FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets
High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique...
Saved in:
| Published in | Nature protocols Vol. 15; no. 2; pp. 398 - 420 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.02.2020
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1754-2189 1750-2799 1750-2799 |
| DOI | 10.1038/s41596-019-0246-3 |
Cover
| Abstract | High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.
This protocol describes FLOW-MAP, a graph-based algorithm for visualizing cellular trajectories in single-cell time course datasets. The R package can be operated via its GUI or using text-based commands. |
|---|---|
| AbstractList | High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.This protocol describes FLOW-MAP, a graph-based algorithm for visualizing cellular trajectories in single-cell time course datasets. The R package can be operated via its GUI or using text-based commands. High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete. High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete. High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete. This protocol describes FLOW-MAP, a graph-based algorithm for visualizing cellular trajectories in single-cell time course datasets. The R package can be operated via its GUI or using text-based commands. |
| Audience | Academic |
| Author | Goggin, Sarah M. Fread, Kristen I. Fragiadakis, Gabriela K. Nolan, Garry P. Zunder, Eli R. Williams, Corey M. Ko, Melissa E. Rustagi, Rohit S. |
| AuthorAffiliation | 6 These authors contributed equally: Melissa E. Ko, Corey M. Williams 5 Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA 3 Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA 1 Cancer Biology Program, Stanford School of Medicine, Stanford, CA, USA 2 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA 4 Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA |
| AuthorAffiliation_xml | – name: 3 Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA – name: 2 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA – name: 1 Cancer Biology Program, Stanford School of Medicine, Stanford, CA, USA – name: 4 Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA – name: 5 Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA – name: 6 These authors contributed equally: Melissa E. Ko, Corey M. Williams |
| Author_xml | – sequence: 1 givenname: Melissa E. surname: Ko fullname: Ko, Melissa E. organization: Cancer Biology Program, Stanford School of Medicine – sequence: 2 givenname: Corey M. surname: Williams fullname: Williams, Corey M. organization: Department of Biomedical Engineering, University of Virginia, Robert M. Berne Cardiovascular Research Center, University of Virginia – sequence: 3 givenname: Kristen I. surname: Fread fullname: Fread, Kristen I. organization: Department of Biomedical Engineering, University of Virginia – sequence: 4 givenname: Sarah M. surname: Goggin fullname: Goggin, Sarah M. organization: Neuroscience Graduate Program, University of Virginia – sequence: 5 givenname: Rohit S. surname: Rustagi fullname: Rustagi, Rohit S. organization: Department of Biomedical Engineering, University of Virginia – sequence: 6 givenname: Gabriela K. surname: Fragiadakis fullname: Fragiadakis, Gabriela K. organization: Department of Microbiology and Immunology, Stanford University – sequence: 7 givenname: Garry P. surname: Nolan fullname: Nolan, Garry P. organization: Department of Microbiology and Immunology, Stanford University – sequence: 8 givenname: Eli R. surname: Zunder fullname: Zunder, Eli R. email: ezunder@virginia.edu organization: Department of Biomedical Engineering, University of Virginia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31932774$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1v0zAUhiM0xLbCD-AGWeIGBBn-ip3sAqmqGEwqDMHQLi03OU09JXGwHaD_HocWSic2oVw4ynnek-Q55zg56GwHSfKY4BOCWf7Kc5IVIsWkSDHlImX3kiMiM5xSWRQHv-55SkleHCbH3l9jzCUT8kFyyEjBqJT8KPFn84ur9P304ynSqHa6X6UL7aF6iZbWlZBWxkEZoEKNXtshIN3U1pmwasc6Ck5fx7J1a9TqvjddjUyHfDwbSEtoGhRMC6i0g_OAKh1i6-AfJveXuvHwaHtOki9nby5n79L5xdvz2XSeloJlIV3IDJjOF4wDFxXOSEULIiRlgokSFjgDrhnOc5ACSpktSUEjmVdMVJnGDNgkoZu-Q9fr9XfdNKp3ptVurQhWo0G1MaiiQTUaVCyGXm9C_bBooSqhiz-5C1pt1H6lMytV229K5oXklMcGz7YNnP06gA-qNX50oTuwg1eUsZxgQXAR0ac30OtoqotOFOVxjjgvOLuTYhlmlFGMd1StG1CmW9r4deX4ajUVhJFMyKhukpz8g4pXBa0p43YtTXy-F3i-F4hMgB-h1oP36vzzp332xe3s9PJq9mGffvK36D-Gf-9mBOQGKJ313sFSlSboYOzo3TR3zpDcSP7P3LfL4iPb1eB2lm8P_QROpRLr |
| CitedBy_id | crossref_primary_10_1172_JCI146408 crossref_primary_10_1242_dev_202252 crossref_primary_10_1016_j_cell_2022_09_010 crossref_primary_10_1016_j_coisb_2021_05_005 crossref_primary_10_1093_bioadv_vbad071 crossref_primary_10_1016_j_gde_2020_05_033 crossref_primary_10_1038_s41467_021_25773_3 crossref_primary_10_1038_s41593_022_01181_8 crossref_primary_10_1038_s41592_024_02299_2 crossref_primary_10_1126_sciadv_adh2726 crossref_primary_10_1136_jitc_2021_002709 crossref_primary_10_1002_cyto_a_24928 crossref_primary_10_1093_gigascience_giae107 |
| Cites_doi | 10.1021/ac901049w 10.1073/pnas.1408993111 10.1609/icwsm.v3i1.13937 10.1073/pnas.1612826113 10.1073/pnas.1220873111 10.1016/j.cell.2015.05.047 10.1016/j.jim.2010.07.002 10.1038/nbt.4096 10.1038/nature06968 10.1038/nbt.4314 10.1016/j.acha.2006.04.006 10.1182/blood-2016-05-716480 10.1016/j.stem.2008.07.021 10.1038/nbt.2594 10.1038/nbt0308-303 10.21105/joss.00861 10.1038/s41587-019-0071-9 10.1038/nature14274 10.1128/MCB.01033-06 10.1038/nbt.1991 10.1038/nmeth.4207 10.1038/nature05972 10.1126/science.aah4573 10.1126/science.1198704 10.1038/s41587-019-0068-4 10.1016/j.ydbio.2004.08.031 10.1371/journal.pcbi.1005112 10.1038/nmeth.2869 10.1093/bioinformatics/bts385 10.1038/nmeth.4407 10.1002/cyto.a.22271 10.1016/j.cell.2016.04.019 10.1038/nbt.3711 10.1038/nbt.2859 10.1088/1742-5468/2008/10/P10008 10.1016/j.stem.2016.10.003 10.1371/journal.pone.0098679 10.1016/j.stem.2007.10.011 10.1186/s12859-016-1176-5 10.1126/science.290.5500.2319 10.1016/j.cell.2007.11.019 10.1016/j.cell.2014.04.005 10.1038/nm.3488 10.1038/ng.3818 10.1038/nmeth.4402 10.1126/science.1259425 10.1002/eji.201646347 10.1038/nature25741 10.1093/bioinformatics/btv715 10.1038/nature05950 10.1038/nbt780 10.1038/s41592-018-0308-4 10.1038/nprot.2016.066 10.1093/bioinformatics/btx792 10.1038/s41587-019-0088-0 10.1038/nbt.3569 10.1093/bioinformatics/btv325 10.1038/nprot.2015.020 10.1016/j.cels.2017.10.012 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 COPYRIGHT 2020 Nature Publishing Group 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN ISR 3V. 7QG 7T5 7T7 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s41596-019-0246-3 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts ProQuest Health & Medical ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Statistics |
| EISSN | 1750-2799 |
| EndPage | 420 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7897424 PMC7897424 A613156772 31932774 10_1038_s41596_019_0246_3 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: R01CA184968; 1R33CA183654-01; R33CA183692; 1R21CA183660 funderid: https://doi.org/10.13039/100000054 – fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: 5T32HL007284; R01HL120724 funderid: https://doi.org/10.13039/100000050 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: U19 AI057229; 1U19AI100627 funderid: https://doi.org/10.13039/100000060 – fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation) grantid: OPP1113682 funderid: https://doi.org/10.13039/100000865 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grantid: 5UH2AR067676 funderid: https://doi.org/10.13039/100000069 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS) grantid: 5T32GM008715; T32GM007276; 1R01GM10983601 funderid: https://doi.org/10.13039/100000057 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: 1R01NS08953304 funderid: https://doi.org/10.13039/100000065 – fundername: Department of Defense (CDMRP), Northrop-Grumman Corporation, the Rachford & Carlotta A. Harris Endowed Chair – fundername: California Institute for Regenerative Medicine (CIRM) grantid: RB2–01592 funderid: https://doi.org/10.13039/100000900 – fundername: U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM) grantid: 5T32LM012416 funderid: https://doi.org/10.13039/100000092 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: R33CA183692 – fundername: NCI NIH HHS grantid: R33 CA183654 – fundername: NLM NIH HHS grantid: T32 LM012416 – fundername: NIGMS NIH HHS grantid: T32 GM007276 – fundername: NIAID NIH HHS grantid: U19 AI057229 – fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: R01HL120724 – fundername: U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM) grantid: 5T32LM012416 – fundername: NIAMS NIH HHS grantid: UH2 AR067676 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: 1R01NS08953304 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: 1R21CA183660 |
| GroupedDBID | --- 0R~ 123 29M 39C 3TQ 3V. 4.4 53G 5BI 5M7 70F 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABJNI ABLJU ABUWG ACGFO ACGFS ACMJI ACPRK ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF DB5 DU5 EBS EE. EJD EMOBN F5P FEDTE FSGXE FYUFA FZEXT HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC LGEZI LK8 LOTEE M1P M7P NADUK NNMJJ NXXTH O9- ODYON P2P PATMY PQQKQ PROAC PSQYO PYCSY RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG UKHRP AAYXX AFANA ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NFIDA NPM AGSTI 7QG 7T5 7T7 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c635t-b75e3a8b34e46d051d2916723636ceb05e4a3088e76ec75f1924e48d36d5a03e3 |
| IEDL.DBID | BENPR |
| ISSN | 1754-2189 1750-2799 |
| IngestDate | Sun Oct 26 04:17:19 EDT 2025 Tue Sep 30 16:41:15 EDT 2025 Sat Sep 27 20:44:44 EDT 2025 Tue Oct 07 06:04:16 EDT 2025 Tue Oct 07 06:12:20 EDT 2025 Mon Oct 20 21:42:39 EDT 2025 Mon Oct 20 16:36:36 EDT 2025 Thu Oct 16 15:10:45 EDT 2025 Thu Oct 16 13:53:51 EDT 2025 Mon Jul 21 06:07:07 EDT 2025 Wed Oct 01 00:20:00 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Fri Feb 21 02:37:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Reprints and permissions information is available at www.nature.com/reprints. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c635t-b75e3a8b34e46d051d2916723636ceb05e4a3088e76ec75f1924e48d36d5a03e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 E.R.Z. conceptualized the FLOW-MAP algorithm. E.R.Z., G.K.F., and G.P.N. designed the mESC differentiation experiment. E.R.Z. and G.K.F. performed the mESC differentiation experiment and collected cell samples. E.R.Z. performed antibody staining and mass cytometry measurement. M.E.K., E.R.Z., S.M.G., C.M.W. and R.S.R. wrote the FLOW-MAP code. M.E.K., C.M.W., K.I.F. and E.R.Z. analyzed and interpreted the data. M.E.K., C.M.W. and E.R.Z. wrote the manuscript. All authors edited, read and approved the manuscript. Author contributions |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7897424 |
| PMID | 31932774 |
| PQID | 2350323200 |
| PQPubID | 536306 |
| PageCount | 23 |
| ParticipantIDs | unpaywall_primary_10_1038_s41596_019_0246_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897424 proquest_miscellaneous_2338106109 proquest_journals_2475008943 proquest_journals_2350323200 gale_infotracmisc_A613156772 gale_infotracacademiconefile_A613156772 gale_incontextgauss_ISR_A613156772 gale_incontextgauss_ATWCN_A613156772 pubmed_primary_31932774 crossref_citationtrail_10_1038_s41596_019_0246_3 crossref_primary_10_1038_s41596_019_0246_3 springer_journals_10_1038_s41596_019_0246_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | Recipes for Researchers |
| PublicationTitle | Nature protocols |
| PublicationTitleAbbrev | Nat Protoc |
| PublicationTitleAlternate | Nat Protoc |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Qiu (CR15) 2017; 14 Ying, Stavridis, Griffiths, Li, Smith (CR48) 2003; 21 Nostro, Cheng, Keller, Gadue (CR47) 2008; 2 Habib (CR64) 2017; 14 Villani (CR63) 2017; 356 Qiu (CR11) 2011; 29 DeTomaso, Yosef (CR21) 2016; 17 Fischer (CR41) 2019; 37 van der Maaten, Hinton (CR5) 2008; 9 Cannoodt, Saelens, Saeys (CR34) 2016; 46 Angerer (CR10) 2016; 32 Finck (CR52) 2013; 83 Jacomy, Venturini, Heymann, Bastian (CR29) 2014; 9 CR30 Ying (CR58) 2008; 453 Haghverdi, Buettner, Theis (CR9) 2015; 31 Herring (CR26) 2018; 6 Chen (CR20) 2016; 12 Tusi (CR32) 2018; 555 Kotecha, Krutzik, Irish (CR54) 2010; Chapter 10 Blondel, Guillaume, Lambiotte, Lefebvre (CR57) 2008; 2008 CR3 Butler, Hoffman, Smibert, Papalexi, Satija (CR43) 2018; 36 Amir (CR6) 2013; 31 Tenenbaum, de Silva, Langford (CR44) 2000; 290 Linderman, Rachh, Hoskins, Steinerberger, Kluger (CR7) 2019; 16 Bendall (CR18) 2014; 157 Nestorowa (CR42) 2016; 128 Angelo (CR38) 2014; 20 Tesar (CR59) 2007; 448 Bendall (CR13) 2011; 332 Levine (CR19) 2015; 162 Becht (CR17) 2018; 37 Wolf (CR35) 2019; 20 Lujan (CR56) 2015; 521 Cacciatore, Luchinat, Tenori (CR45) 2014; 111 Saelens, Cannoodt, Todorov, Saeys (CR33) 2019; 37 Setty (CR36) 2019; 37 Chen, Kotecha (CR55) 2014; 377 Morrison (CR46) 2008; 3 Takahashi (CR62) 2007; 131 Setty (CR22) 2016; 34 Brons (CR60) 2007; 448 Trapnell (CR14) 2014; 32 Zunder (CR49) 2015; 10 Marco (CR25) 2014; 111 Ornatsky (CR51) 2010; 361 Kee (CR65) 2017; 20 Buettner, Theis (CR40) 2012; 28 Weinreb, Wolock, Klein (CR31) 2018; 34 Fread, Strickland, Nolan, Zunder (CR53) 2017; 22 Li (CR23) 2017; 49 Moffitt (CR37) 2016; 113 McInnes, Healy, Saul, Großberger (CR16) 2018; 3 Vallier, Reynolds, Pedersen (CR61) 2004; 275 Grass (CR66) 2006; 26 Spitzer, Nolan (CR1) 2016; 165 CR28 Wang, Zhu, Pierson, Ramazzotti, Batzoglou (CR24) 2017; 14 Ringnér (CR4) 2008; 26 Wagner, Regev, Yosef (CR2) 2016; 34 Coifman, Lafon (CR8) 2006; 21 Giesen (CR39) 2014; 11 Anchang (CR12) 2016; 11 Bandura (CR50) 2009; 81 Spitzer (CR27) 2015; 349 L Vallier (246_CR61) 2004; 275 JH Levine (246_CR19) 2015; 162 ED Amir (246_CR6) 2013; 31 B Anchang (246_CR12) 2016; 11 C Giesen (246_CR39) 2014; 11 Q-L Ying (246_CR58) 2008; 453 P Angerer (246_CR10) 2016; 32 246_CR30 VD Blondel (246_CR57) 2008; 2008 CA Herring (246_CR26) 2018; 6 A-C Villani (246_CR63) 2017; 356 N Habib (246_CR64) 2017; 14 A Butler (246_CR43) 2018; 36 R Finck (246_CR52) 2013; 83 RR Coifman (246_CR8) 2006; 21 K Takahashi (246_CR62) 2007; 131 N Kotecha (246_CR54) 2010; Chapter 10 246_CR28 L Haghverdi (246_CR9) 2015; 31 W Saelens (246_CR33) 2019; 37 L van der Maaten (246_CR5) 2008; 9 O Ornatsky (246_CR51) 2010; 361 JR Moffitt (246_CR37) 2016; 113 M Setty (246_CR36) 2019; 37 JB Tenenbaum (246_CR44) 2000; 290 C Trapnell (246_CR14) 2014; 32 GC Linderman (246_CR7) 2019; 16 S Nestorowa (246_CR42) 2016; 128 MH Spitzer (246_CR1) 2016; 165 M Ringnér (246_CR4) 2008; 26 BK Tusi (246_CR32) 2018; 555 JA Grass (246_CR66) 2006; 26 X Qiu (246_CR15) 2017; 14 246_CR3 IGM Brons (246_CR60) 2007; 448 A Wagner (246_CR2) 2016; 34 P Qiu (246_CR11) 2011; 29 DR Bandura (246_CR50) 2009; 81 E Lujan (246_CR56) 2015; 521 M Angelo (246_CR38) 2014; 20 H Li (246_CR23) 2017; 49 MC Nostro (246_CR47) 2008; 2 PJ Tesar (246_CR59) 2007; 448 SC Bendall (246_CR18) 2014; 157 C Weinreb (246_CR31) 2018; 34 B Wang (246_CR24) 2017; 14 N Kee (246_CR65) 2017; 20 FA Wolf (246_CR35) 2019; 20 F Buettner (246_CR40) 2012; 28 E Marco (246_CR25) 2014; 111 MH Spitzer (246_CR27) 2015; 349 KI Fread (246_CR53) 2017; 22 E Becht (246_CR17) 2018; 37 L McInnes (246_CR16) 2018; 3 R Cannoodt (246_CR34) 2016; 46 D DeTomaso (246_CR21) 2016; 17 M Jacomy (246_CR29) 2014; 9 SC Bendall (246_CR13) 2011; 332 Q-L Ying (246_CR48) 2003; 21 M Setty (246_CR22) 2016; 34 S Cacciatore (246_CR45) 2014; 111 DS Fischer (246_CR41) 2019; 37 GM Morrison (246_CR46) 2008; 3 H Chen (246_CR20) 2016; 12 TJ Chen (246_CR55) 2014; 377 ER Zunder (246_CR49) 2015; 10 |
| References_xml | – volume: 31 start-page: 545 year: 2013 end-page: 552 ident: CR6 article-title: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia publication-title: Nat. Biotechnol. – volume: 349 start-page: 1259425 year: 2015 ident: CR27 article-title: An interactive reference framework for modeling a dynamic immune system publication-title: Science – volume: 128 start-page: e20 year: 2016 end-page: e31 ident: CR42 article-title: A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation publication-title: Blood – volume: 81 start-page: 6813 year: 2009 end-page: 6822 ident: CR50 article-title: Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry publication-title: Anal. Chem. – volume: 11 start-page: 417 year: 2014 end-page: 422 ident: CR39 article-title: Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry publication-title: Nat. Methods – volume: 453 start-page: 519 year: 2008 end-page: 523 ident: CR58 article-title: The ground state of embryonic stem cell self-renewal publication-title: Nature – volume: 26 start-page: 7056 year: 2006 end-page: 7067 ident: CR66 article-title: Distinct functions of dispersed GATA factor complexes at an endogenous gene locus publication-title: Mol. Cell. Biol. – volume: 46 start-page: 2496 year: 2016 end-page: 2506 ident: CR34 article-title: Computational methods for trajectory inference from single-cell transcriptomics publication-title: Eur. J. Immunol. – volume: 3 start-page: 861 year: 2018 ident: CR16 article-title: UMAP: uniform manifold approximation and projection publication-title: JOSS – volume: 111 start-page: E5643 year: 2014 end-page: E5650 ident: CR25 article-title: Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape publication-title: Proc. Natl Acad. Sci. USA – volume: 20 start-page: 436 year: 2014 end-page: 442 ident: CR38 article-title: Multiplexed ion beam imaging of human breast tumors publication-title: Nat. Med. – volume: 555 start-page: 54 year: 2018 end-page: 60 ident: CR32 article-title: Population snapshots predict early haematopoietic and erythroid hierarchies publication-title: Nature – volume: 2 start-page: 60 year: 2008 end-page: 71 ident: CR47 article-title: Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood publication-title: Cell Stem Cell – volume: 37 start-page: 461 year: 2019 end-page: 468 ident: CR41 article-title: Inferring population dynamics from single-cell RNA-sequencing time series data publication-title: Nat. Biotechnol. – volume: 26 start-page: 303 year: 2008 end-page: 304 ident: CR4 article-title: What is principal component analysis? publication-title: Nat. Biotechnol. – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: CR43 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. – volume: 37 start-page: 451 year: 2019 end-page: 460 ident: CR36 article-title: Characterization of cell fate probabilities in single-cell data with Palantir publication-title: Nat. Biotechnol. – volume: 21 start-page: 183 year: 2003 end-page: 186 ident: CR48 article-title: Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture publication-title: Nat. Biotechnol. – volume: 3 start-page: 402 year: 2008 end-page: 415 ident: CR46 article-title: Anterior definitive endoderm from ESCs reveals a role for FGF signaling publication-title: Cell Stem Cell – volume: 34 start-page: 637 year: 2016 end-page: 645 ident: CR22 article-title: Wishbone identifies bifurcating developmental trajectories from single-cell data publication-title: Nat. Biotechnol. – volume: 49 start-page: 708 year: 2017 end-page: 718 ident: CR23 article-title: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors publication-title: Nat. Genet. – volume: 34 start-page: 1145 year: 2016 end-page: 1160 ident: CR2 article-title: Revealing the vectors of cellular identity with single-cell genomics publication-title: Nat. Biotechnol. – volume: 361 start-page: 1 year: 2010 end-page: 20 ident: CR51 article-title: Highly multiparametric analysis by mass cytometry publication-title: J. Immunol. Methods – volume: 14 start-page: 414 year: 2017 end-page: 416 ident: CR24 article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning publication-title: Nat. Methods – volume: 14 start-page: 955 year: 2017 end-page: 958 ident: CR64 article-title: Massively parallel single-nucleus RNA-seq with DroNc-seq publication-title: Nat. Methods – volume: 14 start-page: 979 year: 2017 end-page: 982 ident: CR15 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat. Methods – volume: 20 year: 2019 ident: CR35 article-title: PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells publication-title: Genome Biol. – volume: 275 start-page: 403 year: 2004 end-page: 421 ident: CR61 article-title: Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway publication-title: Dev. Biol. – volume: 11 start-page: 1264 year: 2016 end-page: 1279 ident: CR12 article-title: Visualization and cellular hierarchy inference of single-cell data using SPADE publication-title: Nat. Protoc. – volume: 83 start-page: 483 year: 2013 end-page: 494 ident: CR52 article-title: Normalization of mass cytometry data with bead standards publication-title: Cytom. A – volume: 31 start-page: 2989 year: 2015 end-page: 2998 ident: CR9 article-title: Diffusion maps for high-dimensional single-cell analysis of differentiation data publication-title: Bioinformatics – volume: 356 start-page: eaah4573 year: 2017 ident: CR63 article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors publication-title: Science – volume: 29 start-page: 886 year: 2011 end-page: 891 ident: CR11 article-title: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE publication-title: Nat. Biotechnol. – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: CR44 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science – volume: 113 start-page: 11046 year: 2016 end-page: 11051 ident: CR37 article-title: High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization publication-title: Proc. Natl Acad. Sci. USA – volume: 9 start-page: e98679 year: 2014 ident: CR29 article-title: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software publication-title: PLoS ONE – volume: 34 start-page: 1246 year: 2018 end-page: 1248 ident: CR31 article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data publication-title: Bioinformatics – volume: 37 start-page: 38 year: 2018 end-page: 44 ident: CR17 article-title: Dimensionality reduction for visualizing single-cell data using UMAP publication-title: Nat. Biotechnol. – volume: 131 start-page: 861 year: 2007 end-page: 872 ident: CR62 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell – ident: CR30 – volume: 32 start-page: 381 year: 2014 end-page: 386 ident: CR14 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. – volume: 377 start-page: 127 year: 2014 end-page: 157 ident: CR55 article-title: Cytobank: providing an analytics platform for community cytometry data analysis and collaboration publication-title: Curr. Top. Microbiol. Immunol. – volume: 521 start-page: 352 year: 2015 end-page: 356 ident: CR56 article-title: Early reprogramming regulators identified by prospective isolation and mass cytometry publication-title: Nature – volume: 12 start-page: e1005112 year: 2016 ident: CR20 article-title: Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline publication-title: PLoS Comput. Biol. – volume: 16 start-page: 243 year: 2019 end-page: 245 ident: CR7 article-title: Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data publication-title: Nat. Methods – volume: 32 start-page: 1241 year: 2016 end-page: 1243 ident: CR10 article-title: Destiny: diffusion maps for large-scale single-cell data in R publication-title: Bioinformatics – volume: 157 start-page: 714 year: 2014 end-page: 725 ident: CR18 article-title: Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development publication-title: Cell – volume: 6 start-page: 37 year: 2018 end-page: 51.e9 ident: CR26 article-title: Unsupervised trajectory analysis of single-cell RNA-Seq and imaging data reveals alternative tuft cell origins in the gut publication-title: Cell Syst. – volume: 21 start-page: 5 year: 2006 end-page: 30 ident: CR8 article-title: Diffusion maps publication-title: Appl. Comput. Harmon. Anal. – volume: 10 start-page: 316 year: 2015 end-page: 333 ident: CR49 article-title: Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm publication-title: Nat. Protoc. – volume: 22 start-page: 588 year: 2017 end-page: 598 ident: CR53 article-title: An updated debarcoding tool for mass cytometry with cell type-specific and cell sample-specific stringency adjustment publication-title: Pac. Symp. Biocomput. – volume: 162 start-page: 184 year: 2015 end-page: 197 ident: CR19 article-title: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis publication-title: Cell – volume: 37 start-page: 547 year: 2019 end-page: 554 ident: CR33 article-title: A comparison of single-cell trajectory inference methods publication-title: Nat. Biotechnol. – volume: 448 start-page: 196 year: 2007 end-page: 199 ident: CR59 article-title: New cell lines from mouse epiblast share defining features with human embryonic stem cells publication-title: Nature – volume: 2008 start-page: P10008 year: 2008 ident: CR57 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. – ident: CR3 – volume: 111 start-page: 5117 year: 2014 end-page: 5122 ident: CR45 article-title: Knowledge discovery by accuracy maximization publication-title: Proc. Natl Acad. Sci. USA – volume: 17 year: 2016 ident: CR21 article-title: FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data publication-title: BMC Bioinforma. – volume: Chapter 10 start-page: Unit 10.17 year: 2010 ident: CR54 article-title: Web-based analysis and publication of flow cytometry experiments publication-title: Curr. Protoc. Cytom. – volume: 332 start-page: 687 year: 2011 end-page: 696 ident: CR13 article-title: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum publication-title: Science – volume: 448 start-page: 191 year: 2007 end-page: 195 ident: CR60 article-title: Derivation of pluripotent epiblast stem cells from mammalian embryos publication-title: Nature – volume: 28 start-page: i626 year: 2012 end-page: i632 ident: CR40 article-title: A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst publication-title: Bioinformatics – volume: 165 start-page: 780 year: 2016 end-page: 791 ident: CR1 article-title: Mass cytometry: single cells, many features publication-title: Cell – ident: CR28 – volume: 20 start-page: 29 year: 2017 end-page: 40 ident: CR65 article-title: Single-cell analysis reveals a close relationship between differentiating dopamine and subthalamic nucleus neuronal lineages publication-title: Cell Stem Cell – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR5 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 81 start-page: 6813 year: 2009 ident: 246_CR50 publication-title: Anal. Chem. doi: 10.1021/ac901049w – volume: 111 start-page: E5643 year: 2014 ident: 246_CR25 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1408993111 – ident: 246_CR30 doi: 10.1609/icwsm.v3i1.13937 – volume: 113 start-page: 11046 year: 2016 ident: 246_CR37 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1612826113 – volume: 111 start-page: 5117 year: 2014 ident: 246_CR45 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1220873111 – volume: Chapter 10 start-page: Unit 10.17 year: 2010 ident: 246_CR54 publication-title: Curr. Protoc. Cytom. – volume: 162 start-page: 184 year: 2015 ident: 246_CR19 publication-title: Cell doi: 10.1016/j.cell.2015.05.047 – volume: 361 start-page: 1 year: 2010 ident: 246_CR51 publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2010.07.002 – volume: 20 year: 2019 ident: 246_CR35 publication-title: Genome Biol. – volume: 36 start-page: 411 year: 2018 ident: 246_CR43 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 453 start-page: 519 year: 2008 ident: 246_CR58 publication-title: Nature doi: 10.1038/nature06968 – volume: 37 start-page: 38 year: 2018 ident: 246_CR17 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4314 – volume: 21 start-page: 5 year: 2006 ident: 246_CR8 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2006.04.006 – volume: 128 start-page: e20 year: 2016 ident: 246_CR42 publication-title: Blood doi: 10.1182/blood-2016-05-716480 – volume: 22 start-page: 588 year: 2017 ident: 246_CR53 publication-title: Pac. Symp. Biocomput. – volume: 3 start-page: 402 year: 2008 ident: 246_CR46 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.07.021 – volume: 31 start-page: 545 year: 2013 ident: 246_CR6 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2594 – volume: 26 start-page: 303 year: 2008 ident: 246_CR4 publication-title: Nat. Biotechnol. doi: 10.1038/nbt0308-303 – volume: 3 start-page: 861 year: 2018 ident: 246_CR16 publication-title: JOSS doi: 10.21105/joss.00861 – volume: 37 start-page: 547 year: 2019 ident: 246_CR33 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0071-9 – volume: 377 start-page: 127 year: 2014 ident: 246_CR55 publication-title: Curr. Top. Microbiol. Immunol. – volume: 521 start-page: 352 year: 2015 ident: 246_CR56 publication-title: Nature doi: 10.1038/nature14274 – volume: 26 start-page: 7056 year: 2006 ident: 246_CR66 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01033-06 – volume: 29 start-page: 886 year: 2011 ident: 246_CR11 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1991 – volume: 14 start-page: 414 year: 2017 ident: 246_CR24 publication-title: Nat. Methods doi: 10.1038/nmeth.4207 – volume: 448 start-page: 196 year: 2007 ident: 246_CR59 publication-title: Nature doi: 10.1038/nature05972 – volume: 356 start-page: eaah4573 year: 2017 ident: 246_CR63 publication-title: Science doi: 10.1126/science.aah4573 – volume: 332 start-page: 687 year: 2011 ident: 246_CR13 publication-title: Science doi: 10.1126/science.1198704 – volume: 37 start-page: 451 year: 2019 ident: 246_CR36 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0068-4 – volume: 275 start-page: 403 year: 2004 ident: 246_CR61 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2004.08.031 – volume: 12 start-page: e1005112 year: 2016 ident: 246_CR20 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005112 – volume: 11 start-page: 417 year: 2014 ident: 246_CR39 publication-title: Nat. Methods doi: 10.1038/nmeth.2869 – volume: 28 start-page: i626 year: 2012 ident: 246_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts385 – volume: 14 start-page: 955 year: 2017 ident: 246_CR64 publication-title: Nat. Methods doi: 10.1038/nmeth.4407 – volume: 83 start-page: 483 year: 2013 ident: 246_CR52 publication-title: Cytom. A doi: 10.1002/cyto.a.22271 – volume: 165 start-page: 780 year: 2016 ident: 246_CR1 publication-title: Cell doi: 10.1016/j.cell.2016.04.019 – volume: 34 start-page: 1145 year: 2016 ident: 246_CR2 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3711 – volume: 32 start-page: 381 year: 2014 ident: 246_CR14 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 – volume: 2008 start-page: P10008 year: 2008 ident: 246_CR57 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2008/10/P10008 – ident: 246_CR3 – volume: 20 start-page: 29 year: 2017 ident: 246_CR65 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.10.003 – volume: 9 start-page: e98679 year: 2014 ident: 246_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0098679 – volume: 2 start-page: 60 year: 2008 ident: 246_CR47 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.10.011 – volume: 17 year: 2016 ident: 246_CR21 publication-title: BMC Bioinforma. doi: 10.1186/s12859-016-1176-5 – volume: 290 start-page: 2319 year: 2000 ident: 246_CR44 publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 131 start-page: 861 year: 2007 ident: 246_CR62 publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 157 start-page: 714 year: 2014 ident: 246_CR18 publication-title: Cell doi: 10.1016/j.cell.2014.04.005 – volume: 20 start-page: 436 year: 2014 ident: 246_CR38 publication-title: Nat. Med. doi: 10.1038/nm.3488 – volume: 49 start-page: 708 year: 2017 ident: 246_CR23 publication-title: Nat. Genet. doi: 10.1038/ng.3818 – volume: 14 start-page: 979 year: 2017 ident: 246_CR15 publication-title: Nat. Methods doi: 10.1038/nmeth.4402 – volume: 349 start-page: 1259425 year: 2015 ident: 246_CR27 publication-title: Science doi: 10.1126/science.1259425 – volume: 46 start-page: 2496 year: 2016 ident: 246_CR34 publication-title: Eur. J. Immunol. doi: 10.1002/eji.201646347 – volume: 555 start-page: 54 year: 2018 ident: 246_CR32 publication-title: Nature doi: 10.1038/nature25741 – volume: 32 start-page: 1241 year: 2016 ident: 246_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv715 – ident: 246_CR28 – volume: 448 start-page: 191 year: 2007 ident: 246_CR60 publication-title: Nature doi: 10.1038/nature05950 – volume: 21 start-page: 183 year: 2003 ident: 246_CR48 publication-title: Nat. Biotechnol. doi: 10.1038/nbt780 – volume: 16 start-page: 243 year: 2019 ident: 246_CR7 publication-title: Nat. Methods doi: 10.1038/s41592-018-0308-4 – volume: 11 start-page: 1264 year: 2016 ident: 246_CR12 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.066 – volume: 34 start-page: 1246 year: 2018 ident: 246_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx792 – volume: 37 start-page: 461 year: 2019 ident: 246_CR41 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0088-0 – volume: 34 start-page: 637 year: 2016 ident: 246_CR22 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3569 – volume: 31 start-page: 2989 year: 2015 ident: 246_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv325 – volume: 10 start-page: 316 year: 2015 ident: 246_CR49 publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.020 – volume: 9 start-page: 2579 year: 2008 ident: 246_CR5 publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 37 year: 2018 ident: 246_CR26 publication-title: Cell Syst. doi: 10.1016/j.cels.2017.10.012 |
| SSID | ssj0047367 |
| Score | 2.4312909 |
| Snippet | High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 398 |
| SubjectTerms | 631/114 631/1647/1407/1492 631/1647/514/1949 631/1647/794 631/553 Algorithms Analysis Analytical Chemistry Biological Techniques Biomedical and Life Sciences Cell differentiation Comparative analysis Computational Biology/Bioinformatics Computer Graphics Datasets Differentiation (biology) Drug resistance Ectoderm Embryo cells Embryonic stem cells Endoderm Flow cytometry Flow mapping Gene sequencing Graphical user interface Layouts Life Sciences Mesoderm Microarrays Organic Chemistry Protocol R (Programming language) Ribonucleic acid RNA Single-Cell Analysis - methods Software Software development tools Source code Statistics Stem cell transplantation Stem cells Technology application Tumorigenesis Unicellular organisms User interface User-Computer Interface |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGJwQ8cL8EBjJoEhLDbRo7F3irJqaBWJnGqo2nyHbcrpAm1ZIIlV_PObmxVNPQ3iqd0yiOz_H5bH_-TMi2LQM19ZRgADYUE1M-ZYH0FdM60maohxDTuKB_MPb2J-LLqXu6QYbNWZiStK_VvJ_Ei34yPyu5lcuFHjQ8sYEfAAR2xA2y6bkAv3tkczI-HP0oDz66NnP88s5I-C0YlK8PzU4mDwYZFCuk3OKxHUd4jHdq0fqIfKEkrdMl2z3TO-RWkSzl6reM4wtlae8eOWoaVLFRfvWLXPX1nzWtx2u1-D65W4NUOqpMD8iGSR6Sm9W1latHJNv7-u2EHYwOP1JJS8VrhsUwek8BAWvDqjJpIhrLVVrkVMaz9Hyeny3QTqFxP8utghVdSFSHmNF5QnHJIjYM9xEo3ndPdYr0EooM1szk2WMy2ft0vLvP6ssbmAYMkzPlu4ZDIHBhhBdB6kcOIFHf4R73tFG2a4TkMMQZ3zPad6c4ETQiiLgXudLmhj8hvSRNzDNCAy4dI2HuY3uBMIGvRKAC7nnC5VPFpbCI3XRjqGtlc7xgIw7LHXYehFXPh9DzIfZ8yC3yrv3LspL1uMp5G2MjRLmMBPk4M1lkWTg6PtkdhyPAQzAHhkmKRd5c5vb5-1HH6W3tNE3hHbWsT0FAS1GIq-O51fGEtNddcxOpYT3sZKHDXZsDRrbty80CMsRGxX2LvG7N-GBk2iUmLfARqPmGIvwWeVrFffuFOKJ9mC9YxO9kROuAWuVdCwR0qVlex7BFdprc-fdaV3z4nTa9_t9Nz6_l_YLcdnDppCTgb5Fefl6Yl4Avc_WqHlH-AvrRcgI priority: 102 providerName: Unpaywall |
| Title | FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets |
| URI | https://link.springer.com/article/10.1038/s41596-019-0246-3 https://www.ncbi.nlm.nih.gov/pubmed/31932774 https://www.proquest.com/docview/2350323200 https://www.proquest.com/docview/2475008943 https://www.proquest.com/docview/2338106109 https://pubmed.ncbi.nlm.nih.gov/PMC7897424 https://www.ncbi.nlm.nih.gov/pmc/articles/7897424 |
| UnpaywallVersion | submittedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1750-2799 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047367 issn: 1750-2799 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe2Vgh4QHwTGJVBk5AY1rLY-QAJoXRaNRAL1Vi18hQ5jtMNZWlZUqH-99zla8s0lac8-BI5d-e78_n8O0K2TelFiRMJBsFGxETCE-ZJN2JKxUrvqT3QaUzoHwXO4UR8m9rTDRI0d2GwrLKxiaWhjucKc-S7FrdNDu7fNL8s_jDsGoWnq00LDVm3Vog_lxBjm6RvITJWj_SHB8H4uLHNwuVlT1nwmYKBc_vYnHNybzcHV4YFuXipxxIO4x1PddNeX3NYN4sp2xPV--TuMlvI1V-Zptec1ugheVBHm9Sv1OMR2dDZY3Kn6j-5ekLy0fcfp-zIH3-ikpbQ1Qy9WvyBQiirNKv8nY5pKlfzZUFlOgOWFGcXOE5hHr_LnP-KXkiEeZjR84xi7iHVDA8EKDaup8Cyy1xTLEXNdZE_JZPRwcn-Iau7MDAFwUjBItfWHCTKhRZODGs4tiCkdC3ucEfpyLS1kBxslXYdrVw7wR2dFl7MndiWJtf8Gell80y_INTj0tISNjGm4wntuZHwIo87jrB5EnEpDGI2HA9VDVGOnTLSsDwq515YCSkEIYUopJAb5H37yqLC51hHvI1iDBH3IsPCmplc5nnon5zuB6EPgQ1sZmG3YZC3t5F9_XncIXpXEyVzmKOS9XUG-FNE1OpQbnUoYf2q7nCjVGFtP_LwSttvHxYQ6JkInW-QN-0wfhhL5jI9X-InELwN0fQN8rxS0ZZDHMN2CPwN4naUtyVA0PHuSHZ-VoKPux7sQC14c6dR86tprWH8TrsS_i-ml-s58orcszDpUZbOb5FecbnUryEyLKIB2XSn7oD0_dFwGAzqxQ_PSTD2f_0DvmtfaA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGJjT4gHgnMMCgIaQNa1nsvAxpQmWsallbptFp-2acxOmK0rQsqab-OX4bd3nplmkqn_bZF8vxnf3c2efnCFk3ledHji8YOBs-ExGPmKdcnwVBGOjtYBtsGg_0uz2ndSy-n9qnS-Rv9RYG0yqrPTHfqMNxgGfkWxa3TQ7wb5pfJn8YVo3C29WqhIYqSyuEuznFWPmw40DPLiCES3fb30DfHyyrud_fa7GyygALAGwz5ru25jBiLrRwQrDR0AKXybW4w51A-6atheKwFrXr6MC1I4xYtPBC7oS2Mrnm0O8dsiK42IHgb-Xrfu_wqMIC4fK8hi1gtGAApjvVvSr3tlKATkwAxkdElnAYryHjdXy4ApDXkzfnN7j3yeo0majZhYrjKyDZfEgelN4tbRTm-Igs6eQxuVvUu5w9IWmz8-OEdRuHn6miOVU2QxQNP1FwnQPNCnzVIY3VbDzNqIoHoILsbITtFMbxO79jmNGRQlqJAR0mFM86Ys3wAoJmw5GmoKLzVFNMfU11lj4lx7eij2dkORkn-gWhHleWVhA0mY4ntOf6wvM97jjC5pHPlTCIWc24DEpKdKzMEcv8ap57slCSBCVJVJLkBtmYfzIp-EAWCa-jGiXybCSYyDNQ0zSVjf7JXk82wJGC4BmiG4O8v0ms_fOoJvSxFIrGMMZAlc8n4E-RwasmuVaThP0iqDdXRiXL_SqVl6vr5mYBjqWJVP0GeTdvxo4xRS_R4yl2gWRxyN5vkOeFic5niGOYAIGGQdya8c4FkOS83pIMz3Kyc9eDiNeCLzcrM78c1oKJ35yvhP-r6eXiGXlLVlv9bkd22r2DV-SehQcuedr-GlnOzqf6NXilmf-mXPqU_Lrt3eYfQAKXAQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEdcD4iZQwKAiJIq1aewcRUJo1bLq0oMKWnXfjOM420W7yUKyqvav8euYydWmqpanPntiOZ7xHJ7xN4Ss2ioIYy8UDJyNkImYxyxQfsi0jrRZ1-sg03ihv7fvbR-JrwN3sET-1m9hsKyy1omFoo5SjXfkHYe7Ngfzb9uduCqLONjqfZ7-ZthBCjOtdTuNUkR2zPwUwrfsU38LeP3WcXpfDje3WdVhgGkwtDkLfddwWC0XRngRyGfkgLvkO9zjnjah7RqhOJxD43tG-26M0YoRQcS9yFU2NxzmvUau-5xvYDmhP2iCPeHzonstWGfBwIxu1BlVHnQyMJpY-ovPhxzhMd6yiRctwznTeLFss8nd3iG3ZslUzU_VeHzOPPbukbuVX0u7pSDeJ0smeUBulJ0u5w9J1tv9dsz2ugcfqaIFSDZD-xl9oOA0a8NKy2oiOlbzdJZTNR7ChucnExynsI5fRXZhTicKASWGdJRQvOUYG4apB5qPJobqFCtSKBa9ZibPHpGjK-HGY7KcpIl5SmjAlWMUhEu2FwgT-KEIwoB7nnB5HHIlLGLXOy51BYaOPTnGskjK80CWTJLAJIlMktwi75tPpiUSyCLiVWSjRISNBGV1qGZZJruHx5v7sgsuFITNENdY5M1lZP0f31tE7yqiOIU1alU9nIA_ReyuFuVKixI0hW4P10IlK02VybNzdfmwAJfSRpB-i7xuhnFiLM5LTDrDKRAmDnH7LfKkFNFmhzgGCBBiWMRvCW9DgPDm7ZFkdFLAnPsBxLoOfLlWi_nZshZs_FpzEv7PpmeLd-QVuQk6Ru7293eek9sO3rQU9forZDn_MzMvwB3Nw5fFuafk51Urmn_13pSb |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGJwQ8cL8EBjJoEhLDbRo7F3irJqaBWJnGqo2nyHbcrpAm1ZIIlV_PObmxVNPQ3iqd0yiOz_H5bH_-TMi2LQM19ZRgADYUE1M-ZYH0FdM60maohxDTuKB_MPb2J-LLqXu6QYbNWZiStK_VvJ_Ei34yPyu5lcuFHjQ8sYEfAAR2xA2y6bkAv3tkczI-HP0oDz66NnP88s5I-C0YlK8PzU4mDwYZFCuk3OKxHUd4jHdq0fqIfKEkrdMl2z3TO-RWkSzl6reM4wtlae8eOWoaVLFRfvWLXPX1nzWtx2u1-D65W4NUOqpMD8iGSR6Sm9W1latHJNv7-u2EHYwOP1JJS8VrhsUwek8BAWvDqjJpIhrLVVrkVMaz9Hyeny3QTqFxP8utghVdSFSHmNF5QnHJIjYM9xEo3ndPdYr0EooM1szk2WMy2ft0vLvP6ssbmAYMkzPlu4ZDIHBhhBdB6kcOIFHf4R73tFG2a4TkMMQZ3zPad6c4ETQiiLgXudLmhj8hvSRNzDNCAy4dI2HuY3uBMIGvRKAC7nnC5VPFpbCI3XRjqGtlc7xgIw7LHXYehFXPh9DzIfZ8yC3yrv3LspL1uMp5G2MjRLmMBPk4M1lkWTg6PtkdhyPAQzAHhkmKRd5c5vb5-1HH6W3tNE3hHbWsT0FAS1GIq-O51fGEtNddcxOpYT3sZKHDXZsDRrbty80CMsRGxX2LvG7N-GBk2iUmLfARqPmGIvwWeVrFffuFOKJ9mC9YxO9kROuAWuVdCwR0qVlex7BFdprc-fdaV3z4nTa9_t9Nz6_l_YLcdnDppCTgb5Fefl6Yl4Avc_WqHlH-AvrRcgI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FLOW-MAP%3A+a+graph-based%2C+force-directed+layout+algorithm+for+trajectory+mapping+in+single-cell+time+course+datasets&rft.jtitle=Nature+protocols&rft.au=Ko%2C+Melissa+E.&rft.au=Williams%2C+Corey+M.&rft.au=Fread%2C+Kristen+I.&rft.au=Goggin%2C+Sarah+M.&rft.date=2020-02-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1754-2189&rft.eissn=1750-2799&rft.volume=15&rft.issue=2&rft.spage=398&rft.epage=420&rft_id=info:doi/10.1038%2Fs41596-019-0246-3&rft.externalDocID=10_1038_s41596_019_0246_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon |