Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing

While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternat...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 164; no. 4; pp. 805 - 817
Main Authors Yang, Xinping, Coulombe-Huntington, Jasmin, Kang, Shuli, Sheynkman, Gloria M., Hao, Tong, Richardson, Aaron, Sun, Song, Yang, Fan, Shen, Yun A., Murray, Ryan R., Spirohn, Kerstin, Begg, Bridget E., Duran-Frigola, Miquel, MacWilliams, Andrew, Pevzner, Samuel J., Zhong, Quan, Wanamaker, Shelly A., Tam, Stanley, Ghamsari, Lila, Sahni, Nidhi, Yi, Song, Rodriguez, Maria D., Balcha, Dawit, Tan, Guihong, Costanzo, Michael, Andrews, Brenda, Boone, Charles, Zhou, Xianghong J., Salehi-Ashtiani, Kourosh, Charloteaux, Benoit, Chen, Alyce A., Calderwood, Michael A., Aloy, Patrick, Roth, Frederick P., Hill, David E., Iakoucheva, Lilia M., Xia, Yu, Vidal, Marc
Format Journal Article Web Resource
LanguageEnglish
Published United States Elsevier Inc 11.02.2016
Cell Press
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2016.01.029

Cover

Abstract While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative “isoforms” are functionally divergent (i.e., “functional alloforms”). [Display omitted] •Alternative splicing can produce isoforms with vastly different interaction profiles•These differences can be as great as those between proteins encoded by different genes•Isoform-specific partners exhibit distinct expression and functional characteristics Alternatively spliced isoforms of proteins exhibit strikingly different interaction profiles and thus, in the context of global interactome networks, appear to behave as if encoded by distinct genes rather than as minor variants of each other.
AbstractList While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms'' are functionally divergent (i.e., "functional alloforms'').
While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative “isoforms” are functionally divergent (i.e., “functional alloforms”). [Display omitted] •Alternative splicing can produce isoforms with vastly different interaction profiles•These differences can be as great as those between proteins encoded by different genes•Isoform-specific partners exhibit distinct expression and functional characteristics Alternatively spliced isoforms of proteins exhibit strikingly different interaction profiles and thus, in the context of global interactome networks, appear to behave as if encoded by distinct genes rather than as minor variants of each other.
While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative ‘isoforms’ are functionally divergent (i.e., ‘functional alloforms’). eTOC Blurb Alternatively-spliced isoforms of proteins exhibit strikingly different interaction profiles and thus in the context of global interactome networks appear to behave as if encoded by distinct genes, rather than as minor variants of each other.
While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms").While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms").
Author Richardson, Aaron
Wanamaker, Shelly A.
Boone, Charles
Yang, Xinping
Spirohn, Kerstin
Sun, Song
Charloteaux, Benoit
Zhou, Xianghong J.
Aloy, Patrick
Hao, Tong
Duran-Frigola, Miquel
Xia, Yu
Kang, Shuli
Rodriguez, Maria D.
Pevzner, Samuel J.
Sahni, Nidhi
Sheynkman, Gloria M.
Tan, Guihong
Chen, Alyce A.
Roth, Frederick P.
Iakoucheva, Lilia M.
Salehi-Ashtiani, Kourosh
Murray, Ryan R.
Costanzo, Michael
Andrews, Brenda
MacWilliams, Andrew
Vidal, Marc
Begg, Bridget E.
Shen, Yun A.
Yi, Song
Ghamsari, Lila
Hill, David E.
Balcha, Dawit
Zhong, Quan
Yang, Fan
Calderwood, Michael A.
Coulombe-Huntington, Jasmin
Tam, Stanley
AuthorAffiliation 6 Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
11 Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
9 Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
5 Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
8 Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
1 Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
3 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
2 Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
15 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
7 Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
16 Canadia
AuthorAffiliation_xml – name: 6 Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
– name: 4 Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
– name: 16 Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada
– name: 7 Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
– name: 13 Boston University School of Medicine, Boston, MA 02118, USA
– name: 8 Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
– name: 12 Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
– name: 9 Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
– name: 10 Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
– name: 3 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
– name: 14 Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
– name: 1 Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– name: 11 Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
– name: 5 Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
– name: 15 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
– name: 2 Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
Author_xml – sequence: 1
  givenname: Xinping
  surname: Yang
  fullname: Yang, Xinping
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 2
  givenname: Jasmin
  surname: Coulombe-Huntington
  fullname: Coulombe-Huntington, Jasmin
  organization: Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
– sequence: 3
  givenname: Shuli
  surname: Kang
  fullname: Kang, Shuli
  organization: Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
– sequence: 4
  givenname: Gloria M.
  surname: Sheynkman
  fullname: Sheynkman, Gloria M.
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 5
  givenname: Tong
  surname: Hao
  fullname: Hao, Tong
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 6
  givenname: Aaron
  surname: Richardson
  fullname: Richardson, Aaron
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 7
  givenname: Song
  surname: Sun
  fullname: Sun, Song
  organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
– sequence: 8
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
– sequence: 9
  givenname: Yun A.
  surname: Shen
  fullname: Shen, Yun A.
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 10
  givenname: Ryan R.
  surname: Murray
  fullname: Murray, Ryan R.
  organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 11
  givenname: Kerstin
  surname: Spirohn
  fullname: Spirohn, Kerstin
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 12
  givenname: Bridget E.
  surname: Begg
  fullname: Begg, Bridget E.
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 13
  givenname: Miquel
  surname: Duran-Frigola
  fullname: Duran-Frigola, Miquel
  organization: Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
– sequence: 14
  givenname: Andrew
  surname: MacWilliams
  fullname: MacWilliams, Andrew
  organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 15
  givenname: Samuel J.
  surname: Pevzner
  fullname: Pevzner, Samuel J.
  organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 16
  givenname: Quan
  surname: Zhong
  fullname: Zhong, Quan
  organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 17
  givenname: Shelly A.
  surname: Wanamaker
  fullname: Wanamaker, Shelly A.
  organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 18
  givenname: Stanley
  surname: Tam
  fullname: Tam, Stanley
  organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 19
  givenname: Lila
  surname: Ghamsari
  fullname: Ghamsari, Lila
  organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 20
  givenname: Nidhi
  surname: Sahni
  fullname: Sahni, Nidhi
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 21
  givenname: Song
  surname: Yi
  fullname: Yi, Song
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 22
  givenname: Maria D.
  surname: Rodriguez
  fullname: Rodriguez, Maria D.
  organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 23
  givenname: Dawit
  surname: Balcha
  fullname: Balcha, Dawit
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 24
  givenname: Guihong
  surname: Tan
  fullname: Tan, Guihong
  organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
– sequence: 25
  givenname: Michael
  surname: Costanzo
  fullname: Costanzo, Michael
  organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
– sequence: 26
  givenname: Brenda
  surname: Andrews
  fullname: Andrews, Brenda
  organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
– sequence: 27
  givenname: Charles
  surname: Boone
  fullname: Boone, Charles
  organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
– sequence: 28
  givenname: Xianghong J.
  surname: Zhou
  fullname: Zhou, Xianghong J.
  organization: Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
– sequence: 29
  givenname: Kourosh
  surname: Salehi-Ashtiani
  fullname: Salehi-Ashtiani, Kourosh
  organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 30
  givenname: Benoit
  surname: Charloteaux
  fullname: Charloteaux, Benoit
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 31
  givenname: Alyce A.
  surname: Chen
  fullname: Chen, Alyce A.
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 32
  givenname: Michael A.
  surname: Calderwood
  fullname: Calderwood, Michael A.
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 33
  givenname: Patrick
  surname: Aloy
  fullname: Aloy, Patrick
  organization: Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
– sequence: 34
  givenname: Frederick P.
  surname: Roth
  fullname: Roth, Frederick P.
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 35
  givenname: David E.
  surname: Hill
  fullname: Hill, David E.
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 36
  givenname: Lilia M.
  surname: Iakoucheva
  fullname: Iakoucheva, Lilia M.
  email: lilyak@ucsd.edu
  organization: Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
– sequence: 37
  givenname: Yu
  surname: Xia
  fullname: Xia, Yu
  email: brandon.xia@mcgill.ca
  organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
– sequence: 38
  givenname: Marc
  surname: Vidal
  fullname: Vidal, Marc
  email: marc_vidal@dfci.harvard.edu
  organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26871637$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280244$$DView record from Swedish Publication Index
BookMark eNqFkktv1DAUhS1URNuBP8ACZcmCGfyKnUgIaTQUqFSJSryWV45zZ_AoY6d2MtB_j9NpEWVRVn6d71xdn3tKjnzwSMhzRheMMvV6u7DYdQue9wvKFpTXj8gJo7WeS6b5ETmhtObzSml5TE5T2lJKq7Isn5BjrirNlNAn5PK7azH1EU1bnP3qjU8u-CKsi8sYBnS-OPcDRmOH6XpletO4zg0OU9FcF8suv3kzuD0Wn_vOWec3T8njtekSPrtdZ-Tr-7Mvq4_zi08fzlfLi7lVohzmSklTGitVVbbWtlJy3jYMhSmt0ai11U3dUEsVq2su11IKxS2r86lpLIq1mJFXB9_0E_uxgT66nYnXEIyDd-7bEkLcwDgCryjP9Iy8PcizdoetRT9E092j7r949wM2YQ-yqjiraTYQB4PO4Qaze-Ngz2_Am_3YbcBYaBB4_l3goqoEz9TL27IxXI2YBti5NKVmPIYxAc-ZcCYEL_8rZVqVjFay1Fn64u9m_nRxF2sWVAeBjSGliGuwbjBThrk31wGjME0QbGEqANMEAWWQJyij_B_0zv1B6M0Bwpz43mGEZB16i62LaAdog3sI_w2289_1
CitedBy_id crossref_primary_10_1016_j_colsurfb_2016_12_014
crossref_primary_10_1089_dna_2023_0392
crossref_primary_10_1093_nar_gkaa768
crossref_primary_10_1038_s41419_021_03858_7
crossref_primary_10_31083_j_fbl2703085
crossref_primary_10_1093_nar_gkab851
crossref_primary_10_1038_s41598_019_50224_x
crossref_primary_10_1007_s00439_017_1791_x
crossref_primary_10_1038_s41467_019_11076_1
crossref_primary_10_15252_embr_202050535
crossref_primary_10_1038_s41586_022_05035_y
crossref_primary_10_1096_fj_202001062R
crossref_primary_10_1371_journal_pgen_1009216
crossref_primary_10_3389_frans_2023_1106752
crossref_primary_10_1016_j_crmeth_2024_100717
crossref_primary_10_1093_nar_gkw1082
crossref_primary_10_15252_embj_2021110192
crossref_primary_10_1016_j_celrep_2023_112811
crossref_primary_10_1242_jcs_230201
crossref_primary_10_3390_genes14010039
crossref_primary_10_1089_dna_2020_5534
crossref_primary_10_1002_cpbi_38
crossref_primary_10_1038_s41556_019_0314_5
crossref_primary_10_1016_j_sbi_2017_10_012
crossref_primary_10_3390_ijms23084201
crossref_primary_10_1016_j_tibs_2018_05_002
crossref_primary_10_1080_15476286_2018_1502587
crossref_primary_10_1093_bioinformatics_btad598
crossref_primary_10_1021_acs_jpcb_8b11818
crossref_primary_10_3389_fgene_2020_00726
crossref_primary_10_1016_j_mcpro_2022_100254
crossref_primary_10_1021_acs_analchem_3c00870
crossref_primary_10_3389_fgene_2020_00731
crossref_primary_10_1016_j_ebiom_2018_09_021
crossref_primary_10_3389_fpls_2019_00708
crossref_primary_10_1038_s41576_022_00514_4
crossref_primary_10_1016_j_tplants_2018_09_004
crossref_primary_10_1074_mcp_RA118_000993
crossref_primary_10_1186_s12870_017_1217_x
crossref_primary_10_1016_j_tree_2021_11_010
crossref_primary_10_1371_journal_pcbi_1011857
crossref_primary_10_1101_gr_246678_118
crossref_primary_10_1007_s41109_020_00268_0
crossref_primary_10_1038_s41389_021_00323_0
crossref_primary_10_3390_ijms21062026
crossref_primary_10_1038_s41594_020_0450_4
crossref_primary_10_3389_jpps_2024_12568
crossref_primary_10_1016_j_bbagrm_2017_01_004
crossref_primary_10_1016_j_molimm_2022_12_005
crossref_primary_10_1186_s12915_023_01724_w
crossref_primary_10_1093_bib_bbw139
crossref_primary_10_1016_j_cbpa_2022_102225
crossref_primary_10_3390_biom12040517
crossref_primary_10_1016_j_devcel_2017_03_003
crossref_primary_10_7717_peerj_10688
crossref_primary_10_1038_s41380_021_01037_w
crossref_primary_10_1016_j_canlet_2023_216426
crossref_primary_10_1016_j_celrep_2018_10_097
crossref_primary_10_1038_nmeth_3828
crossref_primary_10_1155_2021_4061525
crossref_primary_10_3389_fgene_2020_00879
crossref_primary_10_3390_cancers14030595
crossref_primary_10_3390_genes12111790
crossref_primary_10_1021_acs_jproteome_7b00851
crossref_primary_10_1093_bib_bbaa179
crossref_primary_10_3389_fgene_2019_00709
crossref_primary_10_1021_acs_analchem_8b05014
crossref_primary_10_1186_s13059_022_02624_y
crossref_primary_10_1016_j_bbamcr_2017_10_010
crossref_primary_10_1038_s41587_024_02245_9
crossref_primary_10_1039_D2SC04783G
crossref_primary_10_1128_MCB_00302_17
crossref_primary_10_1177_1073858416678604
crossref_primary_10_3390_app14104090
crossref_primary_10_1016_j_jmb_2016_11_034
crossref_primary_10_1093_hmg_ddac196
crossref_primary_10_1038_s41598_018_29990_7
crossref_primary_10_1038_s41467_020_19753_2
crossref_primary_10_15252_embr_202051289
crossref_primary_10_1021_acs_analchem_3c02473
crossref_primary_10_1186_s12920_023_01706_5
crossref_primary_10_3389_fonc_2021_633579
crossref_primary_10_1016_j_sbi_2017_05_003
crossref_primary_10_1039_D2AN00335J
crossref_primary_10_1038_s41556_019_0328_z
crossref_primary_10_1021_acs_analchem_3c02346
crossref_primary_10_1261_rna_069856_118
crossref_primary_10_3390_biom15010130
crossref_primary_10_1109_TCBB_2021_3068875
crossref_primary_10_7554_eLife_90993_3
crossref_primary_10_1016_j_pharmthera_2020_107594
crossref_primary_10_1016_j_cub_2019_09_070
crossref_primary_10_3389_fpls_2021_739108
crossref_primary_10_3390_genes11020200
crossref_primary_10_1002_hep_30242
crossref_primary_10_1038_s41588_018_0090_3
crossref_primary_10_1093_database_baac062
crossref_primary_10_1016_j_coisb_2018_08_006
crossref_primary_10_1093_bioinformatics_btaa439
crossref_primary_10_3390_biology6040042
crossref_primary_10_1002_bies_201800042
crossref_primary_10_3389_fmicb_2024_1343572
crossref_primary_10_1002_pmic_202200372
crossref_primary_10_1080_15476286_2021_1992995
crossref_primary_10_1002_bies_201900169
crossref_primary_10_3389_fendo_2021_538364
crossref_primary_10_3390_genes13071133
crossref_primary_10_1074_mcp_RA117_000385
crossref_primary_10_1007_s11033_024_09845_3
crossref_primary_10_1093_nar_gkae1098
crossref_primary_10_1111_pbi_13076
crossref_primary_10_1021_jasms_0c00484
crossref_primary_10_1007_s00125_024_06097_5
crossref_primary_10_1016_j_celrep_2021_110045
crossref_primary_10_1186_s12864_016_3066_7
crossref_primary_10_26508_lsa_202301972
crossref_primary_10_1038_s41467_025_57901_8
crossref_primary_10_1002_1878_0261_12879
crossref_primary_10_1186_s13059_018_1499_9
crossref_primary_10_3390_ijms241210065
crossref_primary_10_1093_nar_gkad969
crossref_primary_10_1016_j_molcel_2019_09_017
crossref_primary_10_1016_j_semcdb_2017_08_008
crossref_primary_10_1074_mcp_RA119_001909
crossref_primary_10_1093_bib_bbae035
crossref_primary_10_1016_j_scitotenv_2024_175732
crossref_primary_10_1002_int_22402
crossref_primary_10_1016_j_aca_2020_08_062
crossref_primary_10_1042_BST20160172
crossref_primary_10_1111_odi_13739
crossref_primary_10_1021_acs_jproteome_6b01052
crossref_primary_10_1093_bioinformatics_btab532
crossref_primary_10_1038_nrd_2018_14
crossref_primary_10_1038_s41380_020_00876_3
crossref_primary_10_1136_jmg_2023_109186
crossref_primary_10_1101_gr_274696_120
crossref_primary_10_1128_jvi_01557_21
crossref_primary_10_1080_10985549_2024_2402660
crossref_primary_10_1126_science_aaz5284
crossref_primary_10_1186_s12918_017_0400_x
crossref_primary_10_1038_s41583_024_00888_w
crossref_primary_10_1186_s12885_021_08305_6
crossref_primary_10_1093_narcan_zcaa001
crossref_primary_10_3892_or_2024_8700
crossref_primary_10_1016_j_trac_2019_115644
crossref_primary_10_1021_acsomega_3c01117
crossref_primary_10_3389_fcell_2021_612019
crossref_primary_10_1038_s41580_018_0094_y
crossref_primary_10_18097_pbmc20247005315
crossref_primary_10_1038_s41540_020_00168_0
crossref_primary_10_1097_CMR_0000000000000623
crossref_primary_10_1016_j_jmb_2020_01_032
crossref_primary_10_7554_eLife_70692
crossref_primary_10_1261_rna_078935_121
crossref_primary_10_1155_2020_4985014
crossref_primary_10_1016_j_celrep_2021_109631
crossref_primary_10_1371_journal_pgen_1007182
crossref_primary_10_2174_0929866526666190723114142
crossref_primary_10_1089_dna_2019_4644
crossref_primary_10_1002_wrna_1707
crossref_primary_10_14814_phy2_15844
crossref_primary_10_12688_f1000research_11355_1
crossref_primary_10_1101_gr_259903_119
crossref_primary_10_1186_s12885_021_08548_3
crossref_primary_10_1038_s41375_018_0321_8
crossref_primary_10_1016_j_jbc_2022_102033
crossref_primary_10_7554_eLife_29494
crossref_primary_10_3389_fgene_2020_522831
crossref_primary_10_1016_j_celrep_2019_11_026
crossref_primary_10_26508_lsa_202302000
crossref_primary_10_1007_s12265_022_10244_x
crossref_primary_10_1080_15476286_2019_1667214
crossref_primary_10_1371_journal_pone_0296230
crossref_primary_10_1016_j_tplants_2019_02_006
crossref_primary_10_1098_rstb_2015_0474
crossref_primary_10_1002_1873_3468_13119
crossref_primary_10_1371_journal_pcbi_1005717
crossref_primary_10_5808_GI_2019_17_3_e23
crossref_primary_10_1186_s13059_021_02538_1
crossref_primary_10_1093_nar_gkx508
crossref_primary_10_1039_D4AY00651H
crossref_primary_10_1038_s41467_020_15634_w
crossref_primary_10_1080_15476286_2022_2100971
crossref_primary_10_3389_fphar_2019_00619
crossref_primary_10_1371_journal_pone_0236679
crossref_primary_10_3389_fonc_2021_777374
crossref_primary_10_3389_fgene_2020_522383
crossref_primary_10_1021_acs_jproteome_3c00789
crossref_primary_10_1016_j_tcb_2022_04_004
crossref_primary_10_1124_dmd_119_089102
crossref_primary_10_1002_wcms_1470
crossref_primary_10_1002_wsbm_1443
crossref_primary_10_1186_s12885_022_09838_0
crossref_primary_10_2144_btn_2022_0108
crossref_primary_10_1016_j_tibs_2016_08_008
crossref_primary_10_1074_mcp_TIR117_000385
crossref_primary_10_3390_cells12232678
crossref_primary_10_1038_s41467_020_16174_z
crossref_primary_10_1016_j_jsb_2023_107997
crossref_primary_10_1093_hmg_ddab157
crossref_primary_10_1021_acs_jproteome_9b00301
crossref_primary_10_1021_acs_analchem_9b02343
crossref_primary_10_1101_gr_267328_120
crossref_primary_10_1111_cpr_13741
crossref_primary_10_1101_gr_279640_124
crossref_primary_10_1016_j_cj_2021_11_007
crossref_primary_10_3389_fgene_2023_1230998
crossref_primary_10_1126_science_aat1884
crossref_primary_10_1371_journal_pcbi_1009825
crossref_primary_10_1124_mol_116_106161
crossref_primary_10_1016_j_celrep_2017_08_012
crossref_primary_10_18632_aging_102319
crossref_primary_10_3389_fgene_2017_00014
crossref_primary_10_1371_journal_pcbi_1010013
crossref_primary_10_1016_j_molcel_2022_06_036
crossref_primary_10_1016_j_str_2019_03_020
crossref_primary_10_1007_s12551_018_0439_y
crossref_primary_10_1038_nchembio_2576
crossref_primary_10_1007_s12064_021_00354_6
crossref_primary_10_1021_acs_jproteome_0c00332
crossref_primary_10_1371_journal_pone_0160098
crossref_primary_10_1002_humu_24325
crossref_primary_10_1016_j_celrep_2017_09_071
crossref_primary_10_3389_fncel_2022_1019680
crossref_primary_10_1016_j_gene_2021_145463
crossref_primary_10_1242_jcs_201855
crossref_primary_10_1038_s41467_018_04760_1
crossref_primary_10_1038_s41467_018_05748_7
crossref_primary_10_1093_nar_gkw1102
crossref_primary_10_1016_j_semcdb_2023_01_013
crossref_primary_10_3389_fimmu_2022_1089008
crossref_primary_10_18632_oncotarget_27215
crossref_primary_10_1242_jcs_212753
crossref_primary_10_1186_s13059_020_02028_w
crossref_primary_10_1016_j_ygeno_2021_05_038
crossref_primary_10_1186_s12935_020_01249_0
crossref_primary_10_1016_j_molcel_2021_01_034
crossref_primary_10_7554_eLife_90993
crossref_primary_10_1093_bib_bby047
crossref_primary_10_3390_cancers15082271
crossref_primary_10_1186_s13059_020_02102_3
crossref_primary_10_1016_j_isci_2022_104492
crossref_primary_10_3390_ijms20133279
crossref_primary_10_2174_1570180815666180815151141
crossref_primary_10_3389_fonc_2021_731993
crossref_primary_10_3389_fbinf_2021_690769
crossref_primary_10_1093_nar_gkaa1015
crossref_primary_10_1016_j_celrep_2021_110022
crossref_primary_10_1038_s41388_018_0129_z
crossref_primary_10_1038_s41467_019_11180_2
crossref_primary_10_1038_s41598_017_10535_3
crossref_primary_10_1093_nar_gkac409
crossref_primary_10_1093_nar_gkw565
crossref_primary_10_1016_j_heliyon_2023_e14938
crossref_primary_10_1093_nar_gkx1014
crossref_primary_10_1242_jcs_199463
crossref_primary_10_1515_hsz_2016_0315
crossref_primary_10_1016_j_ebiom_2018_07_040
crossref_primary_10_1007_s42485_020_00030_1
crossref_primary_10_7554_eLife_59654
crossref_primary_10_1186_s13578_021_00581_w
crossref_primary_10_1016_j_jbc_2023_105102
crossref_primary_10_3390_genes11060677
crossref_primary_10_1007_s40778_023_00227_2
crossref_primary_10_1042_EBC20160086
crossref_primary_10_1016_j_isci_2023_107476
crossref_primary_10_1128_MCB_00488_16
crossref_primary_10_1002_bmb_21516
crossref_primary_10_1038_s41598_017_16184_w
crossref_primary_10_1016_j_jmb_2018_01_021
crossref_primary_10_1039_C8MO00234G
crossref_primary_10_1021_acs_jproteome_7b00685
crossref_primary_10_1007_s00439_021_02356_2
crossref_primary_10_1021_acs_jproteome_2c00763
crossref_primary_10_1021_acs_analchem_7b04221
crossref_primary_10_1039_C6MB00388E
crossref_primary_10_1016_j_molcel_2018_08_018
crossref_primary_10_1109_TCBB_2019_2906164
crossref_primary_10_1093_bioinformatics_btaa829
crossref_primary_10_1016_j_celrep_2018_06_017
crossref_primary_10_1002_mas_21675
crossref_primary_10_1038_s10038_023_01162_0
crossref_primary_10_3390_cells8070744
crossref_primary_10_1016_j_semcdb_2020_02_003
crossref_primary_10_1017_qpb_2022_9
crossref_primary_10_1021_acs_jproteome_0c00403
crossref_primary_10_1016_j_neurobiolaging_2018_01_019
crossref_primary_10_1038_s41586_020_2188_x
crossref_primary_10_1016_j_molcel_2024_05_024
crossref_primary_10_1136_gutjnl_2024_333127
crossref_primary_10_1186_s12935_020_01368_8
crossref_primary_10_7554_eLife_46327
crossref_primary_10_1038_s41598_017_02970_z
crossref_primary_10_1016_j_mcn_2018_03_008
crossref_primary_10_1111_jcmm_17850
crossref_primary_10_1186_s13041_019_0500_1
crossref_primary_10_7554_eLife_17672
crossref_primary_10_1242_jcs_216465
crossref_primary_10_1186_s12864_022_08928_4
crossref_primary_10_1016_j_tibs_2017_02_006
crossref_primary_10_1016_j_theriogenology_2021_11_006
crossref_primary_10_3389_fchem_2023_1133018
crossref_primary_10_3390_ph10010004
crossref_primary_10_1038_s42003_024_07332_w
crossref_primary_10_1016_j_ymeth_2020_06_005
crossref_primary_10_1093_bioinformatics_btac340
crossref_primary_10_1001_jamapsychiatry_2019_2974
crossref_primary_10_1007_s00216_023_04677_9
crossref_primary_10_3389_fpls_2024_1445022
crossref_primary_10_3390_ijms21030863
crossref_primary_10_1038_s42003_020_01181_z
crossref_primary_10_1093_bib_bbaf087
crossref_primary_10_1093_bioinformatics_btac105
crossref_primary_10_1016_j_gpb_2021_10_004
crossref_primary_10_1016_j_tibs_2019_12_009
crossref_primary_10_1186_s13073_023_01226_y
crossref_primary_10_1002_pmic_202400028
crossref_primary_10_1016_j_gene_2019_04_025
crossref_primary_10_1016_j_ygeno_2019_04_017
crossref_primary_10_1186_s12859_019_2852_z
crossref_primary_10_1101_gr_230516_117
crossref_primary_10_3389_fbinf_2021_724297
crossref_primary_10_1038_s41594_018_0129_2
crossref_primary_10_1038_s42255_022_00681_y
crossref_primary_10_1093_nar_gkab357
crossref_primary_10_3389_fpls_2019_00483
crossref_primary_10_1038_s41598_020_71221_5
crossref_primary_10_26508_lsa_202000841
crossref_primary_10_1021_acsnano_4c04675
crossref_primary_10_1016_j_molcel_2023_10_034
crossref_primary_10_1016_j_sbi_2016_05_016
crossref_primary_10_1038_s41467_019_14224_9
crossref_primary_10_1109_TCBB_2021_3093167
crossref_primary_10_1002_psp4_12670
crossref_primary_10_1021_acs_jproteome_8b00469
crossref_primary_10_1124_pr_118_016253
crossref_primary_10_1371_journal_pcbi_1008287
crossref_primary_10_1016_j_csbj_2021_05_056
crossref_primary_10_3724_SP_J_1123_2021_03030
crossref_primary_10_1038_s41573_024_01025_z
crossref_primary_10_1038_s41592_022_01715_9
crossref_primary_10_1186_s13059_018_1418_0
crossref_primary_10_3390_ijms21062079
crossref_primary_10_1002_ajh_26893
crossref_primary_10_1177_2472555220926920
crossref_primary_10_1186_s13046_020_01798_2
crossref_primary_10_1016_j_tim_2018_11_004
crossref_primary_10_1007_s13205_018_1534_2
crossref_primary_10_1021_acs_jproteome_1c00968
crossref_primary_10_1021_jasms_3c00187
crossref_primary_10_1002_jha2_634
crossref_primary_10_1093_nargab_lqab044
crossref_primary_10_1371_journal_pcbi_1008708
crossref_primary_10_1038_nrg_2016_119
crossref_primary_10_1021_acs_analchem_4c05010
crossref_primary_10_1126_sciadv_aao3424
crossref_primary_10_1016_j_isci_2021_103209
crossref_primary_10_1016_j_physrep_2019_12_004
crossref_primary_10_1021_acs_jproteome_7b00126
crossref_primary_10_3892_or_2016_5135
crossref_primary_10_1016_j_csbj_2023_07_014
crossref_primary_10_1016_j_ygeno_2021_02_020
crossref_primary_10_1073_pnas_2106694118
crossref_primary_10_1093_nar_gkx1165
crossref_primary_10_1101_gr_212696_116
crossref_primary_10_1155_2021_4664955
crossref_primary_10_1525_abt_2018_80_9_642
crossref_primary_10_1016_j_sbi_2024_102979
crossref_primary_10_3390_ijms21186808
crossref_primary_10_2337_db21_0194
crossref_primary_10_3389_fgene_2023_1237167
crossref_primary_10_1021_acs_analchem_1c00396
Cites_doi 10.1093/nar/gkr1064
10.1038/nsmb1137
10.1093/bioinformatics/bti011
10.1038/ng.259
10.1038/nbt.2705
10.1186/1471-2105-12-323
10.1093/nar/gkq1229
10.1038/ncomms4650
10.1093/nar/gkl159
10.1002/humu.9430
10.1038/nmeth.2369
10.1038/nmeth.2289
10.1038/nature07509
10.1016/j.cell.2014.10.050
10.1016/j.cell.2006.06.023
10.1002/pro.5560070202
10.1016/j.cell.2007.08.026
10.1093/nar/gkt887
10.1038/nbt.3242
10.1038/nmeth.1224
10.1101/gr.095976.109
10.1016/S0076-6879(00)28419-X
10.1038/nature04209
10.1016/j.molcel.2012.05.037
10.1016/j.molcel.2012.05.039
10.1126/science.1162986
10.1016/j.gene.2012.07.083
10.1016/S0076-6879(10)70012-4
10.1093/database/baq020
10.1371/journal.pcbi.0020100
10.1073/pnas.0507916103
10.1038/nmeth.1280
10.1093/nar/gkt1223
10.1016/j.molcel.2005.05.026
10.1126/science.1230612
10.1093/nar/gkr367
10.1007/s10048-004-0207-y
10.1038/nature10575
10.1126/science.aaa0769
10.1016/j.cell.2011.02.016
10.1126/science.1228186
10.1016/j.ygeno.2006.11.012
ContentType Journal Article
Web Resource
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
Q33
5PM
ADTPV
AOWAS
DF2
DOI 10.1016/j.cell.2016.01.029
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 817
ExternalDocumentID oai_DiVA_org_uu_280244
PMC4882190
oai_orbi_ulg_ac_be_2268_238832
26871637
10_1016_j_cell_2016_01_029
S0092867416300435
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: U01HG001715
– fundername: NICHD NIH HHS
  grantid: R01 HD065288
– fundername: NHGRI NIH HHS
  grantid: P50HG004233
– fundername: NIGMS NIH HHS
  grantid: R01GM105431
– fundername: NCI NIH HHS
  grantid: R33CA132073
– fundername: NHGRI NIH HHS
  grantid: R01 HG001715
– fundername: NIGMS NIH HHS
  grantid: R01 GM105431
– fundername: NIMH NIH HHS
  grantid: R01MH105524
– fundername: NCI NIH HHS
  grantid: T32 CA009361
– fundername: NIMH NIH HHS
  grantid: R01 MH105524
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0SF
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIAV
AAKRW
AAKUH
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
YZZ
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AKBMS
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
Q33
5PM
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c635t-664a5ac4685dccd4422db1e3a5ca7e77c7b9b0c0619924f44362c19199bbce3f3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 06:40:04 EDT 2025
Thu Aug 21 13:38:25 EDT 2025
Fri Jul 18 15:31:00 EDT 2025
Sun Sep 28 10:27:55 EDT 2025
Sun Sep 28 07:13:59 EDT 2025
Thu Apr 03 07:01:52 EDT 2025
Tue Jul 01 02:16:54 EDT 2025
Thu Apr 24 23:02:33 EDT 2025
Tue Jul 16 04:30:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c635t-664a5ac4685dccd4422db1e3a5ca7e77c7b9b0c0619924f44362c19199bbce3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-84958182784
Present address can be found in Supplemental Online Material
Co-senior author
Co-first author
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867416300435
PMID 26871637
PQID 1765108457
PQPubID 23479
PageCount 13
ParticipantIDs swepub_primary_oai_DiVA_org_uu_280244
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4882190
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_238832
proquest_miscellaneous_2000213325
proquest_miscellaneous_1765108457
pubmed_primary_26871637
crossref_citationtrail_10_1016_j_cell_2016_01_029
crossref_primary_10_1016_j_cell_2016_01_029
elsevier_sciencedirect_doi_10_1016_j_cell_2016_01_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-11
PublicationDateYYYYMMDD 2016-02-11
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2016
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Buljan, Chalancon, Eustermann, Wagner, Fuxreiter, Bateman, Babu (bib3) 2012; 46
Yellaboina, Tasneem, Zaykin, Raghavachari, Jothi (bib43) 2011; 39
Lamesch, Li, Milstein, Fan, Hao, Szabo, Hu, Venkatesan, Bethel, Martin (bib17) 2007; 89
Romero, Zaidi, Fang, Uversky, Radivojac, Oldfield, Cortese, Sickmeier, LeGall, Obradovic, Dunker (bib28) 2006; 103
Safran, Dalah, Alexander, Rosen, Iny Stein, Shmoish, Nativ, Bahir, Doniger, Krug (bib30) 2010; 2010
Smith, Kelleher (bib34) 2013; 10
Tran, Zamdborg, Ahlf, Lee, Catherman, Durbin, Tipton, Vellaichamy, Kellie, Li (bib37) 2011; 480
Kelemen, Convertini, Zhang, Wen, Shen, Falaleeva, Stamm (bib16) 2013; 514
Pan, Shai, Lee, Frey, Blencowe (bib23) 2008; 40
Venkatesan, Rual, Vazquez, Stelzl, Lemmens, Hirozane-Kishikawa, Hao, Zenkner, Xin, Goh (bib38) 2009; 6
Finn, Marshall, Bateman (bib9) 2005; 21
Mosca, Céol, Aloy (bib20) 2013; 10
Barbosa-Morais, Irimia, Pan, Xiong, Gueroussov, Lee, Slobodeniuc, Kutter, Watt, Colak (bib1) 2012; 338
Walhout, Temple, Brasch, Hartley, Lorson, van den Heuvel, Vidal (bib40) 2000; 328
Haynes, Oldfield, Ji, Klitgord, Cusick, Radivojac, Uversky, Vidal, Iakoucheva (bib12) 2006; 2
Kachroo, Laurent, Yellman, Meyer, Wilke, Marcotte (bib15) 2015; 348
Rideau, Gooding, Simpson, Monie, Lorenz, Hüttelmaier, Singer, Matthews, Curry, Smith (bib26) 2006; 13
Vidal, Cusick, Barabási (bib39) 2011; 144
Wojtowicz, Wu, Andre, Qian, Baker, Zipursky (bib42) 2007; 130
Sharon, Tilgner, Grubert, Snyder (bib33) 2013; 31
Finn, Bateman, Clements, Coggill, Eberhardt, Eddy, Heger, Hetherington, Holm, Mistry (bib11) 2014; 42
Inoue (bib13) 2005; 6
Salehi-Ashtiani, Yang, Derti, Tian, Hao, Lin, Makowski, Shen, Murray, Szeto (bib31) 2008; 5
Neduva, Russell (bib22) 2006; 34
Dinkel, Michael, Weatheritt, Davey, Van Roey, Altenberg, Toedt, Uyar, Seiler, Budd (bib5) 2012; 40
Merkin, Russell, Chen, Burge (bib19) 2012; 338
Rual, Venkatesan, Hao, Hirozane-Kishikawa, Dricot, Li, Berriz, Gibbons, Dreze, Ayivi-Guedehoussou (bib29) 2005; 437
Eid, Fehr, Gray, Luong, Lyle, Otto, Peluso, Rank, Baybayan, Bettman (bib7) 2009; 323
Mosca, Céol, Stein, Olivella, Aloy (bib21) 2014; 42
Pollitt, McMahon, Nunn, Bamford, Afifi, Bishop, Dalton (bib24) 2006; 27
Ellis, Barrios-Rodiles, Colak, Irimia, Kim, Calarco, Wang, Pan, O’Hanlon, Kim (bib8) 2012; 46
Dreze, Monachello, Lurin, Cusick, Hill, Vidal, Braun (bib6) 2010; 470
Tilgner, Jahanbani, Blauwkamp, Moshrefi, Jaeger, Chen, Harel, Bustamante, Rasmussen, Snyder (bib36) 2015; 33
Jones, Stewart, Michie, Swindells, Orengo, Thornton (bib14) 1998; 7
Schwerk, Schulze-Osthoff (bib32) 2005; 19
Temple, Gerhard, Rasooly, Feingold, Good, Robinson, Mandich, Derge, Lewis, Shoaf (bib35) 2009; 19
Finn, Clements, Eddy (bib10) 2011; 39
Wang, Sandberg, Luo, Khrebtukova, Zhang, Mayr, Kingsmore, Schroth, Burge (bib41) 2008; 456
Corominas, Yang, Lin, Kang, Shen, Ghamsari, Broly, Rodriguez, Tam, Wanamaker (bib4) 2014; 5
Rolland, Taşan, Charloteaux, Pevzner, Zhong, Sahni, Yi, Lemmens, Fontanillo, Mosca (bib27) 2014; 159
Raff, Craigen, Smith, Keene, Byers (bib25) 2000; 106
Li, Dewey (bib18) 2011; 12
Blencowe (bib2) 2006; 126
Wang (10.1016/j.cell.2016.01.029_bib41) 2008; 456
Finn (10.1016/j.cell.2016.01.029_bib11) 2014; 42
Jones (10.1016/j.cell.2016.01.029_bib14) 1998; 7
Rolland (10.1016/j.cell.2016.01.029_bib27) 2014; 159
Venkatesan (10.1016/j.cell.2016.01.029_bib38) 2009; 6
Corominas (10.1016/j.cell.2016.01.029_bib4) 2014; 5
Salehi-Ashtiani (10.1016/j.cell.2016.01.029_bib31) 2008; 5
Pan (10.1016/j.cell.2016.01.029_bib23) 2008; 40
Temple (10.1016/j.cell.2016.01.029_bib35) 2009; 19
Yellaboina (10.1016/j.cell.2016.01.029_bib43) 2011; 39
Finn (10.1016/j.cell.2016.01.029_bib10) 2011; 39
Pollitt (10.1016/j.cell.2016.01.029_bib24) 2006; 27
Rideau (10.1016/j.cell.2016.01.029_bib26) 2006; 13
Lamesch (10.1016/j.cell.2016.01.029_bib17) 2007; 89
Eid (10.1016/j.cell.2016.01.029_bib7) 2009; 323
Schwerk (10.1016/j.cell.2016.01.029_bib32) 2005; 19
Tilgner (10.1016/j.cell.2016.01.029_bib36) 2015; 33
Inoue (10.1016/j.cell.2016.01.029_bib13) 2005; 6
Mosca (10.1016/j.cell.2016.01.029_bib21) 2014; 42
Raff (10.1016/j.cell.2016.01.029_bib25) 2000; 106
Vidal (10.1016/j.cell.2016.01.029_bib39) 2011; 144
Kelemen (10.1016/j.cell.2016.01.029_bib16) 2013; 514
Walhout (10.1016/j.cell.2016.01.029_bib40) 2000; 328
Blencowe (10.1016/j.cell.2016.01.029_bib2) 2006; 126
Tran (10.1016/j.cell.2016.01.029_bib37) 2011; 480
Buljan (10.1016/j.cell.2016.01.029_bib3) 2012; 46
Dreze (10.1016/j.cell.2016.01.029_bib6) 2010; 470
Finn (10.1016/j.cell.2016.01.029_bib9) 2005; 21
Haynes (10.1016/j.cell.2016.01.029_bib12) 2006; 2
Rual (10.1016/j.cell.2016.01.029_bib29) 2005; 437
Safran (10.1016/j.cell.2016.01.029_bib30) 2010; 2010
Barbosa-Morais (10.1016/j.cell.2016.01.029_bib1) 2012; 338
Mosca (10.1016/j.cell.2016.01.029_bib20) 2013; 10
Neduva (10.1016/j.cell.2016.01.029_bib22) 2006; 34
Kachroo (10.1016/j.cell.2016.01.029_bib15) 2015; 348
Li (10.1016/j.cell.2016.01.029_bib18) 2011; 12
Wojtowicz (10.1016/j.cell.2016.01.029_bib42) 2007; 130
Ellis (10.1016/j.cell.2016.01.029_bib8) 2012; 46
Sharon (10.1016/j.cell.2016.01.029_bib33) 2013; 31
Smith (10.1016/j.cell.2016.01.029_bib34) 2013; 10
Dinkel (10.1016/j.cell.2016.01.029_bib5) 2012; 40
Merkin (10.1016/j.cell.2016.01.029_bib19) 2012; 338
Romero (10.1016/j.cell.2016.01.029_bib28) 2006; 103
27482571 - Nat Methods. 2016 Apr;13(4):291
References_xml – volume: 323
  start-page: 133
  year: 2009
  end-page: 138
  ident: bib7
  article-title: Real-time DNA sequencing from single polymerase molecules
  publication-title: Science
– volume: 39
  start-page: D730
  year: 2011
  end-page: D735
  ident: bib43
  article-title: DOMINE: a comprehensive collection of known and predicted domain-domain interactions
  publication-title: Nucleic Acids Res.
– volume: 106
  start-page: 19
  year: 2000
  end-page: 28
  ident: bib25
  article-title: Partial COL1A2 gene duplication produces features of osteogenesis imperfecta and Ehlers-Danlos syndrome type VII
  publication-title: Hum. Genet.
– volume: 19
  start-page: 2324
  year: 2009
  end-page: 2333
  ident: bib35
  article-title: The completion of the Mammalian Gene Collection (MGC)
  publication-title: Genome Res.
– volume: 46
  start-page: 871
  year: 2012
  end-page: 883
  ident: bib3
  article-title: Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks
  publication-title: Mol. Cell
– volume: 40
  start-page: D242
  year: 2012
  end-page: D251
  ident: bib5
  article-title: ELM--the database of eukaryotic linear motifs
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 1
  year: 2005
  end-page: 16
  ident: bib13
  article-title: PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2
  publication-title: Neurogenetics
– volume: 46
  start-page: 884
  year: 2012
  end-page: 892
  ident: bib8
  article-title: Tissue-specific alternative splicing remodels protein-protein interaction networks
  publication-title: Mol. Cell
– volume: 6
  start-page: 83
  year: 2009
  end-page: 90
  ident: bib38
  article-title: An empirical framework for binary interactome mapping
  publication-title: Nat. Methods
– volume: 89
  start-page: 307
  year: 2007
  end-page: 315
  ident: bib17
  article-title: hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes
  publication-title: Genomics
– volume: 456
  start-page: 470
  year: 2008
  end-page: 476
  ident: bib41
  article-title: Alternative isoform regulation in human tissue transcriptomes
  publication-title: Nature
– volume: 27
  start-page: 716
  year: 2006
  ident: bib24
  article-title: Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV
  publication-title: Hum. Mutat.
– volume: 328
  start-page: 575
  year: 2000
  end-page: 592
  ident: bib40
  article-title: GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes
  publication-title: Methods Enzymol.
– volume: 437
  start-page: 1173
  year: 2005
  end-page: 1178
  ident: bib29
  article-title: Towards a proteome-scale map of the human protein-protein interaction network
  publication-title: Nature
– volume: 126
  start-page: 37
  year: 2006
  end-page: 47
  ident: bib2
  article-title: Alternative splicing: new insights from global analyses
  publication-title: Cell
– volume: 7
  start-page: 233
  year: 1998
  end-page: 242
  ident: bib14
  article-title: Domain assignment for protein structures using a consensus approach: characterization and analysis
  publication-title: Protein Sci.
– volume: 42
  start-page: D374
  year: 2014
  end-page: D379
  ident: bib21
  article-title: 3did: a catalog of domain-based interactions of known three-dimensional structure
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: D222
  year: 2014
  end-page: D230
  ident: bib11
  article-title: Pfam: the protein families database
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 323
  year: 2011
  ident: bib18
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
– volume: 34
  start-page: W350
  year: 2006
  end-page: W355
  ident: bib22
  article-title: DILIMOT: discovery of linear motifs in proteins
  publication-title: Nucleic Acids Res.
– volume: 19
  start-page: 1
  year: 2005
  end-page: 13
  ident: bib32
  article-title: Regulation of apoptosis by alternative pre-mRNA splicing
  publication-title: Mol. Cell
– volume: 2
  start-page: e100
  year: 2006
  ident: bib12
  article-title: Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes
  publication-title: PLoS Comput. Biol.
– volume: 10
  start-page: 47
  year: 2013
  end-page: 53
  ident: bib20
  article-title: Interactome3D: adding structural details to protein networks
  publication-title: Nat. Methods
– volume: 159
  start-page: 1212
  year: 2014
  end-page: 1226
  ident: bib27
  article-title: A proteome-scale map of the human interactome network
  publication-title: Cell
– volume: 5
  start-page: 597
  year: 2008
  end-page: 600
  ident: bib31
  article-title: Isoform discovery by targeted cloning, ‘deep-well’ pooling and parallel sequencing
  publication-title: Nat. Methods
– volume: 144
  start-page: 986
  year: 2011
  end-page: 998
  ident: bib39
  article-title: Interactome networks and human disease
  publication-title: Cell
– volume: 348
  start-page: 921
  year: 2015
  end-page: 925
  ident: bib15
  article-title: Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity
  publication-title: Science
– volume: 514
  start-page: 1
  year: 2013
  end-page: 30
  ident: bib16
  article-title: Function of alternative splicing
  publication-title: Gene
– volume: 470
  start-page: 281
  year: 2010
  end-page: 315
  ident: bib6
  article-title: High-quality binary interactome mapping
  publication-title: Methods Enzymol.
– volume: 10
  start-page: 186
  year: 2013
  end-page: 187
  ident: bib34
  article-title: Proteoform: a single term describing protein complexity
  publication-title: Nat. Methods
– volume: 103
  start-page: 8390
  year: 2006
  end-page: 8395
  ident: bib28
  article-title: Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 39
  start-page: W29
  year: 2011
  end-page: W37
  ident: bib10
  article-title: HMMER web server: interactive sequence similarity searching
  publication-title: Nucleic Acids Res.
– volume: 480
  start-page: 254
  year: 2011
  end-page: 258
  ident: bib37
  article-title: Mapping intact protein isoforms in discovery mode using top-down proteomics
  publication-title: Nature
– volume: 31
  start-page: 1009
  year: 2013
  end-page: 1014
  ident: bib33
  article-title: A single-molecule long-read survey of the human transcriptome
  publication-title: Nat. Biotechnol.
– volume: 130
  start-page: 1134
  year: 2007
  end-page: 1145
  ident: bib42
  article-title: A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains
  publication-title: Cell
– volume: 338
  start-page: 1587
  year: 2012
  end-page: 1593
  ident: bib1
  article-title: The evolutionary landscape of alternative splicing in vertebrate species
  publication-title: Science
– volume: 40
  start-page: 1413
  year: 2008
  end-page: 1415
  ident: bib23
  article-title: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
  publication-title: Nat. Genet.
– volume: 21
  start-page: 410
  year: 2005
  end-page: 412
  ident: bib9
  article-title: iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions
  publication-title: Bioinformatics
– volume: 13
  start-page: 839
  year: 2006
  end-page: 848
  ident: bib26
  article-title: A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain
  publication-title: Nat. Struct. Mol. Biol.
– volume: 2010
  start-page: baq020
  year: 2010
  ident: bib30
  article-title: GeneCards Version 3: the human gene integrator
  publication-title: Database (Oxford)
– volume: 33
  start-page: 736
  year: 2015
  end-page: 742
  ident: bib36
  article-title: Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events
  publication-title: Nat. Biotechnol.
– volume: 338
  start-page: 1593
  year: 2012
  end-page: 1599
  ident: bib19
  article-title: Evolutionary dynamics of gene and isoform regulation in Mammalian tissues
  publication-title: Science
– volume: 5
  start-page: 3650
  year: 2014
  ident: bib4
  article-title: Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism
  publication-title: Nat. Commun.
– volume: 40
  start-page: D242
  year: 2012
  ident: 10.1016/j.cell.2016.01.029_bib5
  article-title: ELM--the database of eukaryotic linear motifs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1064
– volume: 13
  start-page: 839
  year: 2006
  ident: 10.1016/j.cell.2016.01.029_bib26
  article-title: A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1137
– volume: 21
  start-page: 410
  year: 2005
  ident: 10.1016/j.cell.2016.01.029_bib9
  article-title: iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti011
– volume: 40
  start-page: 1413
  year: 2008
  ident: 10.1016/j.cell.2016.01.029_bib23
  article-title: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
  publication-title: Nat. Genet.
  doi: 10.1038/ng.259
– volume: 31
  start-page: 1009
  year: 2013
  ident: 10.1016/j.cell.2016.01.029_bib33
  article-title: A single-molecule long-read survey of the human transcriptome
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2705
– volume: 12
  start-page: 323
  year: 2011
  ident: 10.1016/j.cell.2016.01.029_bib18
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– volume: 39
  start-page: D730
  year: 2011
  ident: 10.1016/j.cell.2016.01.029_bib43
  article-title: DOMINE: a comprehensive collection of known and predicted domain-domain interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1229
– volume: 5
  start-page: 3650
  year: 2014
  ident: 10.1016/j.cell.2016.01.029_bib4
  article-title: Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4650
– volume: 34
  start-page: W350
  year: 2006
  ident: 10.1016/j.cell.2016.01.029_bib22
  article-title: DILIMOT: discovery of linear motifs in proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl159
– volume: 27
  start-page: 716
  year: 2006
  ident: 10.1016/j.cell.2016.01.029_bib24
  article-title: Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.9430
– volume: 10
  start-page: 186
  year: 2013
  ident: 10.1016/j.cell.2016.01.029_bib34
  article-title: Proteoform: a single term describing protein complexity
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2369
– volume: 10
  start-page: 47
  year: 2013
  ident: 10.1016/j.cell.2016.01.029_bib20
  article-title: Interactome3D: adding structural details to protein networks
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2289
– volume: 456
  start-page: 470
  year: 2008
  ident: 10.1016/j.cell.2016.01.029_bib41
  article-title: Alternative isoform regulation in human tissue transcriptomes
  publication-title: Nature
  doi: 10.1038/nature07509
– volume: 106
  start-page: 19
  year: 2000
  ident: 10.1016/j.cell.2016.01.029_bib25
  article-title: Partial COL1A2 gene duplication produces features of osteogenesis imperfecta and Ehlers-Danlos syndrome type VII
  publication-title: Hum. Genet.
– volume: 159
  start-page: 1212
  year: 2014
  ident: 10.1016/j.cell.2016.01.029_bib27
  article-title: A proteome-scale map of the human interactome network
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.050
– volume: 126
  start-page: 37
  year: 2006
  ident: 10.1016/j.cell.2016.01.029_bib2
  article-title: Alternative splicing: new insights from global analyses
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.023
– volume: 7
  start-page: 233
  year: 1998
  ident: 10.1016/j.cell.2016.01.029_bib14
  article-title: Domain assignment for protein structures using a consensus approach: characterization and analysis
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560070202
– volume: 130
  start-page: 1134
  year: 2007
  ident: 10.1016/j.cell.2016.01.029_bib42
  article-title: A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains
  publication-title: Cell
  doi: 10.1016/j.cell.2007.08.026
– volume: 42
  start-page: D374
  year: 2014
  ident: 10.1016/j.cell.2016.01.029_bib21
  article-title: 3did: a catalog of domain-based interactions of known three-dimensional structure
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt887
– volume: 33
  start-page: 736
  year: 2015
  ident: 10.1016/j.cell.2016.01.029_bib36
  article-title: Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3242
– volume: 5
  start-page: 597
  year: 2008
  ident: 10.1016/j.cell.2016.01.029_bib31
  article-title: Isoform discovery by targeted cloning, ‘deep-well’ pooling and parallel sequencing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1224
– volume: 19
  start-page: 2324
  year: 2009
  ident: 10.1016/j.cell.2016.01.029_bib35
  article-title: The completion of the Mammalian Gene Collection (MGC)
  publication-title: Genome Res.
  doi: 10.1101/gr.095976.109
– volume: 328
  start-page: 575
  year: 2000
  ident: 10.1016/j.cell.2016.01.029_bib40
  article-title: GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(00)28419-X
– volume: 437
  start-page: 1173
  year: 2005
  ident: 10.1016/j.cell.2016.01.029_bib29
  article-title: Towards a proteome-scale map of the human protein-protein interaction network
  publication-title: Nature
  doi: 10.1038/nature04209
– volume: 46
  start-page: 884
  year: 2012
  ident: 10.1016/j.cell.2016.01.029_bib8
  article-title: Tissue-specific alternative splicing remodels protein-protein interaction networks
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.037
– volume: 46
  start-page: 871
  year: 2012
  ident: 10.1016/j.cell.2016.01.029_bib3
  article-title: Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.039
– volume: 323
  start-page: 133
  year: 2009
  ident: 10.1016/j.cell.2016.01.029_bib7
  article-title: Real-time DNA sequencing from single polymerase molecules
  publication-title: Science
  doi: 10.1126/science.1162986
– volume: 514
  start-page: 1
  year: 2013
  ident: 10.1016/j.cell.2016.01.029_bib16
  article-title: Function of alternative splicing
  publication-title: Gene
  doi: 10.1016/j.gene.2012.07.083
– volume: 470
  start-page: 281
  year: 2010
  ident: 10.1016/j.cell.2016.01.029_bib6
  article-title: High-quality binary interactome mapping
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(10)70012-4
– volume: 2010
  start-page: baq020
  year: 2010
  ident: 10.1016/j.cell.2016.01.029_bib30
  article-title: GeneCards Version 3: the human gene integrator
  publication-title: Database (Oxford)
  doi: 10.1093/database/baq020
– volume: 2
  start-page: e100
  year: 2006
  ident: 10.1016/j.cell.2016.01.029_bib12
  article-title: Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0020100
– volume: 103
  start-page: 8390
  year: 2006
  ident: 10.1016/j.cell.2016.01.029_bib28
  article-title: Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0507916103
– volume: 6
  start-page: 83
  year: 2009
  ident: 10.1016/j.cell.2016.01.029_bib38
  article-title: An empirical framework for binary interactome mapping
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1280
– volume: 42
  start-page: D222
  year: 2014
  ident: 10.1016/j.cell.2016.01.029_bib11
  article-title: Pfam: the protein families database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1223
– volume: 19
  start-page: 1
  year: 2005
  ident: 10.1016/j.cell.2016.01.029_bib32
  article-title: Regulation of apoptosis by alternative pre-mRNA splicing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.05.026
– volume: 338
  start-page: 1587
  year: 2012
  ident: 10.1016/j.cell.2016.01.029_bib1
  article-title: The evolutionary landscape of alternative splicing in vertebrate species
  publication-title: Science
  doi: 10.1126/science.1230612
– volume: 39
  start-page: W29
  year: 2011
  ident: 10.1016/j.cell.2016.01.029_bib10
  article-title: HMMER web server: interactive sequence similarity searching
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr367
– volume: 6
  start-page: 1
  year: 2005
  ident: 10.1016/j.cell.2016.01.029_bib13
  article-title: PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2
  publication-title: Neurogenetics
  doi: 10.1007/s10048-004-0207-y
– volume: 480
  start-page: 254
  year: 2011
  ident: 10.1016/j.cell.2016.01.029_bib37
  article-title: Mapping intact protein isoforms in discovery mode using top-down proteomics
  publication-title: Nature
  doi: 10.1038/nature10575
– volume: 348
  start-page: 921
  year: 2015
  ident: 10.1016/j.cell.2016.01.029_bib15
  article-title: Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity
  publication-title: Science
  doi: 10.1126/science.aaa0769
– volume: 144
  start-page: 986
  year: 2011
  ident: 10.1016/j.cell.2016.01.029_bib39
  article-title: Interactome networks and human disease
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.016
– volume: 338
  start-page: 1593
  year: 2012
  ident: 10.1016/j.cell.2016.01.029_bib19
  article-title: Evolutionary dynamics of gene and isoform regulation in Mammalian tissues
  publication-title: Science
  doi: 10.1126/science.1228186
– volume: 89
  start-page: 307
  year: 2007
  ident: 10.1016/j.cell.2016.01.029_bib17
  article-title: hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2006.11.012
– reference: 27482571 - Nat Methods. 2016 Apr;13(4):291
RestrictionsOnAccess restricted access
SSID ssj0008555
Score 2.6408148
Snippet While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to...
SourceID swepub
pubmedcentral
liege
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 805
SubjectTerms Alternative Splicing
Animals
Cloning, Molecular
Evolution, Molecular
functional properties
genes
Genetics & genetic processes
Génétique & processus génétiques
Humans
Life sciences
Models, Molecular
Open Reading Frames
Protein Interaction Domains and Motifs
Protein Interaction Maps
protein isoforms
Protein Isoforms - metabolism
protein-protein interactions
proteins
Proteome - analysis
Proteome - metabolism
Proteome/analysis/metabolism
proteomics
Sciences du vivant
Title Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing
URI https://dx.doi.org/10.1016/j.cell.2016.01.029
https://www.ncbi.nlm.nih.gov/pubmed/26871637
https://www.proquest.com/docview/1765108457
https://www.proquest.com/docview/2000213325
http://orbi.ulg.ac.be/handle/2268/238832
https://pubmed.ncbi.nlm.nih.gov/PMC4882190
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280244
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemISReEN-EwWQkeIJojT_i5LGUTQMkNAkGfTvFjj2CqrTammn777mL00oRbA-8pant1j777nf23c-MvRHW-mBlSIMqTUqUbmmBhjJFtGwcInSb1X20xdf8-FR9nuv5DpttcmEorHLQ_VGn99p6eHMwjObBqmkox7cU2DYhCjrPokRzyiqlJL75h602LrSOtxiUuPKx9JA4E2O8aHOcwrvySN1Z3mSc7izoBPtfIPTvWMoR42hvpY4esPsDvOTT2IOHbMe3j9jdeOHk9WN28rOp_cUKgWLND69QEdBeGV8GfkJ0DU3L-w3CmOvAZ2hH-9BZdKa5vebTxbB5eOn5Nzr2Rqv3hJ0eHX6fHafDnQqpQ2ixTvNcVbpyKi907VytlBC1zbystKuMN8YZW9qJQytfomcWlEID59CnK0trnZdBPmW77bL1zxkXWooi1CqXTipisbEhZMGJvDLYrDMJyzaDCW4gHKd7LxawiSz7DSQAIAHAJAMUQMLebeusIt3GraX1RkYwmjSA9uDWeu97gcLy3DZwKYA4tvvnbnEGlQPrAWFpAYhnUOMl7PVG7oCLj1qrWr_sLiAzOeq0QmlzcxnKhRKZlEIn7FmcK9uu4W-gvyqxthnNom0B-mPjb9rmV08CjooXjc0kYW_jfBtV-dj8mGKHzqDrQBQIw9SL_xyqPXaPPlGcepa9ZLvr886_Qhi2tvvogHz6st-vtj_7eDF3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKKwSXimdJeRkJThB140ecHJel1RZKVYkW9mbFjl2CVtlVu6nov2cmTlaKoD1wiza2s_aMZz7bM58JecuMcd5wH3uRqxgp3eIMHGUMaFlZQOgmKdtoi-N0eiY-z-Rsg0z6XBgMq-xsf7DprbXuftnrRnNvWVWY45szaBsRBZ5nyTtkC9DACFX7cPZxbY4zKcM1BjlMfSjeZc6EIC_cHcf4rjRwd-Y3eaetOR5h_wuF_h1MOaAcbd3UwQOy3eFLOg5deEg2XP2I3A03Tl4_Jic_qtJdLgEplnT_N1gC3CyjC09PkK-hqmm7QxiSHegEHGkbOwuraWqu6Xje7R5eOfoNz73B7T0hZwf7p5Np3F2qEFvAFqs4TUUhCyvSTJbWlkIwVprE8ULaQjmlrDK5GVlw8zkszbwQ4OEsLOry3BjruOdPyWa9qN0zQpnkLPOlSLnlAmlsjPeJtywtFDRrVUSSfjC17RjH8eKLue5Dy35pFIBGAehRokEAEXm_rrMMfBu3lpa9jPRAazQ4hFvrfWgFqhcXptJXTCPJdvvczM91YbVxGnBppgHQgMmLyJte7hpmH7ZW1G7RXOpEpWDUMiHVzWUwGYolnDMZkZ2gK-uuwTdgwcqhthpo0boA_rHhm7r62bKAg-UFbzOKyLugb4Mqn6rvY-jQuW4azTLAYWL3P4fqNbk3Pf16pI8Oj788J_fxDQatJ8kLsrm6aNxLwGQr86qdc38AJy4zoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Widespread+Expansion+of+Protein+Interaction+Capabilities+by+Alternative+Splicing&rft.jtitle=Cell&rft.au=Yang%2C+Xinping&rft.au=Coulombe-Huntington%2C+Jasmin&rft.au=Kang%2C+Shuli&rft.au=Sheynkman%2C+Gloria+M.&rft.date=2016-02-11&rft.issn=1097-4172&rft.volume=164&rft.issue=4&rft.spage=805&rft_id=info:doi/10.1016%2Fj.cell.2016.01.029&rft.externalDocID=oai_DiVA_org_uu_280244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon