An Investigation of Bayes Algorithm and Neural Networks for Identifying the Breast Cancer

Abstract Context: Breast cancer is a biggest threat to women. X-ray mammography is the most effective method for early detection and screening of breast cancer. It is a tough challenge for the radiologist in reading mammography since it does not provide consistent result every time. Aim: To improve...

Full description

Saved in:
Bibliographic Details
Published inIndian journal of medical and paediatric oncology Vol. 38; no. 3; pp. 340 - 344
Main Authors Udayakumar, E, Santhi, S, Vetrivelan, P
Format Journal Article
LanguageEnglish
Published A-12, 2nd Floor, Sector 2, Noida-201301 UP, India Thieme Medical and Scientific Publishers Pvt. Ltd 01.07.2017
Medknow Publications and Media Pvt. Ltd
Medknow Publications & Media Pvt. Ltd
Medknow Publications & Media Pvt Ltd
Subjects
Online AccessGet full text
ISSN0971-5851
0975-2129
0975-2129
DOI10.4103/ijmpo.ijmpo_127_17

Cover

Abstract Abstract Context: Breast cancer is a biggest threat to women. X-ray mammography is the most effective method for early detection and screening of breast cancer. It is a tough challenge for the radiologist in reading mammography since it does not provide consistent result every time. Aim: To improve the primary sign of this disease, computer-aided diagnosis schemes have been developed. Using monitor, digital images of mammography are displayed and they can be lightened or darkened before they are printed on the film. Time factor is important to identify the abnormality in body such as breast cancer and lung cancer. Hence, to detect the tissues and treatment stages, image-processing techniques are improved in several medical areas. In this project, using low-level preprocessing techniques and image segmentation, the breast cancer detection is done. Methods: With the help of Bayes algorithm and neural networks (NNs), the type of the mammogram and stages is identified. For segmentation process, region-growing algorithm is used, which helps to find the affected portion, i.e., region of interest. Gray-level co-occurrence matrix (GLCM) and texture feature are used for feature extraction. Results: Bayes algorithm is used for probability of identification, whereas NNs is used to reduce the probability level from 0–1000 to 0–1 in case of classification.
AbstractList Breast cancer is a biggest threat to women. X-ray mammography is the most effective method for early detection and screening of breast cancer. It is a tough challenge for the radiologist in reading mammography since it does not provide consistent result every time.CONTEXTBreast cancer is a biggest threat to women. X-ray mammography is the most effective method for early detection and screening of breast cancer. It is a tough challenge for the radiologist in reading mammography since it does not provide consistent result every time.To improve the primary sign of this disease, computer-aided diagnosis schemes have been developed. Using monitor, digital images of mammography are displayed and they can be lightened or darkened before they are printed on the film. Time factor is important to identify the abnormality in body such as breast cancer and lung cancer. Hence, to detect the tissues and treatment stages, image-processing techniques are improved in several medical areas. In this project, using low-level preprocessing techniques and image segmentation, the breast cancer detection is done.AIMTo improve the primary sign of this disease, computer-aided diagnosis schemes have been developed. Using monitor, digital images of mammography are displayed and they can be lightened or darkened before they are printed on the film. Time factor is important to identify the abnormality in body such as breast cancer and lung cancer. Hence, to detect the tissues and treatment stages, image-processing techniques are improved in several medical areas. In this project, using low-level preprocessing techniques and image segmentation, the breast cancer detection is done.With the help of Bayes algorithm and neural networks (NNs), the type of the mammogram and stages is identified. For segmentation process, region-growing algorithm is used, which helps to find the affected portion, i.e., region of interest. Gray-level co-occurrence matrix (GLCM) and texture feature are used for feature extraction.METHODSWith the help of Bayes algorithm and neural networks (NNs), the type of the mammogram and stages is identified. For segmentation process, region-growing algorithm is used, which helps to find the affected portion, i.e., region of interest. Gray-level co-occurrence matrix (GLCM) and texture feature are used for feature extraction.Bayes algorithm is used for probability of identification, whereas NNs is used to reduce the probability level from 0-1000 to 0-1 in case of classification.RESULTSBayes algorithm is used for probability of identification, whereas NNs is used to reduce the probability level from 0-1000 to 0-1 in case of classification.
Breast cancer is a biggest threat to women. X-ray mammography is the most effective method for early detection and screening of breast cancer. It is a tough challenge for the radiologist in reading mammography since it does not provide consistent result every time. To improve the primary sign of this disease, computer-aided diagnosis schemes have been developed. Using monitor, digital images of mammography are displayed and they can be lightened or darkened before they are printed on the film. Time factor is important to identify the abnormality in body such as breast cancer and lung cancer. Hence, to detect the tissues and treatment stages, image-processing techniques are improved in several medical areas. In this project, using low-level preprocessing techniques and image segmentation, the breast cancer detection is done. With the help of Bayes algorithm and neural networks (NNs), the type of the mammogram and stages is identified. For segmentation process, region-growing algorithm is used, which helps to find the affected portion, i.e., region of interest. Gray-level co-occurrence matrix (GLCM) and texture feature are used for feature extraction. Bayes algorithm is used for probability of identification, whereas NNs is used to reduce the probability level from 0-1000 to 0-1 in case of classification.
Context: Breast cancer is a biggest threat to women. X-ray mammography is the most effective method for early detection and screening of breast cancer. It is a tough challenge for the radiologist in reading mammography since it does not provide consistent result every time. Aim: To improve the primary sign of this disease, computer-aided diagnosis schemes have been developed. Using monitor, digital images of mammography are displayed and they can be lightened or darkened before they are printed on the film. Time factor is important to identify the abnormality in body such as breast cancer and lung cancer. Hence, to detect the tissues and treatment stages, image-processing techniques are improved in several medical areas. In this project, using low-level preprocessing techniques and image segmentation, the breast cancer detection is done. Methods: With the help of Bayes algorithm and neural networks (NNs), the type of the mammogram and stages is identified. For segmentation process, region-growing algorithm is used, which helps to find the affected portion, i.e., region of interest. Gray-level co-occurrence matrix (GLCM) and texture feature are used for feature extraction. Results: Bayes algorithm is used for probability of identification, whereas NNs is used to reduce the probability level from 0–1000 to 0–1 in case of classification.
Abstract Context: Breast cancer is a biggest threat to women. X-ray mammography is the most effective method for early detection and screening of breast cancer. It is a tough challenge for the radiologist in reading mammography since it does not provide consistent result every time. Aim: To improve the primary sign of this disease, computer-aided diagnosis schemes have been developed. Using monitor, digital images of mammography are displayed and they can be lightened or darkened before they are printed on the film. Time factor is important to identify the abnormality in body such as breast cancer and lung cancer. Hence, to detect the tissues and treatment stages, image-processing techniques are improved in several medical areas. In this project, using low-level preprocessing techniques and image segmentation, the breast cancer detection is done. Methods: With the help of Bayes algorithm and neural networks (NNs), the type of the mammogram and stages is identified. For segmentation process, region-growing algorithm is used, which helps to find the affected portion, i.e., region of interest. Gray-level co-occurrence matrix (GLCM) and texture feature are used for feature extraction. Results: Bayes algorithm is used for probability of identification, whereas NNs is used to reduce the probability level from 0–1000 to 0–1 in case of classification.
Audience Academic
Author Vetrivelan, P
Santhi, S
Udayakumar, E
AuthorAffiliation Department of ECE, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India
1 Department of ECE, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India
AuthorAffiliation_xml – name: Department of ECE, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India
– name: 1 Department of ECE, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India
Author_xml – sequence: 1
  givenname: E
  surname: Udayakumar
  fullname: Udayakumar, E
  email: udayakumar.sujith@gmail.com
  organization: Assistant Professor, Department of ECE, KIT‑Kalaignarkarunanidhi Institute of Technology
– sequence: 2
  givenname: S
  surname: Santhi
  fullname: Santhi, S
  organization: Department of ECE, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu
– sequence: 3
  givenname: P
  surname: Vetrivelan
  fullname: Vetrivelan, P
  organization: Department of ECE, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29200686$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2P1CAUhhuzxv3QP-CFaWJivJkVKLTlxmR24sckG73RC68IpYcOYwsj0N3Mv5eZruvMxmwMSSHwvm8PD-c8O7HOQpa9xOiSYlS8M-th4y73X4FJJXD1JDtDvGIzggk_2a_xjNUMn2bnIawRKhgu62fZKeEEobIuz7Ifc5sv7Q2EaDoZjbO50_mV3ELI533nvImrIZe2zb_A6GWfpnjr_M-Qa-fzZQs2Gr01tsvjCvIrDzLEfCGtAv88e6plH-DF3XyRff_44dvi8-z666flYn49U2VRxlndMA6olLoismK8TZVTVVCOW1krxRpe66JsUrFQNow1TJdVWTNay7bVJce6uMiWU27r5FpsvBmk3wonjdhvON8J6aNRPQjQUKUIREmJKSQUlEPTKkQAdNFImrKKKWu0G7m9lX1_H4iR2EEXE-5D6Mn1fnJtxmaAViUoCdVRKccn1qxE524ES0_AK54C3t4FePdrTG8hBhMU9L204MYgMK8KRGjFd9LXD6RrN3qbAAuCC4woZuxA1cl0bWO1S_9Vu1AxZxhTyguyu-3lP1RptDAYlXpNm7R_ZHhzYFiB7OMquH7c9U04Fr46JHKP4k_fJQGZBMq7EDzo_-NcPzApE_dNm-o2_eNWPFnjysAAf6E94vkNwzUSeA
CitedBy_id crossref_primary_10_1016_j_matpr_2021_01_586
crossref_primary_10_3390_diagnostics13091618
crossref_primary_10_1016_j_jacr_2018_09_041
crossref_primary_10_1088_1742_6596_2392_1_012005
ContentType Journal Article
Copyright Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)
COPYRIGHT 2017 Medknow Publications and Media Pvt. Ltd.
2017. This work is published under https://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2017 Indian Journal of Medical and Paediatric Oncology 2017
Copyright_xml – notice: Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)
– notice: COPYRIGHT 2017 Medknow Publications and Media Pvt. Ltd.
– notice: 2017. This work is published under https://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2017 Indian Journal of Medical and Paediatric Oncology 2017
DBID 0U6
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M2O
MBDVC
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.4103/ijmpo.ijmpo_127_17
DatabaseName Thieme Open Access Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Research library
Research Library (Corporate)
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Research Library China
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 0U6
  name: Thieme Connect Journals Open Access
  url: http://open.thieme.com
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest One Academic
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 0975-2129
EndPage 344
ExternalDocumentID oai_doaj_org_article_efe75b5042614e16849ebdc02eef3ba4
10.4103/ijmpo.ijmpo_127_17
PMC5686979
A511449324
29200686
10_4103_ijmpo_ijmpo_127_17
Genre Journal Article
GroupedDBID ---
0R~
0U6
2WC
3V.
53G
5VS
7X7
8FI
8FJ
8G5
ABDBF
ABUWG
ABXLX
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
AEAQA
AFKRA
AHMBA
AHRAW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BENPR
BPHCQ
BVXVI
C1A
CCPQU
DIK
DWQXO
E3Z
EBD
EBS
EJD
EOJEC
ESX
F5P
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
H13
HMCUK
HYE
IAO
IEA
IHR
IHW
IL9
ITC
KQ8
M2O
M48
M~E
O5R
O5S
OBODZ
OK1
P2P
PADUT
PGMZT
PIMPY
PQQKQ
PROAC
RMW
RNS
RPM
RTC
TR2
TUS
UKHRP
W2D
W3E
AAYXX
CITATION
PHGZM
PHGZT
PUEGO
NPM
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c636t-8b59e06af72a759d1294c3491da8cc5b98f36b068e6b55b5f6768548addf691f3
IEDL.DBID DOA
ISSN 0971-5851
0975-2129
IngestDate Fri Oct 03 12:41:34 EDT 2025
Wed Oct 29 12:14:42 EDT 2025
Tue Sep 30 16:51:50 EDT 2025
Thu Oct 02 03:59:18 EDT 2025
Tue Oct 07 05:58:45 EDT 2025
Mon Oct 20 21:43:20 EDT 2025
Mon Oct 20 16:38:02 EDT 2025
Thu May 22 21:23:07 EDT 2025
Thu Jan 02 22:54:59 EST 2025
Thu Apr 24 22:54:19 EDT 2025
Wed Oct 01 04:39:23 EDT 2025
Fri Dec 20 00:45:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Artificial neural network
mammogram
gray-level co-occurrence matrix
computer-aided diagnosis
region of interest
Language English
License CC BY-NC-ND 4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c636t-8b59e06af72a759d1294c3491da8cc5b98f36b068e6b55b5f6768548addf691f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/efe75b5042614e16849ebdc02eef3ba4
PMID 29200686
PQID 2131041559
PQPubID 226512
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_efe75b5042614e16849ebdc02eef3ba4
unpaywall_primary_10_4103_ijmpo_ijmpo_127_17
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5686979
proquest_miscellaneous_1973024799
proquest_journals_2131041559
gale_infotracmisc_A511449324
gale_infotracacademiconefile_A511449324
gale_healthsolutions_A511449324
pubmed_primary_29200686
crossref_primary_10_4103_ijmpo_ijmpo_127_17
crossref_citationtrail_10_4103_ijmpo_ijmpo_127_17
thieme_journals_10_4103_ijmpo_ijmpo_127_17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
PublicationPlace_xml – name: A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
– name: Germany
– name: New Delhi
– name: India
PublicationTitle Indian journal of medical and paediatric oncology
PublicationTitleAlternate Indian J Med Paediatr Oncol
PublicationYear 2017
Publisher Thieme Medical and Scientific Publishers Pvt. Ltd
Medknow Publications and Media Pvt. Ltd
Medknow Publications & Media Pvt. Ltd
Medknow Publications & Media Pvt Ltd
Publisher_xml – name: Thieme Medical and Scientific Publishers Pvt. Ltd
– name: Medknow Publications and Media Pvt. Ltd
– name: Medknow Publications & Media Pvt. Ltd
– name: Medknow Publications & Media Pvt Ltd
SSID ssj0035168
Score 2.1510074
Snippet Abstract Context: Breast cancer is a biggest threat to women. X-ray mammography is the most effective method for early detection and screening of breast...
Context: Breast cancer is a biggest threat to women. X-ray mammography is the most effective method for early detection and screening of breast cancer. It is a...
Breast cancer is a biggest threat to women. X-ray mammography is the most effective method for early detection and screening of breast cancer. It is a tough...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
thieme
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 340
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural network
Breast cancer
Cancer
Classification
computer-aided diagnosis
Diagnosis
gray-level co-occurrence matrix
Investigations
Lung cancer
mammogram
Mammography
Medical imaging equipment
Motion pictures
Neural networks
Original
Original Article
Parameter estimation
Pattern recognition
region of interest
Womens health
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGh4AXxPcKA4yEhAQLaxI7iR8QatGmCWkVQkwaT5btOGunNiltKrT_njvnow1IFS95qM9R7Pv5fK7vfkfIW8PTkINf76W-1h6AwnpJpJmXiZDbLLSJZZjvfD6Ozi7Y10t-uUfGTS4MhlU2NtEZ6rQw-B_5ceCDI4K7n_i8-OVh1Si8XW1KaKi6tEL6yVGM3SL7ATJj9cj-6GT87Xtjm0Puu-Q4JE7y8EKsSqNh_iA8nl7PF8VH95R-EEtXwmyzVTlG_3_t9tbG9XdQ5e1yMrVzEL67zhfq5reazba2rtMH5H7tc9JhBZKHZM_mj8id8_pW_TH5OczpdMO3UeS0yOhI3dgVVbMrmIRyMqcqTymSX8KL8ip0fEXB4aVTl-nrsqUoOJNUY5R7SQ2iafmEXJye_Phy5tUlFzwThVHpJZoLO4hUFgcq5iIFb4CZkAk_VYkxXIskCyM9iBIbac41zyI4rsChB6xkFgk_C5-SXl7k9oBQUJZKmIlVigQ4oPXYBOmAKyuyLDJp3Cd-M7vS1HzkWBZjJuFcghqRlS62NdInH9o-i4qNY6f0CJXWSiKTtvuhWF7JemFKm9kYBuKOkswCPJiwOjWDwAJUtWJ98hpVLqu01NYeyCF4qgzGFYDEOyeBFgEGYFSd2ADTgNxaHcnDjiSsZNNtbmAla0uykhvc98mbthl7YnRcbov1SvoC7HTAYgEyzyoUtoPGamSYBtQncQefnVnptuTTieMZ59BNxPDO9xWSNx-1a86PWrT_h4qe7x7yC3IvQDfKhUcfkl65XNuX4ASW-lW9sv8AiD5fNw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfGQIwL4nuFAUZCQoKlxIkdxyfUIaYJqZyoNE6W7dhrUJuUNhX0v-c5SbOGj4kDlx7iZ6v2-z37Z_l9IPTSsCxmwOuDjGgdAChskCaaBk7EzLrYppb6eOfxp-RsQj-es_M9tC131C7g6o9XO19ParKcDX9827wDgwf-OqQkjN_mX-eLclj_ShJxSfg1dB1OKuFLOYxp96oQM1KHxvm0SYF_DmuCaP4yRu-gqvP5_75r7xxbv7pU3qimuZ2D8MG6WKjNdzWb7Rxcp3fQ7ZZx4lEDkbtozxb30M1x-6Z-H30ZFTi_zLZRFrh0-ERt7Aqr2UW5zKvpHKsiwz71JQxUNI7jKwx0F-d1nG8dK4WBSmLtfdwrbDyWlg_Q5PTD5_dnQVtwITBJnFRBqpmwYaIcjxRnIgMuQE1MBclUagzTInVxosMktYlmTDOXwGUFrjywR7pEEBc_RPtFWdhDhENKVEoNV5lPfwM65ybKQqascC4xGR8gsl1dadps5L4oxkzCrcRrRDa62NXIAL3p-iyaXBxXSp94pXWSPo92_aFcXsjWLKV1lsNE6osktQAPKqzOTBhZAKpWdICee5XLJii12w3kCHgqhXlFIPGqlvAIhQkY1YY1wDL4zFo9yaOeJNix6TdvYSW3ZiAjAvTbcz4xQC-6Zt_T-8YVtlyvJBGwS0eUC5B51KCwm7SvReaDgAaI9_DZW5V-S5FP6yzjDLoJDmO-bpB8-aeuWvPjDu3_oKLH_0NFT9CtyFOt2oX6CO1Xy7V9CkSx0s9q6_8J2xxrtw
  priority: 102
  providerName: Scholars Portal
– databaseName: Thieme Open Access Journals
  dbid: 0U6
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGQMAL4nMEBhgJCQkWFif-iB_biWlC2p6oNJ4s27FpUZtUbSq0_55zkoaGjwle-hCfrdr3O_tOvvsZoTeWFRkDvz4uiDExgMLFOTc09jJjzmcudzTUO59f8LMJ_XTJLvfQ0R9v8ClJsuPZt8Wy-tD8KpIKRcQNdDMNYQigN5nw7b6bMdIUvgVSpDhcdrUlMn8ZY3AMNWz9v-_JO4fSrwmTt-rpzC1A-M6mXOqr73o-3zmWTu-je50_iUctAB6gPVc-RLfPuxvzR-jLqMQ7XBpViSuPx_rKrfFo_rVazerpAuuywIGlAwa6aNPC1xicWdxW8TaVUBgcRTwOGew1PglIWT1Gk9OPn0_O4u45hdjyjNdxbph0CddepFowWcBJT21GJSl0bi0zMvcZNwnPHTeMGeY5hCIQ0MAO6LkkPnuC9suqdE8RTijRObVCF4HcBjQqbFokTDvpPbeFiBDZrq6yHdd4ePJiriDmCBpRrS52NRKh932fZcu0ca30OCitlwws2c0HgI7qjE457wRMpAkTqQN4UOlMYZPUAQyNphF6FVSu2pLT3tbVCLxQCvNKQeJtIxGsHSZgdVe0AMsQeLMGkocDSbBSO2zewkp1u8RapQSc6-DRyQi97ptDz5D5Vrpqs1ZEwh6cUiFB5qBFYT_p8NJYKPGJkBjgc7Aqw5ZyNm04xBl0kwLGfNci-eefum7Nj3q0_4OKnv3P2M_R3TQ4TE0i9CHar1cb9wLcvdq8bKz8B7ImVLk
  priority: 102
  providerName: Thieme
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegQ8AL3x-BAUZCQgJS4sQf8WOHmCakTTxQaXuybMehgTap2lRo_PWckyxrhpjGS1XVZ6t3Pp9_lu9-RuiNZVnCANeHGTEmBKdwYcoNDXOZMJcnLnXU1zsfHvGDKf1yzI47mhxfC7N1f09JlHwsfiyW1bj5VCQWiojraIczwN0jtDM9-jo5acj0BAn9_Vb7nYUQj2VbIfOPQQa7UEPW_3dI3tqTLuZL3qhnhVuA8K1NudSnv_R8vrUr7d9tnzdaN2SGPhnl53hTm7H9fYHq8WoK30N3OnCKJ6033UfXXPkA3Tzsrt8fopNJiYtzYo6qxFWO9_SpW2M9_16tinq2wLrMsGfJhIHKNsd8jQEZ46IpCW7KqjCgTmx8OnyNrXe71SM03f_87dNB2L3NEFqe8DpMDZMu4joXsRZMZmBwahMqSaZTa5mRaZ5wE_HUccOYYTmHcw2cjiCc5lySPHmMRmVVuqcIR5TolFqhM8-UA-4hbJxFTDuZ59xmIkDkbK6U7YjL_fsZcwUHGG8z1Vpr22YBet_3Wba0HZdK73kX6CU95XbzA0yM6lawcrkToEhz5qSO8JRKZzIbxQ582mgaoFfegVRbv9oHDjUBSEtBrxgk3jYSPnSAAlZ3FRBgBk_CNZDcHUjCkrfD5jMnVV3IWauYAFL38FAG6HXf7Hv6NLrSVZu1IhICekyFBJknrU_3Svtny3y9UIDEwNsHVhm2lMWsISRn0E0KGPNduy7O_9RlNv_Qr50rTNGz_xN_jm7HHn81edW7aFSvNu4FoMfavOzCxh8jN3C9
  priority: 102
  providerName: Unpaywall
Title An Investigation of Bayes Algorithm and Neural Networks for Identifying the Breast Cancer
URI http://dx.doi.org/10.4103/ijmpo.ijmpo_127_17
https://www.ncbi.nlm.nih.gov/pubmed/29200686
https://www.proquest.com/docview/2131041559
https://www.proquest.com/docview/1973024799
https://pubmed.ncbi.nlm.nih.gov/PMC5686979
https://doi.org/10.4103/ijmpo.ijmpo_127_17
https://doaj.org/article/efe75b5042614e16849ebdc02eef3ba4
UnpaywallVersion publishedVersion
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0975-2129
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 0975-2129
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 0975-2129
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 0975-2129
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: ABDBF
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 0975-2129
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: DIK
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 0975-2129
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 0975-2129
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 0975-2129
  dateEnd: 20201130
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 0975-2129
  dateEnd: 20201130
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 0975-2129
  dateEnd: 20250731
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: M48
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAWY
  databaseName: Thieme Connect Journals Open Access
  customDbUrl:
  eissn: 0975-2129
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035168
  issn: 0975-2129
  databaseCode: 0U6
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://open.thieme.com
  providerName: Thieme
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgQcAF8aawFCMhIQFh8_AjPrZoVyukVitEpe7Jsh2HBrVJ1YfQ_nvGTpo2IC0cuPgQj614ZjweJzPfIPTW0Cyh4NcHWaR1AEphg5RpEuQioTZPbGqJy3cejdn5hHyZ0ulBqS8XE1bDA9eMO7G55VRT7-oTG7GUCKszE8YWptLKI4GGqdhdpmobnNDIJ8E5gKTA_fiq02VIFCYnxY_FsvrkWxnFXPpSZfsjySP3_2mfDw6o34Mnb29mhV0A8d1tuVRXP9V8fnBEnT1A9xvfEg_qNT1EN2z5CN0ZNX_PH6PLQYmLPa5GVeIqx0N1ZddYzb9Xq2IzW2BVZtiBXMJEZR0ivsbg2OLCZ_T6rCgMTiPWLpp9g43TmtUTNDk7_fb5PGhKKwSGJWwTpJoKGzKV81hxKjI49YlJiIgylRpDtUjzhOmQpZZpCuzPGVxL4HID1jBnIsqTp-iorEr7HOGQRColhqvMAd2AdLmJs5AqK_KcmYz3ULTjrjQN7rgrfzGXcP9wEpG1LA4l0kMf2jHLGnXjWuqhE1pL6RCz_QPQI9nokfybHvXQaydyWaeftvteDsAjJbCuGCjeeQq382EBRjUJDMAGh6HVoTzuUMKONd3unVrJxmKsZRyBo-28O9FDb9puN9JFwZW22q5lJMAex4QLoHlWa2G7aFd1zKX79BDv6GeHK92esph5PHEKwwSHOd_Xmrx_qet4_rHV9n8Q0Yv_IaKX6F7snCofLH2MjjarrX0FLuFG99HNcMKg5VPeR7eGp-OLr31vEaAdkbTvv-JBz2R8Mbj8Bd66aRU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGhhgviG8KgxkJhASENYmdxA8TamFTx9YJoU0aT8Z2nLWoTUqbauo_x9_G2floA1LFy176UJ-t-u7nu3N9Hwi9UjT2Kfj1TuxK6QAotBMFkjgJ86lOfB1pYvKd-6dB75x8uaAXG-h3lQtjwiornWgVdZwp8x_5nueCI2KsH_s4-eWYrlHmdbVqoSHK1grxvi0xViZ2HOvFFVzhZvtHn0Herz3v8ODsU88puww4KvCD3IkkZbodiCT0REhZDAaQKJ8wNxaRUlSyKPED2Q4iHUhKJU0C8NDBzwfFkATMTXxY9wbaIjAFLn9b3YPTr98qW-BT1ybjmUJNjnmAK9J2iNv294Y_x5Psg_3krhdy2zJtaRptB4F_7cSKofw7iPNmPhjqMRBvz9OJWFyJ0WjFVB7eRXdKHxd3ClDeQxs6vY9u9ctX_AfoeyfFw2V9jyzFWYK7YqFnWIwugen5YIxFGmNTbBMWSotQ9RkGBxsPbWaxzc7C4LxiaaLqc6wMeqcP0fm1MP8R2kyzVD9BGMAhIqJCEZuCO4CyUHlxmwrNkiRQcdhCbsVdrsr656YNx4jDPchIhBeyWJVIC72r50yK6h9rqbtGaDWlqdxtv8iml7xUBFwnOoSN2Ksr0QAPwrSMVdvTcDSkIC20a0TOizTYWv_wDnjGBPblAcUbS2E0EGxAiTKRAthgank1KHcalKA5VHO4ghUvNdeML89ZC72sh81ME42X6mw-4y4Du-CRkAHN4wKF9aZN9zOTdtRCYQOfDa40R9LhwNY1pzCNhbDm2wLJyx-1jufva7T_h4iert_yLtrunfVP-MnR6fEzdNszLpwNzd5Bm_l0rp-DA5rLF-Upx-jHdSuWP3QSm_E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgQQscEG8KC2skJCQg2zxsJz62C9Xy2IoDlZaT5Tj2tqhNqiYV2n_PTJKWBsQKLjnEYyv2fB7PKDOfCXlpeBZx8Ou9LEhTD0BhvUSkzHMy4tZFNrEM651Px-Jkwj6e8bO2sq5s0yqr6cwurGcw08NUmGqxbNhPy75tV7jsLzOHO54FftSffV8si6P6qYIwVkF8BM1XyTXOIOgCkPsTsTHPEQ_q-jjkTvLwn1hTSfOXcTqnVU3q_6fp3jm7fs-rvN5M5Ra5sc6X-uKHns93Tq_RHXK7dTvpoMHJXXLF5vfI_mn7Y_0--TbI6Q7lRpHTwtGhvrAlHczPi9Wsmi6ozjOKZB4w0LjJHi8p-Ly0KfatC6Yo-JN0iInuFT1GQK0ekMno_dfjE6-9dcEzIhKVl6RcWl9oF4c65jIDh4CZiMkg04kxPJWJi0Tqi8SKlPOUOwERC8Q9YCidkIGLHpK9vMjtY0J9FuiEmVhnyIEDio9NmPlcW-mcMFncI8FmdZVpKcnxZoy5gtAENaIaXexqpEfebPssG0KOS6WHqLStJJJp1y-K1blq96ayzsYwkTqaZBbgwaRNM-OHFtCaatYjh6hy1VSmbk2CGoCzymBeIUi8qiXQKMAEjG5rG2AZkF6rI3nQkYTNbLrNG1ipDdRVGIAPjo6f7JEX22bsiQlyuS3WpQokmOqQxRJkHjUo3E4aLyTDSqAeiTv47KxKtyWfTWuqcQ7dZAxjvm6Q_OujLlvzt1u0_4OKnvzP2Idk_8u7kfr8YfzpKbkZootVp04fkL1qtbbPwEGs0uf1hv8J_epmvQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegQ8AL3x-BAUZCQgJS4sQf8WOHmCakTTxQaXuybMehgTap2lRo_PWckyxrhpjGS1XVZ6t3Pp9_lu9-RuiNZVnCANeHGTEmBKdwYcoNDXOZMJcnLnXU1zsfHvGDKf1yzI47mhxfC7N1f09JlHwsfiyW1bj5VCQWiojraIczwN0jtDM9-jo5acj0BAn9_Vb7nYUQj2VbIfOPQQa7UEPW_3dI3tqTLuZL3qhnhVuA8K1NudSnv_R8vrUr7d9tnzdaN2SGPhnl53hTm7H9fYHq8WoK30N3OnCKJ6033UfXXPkA3Tzsrt8fopNJiYtzYo6qxFWO9_SpW2M9_16tinq2wLrMsGfJhIHKNsd8jQEZ46IpCW7KqjCgTmx8OnyNrXe71SM03f_87dNB2L3NEFqe8DpMDZMu4joXsRZMZmBwahMqSaZTa5mRaZ5wE_HUccOYYTmHcw2cjiCc5lySPHmMRmVVuqcIR5TolFqhM8-UA-4hbJxFTDuZ59xmIkDkbK6U7YjL_fsZcwUHGG8z1Vpr22YBet_3Wba0HZdK73kX6CU95XbzA0yM6lawcrkToEhz5qSO8JRKZzIbxQ582mgaoFfegVRbv9oHDjUBSEtBrxgk3jYSPnSAAlZ3FRBgBk_CNZDcHUjCkrfD5jMnVV3IWauYAFL38FAG6HXf7Hv6NLrSVZu1IhICekyFBJknrU_3Svtny3y9UIDEwNsHVhm2lMWsISRn0E0KGPNduy7O_9RlNv_Qr50rTNGz_xN_jm7HHn81edW7aFSvNu4FoMfavOzCxh8jN3C9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+of+Bayes+algorithm+and+neural+networks+for+identifying+the+breast+cancer&rft.jtitle=Indian+journal+of+medical+and+paediatric+oncology&rft.au=E+Udayakumar&rft.au=S+Santhi&rft.au=P+Vetrivelan&rft.date=2017-07-01&rft.pub=Thieme+Medical+and+Scientific+Publishers+Pvt.+Ltd&rft.issn=0971-5851&rft.volume=38&rft.issue=3&rft.spage=340&rft.epage=344&rft_id=info:doi/10.4103%2Fijmpo.ijmpo_127_17&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_efe75b5042614e16849ebdc02eef3ba4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0971-5851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0971-5851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0971-5851&client=summon