUmhl_-vFr2 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe27gF44JtRGMggBBJTOjtO3PSxIKYKlWkPTBpPlu04XVmXVk07NP567pwPNYwPIfEWJWfHH3eX38Xnnwl55Via6JAlQZYJCFASw4LEGBkMBsbxWDsXhbh3-NORHJ1EH0_j0y0yqvfCfC13nRfuore5_3zmnTZc2PODRZqVtp7IgwJCrBBDYsyfjAaB3CY7MgZU3iE7J0fHwy94thyLeACov17U_GW51mfJs_c3Pnr7DFMkr-PP62mUzVrqLXJjnS_01Tc9m218rg7vkGnd0TJL5by3Xpme_f4TB-T_GIm75HaFaemwVMJ7ZMvl98nuuPoTWtDXdNyQNxcPyPx4iatDmG9NcVvFpSd1pfOMpno6u6KzKf7koICmqUWdXNKK_LWgmKUPhXKKrAu4HhBM1tPUpfTC54Q6Wh2CMaHlydhe5iE5Ofzw-f0oqM59CKwU_VUgbMZDy9PEhtZYoaWW1mmnecQziK5YYiQEjczYBPyHdmlfZMyYGOUA30gtHpFOPs_dY0JNGFoRGW05yyKdIhMQgwAOq-87weMuYfW0K1uRouPZHDPlg6NEqnJcFYyrwnFVskveNkUWJSPIn4TfoS41gkjm7W_MlxNV-QYFnXJCZlmsI4zOtTZhn2nLALomLsFGvkFNVOhycOJ1tXMCuojkXWroQR-XseiSvZYkuArbevwSdLnVmNFwrPAeizHHVPJLDnXUqq4qf1YoPoggLgZwC4150TzG6jFHL3fztZfx7D4Mer1bWkbzKgjrATcL1iX9ls202tJ-kk_PPNs5QHLB8L37tXVtNOv3477fGODfZ-nJP0k_JTdDb2aDgMs90lkt1-4ZINOVeV45nR_WXIZg priority: 102 providerName: Unpaywall |
| Title | Predicting activities of daily living for cancer patients using an ontology-guided machine learning methodology |
| URI | https://link.springer.com/article/10.1186/s13326-017-0149-6 https://www.ncbi.nlm.nih.gov/pubmed/28915930 https://www.proquest.com/docview/1949663895 https://www.proquest.com/docview/1940060106 https://hal.science/hal-05009461 https://pubmed.ncbi.nlm.nih.gov/PMC5603095 https://jbiomedsem.biomedcentral.com/track/pdf/10.1186/s13326-017-0149-6 https://doaj.org/article/f75e36ff5a41446aab270ac03928e815 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: RBZ dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: ABDBF dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: GX1 dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Health and Medical Complete customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: 8FG dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2041-1480 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: M48 dateStart: 20100601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: AAJSJ dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: C6C dateStart: 20100112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfW7QH2gGDAKIzKIAQSU8CJE8d9QKirNqppmyqg0niybMfpKpV09GPQ_547N40WbYB4aaX47JzjO_vOPv-OkFeOZVJHTAZ5zsFBkYYF0hgRtNvGhYl2Lo7w7vDpmegN4uPz5HyDrNNblR9wdqtrh_mkBtPxu18_lh9B4T94hZfi_Qz8rAj9YgyijNuBaJAtWKjamMnhtLT2_cTMwZaRvDzbvLVmbXXyIP7VVN24wEjJm2bozWjK6kh1m9xZFJd6-VOPx9dWraP75F5pbtLOSj4ekA1X7JDdk3KTckZf05MKV3m2Q7ZPKxTX2UMy6U_xGAcDoynef7jy6Kt0ktNMj8ZLOh7hbgQFs5daFJ4pLVFaZxTD6aFSQREeATfug-FilLmMfvfBm46W2SqGdJXC2tM8IoOjw6_dXlAmaAis4Ok84DYPIxtm0kbWWK6FFtZpp8M4zMENYtII8O6YsRIUXbss5TkzJkE6MESE5o_JZjEp3BNCTRRZHhttQ5bHOkPIHgaeFjafOh4mTcLWA6NsiV6OSTTGynsxUqjVWCoYS4VjqUSTvK2qXK6gO_5GfICjXREi6rZ_MJkOVanECjrluMjzRMfoRmttopRpy8DGlE4ik29QVhRKKzBndXnFAbqIKFuq462zUCS8SfZqlKDTtlb8EqStxkyvc6LwGUswGFSEVyG0sRZGtdYbFbZjcGDBCgVmXlTF2DwG0xVusvA0HoaHQa93V7JbvQr8bzBwOWuStCbVNV7qJcXowsOSg-3MGb53fy3_19j683ffr1Tk36P09L_afkbuRl6120Eo9sjmfLpwz8GEnJsWaaTnKfzKo08tstXpHH85hv-Dw7P-Z3jaFd2W35xp-QkESgZn_c633yyBcfY |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe28TB4QHyOwgCD-JA2RXPixEkfECofU8e6iYdN6puxHaerVJLStJv6T_E3cuekYdHEeNprfHHs3Pl85zv_jpA3lqWJCljiZRkHByXRzEu0Fl63q60fKWvDAO8OHx2L_mn4bRgN18jv1V0YTKtc6USnqNPC4Bn5HjjbYJnD9hp9nP7ysGoURldXJTQqsTi0ywtw2coPB1-Av2-DYP_ryee-V1cV8Izg8dzjJvMD46eJCYw2XAkljFVW-aGfge3OEi3AJWHaJCCdyqYxz5jWEdLB7ikUh37Xya2Qgy6B9RMP4-ZMh3EwlhJeB0_9ROyV4AIG6LJjfmfY9URr-3NVApq9YP0MUzGv2rlX0zWbmO0dsrnIp2p5oSaTS9vi_j1yt7Znaa8SwPtkzeYPyNagPgUt6Ts6aICby4ek-D7DyBDmWlO8UnHuAF1pkdFUjSdLOhnjAQcFS5oalMcZrYFfS4oZ-vBSThFxAWMB3mgxTm1Kf7p8UEvrAhgjWlXFdjSPyOmNcOcx2ciL3D4hVAeB4aFWxmdZqFJEAWLgvGH3seV-1CFsxQppakB0rMsxkc4xSoSsuCeBexK5J0WH7DSvTCs0kOuIPyF_G0IE8nYPitlI1npBwqQsF1kWqRA9c6V0EDNlGJitiU1wkO9ROiSqGxicUfWtCZgiAnfJnjP4fBHxDtluUYKaMK3m1yBfrcH0ewOJz1iE-aXCP_ehj5X4yVqXlfLvyuuQV00zdo_5ebktFo7GIfswmPVWJa3Np8ClB5uZsw6JW3LcGku7JR-fOaRzMMc5w-_uriT-0rD-_d93m0Xxfy49vX7KL8lm_-RoIAcHx4fPyO3AreSu54ttsjGfLexzMEnn-oXTA5T8uGnF8wdS6JwJ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYkIA9IBiwFQYYhEBiimbHies-lkJVoJv2wKS9WbbjdJVKWjXtpv333DlptGh8iNf47Jxzd86dff4dIe88y5SJmYryXECAoiyLlLUy6vWs56nxPonx7vDxiRydJd_O0_O6zmm5yXbfHElWdxoQpalYHS2yvDJxJY9KiKxijIQxbTLpRXKL3E3g54YlDAZy0GyyMAHeixL1aeZve7b-RwG2v1mcty4wN_K243k7f7I5RN0h99fFwlxfmdnsxn9q-Ig8rB1M2q804jG544tdsjeutyVL-p6OGyTlcpfsHDe4reUTMj9d4sENpkJTvPFwGfBW6TynmZnOrulsivsPFBxd6lBdlrTGZS0pJtBDp4IiIAJu1UeT9TTzGf0Z0jU9retTTGhVtDrQPCVnwy8_BqOoLskQOSm6q0i4nMeOZ8rFzjphpJHOG294wnMIfJiyEuI5Zp0C0zY-64qcWZsiHbge0ohnZLuYF36fUBvHTiTWOM7yxGQI0sMgtsLhu17wtEPYRjDa1XjlWDZjpkPcoqSuZKlBlhplqWWHfGy6LCqwjr8Rf0JpN4SIsx0ezJcTXZuthkl5IfM8NQkGzsbYuMuMY-BVKq-QyQ-oKxpXA2DOmfpSA0wRcbV0P_hjXKaiQw5alGDFrtX8FrStxcyoP9b4jKWY_in5JYcxNsqo66Wm1LyXQMgKficw86ZpxuExfa7w83WgCcA7DGa9V-lu8yqIuMGlFaxDui2tbvHSbimmFwGIHLxlwfC9hxv9v8HWn7_7YWMi_5bS8_8a-zW5d_p5qMdfT76_IA_iYOW9iMsDsr1arv1L8B9X9lVYI34BM2JmLA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe27gF44JtRGMggBBJTOjtO3PSxIKYKlWkPTBpPlu04XVmXVk07NP567pwPNYwPIfEWJWfHH3eX38Xnnwl55Via6JAlQZYJCFASw4LEGBkMBsbxWDsXhbh3-NORHJ1EH0_j0y0yqvfCfC13nRfuore5_3zmnTZc2PODRZqVtp7IgwJCrBBDYsyfjAaB3CY7MgZU3iE7J0fHwy94thyLeACov17U_GW51mfJs_c3Pnr7DFMkr-PP62mUzVrqLXJjnS_01Tc9m218rg7vkGnd0TJL5by3Xpme_f4TB-T_GIm75HaFaemwVMJ7ZMvl98nuuPoTWtDXdNyQNxcPyPx4iatDmG9NcVvFpSd1pfOMpno6u6KzKf7koICmqUWdXNKK_LWgmKUPhXKKrAu4HhBM1tPUpfTC54Q6Wh2CMaHlydhe5iE5Ofzw-f0oqM59CKwU_VUgbMZDy9PEhtZYoaWW1mmnecQziK5YYiQEjczYBPyHdmlfZMyYGOUA30gtHpFOPs_dY0JNGFoRGW05yyKdIhMQgwAOq-87weMuYfW0K1uRouPZHDPlg6NEqnJcFYyrwnFVskveNkUWJSPIn4TfoS41gkjm7W_MlxNV-QYFnXJCZlmsI4zOtTZhn2nLALomLsFGvkFNVOhycOJ1tXMCuojkXWroQR-XseiSvZYkuArbevwSdLnVmNFwrPAeizHHVPJLDnXUqq4qf1YoPoggLgZwC4150TzG6jFHL3fztZfx7D4Mer1bWkbzKgjrATcL1iX9ls202tJ-kk_PPNs5QHLB8L37tXVtNOv3477fGODfZ-nJP0k_JTdDb2aDgMs90lkt1-4ZINOVeV45nR_WXIZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+activities+of+daily+living+for+cancer+patients+using+an+ontology-guided+machine+learning+methodology&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Min%2C+Hua&rft.au=Mobahi%2C+Hedyeh&rft.au=Irvin%2C+Katherine&rft.au=Avramovic%2C+Sanja&rft.date=2017-09-16&rft.pub=BioMed+Central&rft.eissn=2041-1480&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs13326-017-0149-6&rft.externalDocID=10_1186_s13326_017_0149_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon |