SPIDR: small-molecule peptide-influenced drug repurposing
Background Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are exa...
Saved in:
| Published in | BMC bioinformatics Vol. 19; no. 1; pp. 138 - 11 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
16.04.2018
BioMed Central Ltd Springer Science + Business Media BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-018-2153-y |
Cover
| Abstract | Background
Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates.
Results
Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide
α
-conotoxin MII ligand and the
α
3
β
2
-nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the
α
3
β
2
-nAChR isoform using a library consisting of 640,000
α
-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for
α
3
β
2
-nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native
α
-conotoxin MII peptide.
Conclusions
SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing. |
|---|---|
| AbstractList | Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates.BACKGROUNDConventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates.Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide α-conotoxin MII ligand and the α3β2-nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the α3β2-nAChR isoform using a library consisting of 640,000 α-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for α3β2-nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native α-conotoxin MII peptide.RESULTSSmall-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide α-conotoxin MII ligand and the α3β2-nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the α3β2-nAChR isoform using a library consisting of 640,000 α-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for α3β2-nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native α-conotoxin MII peptide.SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing.CONCLUSIONSSPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing. Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates. Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide [alpha]-conotoxin MII ligand and the [alpha].sub.3[beta].sub.2-nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the [alpha].sub.3[beta].sub.2-nAChR isoform using a library consisting of 640,000 [alpha]-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for [alpha].sub.3[beta].sub.2-nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native [alpha]-conotoxin MII peptide. SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing. Background Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates. Results Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide [alpha]-conotoxin MII ligand and the [alpha].sub.3[beta].sub.2-nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the [alpha].sub.3[beta].sub.2-nAChR isoform using a library consisting of 640,000 [alpha]-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for [alpha].sub.3[beta].sub.2-nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native [alpha]-conotoxin MII peptide. Conclusions SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing. Keywords: Drug repurposing, Repositioning, DockoMatic, GAMPMS, SimSearcher Background Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates. Results Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide α -conotoxin MII ligand and the α 3 β 2 -nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the α 3 β 2 -nAChR isoform using a library consisting of 640,000 α -conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for α 3 β 2 -nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native α -conotoxin MII peptide. Conclusions SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing. Background: Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates. Results: Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide α-conotoxin MII ligand and the α3β2-nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the α3β2-nAChR isoform using a library consisting of 640,000 α-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for α3β2-nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native α-conotoxin MII peptide. Conclusions: SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing. Abstract Background Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates. Results Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide α-conotoxin MII ligand and the α 3 β 2-nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the α 3 β 2-nAChR isoform using a library consisting of 640,000 α-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for α 3 β 2-nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native α-conotoxin MII peptide. Conclusions SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing. Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to new drug development is drug repurposing, in which compounds that have already gone through some level of clinical testing are examined for efficacy against diseases divergent than their original application. Repurposing of existing drugs circumvents the time and considerable cost of early stages of drug development, and can be accelerated by using software to screen existing chemical databases to identify suitable drug candidates. Small-molecule Peptide-Influenced Drug Repurposing (SPIDR) was developed to identify small molecule drugs that target a specific receptor by exploring the conformational binding space of peptide ligands. SPIDR was tested using the potent and selective 16-amino acid peptide α-conotoxin MII ligand and the α β -nicotinic acetylcholine receptor (nAChR) isoform. SPIDR incorporates a genetic algorithm-based, heuristic search procedure, which was used to explore the ligand binding domain of the α β -nAChR isoform using a library consisting of 640,000 α-conotoxin MII peptide analogs. The peptides that exhibited the highest affinity for α β -nAChR were used as models for a small-molecule structure similarity search of the PubChem Compound database. SPIDR incorporates the SimSearcher utility, which generates shape distribution signatures of molecules and employs multi-level K-means clustering to insure fast database queries. SPIDR identified non-peptide drugs with estimated binding affinities nearly double that of the native α-conotoxin MII peptide. SPIDR has been generalized and integrated into DockoMatic v 2.1. This software contains an intuitive graphical interface for peptide mutant screening workflow and facilitates mapping, clustering, and searching of local molecular databases, making DockoMatic a valuable tool for researchers in drug design and repurposing. |
| ArticleNumber | 138 |
| Audience | Academic |
| Author | Pfalmer, Daniel L. Andersen, Timothy L. Long, Thomas King, Matthew D. McDougal, Owen M. |
| Author_xml | – sequence: 1 givenname: Matthew D. surname: King fullname: King, Matthew D. organization: Department of Chemistry and Biochemistry, Boise State University – sequence: 2 givenname: Thomas surname: Long fullname: Long, Thomas organization: Department of Computer Science, Boise State University – sequence: 3 givenname: Daniel L. surname: Pfalmer fullname: Pfalmer, Daniel L. organization: Biomolecular Sciences Ph.D. Program, Boise State University – sequence: 4 givenname: Timothy L. surname: Andersen fullname: Andersen, Timothy L. organization: Department of Computer Science, Boise State University – sequence: 5 givenname: Owen M. surname: McDougal fullname: McDougal, Owen M. email: owenmcdougal@boisestate.edu organization: Department of Chemistry and Biochemistry, Boise State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29661129$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1618532$$D View this record in Osti.gov |
| BookMark | eNqNkktv1DAUhSNURB_wA9igEWxgkWI78SMskKryGqkSqIW15dg3qUeJndoJMP8ehwxVB6EKZZHY-c65vuf6ODtw3kGWPcXoFGPBXkdMBK1yhEVOMC3y7YPsCJccpxWiB3e-D7PjGDcIYS4QfZQdkooxjEl1lFVXX9bvLt-sYq-6Lu99B3rqYDXAMFoDuXVNN4HTYFYmTO0qwDCFwUfr2sfZw0Z1EZ7s3ifZtw_vv55_yi8-f1yfn13kmhVszJWBmgNjZVUrXjeCQ8VrVQlsFG8QAkrBMEIaSjBAgRuiheaV4U1ZaqMMLU6y9eJrvNrIIdheha30ysrfGz60UoXR6g5kSWtFlcJcU1Om9kRTAaSMeGEKzTFJXmTxmtygtj9Sy7eGGMk5U7lkKlOmcs5UbpPo7SIaproHo8GNQXV7J9n_4-y1bP13SStERDV38Hwx8HG0Mmo7gr7W3jnQo8QMC1rMR3u5qxL8zQRxlL2NGrpOOfBTlAQRVpKCFyyhLxa0VanpNCKfyuoZl2e0ZKJgDOFEnf6DSo-B3qbq0Ni0vyd4tSdIzAg_x1ZNMcr11eU---xuJrdh_LlYCeALoIOPMUAjU9tqtH6OyHb3xo3_Uv7PiHZzjYl1LQS58VNw6VreI_oFfSb_wQ |
| CitedBy_id | crossref_primary_10_2478_jtim_2021_0038 crossref_primary_10_3390_md17030145 crossref_primary_10_1007_s11030_021_10217_3 crossref_primary_10_3390_md17120669 crossref_primary_10_1055_a_1971_6965 crossref_primary_10_2174_1573406418666220214091107 crossref_primary_10_3390_ph14060573 crossref_primary_10_3390_toxins11120682 |
| Cites_doi | 10.1371/journal.pcbi.0020134 10.1208/s12248-012-9390-1 10.1074/jbc.M414476200 10.1186/1752-153X-1-12 10.1124/mol.106.031492 10.1016/j.jhealeco.2016.01.012 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B 10.1080/14789450.2017.1377613 10.1093/nar/gku989 10.1016/S0026-895X(24)26500-7 10.1021/ci300367a 10.1007/s10822-011-9440-2 10.2174/1568026616666160216153457 10.1093/nar/gkl999 10.1038/sj.emboj.7600828 10.1124/mol.65.4.944 10.2174/138161211798999384 10.1002/jcc.23928 10.1093/bioinformatics/btl197 10.1002/jcc.20756 10.1002/jcc.21864 10.1016/j.cbpa.2017.03.004 10.1145/571647.571648 10.1002/mds.20029 10.1016/j.drudis.2013.11.005 10.1074/jbc.271.13.7522 10.1016/j.jmb.2004.12.031 10.1093/nar/gkv951 10.2741/2695 10.1093/nar/gkr777 10.1042/BIO03105034 10.1007/11415770_32 10.1038/nrd1468 10.1007/s00213-005-0164-7 10.1038/nrd3405 10.1016/S0741-8329(01)00130-6 10.1002/cbic.201300577 10.1007/s00018-009-0125-0 10.1002/jcc.20634 10.1038/srep42717 10.1186/1756-0500-3-289 10.1093/nar/gkj067 10.1371/journal.pcbi.1002503 10.1006/jmbi.1993.1626 10.1021/ci300245q 10.1021/jm0306430 10.1021/acs.jcim.6b00095 10.1021/ed100697w 10.1145/1162349.1162350 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2018 COPYRIGHT 2018 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s). 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. |
| CorporateAuthor | Idaho National Lab. (INL), Idaho Falls, ID (United States) |
| CorporateAuthor_xml | – name: Idaho National Lab. (INL), Idaho Falls, ID (United States) |
| DBID | C6C AAYXX CITATION NPM ISR 7X8 OTOTI 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-018-2153-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_45ba5aa17c5d41298f9ee12873d3c712 10.1186/s12859-018-2153-y PMC5902895 1618532 A546836601 29661129 10_1186_s12859_018_2153_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Institutes of Health grantid: P20GM103408 funderid: http://dx.doi.org/10.13039/100000002 – fundername: M.J. Murdock Charitable Trust funderid: http://dx.doi.org/10.13039/100000937 – fundername: National Science Foundation grantid: 0619793; 0923535 funderid: http://dx.doi.org/10.13039/501100008982 – fundername: Office of Nuclear Energy grantid: DE-AC07-05ID14517 funderid: http://dx.doi.org/10.13039/100006147 – fundername: National Institute of General Medical Sciences grantid: P20GM109095 funderid: http://dx.doi.org/10.13039/100000057 – fundername: Research Corporation for Science Advancement funderid: http://dx.doi.org/10.13039/100001309 – fundername: NIGMS NIH HHS grantid: P20 GM103408 – fundername: National Institute of General Medical Sciences grantid: P20GM109095 – fundername: NIGMS NIH HHS grantid: P20 GM109095 – fundername: Office of Nuclear Energy grantid: DE-AC07-05ID14517 – fundername: National Science Foundation grantid: 0923535 – fundername: National Science Foundation grantid: 0619793 – fundername: National Institutes of Health grantid: P20GM103408 – fundername: ; grantid: DE-AC07-05ID14517 – fundername: ; – fundername: ; grantid: P20GM109095 – fundername: ; grantid: P20GM103408 – fundername: ; grantid: 0619793; 0923535 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 M0N NPM 7X8 AAPBV ABPTK AFGXO N95 OTOTI PQEST PQUKI 5PM 123 2VQ 4.4 ADTOC AFFHD AHSBF C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c636t-adeb7e6649ba7bf87e97ba981da7f00e55ed622f521ee31f2c8c79d7f44cdad53 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:52:48 EDT 2025 Wed Oct 29 12:12:24 EDT 2025 Tue Sep 30 16:43:19 EDT 2025 Fri May 19 00:56:15 EDT 2023 Fri Sep 05 12:23:28 EDT 2025 Mon Oct 20 22:09:46 EDT 2025 Mon Oct 20 16:20:32 EDT 2025 Thu Oct 16 14:55:58 EDT 2025 Wed Feb 19 02:43:56 EST 2025 Wed Oct 01 05:47:44 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Sat Sep 06 07:27:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Drug repurposing GAMPMS Repositioning DockoMatic SimSearcher |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c636t-adeb7e6649ba7bf87e97ba981da7f00e55ed622f521ee31f2c8c79d7f44cdad53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Nuclear Energy (NE) USDOE Office of Science (SC) AC07-05ID14517 |
| OpenAccessLink | https://doaj.org/article/45ba5aa17c5d41298f9ee12873d3c712 |
| PMID | 29661129 |
| PQID | 2026423736 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_45ba5aa17c5d41298f9ee12873d3c712 unpaywall_primary_10_1186_s12859_018_2153_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_5902895 osti_scitechconnect_1618532 proquest_miscellaneous_2026423736 gale_infotracmisc_A546836601 gale_infotracacademiconefile_A546836601 gale_incontextgauss_ISR_A546836601 pubmed_primary_29661129 crossref_citationtrail_10_1186_s12859_018_2153_y crossref_primary_10_1186_s12859_018_2153_y springer_journals_10_1186_s12859_018_2153_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-16 |
| PublicationDateYYYYMMDD | 2018-04-16 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: United Kingdom |
| PublicationSubtitle | BMC series – open, inclusive and trusted |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2018 |
| Publisher | BioMed Central BioMed Central Ltd Springer Science + Business Media BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Science + Business Media – name: BMC |
| References | R Osada (2153_CR67) 2002; 21 JA DiMasi (2153_CR2) 2016; 47 S Kim (2153_CR7) 2016; 44 F Cheng (2153_CR56) 2012; 52 RA Friesner (2153_CR10) 2004; 47 G Jin (2153_CR6) 2014; 19 GE Cartier (2153_CR29) 1996; 271 2153_CR42 2153_CR41 2153_CR40 EK Perry (2153_CR23) 2001; 24 2153_CR46 2153_CR45 2153_CR44 2153_CR43 A Martorana (2153_CR60) 2016; 16 DS Wishart (2153_CR36) 2006; 34 2153_CR49 MF Allam (2153_CR22) 2004; 19 2153_CR48 2153_CR47 A Sali (2153_CR65) 1993; 234 VS Sambasivarao (2153_CR27) 2014; 15 TT Ashburn (2153_CR3) 2004; 3 M Vaqu (2153_CR9) 2006; 22 JM McIntosh (2153_CR31) 2004; 65 HE Pence (2153_CR38) 2010; 87 A Gaulton (2153_CR39) 2012; 40 SB Hansen (2153_CR54) 2005; 24 2153_CR52 2153_CR51 O Salminen (2153_CR32) 2007; 71 2153_CR50 DM Morens (2153_CR21) 1996; 46 2153_CR12 Z Wu (2153_CR61) 2016; 18 J Xu (2153_CR16) 2005 J Xu (2153_CR17) 2006; 53 CW Bullock (2153_CR11) 2003; 3 2153_CR15 Z Hu (2153_CR8) 2007; 28 2153_CR18 PP Deotarse (2153_CR4) 2015; 4 PHN Celie (2153_CR53) 2005; 280 MR Picciotto (2153_CR25) 2008; 13 F Pammolli (2153_CR1) 2011; 10 C Netirojjanakul (2153_CR19) 2017; 38 RB Jacob (2153_CR26) 2010; 67 2153_CR20 2153_CR63 GM Morris (2153_CR13) 1998; 19 X Cheng (2153_CR55) 2006; 2 F Fontaine (2153_CR66) 2007; 1 ED Levin (2153_CR24) 2006; 184 T Liu (2153_CR37) 2007; 35 F Cheng (2153_CR62) 2012; 8 CM Fonseca (2153_CR68) 1995 P Whiteaker (2153_CR33) 2000; 57 M Muttenthaler (2153_CR30) 2011; 17 SC Harvey (2153_CR28) 2004; 65 I Sushko (2153_CR59) 2012; 52 N Unwin (2153_CR64) 2005; 346 2153_CR35 I Sushko (2153_CR58) 2011; 25 R Huey (2153_CR14) 2007; 28 A Daina (2153_CR57) 2017; 7 TI Oprea (2153_CR5) 2012; 14 T Long (2153_CR34) 2015; 36 19705062 - Cell Mol Life Sci. 2010 Jan;67(1):17-27 16381955 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72 21059259 - BMC Res Notes. 2010 Nov 08;3:289 22589709 - PLoS Comput Biol. 2012;8(5):e1002503 26928437 - J Health Econ. 2016 May;47:20-33 17880744 - Chem Cent J. 2007 Jun 06;1:12 23092397 - J Chem Inf Model. 2012 Nov 26;52(11):3099-105 28256516 - Sci Rep. 2017 Mar 03;7:42717 24420650 - Chembiochem. 2014 Feb 10;15(3):413-24 16720587 - Bioinformatics. 2006 Jul 15;22(14):1803-4 21717479 - J Comput Chem. 2011 Oct;32(13):2936-41 28879805 - Expert Rev Proteomics. 2017 Oct;14 (10 ):931-939 26881716 - Curr Top Med Chem. 2016;16(19):2088-106 16220335 - Psychopharmacology (Berl). 2006 Mar;184(3-4):523-39 25975567 - J Comput Chem. 2015 Jun 30;36(17):1304-10 21948594 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7 11522424 - Alcohol. 2001 Jun;24(2):63-8 15044624 - Mol Pharmacol. 2004 Apr;65(4):944-52 17341654 - Mol Pharmacol. 2007 Jun;71(6):1563-71 26944082 - Brief Bioinform. 2017 Mar 1;18(2):333-347 22876798 - J Chem Inf Model. 2012 Aug 27;52(8):2310-6 17476686 - J Comput Chem. 2007 Nov 15;28(14):2347-51 21660515 - J Comput Aided Mol Des. 2011 Jun;25(6):533-54 15286734 - Nat Rev Drug Discov. 2004 Aug;3(8):673-83 21629293 - Nat Rev Drug Discov. 2011 Jun;10(6):428-38 16193063 - EMBO J. 2005 Oct 19;24(20):3635-46 17981563 - Front Biosci. 2008 Jan 01;13:492-504 8780088 - Neurology. 1996 Apr;46(4):1044-50 26400175 - Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13 25348405 - Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 8631783 - J Biol Chem. 1996 Mar 29;271(13):7522-8 15701510 - J Mol Biol. 2005 Mar 4;346(4):967-89 10779374 - Mol Pharmacol. 2000 May;57(5):913-25 22204424 - Curr Pharm Des. 2011 Dec;17(38):4226-41 17009865 - PLoS Comput Biol. 2006 Sep 29;2(9):e134 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 24239728 - Drug Discov Today. 2014 May;19(5):637-44 15027865 - J Med Chem. 2004 Mar 25;47(7):1739-49 17145705 - Nucleic Acids Res. 2007 Jan;35(Database issue):D198-201 17274016 - J Comput Chem. 2007 Apr 30;28(6):1145-52 22826034 - AAPS J. 2012 Dec;14(4):759-63 15197698 - Mov Disord. 2004 Jun;19(6):614-21 28024403 - J Chem Inf Model. 2016 Dec 27;56(12 ):2378-2387 15899893 - J Biol Chem. 2005 Jul 15;280(28):26457-66 28376346 - Curr Opin Chem Biol. 2017 Jun;38:70-79 |
| References_xml | – ident: 2153_CR42 – volume: 2 start-page: e134 year: 2006 ident: 2153_CR55 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020134 – volume: 14 start-page: 759 year: 2012 ident: 2153_CR5 publication-title: AAPS J doi: 10.1208/s12248-012-9390-1 – volume: 280 start-page: 26457 year: 2005 ident: 2153_CR53 publication-title: J Biol Chem doi: 10.1074/jbc.M414476200 – volume: 1 start-page: 12 year: 2007 ident: 2153_CR66 publication-title: Chem Cent J doi: 10.1186/1752-153X-1-12 – volume: 71 start-page: 1563 year: 2007 ident: 2153_CR32 publication-title: Mol Pharmacol doi: 10.1124/mol.106.031492 – volume: 47 start-page: 20 year: 2016 ident: 2153_CR2 publication-title: J Health Econ doi: 10.1016/j.jhealeco.2016.01.012 – volume: 19 start-page: 1639 year: 1998 ident: 2153_CR13 publication-title: J Comput Chem doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B – ident: 2153_CR18 doi: 10.1080/14789450.2017.1377613 – ident: 2153_CR46 – ident: 2153_CR63 doi: 10.1093/nar/gku989 – volume: 57 start-page: 913 year: 2000 ident: 2153_CR33 publication-title: Mol Pharmacol doi: 10.1016/S0026-895X(24)26500-7 – ident: 2153_CR52 – volume: 52 start-page: 3099 year: 2012 ident: 2153_CR56 publication-title: J Chem Inf Model doi: 10.1021/ci300367a – ident: 2153_CR49 – start-page: 1 volume-title: In evolutionary computation year: 1995 ident: 2153_CR68 – volume: 25 start-page: 533 year: 2011 ident: 2153_CR58 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-011-9440-2 – ident: 2153_CR41 – volume: 16 start-page: 2088 year: 2016 ident: 2153_CR60 publication-title: Curr Top Med Chem doi: 10.2174/1568026616666160216153457 – volume: 35 start-page: D198 year: 2007 ident: 2153_CR37 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl999 – volume: 24 start-page: 3635 year: 2005 ident: 2153_CR54 publication-title: EMBO J doi: 10.1038/sj.emboj.7600828 – volume: 65 start-page: 944 year: 2004 ident: 2153_CR31 publication-title: Mol Pharmacol doi: 10.1124/mol.65.4.944 – ident: 2153_CR45 – volume: 4 start-page: 51 year: 2015 ident: 2153_CR4 publication-title: Int. J. Pharma. Res Rev – volume: 17 start-page: 4226 year: 2011 ident: 2153_CR30 publication-title: Curr Pharm Des doi: 10.2174/138161211798999384 – volume: 36 start-page: 1304 year: 2015 ident: 2153_CR34 publication-title: J Comput Chem doi: 10.1002/jcc.23928 – volume: 22 start-page: 1803 year: 2006 ident: 2153_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl197 – volume: 28 start-page: 2347 year: 2007 ident: 2153_CR8 publication-title: J Comput Chem doi: 10.1002/jcc.20756 – ident: 2153_CR12 doi: 10.1002/jcc.21864 – volume: 38 start-page: 70 year: 2017 ident: 2153_CR19 publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2017.03.004 – ident: 2153_CR51 – volume: 21 start-page: 807 year: 2002 ident: 2153_CR67 publication-title: ACM Trans Graph doi: 10.1145/571647.571648 – volume: 19 start-page: 614 year: 2004 ident: 2153_CR22 publication-title: Movement Disord doi: 10.1002/mds.20029 – volume: 65 start-page: 944 year: 2004 ident: 2153_CR28 publication-title: Mol Pharmacol doi: 10.1124/mol.65.4.944 – volume: 19 start-page: 637 year: 2014 ident: 2153_CR6 publication-title: Drug Discov Today doi: 10.1016/j.drudis.2013.11.005 – ident: 2153_CR44 – volume: 271 start-page: 7522 year: 1996 ident: 2153_CR29 publication-title: J Biol Chem doi: 10.1074/jbc.271.13.7522 – volume: 346 start-page: 967 year: 2005 ident: 2153_CR64 publication-title: J Mol Biol doi: 10.1016/j.jmb.2004.12.031 – volume: 44 start-page: D1202 year: 2016 ident: 2153_CR7 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv951 – ident: 2153_CR48 – volume: 13 start-page: 492 year: 2008 ident: 2153_CR25 publication-title: Front Biosci doi: 10.2741/2695 – volume: 40 start-page: D1100 year: 2012 ident: 2153_CR39 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr777 – ident: 2153_CR40 – ident: 2153_CR20 doi: 10.1042/BIO03105034 – start-page: 423 volume-title: Research in computational molecular biology year: 2005 ident: 2153_CR16 doi: 10.1007/11415770_32 – volume: 3 start-page: 673 year: 2004 ident: 2153_CR3 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1468 – volume: 184 start-page: 523 year: 2006 ident: 2153_CR24 publication-title: Psychopharmacology doi: 10.1007/s00213-005-0164-7 – volume: 10 start-page: 428 year: 2011 ident: 2153_CR1 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3405 – ident: 2153_CR50 – ident: 2153_CR43 – volume: 24 start-page: 63 year: 2001 ident: 2153_CR23 publication-title: Alcohol doi: 10.1016/S0741-8329(01)00130-6 – volume: 15 start-page: 413 year: 2014 ident: 2153_CR27 publication-title: Chembiochem doi: 10.1002/cbic.201300577 – ident: 2153_CR47 – volume: 67 start-page: 17 year: 2010 ident: 2153_CR26 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-009-0125-0 – volume: 28 start-page: 1145 year: 2007 ident: 2153_CR14 publication-title: J Comput Chem doi: 10.1002/jcc.20634 – volume: 7 year: 2017 ident: 2153_CR57 publication-title: Sci Rep doi: 10.1038/srep42717 – volume: 3 start-page: 289 year: 2003 ident: 2153_CR11 publication-title: BMC Res Notes doi: 10.1186/1756-0500-3-289 – volume: 46 start-page: 10441050 year: 1996 ident: 2153_CR21 publication-title: Neurology – volume: 34 start-page: D668 year: 2006 ident: 2153_CR36 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj067 – volume: 8 start-page: e1002503 year: 2012 ident: 2153_CR62 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002503 – volume: 234 start-page: 779 year: 1993 ident: 2153_CR65 publication-title: J Mol Biol doi: 10.1006/jmbi.1993.1626 – volume: 52 start-page: 2310 year: 2012 ident: 2153_CR59 publication-title: J Chem Inf Model doi: 10.1021/ci300245q – volume: 47 start-page: 1739 year: 2004 ident: 2153_CR10 publication-title: J Med Chem doi: 10.1021/jm0306430 – ident: 2153_CR35 doi: 10.1021/acs.jcim.6b00095 – volume: 87 start-page: 1123 year: 2010 ident: 2153_CR38 publication-title: J Chem Educ doi: 10.1021/ed100697w – volume: 18 start-page: 333 year: 2016 ident: 2153_CR61 publication-title: Brief Bioinform – ident: 2153_CR15 – volume: 53 start-page: 533 year: 2006 ident: 2153_CR17 publication-title: JACM doi: 10.1145/1162349.1162350 – reference: 8780088 - Neurology. 1996 Apr;46(4):1044-50 – reference: 17009865 - PLoS Comput Biol. 2006 Sep 29;2(9):e134 – reference: 16720587 - Bioinformatics. 2006 Jul 15;22(14):1803-4 – reference: 17274016 - J Comput Chem. 2007 Apr 30;28(6):1145-52 – reference: 25348405 - Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 – reference: 21059259 - BMC Res Notes. 2010 Nov 08;3:289 – reference: 26944082 - Brief Bioinform. 2017 Mar 1;18(2):333-347 – reference: 26881716 - Curr Top Med Chem. 2016;16(19):2088-106 – reference: 15286734 - Nat Rev Drug Discov. 2004 Aug;3(8):673-83 – reference: 21717479 - J Comput Chem. 2011 Oct;32(13):2936-41 – reference: 10779374 - Mol Pharmacol. 2000 May;57(5):913-25 – reference: 22204424 - Curr Pharm Des. 2011 Dec;17(38):4226-41 – reference: 17981563 - Front Biosci. 2008 Jan 01;13:492-504 – reference: 26928437 - J Health Econ. 2016 May;47:20-33 – reference: 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 – reference: 21660515 - J Comput Aided Mol Des. 2011 Jun;25(6):533-54 – reference: 25975567 - J Comput Chem. 2015 Jun 30;36(17):1304-10 – reference: 28256516 - Sci Rep. 2017 Mar 03;7:42717 – reference: 15197698 - Mov Disord. 2004 Jun;19(6):614-21 – reference: 15899893 - J Biol Chem. 2005 Jul 15;280(28):26457-66 – reference: 15027865 - J Med Chem. 2004 Mar 25;47(7):1739-49 – reference: 8631783 - J Biol Chem. 1996 Mar 29;271(13):7522-8 – reference: 28376346 - Curr Opin Chem Biol. 2017 Jun;38:70-79 – reference: 21629293 - Nat Rev Drug Discov. 2011 Jun;10(6):428-38 – reference: 17341654 - Mol Pharmacol. 2007 Jun;71(6):1563-71 – reference: 16193063 - EMBO J. 2005 Oct 19;24(20):3635-46 – reference: 15701510 - J Mol Biol. 2005 Mar 4;346(4):967-89 – reference: 16381955 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72 – reference: 23092397 - J Chem Inf Model. 2012 Nov 26;52(11):3099-105 – reference: 11522424 - Alcohol. 2001 Jun;24(2):63-8 – reference: 24239728 - Drug Discov Today. 2014 May;19(5):637-44 – reference: 24420650 - Chembiochem. 2014 Feb 10;15(3):413-24 – reference: 22826034 - AAPS J. 2012 Dec;14(4):759-63 – reference: 19705062 - Cell Mol Life Sci. 2010 Jan;67(1):17-27 – reference: 22589709 - PLoS Comput Biol. 2012;8(5):e1002503 – reference: 16220335 - Psychopharmacology (Berl). 2006 Mar;184(3-4):523-39 – reference: 17476686 - J Comput Chem. 2007 Nov 15;28(14):2347-51 – reference: 15044624 - Mol Pharmacol. 2004 Apr;65(4):944-52 – reference: 17880744 - Chem Cent J. 2007 Jun 06;1:12 – reference: 28879805 - Expert Rev Proteomics. 2017 Oct;14 (10 ):931-939 – reference: 26400175 - Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13 – reference: 21948594 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7 – reference: 17145705 - Nucleic Acids Res. 2007 Jan;35(Database issue):D198-201 – reference: 28024403 - J Chem Inf Model. 2016 Dec 27;56(12 ):2378-2387 – reference: 22876798 - J Chem Inf Model. 2012 Aug 27;52(8):2310-6 |
| SSID | ssj0017805 |
| Score | 2.3198955 |
| Snippet | Background
Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent... Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent approach to... Background Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent... Background: Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An emergent... Abstract Background Conventional de novo drug design is costly and time consuming, making it accessible to only the best resourced research organizations. An... |
| SourceID | doaj unpaywall pubmedcentral osti proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 138 |
| SubjectTerms | 60 APPLIED LIFE SCIENCES Algorithms Biochemistry & Molecular Biology Bioinformatics Biomedical and Life Sciences Biotechnology & Applied Microbiology Computational Biology/Bioinformatics Computer Appl. in Life Sciences DockoMatic Drug discovery Drug repurposing GAMPMS Innovations Life Sciences Mathematical & Computational Biology Methods Microarrays Repositioning Research Article SimSearcher Structural analysis Therapeutics research |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQNQHqd-xVaIIgiU0H_uR9a1-lFZQpLXQt2WzO1sL19xxuaPcf-9MkgsNSvvia3YWsjO_2Z3JTn7D2DtXaMiUchi5gU14JUNS8gISG7jyuXfOt9Xu33_Iw1P-7UycXWv1RTVhHT1wp7g9LiorrM2UE57j4VQGDYCbqip84VTbXzhPS71Jpvr7A2Lq7-8ws1LuNRnxtGHajKhAF0_Wo1OoJesftuTJDH3rX_Hm32WTw93pA3ZvVc_t-spOp9eOp4Mt9rCPK-P9bj2P2B2oH7O7XafJ9ROmT34efTn-GDeXODe57HriQjynmhYPycWmVYmP_WJ1Hi9gjgaY0XeEp-z04Ouvz4dJ3zUhcbKQy8R6qBRIyXVlVRVKBVpVVmNcalVIUxACvMzzgOc2QJGF3JVOaa8C585bL4pnbFLPanjBYllpDiHNQaece1DaBg9WVxVm1MELH7F0o0Xjekpx6mwxNW1qUUrTKd6g4g0p3qwj9mGYMu_4NG4S_kSmGQSJCrt9gAAxPUDMbQCJ2FsyrCGyi5qqac7tqmnM0cmx2RdcloXEnDRi73uhMMMVONv_nIB6IH6skeTOSBK90Y2Gtwk_BuMXIuF1VK3klobaEogC3-XNBlaGJlKBWw2zVWNyzIWpQqmQEXvewWxYdo4pKYXFEVMjAI70Mh6pL363VOEtOY8WEdvdQNX0e1Rzk9p3BzTfbqSX_8NI2-x-Tt5JJJpyh02WixW8wmhvWb1uHfsP6-5PIw priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF_0RNQP4tvYKlEEwRLMYx9Zv9VqaQVFWgv9tmx2Z2vhmjsud8j9984kudBgqfg1O7sk89idycz-hrG3rtCQKeXQcwOb8EqGpOQFJDZw5XPvnG-r3b99lwcn_OupOO3BoukuzOX8fVbKD01GCGsY8KI80TiT9U12C88o2eZl5d6QMCBo_j5peeW00bHTovMPe_BkhsZ0lYP5d53kkCy9x-6s6rld_7bT6aXzaP8Bu987kvFuJ_mH7AbUj9jtrrXk-jHTxz8OPx99jJsLnJtcdE1wIZ5TEYuH5HzTm8THfrE6ixcwR47P6MfBE3ay_-Xn3kHSt0lInCzkMrEeKgVScl1ZVYVSgVaV1eiIWhXSFIQAL_M84EENUGQhd6VT2qvAufPWi-Ipm9SzGp6zWFaaQ0hz0CnnHpS2wYPVVYUhdPDCRyzdcNG4HkOcWllMTRtLlNJ0jDfIeEOMN-uIvR-mzDsAjeuIP5FoBkLCvm4foEqY3pQMF5UV1mbKCc_RXSmDBsCVVOELp7I8Ym9IsIbQLWoqnzmzq6Yxh8dHZldwWRYSg9CIveuJwgy_wNn-NgLygQCxRpTbI0o0Pzca3iL9MeiwEOquo_IktzTUh0AU-C6vN2plaCJVtNUwWzUmx-CXSpIKGbFnnZoNn51jDEp-cMTUSAFHfBmP1Oe_WmzwFo1Hi4jtbFTV9JtScx3bdwZt_reQXvzX2lvsbk5mSPCYcptNlosVvEQ_blm9ai34D3kiP-4 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEF_qFVE_-H7EVokiCJZc89hH1m_no7SCtbQW6qdln-fRuyRcLsj517ubF42WiuC3kJ0NyezM5DfJ7G8AeCUTqiNCpEVumgdQYBOkMNEBN5CoWEmp6mr3z4d4_xR-OkNnG-BLtxdGLKSY5S1pqCMqHl_chj6vY7c9kOe7hTKNy6d4t4wcD5tNi-2qWxcO1tfAJkYWnI_A5unh0eRbvceIRHY0RO2_zUvnDd5ONYl_H6pHufW5y3Don-WU_T_VW-BGlRV8_YPP5xdeW3t3QNE9cFOtcj6uVmIsf_7GBfkfNXIX3G4hrj9pbPIe2NDZfXC9aXq5fgDoydHBh-O3frmwtxssmva82i9ceY3SwazrmqJ8taym_lIX1hZy90njITjd-_j1_X7QNnAIJE7wKuBKC6IxhlRwIkxKNCWCUwuROTFhqBHSCsexsRBC6yQysUwloYoYCKXiCiWPwCjLM_0E-FhQqE0YaxpCqDSh3CjNqRA2uTcKKQ-E3cIx2bKbuyYbc1ZnOSlmjUaY1QhzGmFrD7zppxQNtcdVwu-cNfSCjpW7PpEvp6x1cgaR4IjziEikoAVSqaFa2yuRRCWSRLEHXjpbYo53I3OFPVNelSU7ODlmEwRxmmCbHnvgdStkcreuvN0nYfXgqLoGktsDSRsY5GB4y5kss1DK8QFLVzglV8x1SECJvZcXnSUzN9HV2mU6r0oW27TcFUsl2AOPG8vuHzu22bFD6B4gA5sf6GU4ks2-16zlNU8QRR7Y6byDteGyvErtO70D_X2Rnv6T9Ba4GTv_cMSdeBuMVstKP7MIcyWet1HjF_lDdqg priority: 102 providerName: Unpaywall |
| Title | SPIDR: small-molecule peptide-influenced drug repurposing |
| URI | https://link.springer.com/article/10.1186/s12859-018-2153-y https://www.ncbi.nlm.nih.gov/pubmed/29661129 https://www.proquest.com/docview/2026423736 https://www.osti.gov/biblio/1618532 https://pubmed.ncbi.nlm.nih.gov/PMC5902895 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-018-2153-y https://doaj.org/article/45ba5aa17c5d41298f9ee12873d3c712 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa2Tgh4QNwJG1VBSEhMgVwcO0ZCqCsrW6VVVUul7slybKdM6pLStIL-e45zg4hq8JJK8XHUnEt8TnzyfQi9lj7TLqUSMjctbByR2A6xr20RY6o8JaXKu90vhuRsigezYLaHKnqrUoHZztLO8ElNV4t3P79vP0HAf8wDPiTvM9egsEFRDDaHALa3--gAFipmmBwu8O9NBQPfn39sRF0QdIJyk3PnJRrLVI7mXz-zWykE366E9O--ynpz9S66vUmWYvtDLBZ_rF_9--hemXh2uoWnPEB7OnmIbhVUlNtHiE1G55_HHzrZNcy1rwvSXN1ZmqYXpe2ristEddRqM--s9BIslJoXDY_RtH_6tXdml7QKtiQ-WdtC6YhqQjCLBI3ikGpGI8EgcRU0dhwdBFoRz4thYdfad2NPhpIyRWOMpRIq8J-gVpIm-hnqkIhhHTueZg7GSlMmYqUFiyIouWMVKAs5lRa5LDHHDfXFgue1R0h4oXgOiudG8Xxrobf1lGUBuHGT8IkxTS1osLLzE-lqzsvQ4ziIRCCES2WgMKQ3Ycy0hitRX_mSup6FXhnDcoOGkZh2m7nYZBk_n4x5N8Ak9AkUrRZ6UwrFKdyBFOXXC6AHA6DVkDxqSEK4ysbwofEfDgmOQemVpp1JrrnhLQh8-C8vK7fiZqLpgEt0usm4B8WyaWHyiYWeFm5W37YHNavJmy1EGw7Y0EtzJLn6lmOJ5-g9LLDQceWqvIrBm9R-XHvzv430_H_0e4jueCb6DIomOUKt9WqjX0C6t47aaJ_OKBzD_pc2Ouh2B5MB_J6cDkdjONsjvXb-IqWdBzuMTIej7uUvjuBWdg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELegExp8QLwJGxAQEhJTRJo4dsy38pjask1o3aR9sxw_yqQuqZpWqP89d3mJiGmIr_HZSs539l388-8IeadjYYeca4jcrApoxlyQ0tgGylFuIqO1qdDuxydsfE6nF8lFc4-7bNHu7ZFktVJXbp2yj-UQudYg9YWZBTcNtrfJDmKswBt3RqPpbNodHiBNf3OAeW3H3hZUMfV36_GgAMe6Ltj8GzPZHZzeI7ubfKm2v9Ri8cfedPiA3G-CSn9UW8FDcsvmj8iduszk9jERsx-Tr6ef_PIK-gZXdUFc6y8R0GJscNnWKTG-WW3m_souQfsF_kR4Qs4Pv519GQdNyYRAs5itA2Vsxi1jVGSKZy7lVvBMCQhKFXdhaJPEGhZFDjZta-Ohi3SquTDcUaqNMkn8lAzyIrfPic8yQa0LIytCSo3lQjljlcgySKedSYxHwlaLUjd84ljWYiGrvCJlsla8BMVLVLzceuRD12VZk2ncJPwZp6YTRB7s6kGxmsvGrSRNMpUoNeQ6MRRCl9QJa2EkHptY82Hkkbc4sRKZLnKE0szVpizlZHYqRwllacwgIfXI-0bIFfAFWjU3E0APSI7Vk9zvSYIr6l7zHtqPhOAFGXg1QpX0WmJNgiSGd3nTmpXEjohuy22xKWUEiTDCk2LmkWe1mXWfHUE-ijGxR3jPAHt66bfklz8rnvCKmUckHjloTVU2C1R5k9oPOmv-9yS9-K-xX5Pd8dnxkTyanHzfI3cjdEmkzWT7ZLBebexLiO_W2avGn38D8c5IRw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELegiNcHxJuwAQEhIW2K1iZ-xHwbHdXKY5o2Ju2b5djnMqlLqqYV6n-PLy8RMQ3xNT5byT3su9z5d4S8N4mEkRDGe26gI5pxF6U0gUg7KmxsjbFVtfv3I354Rr-cs_Omz2nZVru3Kcn6TgOiNOWrvYV1tYmnfK8cIe6aD4O9lL3JRpub5Bb1hxu2MBjzcZdGQMD-JpV55bTeYVRh9nc786DwJnaV2_l39WSXQr1P7q7zhd780vP5H6fU5CF50LiX4X6tD4_IDcgfk9t1w8nNEyJPj6cHJx_D8tLPjS7r1rgQLrC0xUJ00XYssaFdrmfhEhZeDgX-TnhKziaff4wPo6Z5QmR4wleRtpAJ4JzKTIvMpQKkyLT07qkWbjgExsDyOHb--AZIRi42qRHSCkepsdqy5BkZ5EUOL0jIM0nBDWOQQ0otCKmdBS2zzAfWzjIbkGHLRWUaZHFscDFXVYSRclUzXnnGK2S82gRkp5uyqGE1riP-hKLpCBERu3pQLGeqMTBFWaaZ1iNhmKXeiUmdBPAricQmRozigLxDwSrEvMixqGam12Wppqcnap9Rnibch6YB-dAQucJ_gdHNHQXPB4TJ6lFu9yi9UZre8Bbqj_JuDGLxGixaMiuF3QlY4t_lbatWCidinVsOxbpUsQ-JsVAp4QF5XqtZ99mxj0zROw6I6Clgjy_9kfziZ4UYXmH0SBaQ3VZVVbNVldexfbfT5n8L6eV_rf2G3Dk-mKhv06OvW-RejBaJ-Jl8mwxWyzW88o7eKntdGfNvmT1LJA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEF_qFVE_-H7EVokiCJZc89hH1m_no7SCtbQW6qdln-fRuyRcLsj517ubF42WiuC3kJ0NyezM5DfJ7G8AeCUTqiNCpEVumgdQYBOkMNEBN5CoWEmp6mr3z4d4_xR-OkNnG-BLtxdGLKSY5S1pqCMqHl_chj6vY7c9kOe7hTKNy6d4t4wcD5tNi-2qWxcO1tfAJkYWnI_A5unh0eRbvceIRHY0RO2_zUvnDd5ONYl_H6pHufW5y3Don-WU_T_VW-BGlRV8_YPP5xdeW3t3QNE9cFOtcj6uVmIsf_7GBfkfNXIX3G4hrj9pbPIe2NDZfXC9aXq5fgDoydHBh-O3frmwtxssmva82i9ceY3SwazrmqJ8taym_lIX1hZy90njITjd-_j1_X7QNnAIJE7wKuBKC6IxhlRwIkxKNCWCUwuROTFhqBHSCsexsRBC6yQysUwloYoYCKXiCiWPwCjLM_0E-FhQqE0YaxpCqDSh3CjNqRA2uTcKKQ-E3cIx2bKbuyYbc1ZnOSlmjUaY1QhzGmFrD7zppxQNtcdVwu-cNfSCjpW7PpEvp6x1cgaR4IjziEikoAVSqaFa2yuRRCWSRLEHXjpbYo53I3OFPVNelSU7ODlmEwRxmmCbHnvgdStkcreuvN0nYfXgqLoGktsDSRsY5GB4y5kss1DK8QFLVzglV8x1SECJvZcXnSUzN9HV2mU6r0oW27TcFUsl2AOPG8vuHzu22bFD6B4gA5sf6GU4ks2-16zlNU8QRR7Y6byDteGyvErtO70D_X2Rnv6T9Ba4GTv_cMSdeBuMVstKP7MIcyWet1HjF_lDdqg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPIDR%3A+small-molecule+peptide-influenced+drug+repurposing&rft.jtitle=BMC+bioinformatics&rft.au=King%2C+Matthew+D&rft.au=Long%2C+Thomas&rft.au=Pfalmer%2C+Daniel+L&rft.au=Andersen%2C+Timothy+L&rft.date=2018-04-16&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-018-2153-y&rft.externalDBID=ISR&rft.externalDocID=A546836601 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |