FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets

High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique...

Full description

Saved in:
Bibliographic Details
Published inNature protocols Vol. 15; no. 2; pp. 398 - 420
Main Authors Ko, Melissa E., Williams, Corey M., Fread, Kristen I., Goggin, Sarah M., Rustagi, Rohit S., Fragiadakis, Gabriela K., Nolan, Garry P., Zunder, Eli R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1754-2189
1750-2799
1750-2799
DOI10.1038/s41596-019-0246-3

Cover

Abstract High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete. This protocol describes FLOW-MAP, a graph-based algorithm for visualizing cellular trajectories in single-cell time course datasets. The R package can be operated via its GUI or using text-based commands.
AbstractList High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.This protocol describes FLOW-MAP, a graph-based algorithm for visualizing cellular trajectories in single-cell time course datasets. The R package can be operated via its GUI or using text-based commands.
High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.
High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.
High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete. This protocol describes FLOW-MAP, a graph-based algorithm for visualizing cellular trajectories in single-cell time course datasets. The R package can be operated via its GUI or using text-based commands.
Audience Academic
Author Goggin, Sarah M.
Fread, Kristen I.
Fragiadakis, Gabriela K.
Nolan, Garry P.
Zunder, Eli R.
Williams, Corey M.
Ko, Melissa E.
Rustagi, Rohit S.
AuthorAffiliation 6 These authors contributed equally: Melissa E. Ko, Corey M. Williams
5 Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
3 Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
1 Cancer Biology Program, Stanford School of Medicine, Stanford, CA, USA
2 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
4 Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
AuthorAffiliation_xml – name: 3 Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
– name: 2 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
– name: 1 Cancer Biology Program, Stanford School of Medicine, Stanford, CA, USA
– name: 4 Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
– name: 5 Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
– name: 6 These authors contributed equally: Melissa E. Ko, Corey M. Williams
Author_xml – sequence: 1
  givenname: Melissa E.
  surname: Ko
  fullname: Ko, Melissa E.
  organization: Cancer Biology Program, Stanford School of Medicine
– sequence: 2
  givenname: Corey M.
  surname: Williams
  fullname: Williams, Corey M.
  organization: Department of Biomedical Engineering, University of Virginia, Robert M. Berne Cardiovascular Research Center, University of Virginia
– sequence: 3
  givenname: Kristen I.
  surname: Fread
  fullname: Fread, Kristen I.
  organization: Department of Biomedical Engineering, University of Virginia
– sequence: 4
  givenname: Sarah M.
  surname: Goggin
  fullname: Goggin, Sarah M.
  organization: Neuroscience Graduate Program, University of Virginia
– sequence: 5
  givenname: Rohit S.
  surname: Rustagi
  fullname: Rustagi, Rohit S.
  organization: Department of Biomedical Engineering, University of Virginia
– sequence: 6
  givenname: Gabriela K.
  surname: Fragiadakis
  fullname: Fragiadakis, Gabriela K.
  organization: Department of Microbiology and Immunology, Stanford University
– sequence: 7
  givenname: Garry P.
  surname: Nolan
  fullname: Nolan, Garry P.
  organization: Department of Microbiology and Immunology, Stanford University
– sequence: 8
  givenname: Eli R.
  surname: Zunder
  fullname: Zunder, Eli R.
  email: ezunder@virginia.edu
  organization: Department of Biomedical Engineering, University of Virginia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31932774$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhiM0xLbCD-AGWeIGBBn-ip3sAqmqGEwqDMHQLi03OU09JXGwHaD_HocWSic2oVw4ynnek-Q55zg56GwHSfKY4BOCWf7Kc5IVIsWkSDHlImX3kiMiM5xSWRQHv-55SkleHCbH3l9jzCUT8kFyyEjBqJT8KPFn84ur9P304ynSqHa6X6UL7aF6iZbWlZBWxkEZoEKNXtshIN3U1pmwasc6Ck5fx7J1a9TqvjddjUyHfDwbSEtoGhRMC6i0g_OAKh1i6-AfJveXuvHwaHtOki9nby5n79L5xdvz2XSeloJlIV3IDJjOF4wDFxXOSEULIiRlgokSFjgDrhnOc5ACSpktSUEjmVdMVJnGDNgkoZu-Q9fr9XfdNKp3ptVurQhWo0G1MaiiQTUaVCyGXm9C_bBooSqhiz-5C1pt1H6lMytV229K5oXklMcGz7YNnP06gA-qNX50oTuwg1eUsZxgQXAR0ac30OtoqotOFOVxjjgvOLuTYhlmlFGMd1StG1CmW9r4deX4ajUVhJFMyKhukpz8g4pXBa0p43YtTXy-F3i-F4hMgB-h1oP36vzzp332xe3s9PJq9mGffvK36D-Gf-9mBOQGKJ313sFSlSboYOzo3TR3zpDcSP7P3LfL4iPb1eB2lm8P_QROpRLr
CitedBy_id crossref_primary_10_1172_JCI146408
crossref_primary_10_1242_dev_202252
crossref_primary_10_1016_j_cell_2022_09_010
crossref_primary_10_1016_j_coisb_2021_05_005
crossref_primary_10_1093_bioadv_vbad071
crossref_primary_10_1016_j_gde_2020_05_033
crossref_primary_10_1038_s41467_021_25773_3
crossref_primary_10_1038_s41593_022_01181_8
crossref_primary_10_1038_s41592_024_02299_2
crossref_primary_10_1126_sciadv_adh2726
crossref_primary_10_1136_jitc_2021_002709
crossref_primary_10_1002_cyto_a_24928
crossref_primary_10_1093_gigascience_giae107
Cites_doi 10.1021/ac901049w
10.1073/pnas.1408993111
10.1609/icwsm.v3i1.13937
10.1073/pnas.1612826113
10.1073/pnas.1220873111
10.1016/j.cell.2015.05.047
10.1016/j.jim.2010.07.002
10.1038/nbt.4096
10.1038/nature06968
10.1038/nbt.4314
10.1016/j.acha.2006.04.006
10.1182/blood-2016-05-716480
10.1016/j.stem.2008.07.021
10.1038/nbt.2594
10.1038/nbt0308-303
10.21105/joss.00861
10.1038/s41587-019-0071-9
10.1038/nature14274
10.1128/MCB.01033-06
10.1038/nbt.1991
10.1038/nmeth.4207
10.1038/nature05972
10.1126/science.aah4573
10.1126/science.1198704
10.1038/s41587-019-0068-4
10.1016/j.ydbio.2004.08.031
10.1371/journal.pcbi.1005112
10.1038/nmeth.2869
10.1093/bioinformatics/bts385
10.1038/nmeth.4407
10.1002/cyto.a.22271
10.1016/j.cell.2016.04.019
10.1038/nbt.3711
10.1038/nbt.2859
10.1088/1742-5468/2008/10/P10008
10.1016/j.stem.2016.10.003
10.1371/journal.pone.0098679
10.1016/j.stem.2007.10.011
10.1186/s12859-016-1176-5
10.1126/science.290.5500.2319
10.1016/j.cell.2007.11.019
10.1016/j.cell.2014.04.005
10.1038/nm.3488
10.1038/ng.3818
10.1038/nmeth.4402
10.1126/science.1259425
10.1002/eji.201646347
10.1038/nature25741
10.1093/bioinformatics/btv715
10.1038/nature05950
10.1038/nbt780
10.1038/s41592-018-0308-4
10.1038/nprot.2016.066
10.1093/bioinformatics/btx792
10.1038/s41587-019-0088-0
10.1038/nbt.3569
10.1093/bioinformatics/btv325
10.1038/nprot.2015.020
10.1016/j.cels.2017.10.012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
COPYRIGHT 2020 Nature Publishing Group
2020© The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
ISR
3V.
7QG
7T5
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s41596-019-0246-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE
ProQuest Central Student



MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 1750-2799
EndPage 420
ExternalDocumentID oai:pubmedcentral.nih.gov:7897424
PMC7897424
A613156772
31932774
10_1038_s41596_019_0246_3
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: R01CA184968; 1R33CA183654-01; R33CA183692; 1R21CA183660
  funderid: https://doi.org/10.13039/100000054
– fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: 5T32HL007284; R01HL120724
  funderid: https://doi.org/10.13039/100000050
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: U19 AI057229; 1U19AI100627
  funderid: https://doi.org/10.13039/100000060
– fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
  grantid: OPP1113682
  funderid: https://doi.org/10.13039/100000865
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
  grantid: 5UH2AR067676
  funderid: https://doi.org/10.13039/100000069
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: 5T32GM008715; T32GM007276; 1R01GM10983601
  funderid: https://doi.org/10.13039/100000057
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: 1R01NS08953304
  funderid: https://doi.org/10.13039/100000065
– fundername: Department of Defense (CDMRP), Northrop-Grumman Corporation, the Rachford & Carlotta A. Harris Endowed Chair
– fundername: California Institute for Regenerative Medicine (CIRM)
  grantid: RB2–01592
  funderid: https://doi.org/10.13039/100000900
– fundername: U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM)
  grantid: 5T32LM012416
  funderid: https://doi.org/10.13039/100000092
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: R33CA183692
– fundername: NCI NIH HHS
  grantid: R33 CA183654
– fundername: NLM NIH HHS
  grantid: T32 LM012416
– fundername: NIGMS NIH HHS
  grantid: T32 GM007276
– fundername: NIAID NIH HHS
  grantid: U19 AI057229
– fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: R01HL120724
– fundername: U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM)
  grantid: 5T32LM012416
– fundername: NIAMS NIH HHS
  grantid: UH2 AR067676
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: 1R01NS08953304
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: 1R21CA183660
GroupedDBID ---
0R~
123
29M
39C
3TQ
3V.
4.4
53G
5BI
5M7
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
DB5
DU5
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FSGXE
FYUFA
FZEXT
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LGEZI
LK8
LOTEE
M1P
M7P
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
AGSTI
7QG
7T5
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c635t-b75e3a8b34e46d051d2916723636ceb05e4a3088e76ec75f1924e48d36d5a03e3
IEDL.DBID BENPR
ISSN 1754-2189
1750-2799
IngestDate Sun Oct 26 04:17:19 EDT 2025
Tue Sep 30 16:41:15 EDT 2025
Sat Sep 27 20:44:44 EDT 2025
Tue Oct 07 06:04:16 EDT 2025
Tue Oct 07 06:12:20 EDT 2025
Mon Oct 20 21:42:39 EDT 2025
Mon Oct 20 16:36:36 EDT 2025
Thu Oct 16 15:10:45 EDT 2025
Thu Oct 16 13:53:51 EDT 2025
Mon Jul 21 06:07:07 EDT 2025
Wed Oct 01 00:20:00 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Fri Feb 21 02:37:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Reprints and permissions information is available at www.nature.com/reprints.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c635t-b75e3a8b34e46d051d2916723636ceb05e4a3088e76ec75f1924e48d36d5a03e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
E.R.Z. conceptualized the FLOW-MAP algorithm. E.R.Z., G.K.F., and G.P.N. designed the mESC differentiation experiment. E.R.Z. and G.K.F. performed the mESC differentiation experiment and collected cell samples. E.R.Z. performed antibody staining and mass cytometry measurement. M.E.K., E.R.Z., S.M.G., C.M.W. and R.S.R. wrote the FLOW-MAP code. M.E.K., C.M.W., K.I.F. and E.R.Z. analyzed and interpreted the data. M.E.K., C.M.W. and E.R.Z. wrote the manuscript. All authors edited, read and approved the manuscript.
Author contributions
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7897424
PMID 31932774
PQID 2350323200
PQPubID 536306
PageCount 23
ParticipantIDs unpaywall_primary_10_1038_s41596_019_0246_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897424
proquest_miscellaneous_2338106109
proquest_journals_2475008943
proquest_journals_2350323200
gale_infotracmisc_A613156772
gale_infotracacademiconefile_A613156772
gale_incontextgauss_ISR_A613156772
gale_incontextgauss_ATWCN_A613156772
pubmed_primary_31932774
crossref_citationtrail_10_1038_s41596_019_0246_3
crossref_primary_10_1038_s41596_019_0246_3
springer_journals_10_1038_s41596_019_0246_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Recipes for Researchers
PublicationTitle Nature protocols
PublicationTitleAbbrev Nat Protoc
PublicationTitleAlternate Nat Protoc
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Qiu (CR15) 2017; 14
Ying, Stavridis, Griffiths, Li, Smith (CR48) 2003; 21
Nostro, Cheng, Keller, Gadue (CR47) 2008; 2
Habib (CR64) 2017; 14
Villani (CR63) 2017; 356
Qiu (CR11) 2011; 29
DeTomaso, Yosef (CR21) 2016; 17
Fischer (CR41) 2019; 37
van der Maaten, Hinton (CR5) 2008; 9
Cannoodt, Saelens, Saeys (CR34) 2016; 46
Angerer (CR10) 2016; 32
Finck (CR52) 2013; 83
Jacomy, Venturini, Heymann, Bastian (CR29) 2014; 9
CR30
Ying (CR58) 2008; 453
Haghverdi, Buettner, Theis (CR9) 2015; 31
Herring (CR26) 2018; 6
Chen (CR20) 2016; 12
Tusi (CR32) 2018; 555
Kotecha, Krutzik, Irish (CR54) 2010; Chapter 10
Blondel, Guillaume, Lambiotte, Lefebvre (CR57) 2008; 2008
CR3
Butler, Hoffman, Smibert, Papalexi, Satija (CR43) 2018; 36
Amir (CR6) 2013; 31
Tenenbaum, de Silva, Langford (CR44) 2000; 290
Linderman, Rachh, Hoskins, Steinerberger, Kluger (CR7) 2019; 16
Bendall (CR18) 2014; 157
Nestorowa (CR42) 2016; 128
Angelo (CR38) 2014; 20
Tesar (CR59) 2007; 448
Bendall (CR13) 2011; 332
Levine (CR19) 2015; 162
Becht (CR17) 2018; 37
Wolf (CR35) 2019; 20
Lujan (CR56) 2015; 521
Cacciatore, Luchinat, Tenori (CR45) 2014; 111
Saelens, Cannoodt, Todorov, Saeys (CR33) 2019; 37
Setty (CR36) 2019; 37
Chen, Kotecha (CR55) 2014; 377
Morrison (CR46) 2008; 3
Takahashi (CR62) 2007; 131
Setty (CR22) 2016; 34
Brons (CR60) 2007; 448
Trapnell (CR14) 2014; 32
Zunder (CR49) 2015; 10
Marco (CR25) 2014; 111
Ornatsky (CR51) 2010; 361
Kee (CR65) 2017; 20
Buettner, Theis (CR40) 2012; 28
Weinreb, Wolock, Klein (CR31) 2018; 34
Fread, Strickland, Nolan, Zunder (CR53) 2017; 22
Li (CR23) 2017; 49
Moffitt (CR37) 2016; 113
McInnes, Healy, Saul, Großberger (CR16) 2018; 3
Vallier, Reynolds, Pedersen (CR61) 2004; 275
Grass (CR66) 2006; 26
Spitzer, Nolan (CR1) 2016; 165
CR28
Wang, Zhu, Pierson, Ramazzotti, Batzoglou (CR24) 2017; 14
Ringnér (CR4) 2008; 26
Wagner, Regev, Yosef (CR2) 2016; 34
Coifman, Lafon (CR8) 2006; 21
Giesen (CR39) 2014; 11
Anchang (CR12) 2016; 11
Bandura (CR50) 2009; 81
Spitzer (CR27) 2015; 349
L Vallier (246_CR61) 2004; 275
JH Levine (246_CR19) 2015; 162
ED Amir (246_CR6) 2013; 31
B Anchang (246_CR12) 2016; 11
C Giesen (246_CR39) 2014; 11
Q-L Ying (246_CR58) 2008; 453
P Angerer (246_CR10) 2016; 32
246_CR30
VD Blondel (246_CR57) 2008; 2008
CA Herring (246_CR26) 2018; 6
A-C Villani (246_CR63) 2017; 356
N Habib (246_CR64) 2017; 14
A Butler (246_CR43) 2018; 36
R Finck (246_CR52) 2013; 83
RR Coifman (246_CR8) 2006; 21
K Takahashi (246_CR62) 2007; 131
N Kotecha (246_CR54) 2010; Chapter 10
246_CR28
L Haghverdi (246_CR9) 2015; 31
W Saelens (246_CR33) 2019; 37
L van der Maaten (246_CR5) 2008; 9
O Ornatsky (246_CR51) 2010; 361
JR Moffitt (246_CR37) 2016; 113
M Setty (246_CR36) 2019; 37
JB Tenenbaum (246_CR44) 2000; 290
C Trapnell (246_CR14) 2014; 32
GC Linderman (246_CR7) 2019; 16
S Nestorowa (246_CR42) 2016; 128
MH Spitzer (246_CR1) 2016; 165
M Ringnér (246_CR4) 2008; 26
BK Tusi (246_CR32) 2018; 555
JA Grass (246_CR66) 2006; 26
X Qiu (246_CR15) 2017; 14
246_CR3
IGM Brons (246_CR60) 2007; 448
A Wagner (246_CR2) 2016; 34
P Qiu (246_CR11) 2011; 29
DR Bandura (246_CR50) 2009; 81
E Lujan (246_CR56) 2015; 521
M Angelo (246_CR38) 2014; 20
H Li (246_CR23) 2017; 49
MC Nostro (246_CR47) 2008; 2
PJ Tesar (246_CR59) 2007; 448
SC Bendall (246_CR18) 2014; 157
C Weinreb (246_CR31) 2018; 34
B Wang (246_CR24) 2017; 14
N Kee (246_CR65) 2017; 20
FA Wolf (246_CR35) 2019; 20
F Buettner (246_CR40) 2012; 28
E Marco (246_CR25) 2014; 111
MH Spitzer (246_CR27) 2015; 349
KI Fread (246_CR53) 2017; 22
E Becht (246_CR17) 2018; 37
L McInnes (246_CR16) 2018; 3
R Cannoodt (246_CR34) 2016; 46
D DeTomaso (246_CR21) 2016; 17
M Jacomy (246_CR29) 2014; 9
SC Bendall (246_CR13) 2011; 332
Q-L Ying (246_CR48) 2003; 21
M Setty (246_CR22) 2016; 34
S Cacciatore (246_CR45) 2014; 111
DS Fischer (246_CR41) 2019; 37
GM Morrison (246_CR46) 2008; 3
H Chen (246_CR20) 2016; 12
TJ Chen (246_CR55) 2014; 377
ER Zunder (246_CR49) 2015; 10
References_xml – volume: 31
  start-page: 545
  year: 2013
  end-page: 552
  ident: CR6
  article-title: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
  publication-title: Nat. Biotechnol.
– volume: 349
  start-page: 1259425
  year: 2015
  ident: CR27
  article-title: An interactive reference framework for modeling a dynamic immune system
  publication-title: Science
– volume: 128
  start-page: e20
  year: 2016
  end-page: e31
  ident: CR42
  article-title: A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
  publication-title: Blood
– volume: 81
  start-page: 6813
  year: 2009
  end-page: 6822
  ident: CR50
  article-title: Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry
  publication-title: Anal. Chem.
– volume: 11
  start-page: 417
  year: 2014
  end-page: 422
  ident: CR39
  article-title: Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry
  publication-title: Nat. Methods
– volume: 453
  start-page: 519
  year: 2008
  end-page: 523
  ident: CR58
  article-title: The ground state of embryonic stem cell self-renewal
  publication-title: Nature
– volume: 26
  start-page: 7056
  year: 2006
  end-page: 7067
  ident: CR66
  article-title: Distinct functions of dispersed GATA factor complexes at an endogenous gene locus
  publication-title: Mol. Cell. Biol.
– volume: 46
  start-page: 2496
  year: 2016
  end-page: 2506
  ident: CR34
  article-title: Computational methods for trajectory inference from single-cell transcriptomics
  publication-title: Eur. J. Immunol.
– volume: 3
  start-page: 861
  year: 2018
  ident: CR16
  article-title: UMAP: uniform manifold approximation and projection
  publication-title: JOSS
– volume: 111
  start-page: E5643
  year: 2014
  end-page: E5650
  ident: CR25
  article-title: Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 20
  start-page: 436
  year: 2014
  end-page: 442
  ident: CR38
  article-title: Multiplexed ion beam imaging of human breast tumors
  publication-title: Nat. Med.
– volume: 555
  start-page: 54
  year: 2018
  end-page: 60
  ident: CR32
  article-title: Population snapshots predict early haematopoietic and erythroid hierarchies
  publication-title: Nature
– volume: 2
  start-page: 60
  year: 2008
  end-page: 71
  ident: CR47
  article-title: Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood
  publication-title: Cell Stem Cell
– volume: 37
  start-page: 461
  year: 2019
  end-page: 468
  ident: CR41
  article-title: Inferring population dynamics from single-cell RNA-sequencing time series data
  publication-title: Nat. Biotechnol.
– volume: 26
  start-page: 303
  year: 2008
  end-page: 304
  ident: CR4
  article-title: What is principal component analysis?
  publication-title: Nat. Biotechnol.
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: CR43
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
– volume: 37
  start-page: 451
  year: 2019
  end-page: 460
  ident: CR36
  article-title: Characterization of cell fate probabilities in single-cell data with Palantir
  publication-title: Nat. Biotechnol.
– volume: 21
  start-page: 183
  year: 2003
  end-page: 186
  ident: CR48
  article-title: Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture
  publication-title: Nat. Biotechnol.
– volume: 3
  start-page: 402
  year: 2008
  end-page: 415
  ident: CR46
  article-title: Anterior definitive endoderm from ESCs reveals a role for FGF signaling
  publication-title: Cell Stem Cell
– volume: 34
  start-page: 637
  year: 2016
  end-page: 645
  ident: CR22
  article-title: Wishbone identifies bifurcating developmental trajectories from single-cell data
  publication-title: Nat. Biotechnol.
– volume: 49
  start-page: 708
  year: 2017
  end-page: 718
  ident: CR23
  article-title: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors
  publication-title: Nat. Genet.
– volume: 34
  start-page: 1145
  year: 2016
  end-page: 1160
  ident: CR2
  article-title: Revealing the vectors of cellular identity with single-cell genomics
  publication-title: Nat. Biotechnol.
– volume: 361
  start-page: 1
  year: 2010
  end-page: 20
  ident: CR51
  article-title: Highly multiparametric analysis by mass cytometry
  publication-title: J. Immunol. Methods
– volume: 14
  start-page: 414
  year: 2017
  end-page: 416
  ident: CR24
  article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
  publication-title: Nat. Methods
– volume: 14
  start-page: 955
  year: 2017
  end-page: 958
  ident: CR64
  article-title: Massively parallel single-nucleus RNA-seq with DroNc-seq
  publication-title: Nat. Methods
– volume: 14
  start-page: 979
  year: 2017
  end-page: 982
  ident: CR15
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat. Methods
– volume: 20
  year: 2019
  ident: CR35
  article-title: PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells
  publication-title: Genome Biol.
– volume: 275
  start-page: 403
  year: 2004
  end-page: 421
  ident: CR61
  article-title: Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway
  publication-title: Dev. Biol.
– volume: 11
  start-page: 1264
  year: 2016
  end-page: 1279
  ident: CR12
  article-title: Visualization and cellular hierarchy inference of single-cell data using SPADE
  publication-title: Nat. Protoc.
– volume: 83
  start-page: 483
  year: 2013
  end-page: 494
  ident: CR52
  article-title: Normalization of mass cytometry data with bead standards
  publication-title: Cytom. A
– volume: 31
  start-page: 2989
  year: 2015
  end-page: 2998
  ident: CR9
  article-title: Diffusion maps for high-dimensional single-cell analysis of differentiation data
  publication-title: Bioinformatics
– volume: 356
  start-page: eaah4573
  year: 2017
  ident: CR63
  article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
  publication-title: Science
– volume: 29
  start-page: 886
  year: 2011
  end-page: 891
  ident: CR11
  article-title: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
  publication-title: Nat. Biotechnol.
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: CR44
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– volume: 113
  start-page: 11046
  year: 2016
  end-page: 11051
  ident: CR37
  article-title: High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 9
  start-page: e98679
  year: 2014
  ident: CR29
  article-title: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software
  publication-title: PLoS ONE
– volume: 34
  start-page: 1246
  year: 2018
  end-page: 1248
  ident: CR31
  article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data
  publication-title: Bioinformatics
– volume: 37
  start-page: 38
  year: 2018
  end-page: 44
  ident: CR17
  article-title: Dimensionality reduction for visualizing single-cell data using UMAP
  publication-title: Nat. Biotechnol.
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  ident: CR62
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
– ident: CR30
– volume: 32
  start-page: 381
  year: 2014
  end-page: 386
  ident: CR14
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat. Biotechnol.
– volume: 377
  start-page: 127
  year: 2014
  end-page: 157
  ident: CR55
  article-title: Cytobank: providing an analytics platform for community cytometry data analysis and collaboration
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 521
  start-page: 352
  year: 2015
  end-page: 356
  ident: CR56
  article-title: Early reprogramming regulators identified by prospective isolation and mass cytometry
  publication-title: Nature
– volume: 12
  start-page: e1005112
  year: 2016
  ident: CR20
  article-title: Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline
  publication-title: PLoS Comput. Biol.
– volume: 16
  start-page: 243
  year: 2019
  end-page: 245
  ident: CR7
  article-title: Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data
  publication-title: Nat. Methods
– volume: 32
  start-page: 1241
  year: 2016
  end-page: 1243
  ident: CR10
  article-title: Destiny: diffusion maps for large-scale single-cell data in R
  publication-title: Bioinformatics
– volume: 157
  start-page: 714
  year: 2014
  end-page: 725
  ident: CR18
  article-title: Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
  publication-title: Cell
– volume: 6
  start-page: 37
  year: 2018
  end-page: 51.e9
  ident: CR26
  article-title: Unsupervised trajectory analysis of single-cell RNA-Seq and imaging data reveals alternative tuft cell origins in the gut
  publication-title: Cell Syst.
– volume: 21
  start-page: 5
  year: 2006
  end-page: 30
  ident: CR8
  article-title: Diffusion maps
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 10
  start-page: 316
  year: 2015
  end-page: 333
  ident: CR49
  article-title: Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm
  publication-title: Nat. Protoc.
– volume: 22
  start-page: 588
  year: 2017
  end-page: 598
  ident: CR53
  article-title: An updated debarcoding tool for mass cytometry with cell type-specific and cell sample-specific stringency adjustment
  publication-title: Pac. Symp. Biocomput.
– volume: 162
  start-page: 184
  year: 2015
  end-page: 197
  ident: CR19
  article-title: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
  publication-title: Cell
– volume: 37
  start-page: 547
  year: 2019
  end-page: 554
  ident: CR33
  article-title: A comparison of single-cell trajectory inference methods
  publication-title: Nat. Biotechnol.
– volume: 448
  start-page: 196
  year: 2007
  end-page: 199
  ident: CR59
  article-title: New cell lines from mouse epiblast share defining features with human embryonic stem cells
  publication-title: Nature
– volume: 2008
  start-page: P10008
  year: 2008
  ident: CR57
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech.
– ident: CR3
– volume: 111
  start-page: 5117
  year: 2014
  end-page: 5122
  ident: CR45
  article-title: Knowledge discovery by accuracy maximization
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 17
  year: 2016
  ident: CR21
  article-title: FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data
  publication-title: BMC Bioinforma.
– volume: Chapter 10
  start-page: Unit 10.17
  year: 2010
  ident: CR54
  article-title: Web-based analysis and publication of flow cytometry experiments
  publication-title: Curr. Protoc. Cytom.
– volume: 332
  start-page: 687
  year: 2011
  end-page: 696
  ident: CR13
  article-title: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
  publication-title: Science
– volume: 448
  start-page: 191
  year: 2007
  end-page: 195
  ident: CR60
  article-title: Derivation of pluripotent epiblast stem cells from mammalian embryos
  publication-title: Nature
– volume: 28
  start-page: i626
  year: 2012
  end-page: i632
  ident: CR40
  article-title: A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst
  publication-title: Bioinformatics
– volume: 165
  start-page: 780
  year: 2016
  end-page: 791
  ident: CR1
  article-title: Mass cytometry: single cells, many features
  publication-title: Cell
– ident: CR28
– volume: 20
  start-page: 29
  year: 2017
  end-page: 40
  ident: CR65
  article-title: Single-cell analysis reveals a close relationship between differentiating dopamine and subthalamic nucleus neuronal lineages
  publication-title: Cell Stem Cell
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR5
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 81
  start-page: 6813
  year: 2009
  ident: 246_CR50
  publication-title: Anal. Chem.
  doi: 10.1021/ac901049w
– volume: 111
  start-page: E5643
  year: 2014
  ident: 246_CR25
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1408993111
– ident: 246_CR30
  doi: 10.1609/icwsm.v3i1.13937
– volume: 113
  start-page: 11046
  year: 2016
  ident: 246_CR37
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1612826113
– volume: 111
  start-page: 5117
  year: 2014
  ident: 246_CR45
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1220873111
– volume: Chapter 10
  start-page: Unit 10.17
  year: 2010
  ident: 246_CR54
  publication-title: Curr. Protoc. Cytom.
– volume: 162
  start-page: 184
  year: 2015
  ident: 246_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.047
– volume: 361
  start-page: 1
  year: 2010
  ident: 246_CR51
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2010.07.002
– volume: 20
  year: 2019
  ident: 246_CR35
  publication-title: Genome Biol.
– volume: 36
  start-page: 411
  year: 2018
  ident: 246_CR43
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 453
  start-page: 519
  year: 2008
  ident: 246_CR58
  publication-title: Nature
  doi: 10.1038/nature06968
– volume: 37
  start-page: 38
  year: 2018
  ident: 246_CR17
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4314
– volume: 21
  start-page: 5
  year: 2006
  ident: 246_CR8
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2006.04.006
– volume: 128
  start-page: e20
  year: 2016
  ident: 246_CR42
  publication-title: Blood
  doi: 10.1182/blood-2016-05-716480
– volume: 22
  start-page: 588
  year: 2017
  ident: 246_CR53
  publication-title: Pac. Symp. Biocomput.
– volume: 3
  start-page: 402
  year: 2008
  ident: 246_CR46
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.07.021
– volume: 31
  start-page: 545
  year: 2013
  ident: 246_CR6
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2594
– volume: 26
  start-page: 303
  year: 2008
  ident: 246_CR4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0308-303
– volume: 3
  start-page: 861
  year: 2018
  ident: 246_CR16
  publication-title: JOSS
  doi: 10.21105/joss.00861
– volume: 37
  start-page: 547
  year: 2019
  ident: 246_CR33
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0071-9
– volume: 377
  start-page: 127
  year: 2014
  ident: 246_CR55
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 521
  start-page: 352
  year: 2015
  ident: 246_CR56
  publication-title: Nature
  doi: 10.1038/nature14274
– volume: 26
  start-page: 7056
  year: 2006
  ident: 246_CR66
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01033-06
– volume: 29
  start-page: 886
  year: 2011
  ident: 246_CR11
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1991
– volume: 14
  start-page: 414
  year: 2017
  ident: 246_CR24
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4207
– volume: 448
  start-page: 196
  year: 2007
  ident: 246_CR59
  publication-title: Nature
  doi: 10.1038/nature05972
– volume: 356
  start-page: eaah4573
  year: 2017
  ident: 246_CR63
  publication-title: Science
  doi: 10.1126/science.aah4573
– volume: 332
  start-page: 687
  year: 2011
  ident: 246_CR13
  publication-title: Science
  doi: 10.1126/science.1198704
– volume: 37
  start-page: 451
  year: 2019
  ident: 246_CR36
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0068-4
– volume: 275
  start-page: 403
  year: 2004
  ident: 246_CR61
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2004.08.031
– volume: 12
  start-page: e1005112
  year: 2016
  ident: 246_CR20
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005112
– volume: 11
  start-page: 417
  year: 2014
  ident: 246_CR39
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2869
– volume: 28
  start-page: i626
  year: 2012
  ident: 246_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts385
– volume: 14
  start-page: 955
  year: 2017
  ident: 246_CR64
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4407
– volume: 83
  start-page: 483
  year: 2013
  ident: 246_CR52
  publication-title: Cytom. A
  doi: 10.1002/cyto.a.22271
– volume: 165
  start-page: 780
  year: 2016
  ident: 246_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.019
– volume: 34
  start-page: 1145
  year: 2016
  ident: 246_CR2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3711
– volume: 32
  start-page: 381
  year: 2014
  ident: 246_CR14
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2859
– volume: 2008
  start-page: P10008
  year: 2008
  ident: 246_CR57
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: 246_CR3
– volume: 20
  start-page: 29
  year: 2017
  ident: 246_CR65
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.10.003
– volume: 9
  start-page: e98679
  year: 2014
  ident: 246_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098679
– volume: 2
  start-page: 60
  year: 2008
  ident: 246_CR47
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.10.011
– volume: 17
  year: 2016
  ident: 246_CR21
  publication-title: BMC Bioinforma.
  doi: 10.1186/s12859-016-1176-5
– volume: 290
  start-page: 2319
  year: 2000
  ident: 246_CR44
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 131
  start-page: 861
  year: 2007
  ident: 246_CR62
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 157
  start-page: 714
  year: 2014
  ident: 246_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.005
– volume: 20
  start-page: 436
  year: 2014
  ident: 246_CR38
  publication-title: Nat. Med.
  doi: 10.1038/nm.3488
– volume: 49
  start-page: 708
  year: 2017
  ident: 246_CR23
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3818
– volume: 14
  start-page: 979
  year: 2017
  ident: 246_CR15
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4402
– volume: 349
  start-page: 1259425
  year: 2015
  ident: 246_CR27
  publication-title: Science
  doi: 10.1126/science.1259425
– volume: 46
  start-page: 2496
  year: 2016
  ident: 246_CR34
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201646347
– volume: 555
  start-page: 54
  year: 2018
  ident: 246_CR32
  publication-title: Nature
  doi: 10.1038/nature25741
– volume: 32
  start-page: 1241
  year: 2016
  ident: 246_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv715
– ident: 246_CR28
– volume: 448
  start-page: 191
  year: 2007
  ident: 246_CR60
  publication-title: Nature
  doi: 10.1038/nature05950
– volume: 21
  start-page: 183
  year: 2003
  ident: 246_CR48
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt780
– volume: 16
  start-page: 243
  year: 2019
  ident: 246_CR7
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0308-4
– volume: 11
  start-page: 1264
  year: 2016
  ident: 246_CR12
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.066
– volume: 34
  start-page: 1246
  year: 2018
  ident: 246_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx792
– volume: 37
  start-page: 461
  year: 2019
  ident: 246_CR41
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0088-0
– volume: 34
  start-page: 637
  year: 2016
  ident: 246_CR22
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3569
– volume: 31
  start-page: 2989
  year: 2015
  ident: 246_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv325
– volume: 10
  start-page: 316
  year: 2015
  ident: 246_CR49
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.020
– volume: 9
  start-page: 2579
  year: 2008
  ident: 246_CR5
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 37
  year: 2018
  ident: 246_CR26
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.10.012
SSID ssj0047367
Score 2.4312909
Snippet High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 398
SubjectTerms 631/114
631/1647/1407/1492
631/1647/514/1949
631/1647/794
631/553
Algorithms
Analysis
Analytical Chemistry
Biological Techniques
Biomedical and Life Sciences
Cell differentiation
Comparative analysis
Computational Biology/Bioinformatics
Computer Graphics
Datasets
Differentiation (biology)
Drug resistance
Ectoderm
Embryo cells
Embryonic stem cells
Endoderm
Flow cytometry
Flow mapping
Gene sequencing
Graphical user interface
Layouts
Life Sciences
Mesoderm
Microarrays
Organic Chemistry
Protocol
R (Programming language)
Ribonucleic acid
RNA
Single-Cell Analysis - methods
Software
Software development tools
Source code
Statistics
Stem cell transplantation
Stem cells
Technology application
Tumorigenesis
Unicellular organisms
User interface
User-Computer Interface
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGJwQ8cL8EBjJoEhLDbRo7F3irJqaBWJnGqo2nyHbcrpAm1ZIIlV_PObmxVNPQ3iqd0yiOz_H5bH_-TMi2LQM19ZRgADYUE1M-ZYH0FdM60maohxDTuKB_MPb2J-LLqXu6QYbNWZiStK_VvJ_Ei34yPyu5lcuFHjQ8sYEfAAR2xA2y6bkAv3tkczI-HP0oDz66NnP88s5I-C0YlK8PzU4mDwYZFCuk3OKxHUd4jHdq0fqIfKEkrdMl2z3TO-RWkSzl6reM4wtlae8eOWoaVLFRfvWLXPX1nzWtx2u1-D65W4NUOqpMD8iGSR6Sm9W1latHJNv7-u2EHYwOP1JJS8VrhsUwek8BAWvDqjJpIhrLVVrkVMaz9Hyeny3QTqFxP8utghVdSFSHmNF5QnHJIjYM9xEo3ndPdYr0EooM1szk2WMy2ft0vLvP6ssbmAYMkzPlu4ZDIHBhhBdB6kcOIFHf4R73tFG2a4TkMMQZ3zPad6c4ETQiiLgXudLmhj8hvSRNzDNCAy4dI2HuY3uBMIGvRKAC7nnC5VPFpbCI3XRjqGtlc7xgIw7LHXYehFXPh9DzIfZ8yC3yrv3LspL1uMp5G2MjRLmMBPk4M1lkWTg6PtkdhyPAQzAHhkmKRd5c5vb5-1HH6W3tNE3hHbWsT0FAS1GIq-O51fGEtNddcxOpYT3sZKHDXZsDRrbty80CMsRGxX2LvG7N-GBk2iUmLfARqPmGIvwWeVrFffuFOKJ9mC9YxO9kROuAWuVdCwR0qVlex7BFdprc-fdaV3z4nTa9_t9Nz6_l_YLcdnDppCTgb5Fefl6Yl4Avc_WqHlH-AvrRcgI
  priority: 102
  providerName: Unpaywall
Title FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets
URI https://link.springer.com/article/10.1038/s41596-019-0246-3
https://www.ncbi.nlm.nih.gov/pubmed/31932774
https://www.proquest.com/docview/2350323200
https://www.proquest.com/docview/2475008943
https://www.proquest.com/docview/2338106109
https://pubmed.ncbi.nlm.nih.gov/PMC7897424
https://www.ncbi.nlm.nih.gov/pmc/articles/7897424
UnpaywallVersion submittedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1750-2799
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047367
  issn: 1750-2799
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe2Vgh4QHwTGJVBk5AY1rLY-QAJoXRaNRAL1Vi18hQ5jtMNZWlZUqH-99zla8s0lac8-BI5d-e78_n8O0K2TelFiRMJBsFGxETCE-ZJN2JKxUrvqT3QaUzoHwXO4UR8m9rTDRI0d2GwrLKxiaWhjucKc-S7FrdNDu7fNL8s_jDsGoWnq00LDVm3Vog_lxBjm6RvITJWj_SHB8H4uLHNwuVlT1nwmYKBc_vYnHNybzcHV4YFuXipxxIO4x1PddNeX3NYN4sp2xPV--TuMlvI1V-Zptec1ugheVBHm9Sv1OMR2dDZY3Kn6j-5ekLy0fcfp-zIH3-ikpbQ1Qy9WvyBQiirNKv8nY5pKlfzZUFlOgOWFGcXOE5hHr_LnP-KXkiEeZjR84xi7iHVDA8EKDaup8Cyy1xTLEXNdZE_JZPRwcn-Iau7MDAFwUjBItfWHCTKhRZODGs4tiCkdC3ucEfpyLS1kBxslXYdrVw7wR2dFl7MndiWJtf8Gell80y_INTj0tISNjGm4wntuZHwIo87jrB5EnEpDGI2HA9VDVGOnTLSsDwq515YCSkEIYUopJAb5H37yqLC51hHvI1iDBH3IsPCmplc5nnon5zuB6EPgQ1sZmG3YZC3t5F9_XncIXpXEyVzmKOS9XUG-FNE1OpQbnUoYf2q7nCjVGFtP_LwSttvHxYQ6JkInW-QN-0wfhhL5jI9X-InELwN0fQN8rxS0ZZDHMN2CPwN4naUtyVA0PHuSHZ-VoKPux7sQC14c6dR86tprWH8TrsS_i-ml-s58orcszDpUZbOb5FecbnUryEyLKIB2XSn7oD0_dFwGAzqxQ_PSTD2f_0DvmtfaA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGJjT4gHgnMMCgIaQNa1nsvAxpQmWsallbptFp-2acxOmK0rQsqab-OX4bd3nplmkqn_bZF8vxnf3c2efnCFk3ledHji8YOBs-ExGPmKdcnwVBGOjtYBtsGg_0uz2ndSy-n9qnS-Rv9RYG0yqrPTHfqMNxgGfkWxa3TQ7wb5pfJn8YVo3C29WqhIYqSyuEuznFWPmw40DPLiCES3fb30DfHyyrud_fa7GyygALAGwz5ru25jBiLrRwQrDR0AKXybW4w51A-6atheKwFrXr6MC1I4xYtPBC7oS2Mrnm0O8dsiK42IHgb-Xrfu_wqMIC4fK8hi1gtGAApjvVvSr3tlKATkwAxkdElnAYryHjdXy4ApDXkzfnN7j3yeo0majZhYrjKyDZfEgelN4tbRTm-Igs6eQxuVvUu5w9IWmz8-OEdRuHn6miOVU2QxQNP1FwnQPNCnzVIY3VbDzNqIoHoILsbITtFMbxO79jmNGRQlqJAR0mFM86Ys3wAoJmw5GmoKLzVFNMfU11lj4lx7eij2dkORkn-gWhHleWVhA0mY4ntOf6wvM97jjC5pHPlTCIWc24DEpKdKzMEcv8ap57slCSBCVJVJLkBtmYfzIp-EAWCa-jGiXybCSYyDNQ0zSVjf7JXk82wJGC4BmiG4O8v0ms_fOoJvSxFIrGMMZAlc8n4E-RwasmuVaThP0iqDdXRiXL_SqVl6vr5mYBjqWJVP0GeTdvxo4xRS_R4yl2gWRxyN5vkOeFic5niGOYAIGGQdya8c4FkOS83pIMz3Kyc9eDiNeCLzcrM78c1oKJ35yvhP-r6eXiGXlLVlv9bkd22r2DV-SehQcuedr-GlnOzqf6NXilmf-mXPqU_Lrt3eYfQAKXAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEdcD4iZQwKAiJIq1aewcRUJo1bLq0oMKWnXfjOM420W7yUKyqvav8euYydWmqpanPntiOZ7xHJ7xN4Ss2ioIYy8UDJyNkImYxyxQfsi0jrRZ1-sg03ihv7fvbR-JrwN3sET-1m9hsKyy1omFoo5SjXfkHYe7Ngfzb9uduCqLONjqfZ7-ZthBCjOtdTuNUkR2zPwUwrfsU38LeP3WcXpfDje3WdVhgGkwtDkLfddwWC0XRngRyGfkgLvkO9zjnjah7RqhOJxD43tG-26M0YoRQcS9yFU2NxzmvUau-5xvYDmhP2iCPeHzonstWGfBwIxu1BlVHnQyMJpY-ovPhxzhMd6yiRctwznTeLFss8nd3iG3ZslUzU_VeHzOPPbukbuVX0u7pSDeJ0smeUBulJ0u5w9J1tv9dsz2ugcfqaIFSDZD-xl9oOA0a8NKy2oiOlbzdJZTNR7ChucnExynsI5fRXZhTicKASWGdJRQvOUYG4apB5qPJobqFCtSKBa9ZibPHpGjK-HGY7KcpIl5SmjAlWMUhEu2FwgT-KEIwoB7nnB5HHIlLGLXOy51BYaOPTnGskjK80CWTJLAJIlMktwi75tPpiUSyCLiVWSjRISNBGV1qGZZJruHx5v7sgsuFITNENdY5M1lZP0f31tE7yqiOIU1alU9nIA_ReyuFuVKixI0hW4P10IlK02VybNzdfmwAJfSRpB-i7xuhnFiLM5LTDrDKRAmDnH7LfKkFNFmhzgGCBBiWMRvCW9DgPDm7ZFkdFLAnPsBxLoOfLlWi_nZshZs_FpzEv7PpmeLd-QVuQk6Ru7293eek9sO3rQU9forZDn_MzMvwB3Nw5fFuafk51Urmn_13pSb
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGJwQ8cL8EBjJoEhLDbRo7F3irJqaBWJnGqo2nyHbcrpAm1ZIIlV_PObmxVNPQ3iqd0yiOz_H5bH_-TMi2LQM19ZRgADYUE1M-ZYH0FdM60maohxDTuKB_MPb2J-LLqXu6QYbNWZiStK_VvJ_Ei34yPyu5lcuFHjQ8sYEfAAR2xA2y6bkAv3tkczI-HP0oDz66NnP88s5I-C0YlK8PzU4mDwYZFCuk3OKxHUd4jHdq0fqIfKEkrdMl2z3TO-RWkSzl6reM4wtlae8eOWoaVLFRfvWLXPX1nzWtx2u1-D65W4NUOqpMD8iGSR6Sm9W1latHJNv7-u2EHYwOP1JJS8VrhsUwek8BAWvDqjJpIhrLVVrkVMaz9Hyeny3QTqFxP8utghVdSFSHmNF5QnHJIjYM9xEo3ndPdYr0EooM1szk2WMy2ft0vLvP6ssbmAYMkzPlu4ZDIHBhhBdB6kcOIFHf4R73tFG2a4TkMMQZ3zPad6c4ETQiiLgXudLmhj8hvSRNzDNCAy4dI2HuY3uBMIGvRKAC7nnC5VPFpbCI3XRjqGtlc7xgIw7LHXYehFXPh9DzIfZ8yC3yrv3LspL1uMp5G2MjRLmMBPk4M1lkWTg6PtkdhyPAQzAHhkmKRd5c5vb5-1HH6W3tNE3hHbWsT0FAS1GIq-O51fGEtNddcxOpYT3sZKHDXZsDRrbty80CMsRGxX2LvG7N-GBk2iUmLfARqPmGIvwWeVrFffuFOKJ9mC9YxO9kROuAWuVdCwR0qVlex7BFdprc-fdaV3z4nTa9_t9Nz6_l_YLcdnDppCTgb5Fefl6Yl4Avc_WqHlH-AvrRcgI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FLOW-MAP%3A+a+graph-based%2C+force-directed+layout+algorithm+for+trajectory+mapping+in+single-cell+time+course+datasets&rft.jtitle=Nature+protocols&rft.au=Ko%2C+Melissa+E.&rft.au=Williams%2C+Corey+M.&rft.au=Fread%2C+Kristen+I.&rft.au=Goggin%2C+Sarah+M.&rft.date=2020-02-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1754-2189&rft.eissn=1750-2799&rft.volume=15&rft.issue=2&rft.spage=398&rft.epage=420&rft_id=info:doi/10.1038%2Fs41596-019-0246-3&rft.externalDocID=10_1038_s41596_019_0246_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon