Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing
While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternat...
Saved in:
Published in | Cell Vol. 164; no. 4; pp. 805 - 817 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
United States
Elsevier Inc
11.02.2016
Cell Press |
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2016.01.029 |
Cover
Abstract | While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative “isoforms” are functionally divergent (i.e., “functional alloforms”).
[Display omitted]
•Alternative splicing can produce isoforms with vastly different interaction profiles•These differences can be as great as those between proteins encoded by different genes•Isoform-specific partners exhibit distinct expression and functional characteristics
Alternatively spliced isoforms of proteins exhibit strikingly different interaction profiles and thus, in the context of global interactome networks, appear to behave as if encoded by distinct genes rather than as minor variants of each other. |
---|---|
AbstractList | While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms'' are functionally divergent (i.e., "functional alloforms''). While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative “isoforms” are functionally divergent (i.e., “functional alloforms”). [Display omitted] •Alternative splicing can produce isoforms with vastly different interaction profiles•These differences can be as great as those between proteins encoded by different genes•Isoform-specific partners exhibit distinct expression and functional characteristics Alternatively spliced isoforms of proteins exhibit strikingly different interaction profiles and thus, in the context of global interactome networks, appear to behave as if encoded by distinct genes rather than as minor variants of each other. While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative ‘isoforms’ are functionally divergent (i.e., ‘functional alloforms’). eTOC Blurb Alternatively-spliced isoforms of proteins exhibit strikingly different interaction profiles and thus in the context of global interactome networks appear to behave as if encoded by distinct genes, rather than as minor variants of each other. While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms").While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms"). |
Author | Richardson, Aaron Wanamaker, Shelly A. Boone, Charles Yang, Xinping Spirohn, Kerstin Sun, Song Charloteaux, Benoit Zhou, Xianghong J. Aloy, Patrick Hao, Tong Duran-Frigola, Miquel Xia, Yu Kang, Shuli Rodriguez, Maria D. Pevzner, Samuel J. Sahni, Nidhi Sheynkman, Gloria M. Tan, Guihong Chen, Alyce A. Roth, Frederick P. Iakoucheva, Lilia M. Salehi-Ashtiani, Kourosh Murray, Ryan R. Costanzo, Michael Andrews, Brenda MacWilliams, Andrew Vidal, Marc Begg, Bridget E. Shen, Yun A. Yi, Song Ghamsari, Lila Hill, David E. Balcha, Dawit Zhong, Quan Yang, Fan Calderwood, Michael A. Coulombe-Huntington, Jasmin Tam, Stanley |
AuthorAffiliation | 6 Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA 11 Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain 9 Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada 5 Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada 8 Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada 1 Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA 3 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA 2 Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA 15 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain 7 Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada 16 Canadia |
AuthorAffiliation_xml | – name: 6 Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA – name: 4 Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China – name: 16 Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada – name: 7 Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada – name: 13 Boston University School of Medicine, Boston, MA 02118, USA – name: 8 Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada – name: 12 Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA – name: 9 Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada – name: 10 Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden – name: 3 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA – name: 14 Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA – name: 1 Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – name: 11 Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain – name: 5 Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada – name: 15 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain – name: 2 Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA |
Author_xml | – sequence: 1 givenname: Xinping surname: Yang fullname: Yang, Xinping organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 2 givenname: Jasmin surname: Coulombe-Huntington fullname: Coulombe-Huntington, Jasmin organization: Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada – sequence: 3 givenname: Shuli surname: Kang fullname: Kang, Shuli organization: Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA – sequence: 4 givenname: Gloria M. surname: Sheynkman fullname: Sheynkman, Gloria M. organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 5 givenname: Tong surname: Hao fullname: Hao, Tong organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 6 givenname: Aaron surname: Richardson fullname: Richardson, Aaron organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 7 givenname: Song surname: Sun fullname: Sun, Song organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada – sequence: 8 givenname: Fan surname: Yang fullname: Yang, Fan organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada – sequence: 9 givenname: Yun A. surname: Shen fullname: Shen, Yun A. organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 10 givenname: Ryan R. surname: Murray fullname: Murray, Ryan R. organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 11 givenname: Kerstin surname: Spirohn fullname: Spirohn, Kerstin organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 12 givenname: Bridget E. surname: Begg fullname: Begg, Bridget E. organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 13 givenname: Miquel surname: Duran-Frigola fullname: Duran-Frigola, Miquel organization: Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain – sequence: 14 givenname: Andrew surname: MacWilliams fullname: MacWilliams, Andrew organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 15 givenname: Samuel J. surname: Pevzner fullname: Pevzner, Samuel J. organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 16 givenname: Quan surname: Zhong fullname: Zhong, Quan organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 17 givenname: Shelly A. surname: Wanamaker fullname: Wanamaker, Shelly A. organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 18 givenname: Stanley surname: Tam fullname: Tam, Stanley organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 19 givenname: Lila surname: Ghamsari fullname: Ghamsari, Lila organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 20 givenname: Nidhi surname: Sahni fullname: Sahni, Nidhi organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 21 givenname: Song surname: Yi fullname: Yi, Song organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 22 givenname: Maria D. surname: Rodriguez fullname: Rodriguez, Maria D. organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 23 givenname: Dawit surname: Balcha fullname: Balcha, Dawit organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 24 givenname: Guihong surname: Tan fullname: Tan, Guihong organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada – sequence: 25 givenname: Michael surname: Costanzo fullname: Costanzo, Michael organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada – sequence: 26 givenname: Brenda surname: Andrews fullname: Andrews, Brenda organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada – sequence: 27 givenname: Charles surname: Boone fullname: Boone, Charles organization: Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada – sequence: 28 givenname: Xianghong J. surname: Zhou fullname: Zhou, Xianghong J. organization: Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA – sequence: 29 givenname: Kourosh surname: Salehi-Ashtiani fullname: Salehi-Ashtiani, Kourosh organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 30 givenname: Benoit surname: Charloteaux fullname: Charloteaux, Benoit organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 31 givenname: Alyce A. surname: Chen fullname: Chen, Alyce A. organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 32 givenname: Michael A. surname: Calderwood fullname: Calderwood, Michael A. organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 33 givenname: Patrick surname: Aloy fullname: Aloy, Patrick organization: Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain – sequence: 34 givenname: Frederick P. surname: Roth fullname: Roth, Frederick P. organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 35 givenname: David E. surname: Hill fullname: Hill, David E. organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 36 givenname: Lilia M. surname: Iakoucheva fullname: Iakoucheva, Lilia M. email: lilyak@ucsd.edu organization: Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA – sequence: 37 givenname: Yu surname: Xia fullname: Xia, Yu email: brandon.xia@mcgill.ca organization: Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA – sequence: 38 givenname: Marc surname: Vidal fullname: Vidal, Marc email: marc_vidal@dfci.harvard.edu organization: Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26871637$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280244$$DView record from Swedish Publication Index |
BookMark | eNqFkktv1DAUhS1URNuBP8ACZcmCGfyKnUgIaTQUqFSJSryWV45zZ_AoY6d2MtB_j9NpEWVRVn6d71xdn3tKjnzwSMhzRheMMvV6u7DYdQue9wvKFpTXj8gJo7WeS6b5ETmhtObzSml5TE5T2lJKq7Isn5BjrirNlNAn5PK7azH1EU1bnP3qjU8u-CKsi8sYBnS-OPcDRmOH6XpletO4zg0OU9FcF8suv3kzuD0Wn_vOWec3T8njtekSPrtdZ-Tr-7Mvq4_zi08fzlfLi7lVohzmSklTGitVVbbWtlJy3jYMhSmt0ai11U3dUEsVq2su11IKxS2r86lpLIq1mJFXB9_0E_uxgT66nYnXEIyDd-7bEkLcwDgCryjP9Iy8PcizdoetRT9E092j7r949wM2YQ-yqjiraTYQB4PO4Qaze-Ngz2_Am_3YbcBYaBB4_l3goqoEz9TL27IxXI2YBti5NKVmPIYxAc-ZcCYEL_8rZVqVjFay1Fn64u9m_nRxF2sWVAeBjSGliGuwbjBThrk31wGjME0QbGEqANMEAWWQJyij_B_0zv1B6M0Bwpz43mGEZB16i62LaAdog3sI_w2289_1 |
CitedBy_id | crossref_primary_10_1016_j_colsurfb_2016_12_014 crossref_primary_10_1089_dna_2023_0392 crossref_primary_10_1093_nar_gkaa768 crossref_primary_10_1038_s41419_021_03858_7 crossref_primary_10_31083_j_fbl2703085 crossref_primary_10_1093_nar_gkab851 crossref_primary_10_1038_s41598_019_50224_x crossref_primary_10_1007_s00439_017_1791_x crossref_primary_10_1038_s41467_019_11076_1 crossref_primary_10_15252_embr_202050535 crossref_primary_10_1038_s41586_022_05035_y crossref_primary_10_1096_fj_202001062R crossref_primary_10_1371_journal_pgen_1009216 crossref_primary_10_3389_frans_2023_1106752 crossref_primary_10_1016_j_crmeth_2024_100717 crossref_primary_10_1093_nar_gkw1082 crossref_primary_10_15252_embj_2021110192 crossref_primary_10_1016_j_celrep_2023_112811 crossref_primary_10_1242_jcs_230201 crossref_primary_10_3390_genes14010039 crossref_primary_10_1089_dna_2020_5534 crossref_primary_10_1002_cpbi_38 crossref_primary_10_1038_s41556_019_0314_5 crossref_primary_10_1016_j_sbi_2017_10_012 crossref_primary_10_3390_ijms23084201 crossref_primary_10_1016_j_tibs_2018_05_002 crossref_primary_10_1080_15476286_2018_1502587 crossref_primary_10_1093_bioinformatics_btad598 crossref_primary_10_1021_acs_jpcb_8b11818 crossref_primary_10_3389_fgene_2020_00726 crossref_primary_10_1016_j_mcpro_2022_100254 crossref_primary_10_1021_acs_analchem_3c00870 crossref_primary_10_3389_fgene_2020_00731 crossref_primary_10_1016_j_ebiom_2018_09_021 crossref_primary_10_3389_fpls_2019_00708 crossref_primary_10_1038_s41576_022_00514_4 crossref_primary_10_1016_j_tplants_2018_09_004 crossref_primary_10_1074_mcp_RA118_000993 crossref_primary_10_1186_s12870_017_1217_x crossref_primary_10_1016_j_tree_2021_11_010 crossref_primary_10_1371_journal_pcbi_1011857 crossref_primary_10_1101_gr_246678_118 crossref_primary_10_1007_s41109_020_00268_0 crossref_primary_10_1038_s41389_021_00323_0 crossref_primary_10_3390_ijms21062026 crossref_primary_10_1038_s41594_020_0450_4 crossref_primary_10_3389_jpps_2024_12568 crossref_primary_10_1016_j_bbagrm_2017_01_004 crossref_primary_10_1016_j_molimm_2022_12_005 crossref_primary_10_1186_s12915_023_01724_w crossref_primary_10_1093_bib_bbw139 crossref_primary_10_1016_j_cbpa_2022_102225 crossref_primary_10_3390_biom12040517 crossref_primary_10_1016_j_devcel_2017_03_003 crossref_primary_10_7717_peerj_10688 crossref_primary_10_1038_s41380_021_01037_w crossref_primary_10_1016_j_canlet_2023_216426 crossref_primary_10_1016_j_celrep_2018_10_097 crossref_primary_10_1038_nmeth_3828 crossref_primary_10_1155_2021_4061525 crossref_primary_10_3389_fgene_2020_00879 crossref_primary_10_3390_cancers14030595 crossref_primary_10_3390_genes12111790 crossref_primary_10_1021_acs_jproteome_7b00851 crossref_primary_10_1093_bib_bbaa179 crossref_primary_10_3389_fgene_2019_00709 crossref_primary_10_1021_acs_analchem_8b05014 crossref_primary_10_1186_s13059_022_02624_y crossref_primary_10_1016_j_bbamcr_2017_10_010 crossref_primary_10_1038_s41587_024_02245_9 crossref_primary_10_1039_D2SC04783G crossref_primary_10_1128_MCB_00302_17 crossref_primary_10_1177_1073858416678604 crossref_primary_10_3390_app14104090 crossref_primary_10_1016_j_jmb_2016_11_034 crossref_primary_10_1093_hmg_ddac196 crossref_primary_10_1038_s41598_018_29990_7 crossref_primary_10_1038_s41467_020_19753_2 crossref_primary_10_15252_embr_202051289 crossref_primary_10_1021_acs_analchem_3c02473 crossref_primary_10_1186_s12920_023_01706_5 crossref_primary_10_3389_fonc_2021_633579 crossref_primary_10_1016_j_sbi_2017_05_003 crossref_primary_10_1039_D2AN00335J crossref_primary_10_1038_s41556_019_0328_z crossref_primary_10_1021_acs_analchem_3c02346 crossref_primary_10_1261_rna_069856_118 crossref_primary_10_3390_biom15010130 crossref_primary_10_1109_TCBB_2021_3068875 crossref_primary_10_7554_eLife_90993_3 crossref_primary_10_1016_j_pharmthera_2020_107594 crossref_primary_10_1016_j_cub_2019_09_070 crossref_primary_10_3389_fpls_2021_739108 crossref_primary_10_3390_genes11020200 crossref_primary_10_1002_hep_30242 crossref_primary_10_1038_s41588_018_0090_3 crossref_primary_10_1093_database_baac062 crossref_primary_10_1016_j_coisb_2018_08_006 crossref_primary_10_1093_bioinformatics_btaa439 crossref_primary_10_3390_biology6040042 crossref_primary_10_1002_bies_201800042 crossref_primary_10_3389_fmicb_2024_1343572 crossref_primary_10_1002_pmic_202200372 crossref_primary_10_1080_15476286_2021_1992995 crossref_primary_10_1002_bies_201900169 crossref_primary_10_3389_fendo_2021_538364 crossref_primary_10_3390_genes13071133 crossref_primary_10_1074_mcp_RA117_000385 crossref_primary_10_1007_s11033_024_09845_3 crossref_primary_10_1093_nar_gkae1098 crossref_primary_10_1111_pbi_13076 crossref_primary_10_1021_jasms_0c00484 crossref_primary_10_1007_s00125_024_06097_5 crossref_primary_10_1016_j_celrep_2021_110045 crossref_primary_10_1186_s12864_016_3066_7 crossref_primary_10_26508_lsa_202301972 crossref_primary_10_1038_s41467_025_57901_8 crossref_primary_10_1002_1878_0261_12879 crossref_primary_10_1186_s13059_018_1499_9 crossref_primary_10_3390_ijms241210065 crossref_primary_10_1093_nar_gkad969 crossref_primary_10_1016_j_molcel_2019_09_017 crossref_primary_10_1016_j_semcdb_2017_08_008 crossref_primary_10_1074_mcp_RA119_001909 crossref_primary_10_1093_bib_bbae035 crossref_primary_10_1016_j_scitotenv_2024_175732 crossref_primary_10_1002_int_22402 crossref_primary_10_1016_j_aca_2020_08_062 crossref_primary_10_1042_BST20160172 crossref_primary_10_1111_odi_13739 crossref_primary_10_1021_acs_jproteome_6b01052 crossref_primary_10_1093_bioinformatics_btab532 crossref_primary_10_1038_nrd_2018_14 crossref_primary_10_1038_s41380_020_00876_3 crossref_primary_10_1136_jmg_2023_109186 crossref_primary_10_1101_gr_274696_120 crossref_primary_10_1128_jvi_01557_21 crossref_primary_10_1080_10985549_2024_2402660 crossref_primary_10_1126_science_aaz5284 crossref_primary_10_1186_s12918_017_0400_x crossref_primary_10_1038_s41583_024_00888_w crossref_primary_10_1186_s12885_021_08305_6 crossref_primary_10_1093_narcan_zcaa001 crossref_primary_10_3892_or_2024_8700 crossref_primary_10_1016_j_trac_2019_115644 crossref_primary_10_1021_acsomega_3c01117 crossref_primary_10_3389_fcell_2021_612019 crossref_primary_10_1038_s41580_018_0094_y crossref_primary_10_18097_pbmc20247005315 crossref_primary_10_1038_s41540_020_00168_0 crossref_primary_10_1097_CMR_0000000000000623 crossref_primary_10_1016_j_jmb_2020_01_032 crossref_primary_10_7554_eLife_70692 crossref_primary_10_1261_rna_078935_121 crossref_primary_10_1155_2020_4985014 crossref_primary_10_1016_j_celrep_2021_109631 crossref_primary_10_1371_journal_pgen_1007182 crossref_primary_10_2174_0929866526666190723114142 crossref_primary_10_1089_dna_2019_4644 crossref_primary_10_1002_wrna_1707 crossref_primary_10_14814_phy2_15844 crossref_primary_10_12688_f1000research_11355_1 crossref_primary_10_1101_gr_259903_119 crossref_primary_10_1186_s12885_021_08548_3 crossref_primary_10_1038_s41375_018_0321_8 crossref_primary_10_1016_j_jbc_2022_102033 crossref_primary_10_7554_eLife_29494 crossref_primary_10_3389_fgene_2020_522831 crossref_primary_10_1016_j_celrep_2019_11_026 crossref_primary_10_26508_lsa_202302000 crossref_primary_10_1007_s12265_022_10244_x crossref_primary_10_1080_15476286_2019_1667214 crossref_primary_10_1371_journal_pone_0296230 crossref_primary_10_1016_j_tplants_2019_02_006 crossref_primary_10_1098_rstb_2015_0474 crossref_primary_10_1002_1873_3468_13119 crossref_primary_10_1371_journal_pcbi_1005717 crossref_primary_10_5808_GI_2019_17_3_e23 crossref_primary_10_1186_s13059_021_02538_1 crossref_primary_10_1093_nar_gkx508 crossref_primary_10_1039_D4AY00651H crossref_primary_10_1038_s41467_020_15634_w crossref_primary_10_1080_15476286_2022_2100971 crossref_primary_10_3389_fphar_2019_00619 crossref_primary_10_1371_journal_pone_0236679 crossref_primary_10_3389_fonc_2021_777374 crossref_primary_10_3389_fgene_2020_522383 crossref_primary_10_1021_acs_jproteome_3c00789 crossref_primary_10_1016_j_tcb_2022_04_004 crossref_primary_10_1124_dmd_119_089102 crossref_primary_10_1002_wcms_1470 crossref_primary_10_1002_wsbm_1443 crossref_primary_10_1186_s12885_022_09838_0 crossref_primary_10_2144_btn_2022_0108 crossref_primary_10_1016_j_tibs_2016_08_008 crossref_primary_10_1074_mcp_TIR117_000385 crossref_primary_10_3390_cells12232678 crossref_primary_10_1038_s41467_020_16174_z crossref_primary_10_1016_j_jsb_2023_107997 crossref_primary_10_1093_hmg_ddab157 crossref_primary_10_1021_acs_jproteome_9b00301 crossref_primary_10_1021_acs_analchem_9b02343 crossref_primary_10_1101_gr_267328_120 crossref_primary_10_1111_cpr_13741 crossref_primary_10_1101_gr_279640_124 crossref_primary_10_1016_j_cj_2021_11_007 crossref_primary_10_3389_fgene_2023_1230998 crossref_primary_10_1126_science_aat1884 crossref_primary_10_1371_journal_pcbi_1009825 crossref_primary_10_1124_mol_116_106161 crossref_primary_10_1016_j_celrep_2017_08_012 crossref_primary_10_18632_aging_102319 crossref_primary_10_3389_fgene_2017_00014 crossref_primary_10_1371_journal_pcbi_1010013 crossref_primary_10_1016_j_molcel_2022_06_036 crossref_primary_10_1016_j_str_2019_03_020 crossref_primary_10_1007_s12551_018_0439_y crossref_primary_10_1038_nchembio_2576 crossref_primary_10_1007_s12064_021_00354_6 crossref_primary_10_1021_acs_jproteome_0c00332 crossref_primary_10_1371_journal_pone_0160098 crossref_primary_10_1002_humu_24325 crossref_primary_10_1016_j_celrep_2017_09_071 crossref_primary_10_3389_fncel_2022_1019680 crossref_primary_10_1016_j_gene_2021_145463 crossref_primary_10_1242_jcs_201855 crossref_primary_10_1038_s41467_018_04760_1 crossref_primary_10_1038_s41467_018_05748_7 crossref_primary_10_1093_nar_gkw1102 crossref_primary_10_1016_j_semcdb_2023_01_013 crossref_primary_10_3389_fimmu_2022_1089008 crossref_primary_10_18632_oncotarget_27215 crossref_primary_10_1242_jcs_212753 crossref_primary_10_1186_s13059_020_02028_w crossref_primary_10_1016_j_ygeno_2021_05_038 crossref_primary_10_1186_s12935_020_01249_0 crossref_primary_10_1016_j_molcel_2021_01_034 crossref_primary_10_7554_eLife_90993 crossref_primary_10_1093_bib_bby047 crossref_primary_10_3390_cancers15082271 crossref_primary_10_1186_s13059_020_02102_3 crossref_primary_10_1016_j_isci_2022_104492 crossref_primary_10_3390_ijms20133279 crossref_primary_10_2174_1570180815666180815151141 crossref_primary_10_3389_fonc_2021_731993 crossref_primary_10_3389_fbinf_2021_690769 crossref_primary_10_1093_nar_gkaa1015 crossref_primary_10_1016_j_celrep_2021_110022 crossref_primary_10_1038_s41388_018_0129_z crossref_primary_10_1038_s41467_019_11180_2 crossref_primary_10_1038_s41598_017_10535_3 crossref_primary_10_1093_nar_gkac409 crossref_primary_10_1093_nar_gkw565 crossref_primary_10_1016_j_heliyon_2023_e14938 crossref_primary_10_1093_nar_gkx1014 crossref_primary_10_1242_jcs_199463 crossref_primary_10_1515_hsz_2016_0315 crossref_primary_10_1016_j_ebiom_2018_07_040 crossref_primary_10_1007_s42485_020_00030_1 crossref_primary_10_7554_eLife_59654 crossref_primary_10_1186_s13578_021_00581_w crossref_primary_10_1016_j_jbc_2023_105102 crossref_primary_10_3390_genes11060677 crossref_primary_10_1007_s40778_023_00227_2 crossref_primary_10_1042_EBC20160086 crossref_primary_10_1016_j_isci_2023_107476 crossref_primary_10_1128_MCB_00488_16 crossref_primary_10_1002_bmb_21516 crossref_primary_10_1038_s41598_017_16184_w crossref_primary_10_1016_j_jmb_2018_01_021 crossref_primary_10_1039_C8MO00234G crossref_primary_10_1021_acs_jproteome_7b00685 crossref_primary_10_1007_s00439_021_02356_2 crossref_primary_10_1021_acs_jproteome_2c00763 crossref_primary_10_1021_acs_analchem_7b04221 crossref_primary_10_1039_C6MB00388E crossref_primary_10_1016_j_molcel_2018_08_018 crossref_primary_10_1109_TCBB_2019_2906164 crossref_primary_10_1093_bioinformatics_btaa829 crossref_primary_10_1016_j_celrep_2018_06_017 crossref_primary_10_1002_mas_21675 crossref_primary_10_1038_s10038_023_01162_0 crossref_primary_10_3390_cells8070744 crossref_primary_10_1016_j_semcdb_2020_02_003 crossref_primary_10_1017_qpb_2022_9 crossref_primary_10_1021_acs_jproteome_0c00403 crossref_primary_10_1016_j_neurobiolaging_2018_01_019 crossref_primary_10_1038_s41586_020_2188_x crossref_primary_10_1016_j_molcel_2024_05_024 crossref_primary_10_1136_gutjnl_2024_333127 crossref_primary_10_1186_s12935_020_01368_8 crossref_primary_10_7554_eLife_46327 crossref_primary_10_1038_s41598_017_02970_z crossref_primary_10_1016_j_mcn_2018_03_008 crossref_primary_10_1111_jcmm_17850 crossref_primary_10_1186_s13041_019_0500_1 crossref_primary_10_7554_eLife_17672 crossref_primary_10_1242_jcs_216465 crossref_primary_10_1186_s12864_022_08928_4 crossref_primary_10_1016_j_tibs_2017_02_006 crossref_primary_10_1016_j_theriogenology_2021_11_006 crossref_primary_10_3389_fchem_2023_1133018 crossref_primary_10_3390_ph10010004 crossref_primary_10_1038_s42003_024_07332_w crossref_primary_10_1016_j_ymeth_2020_06_005 crossref_primary_10_1093_bioinformatics_btac340 crossref_primary_10_1001_jamapsychiatry_2019_2974 crossref_primary_10_1007_s00216_023_04677_9 crossref_primary_10_3389_fpls_2024_1445022 crossref_primary_10_3390_ijms21030863 crossref_primary_10_1038_s42003_020_01181_z crossref_primary_10_1093_bib_bbaf087 crossref_primary_10_1093_bioinformatics_btac105 crossref_primary_10_1016_j_gpb_2021_10_004 crossref_primary_10_1016_j_tibs_2019_12_009 crossref_primary_10_1186_s13073_023_01226_y crossref_primary_10_1002_pmic_202400028 crossref_primary_10_1016_j_gene_2019_04_025 crossref_primary_10_1016_j_ygeno_2019_04_017 crossref_primary_10_1186_s12859_019_2852_z crossref_primary_10_1101_gr_230516_117 crossref_primary_10_3389_fbinf_2021_724297 crossref_primary_10_1038_s41594_018_0129_2 crossref_primary_10_1038_s42255_022_00681_y crossref_primary_10_1093_nar_gkab357 crossref_primary_10_3389_fpls_2019_00483 crossref_primary_10_1038_s41598_020_71221_5 crossref_primary_10_26508_lsa_202000841 crossref_primary_10_1021_acsnano_4c04675 crossref_primary_10_1016_j_molcel_2023_10_034 crossref_primary_10_1016_j_sbi_2016_05_016 crossref_primary_10_1038_s41467_019_14224_9 crossref_primary_10_1109_TCBB_2021_3093167 crossref_primary_10_1002_psp4_12670 crossref_primary_10_1021_acs_jproteome_8b00469 crossref_primary_10_1124_pr_118_016253 crossref_primary_10_1371_journal_pcbi_1008287 crossref_primary_10_1016_j_csbj_2021_05_056 crossref_primary_10_3724_SP_J_1123_2021_03030 crossref_primary_10_1038_s41573_024_01025_z crossref_primary_10_1038_s41592_022_01715_9 crossref_primary_10_1186_s13059_018_1418_0 crossref_primary_10_3390_ijms21062079 crossref_primary_10_1002_ajh_26893 crossref_primary_10_1177_2472555220926920 crossref_primary_10_1186_s13046_020_01798_2 crossref_primary_10_1016_j_tim_2018_11_004 crossref_primary_10_1007_s13205_018_1534_2 crossref_primary_10_1021_acs_jproteome_1c00968 crossref_primary_10_1021_jasms_3c00187 crossref_primary_10_1002_jha2_634 crossref_primary_10_1093_nargab_lqab044 crossref_primary_10_1371_journal_pcbi_1008708 crossref_primary_10_1038_nrg_2016_119 crossref_primary_10_1021_acs_analchem_4c05010 crossref_primary_10_1126_sciadv_aao3424 crossref_primary_10_1016_j_isci_2021_103209 crossref_primary_10_1016_j_physrep_2019_12_004 crossref_primary_10_1021_acs_jproteome_7b00126 crossref_primary_10_3892_or_2016_5135 crossref_primary_10_1016_j_csbj_2023_07_014 crossref_primary_10_1016_j_ygeno_2021_02_020 crossref_primary_10_1073_pnas_2106694118 crossref_primary_10_1093_nar_gkx1165 crossref_primary_10_1101_gr_212696_116 crossref_primary_10_1155_2021_4664955 crossref_primary_10_1525_abt_2018_80_9_642 crossref_primary_10_1016_j_sbi_2024_102979 crossref_primary_10_3390_ijms21186808 crossref_primary_10_2337_db21_0194 crossref_primary_10_3389_fgene_2023_1237167 crossref_primary_10_1021_acs_analchem_1c00396 |
Cites_doi | 10.1093/nar/gkr1064 10.1038/nsmb1137 10.1093/bioinformatics/bti011 10.1038/ng.259 10.1038/nbt.2705 10.1186/1471-2105-12-323 10.1093/nar/gkq1229 10.1038/ncomms4650 10.1093/nar/gkl159 10.1002/humu.9430 10.1038/nmeth.2369 10.1038/nmeth.2289 10.1038/nature07509 10.1016/j.cell.2014.10.050 10.1016/j.cell.2006.06.023 10.1002/pro.5560070202 10.1016/j.cell.2007.08.026 10.1093/nar/gkt887 10.1038/nbt.3242 10.1038/nmeth.1224 10.1101/gr.095976.109 10.1016/S0076-6879(00)28419-X 10.1038/nature04209 10.1016/j.molcel.2012.05.037 10.1016/j.molcel.2012.05.039 10.1126/science.1162986 10.1016/j.gene.2012.07.083 10.1016/S0076-6879(10)70012-4 10.1093/database/baq020 10.1371/journal.pcbi.0020100 10.1073/pnas.0507916103 10.1038/nmeth.1280 10.1093/nar/gkt1223 10.1016/j.molcel.2005.05.026 10.1126/science.1230612 10.1093/nar/gkr367 10.1007/s10048-004-0207-y 10.1038/nature10575 10.1126/science.aaa0769 10.1016/j.cell.2011.02.016 10.1126/science.1228186 10.1016/j.ygeno.2006.11.012 |
ContentType | Journal Article Web Resource |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 Q33 5PM ADTPV AOWAS DF2 |
DOI | 10.1016/j.cell.2016.01.029 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 817 |
ExternalDocumentID | oai_DiVA_org_uu_280244 PMC4882190 oai_orbi_ulg_ac_be_2268_238832 26871637 10_1016_j_cell_2016_01_029 S0092867416300435 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: U01HG001715 – fundername: NICHD NIH HHS grantid: R01 HD065288 – fundername: NHGRI NIH HHS grantid: P50HG004233 – fundername: NIGMS NIH HHS grantid: R01GM105431 – fundername: NCI NIH HHS grantid: R33CA132073 – fundername: NHGRI NIH HHS grantid: R01 HG001715 – fundername: NIGMS NIH HHS grantid: R01 GM105431 – fundername: NIMH NIH HHS grantid: R01MH105524 – fundername: NCI NIH HHS grantid: T32 CA009361 – fundername: NIMH NIH HHS grantid: R01 MH105524 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0SF 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIAV AAKRW AAKUH AAVLU AAXUO ABCQX ABJNI ABMAC ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AIDAL AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 YZZ ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAIKJ AALRI AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIGII AKBMS AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 Q33 5PM ADTPV AOWAS DF2 |
ID | FETCH-LOGICAL-c635t-664a5ac4685dccd4422db1e3a5ca7e77c7b9b0c0619924f44362c19199bbce3f3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 06:40:04 EDT 2025 Thu Aug 21 13:38:25 EDT 2025 Fri Jul 18 15:31:00 EDT 2025 Sun Sep 28 10:27:55 EDT 2025 Sun Sep 28 07:13:59 EDT 2025 Thu Apr 03 07:01:52 EDT 2025 Tue Jul 01 02:16:54 EDT 2025 Thu Apr 24 23:02:33 EDT 2025 Tue Jul 16 04:30:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c635t-664a5ac4685dccd4422db1e3a5ca7e77c7b9b0c0619924f44362c19199bbce3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-84958182784 Present address can be found in Supplemental Online Material Co-senior author Co-first author |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867416300435 |
PMID | 26871637 |
PQID | 1765108457 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_280244 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4882190 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_238832 proquest_miscellaneous_2000213325 proquest_miscellaneous_1765108457 pubmed_primary_26871637 crossref_citationtrail_10_1016_j_cell_2016_01_029 crossref_primary_10_1016_j_cell_2016_01_029 elsevier_sciencedirect_doi_10_1016_j_cell_2016_01_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-11 |
PublicationDateYYYYMMDD | 2016-02-11 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2016 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Buljan, Chalancon, Eustermann, Wagner, Fuxreiter, Bateman, Babu (bib3) 2012; 46 Yellaboina, Tasneem, Zaykin, Raghavachari, Jothi (bib43) 2011; 39 Lamesch, Li, Milstein, Fan, Hao, Szabo, Hu, Venkatesan, Bethel, Martin (bib17) 2007; 89 Romero, Zaidi, Fang, Uversky, Radivojac, Oldfield, Cortese, Sickmeier, LeGall, Obradovic, Dunker (bib28) 2006; 103 Safran, Dalah, Alexander, Rosen, Iny Stein, Shmoish, Nativ, Bahir, Doniger, Krug (bib30) 2010; 2010 Smith, Kelleher (bib34) 2013; 10 Tran, Zamdborg, Ahlf, Lee, Catherman, Durbin, Tipton, Vellaichamy, Kellie, Li (bib37) 2011; 480 Kelemen, Convertini, Zhang, Wen, Shen, Falaleeva, Stamm (bib16) 2013; 514 Pan, Shai, Lee, Frey, Blencowe (bib23) 2008; 40 Venkatesan, Rual, Vazquez, Stelzl, Lemmens, Hirozane-Kishikawa, Hao, Zenkner, Xin, Goh (bib38) 2009; 6 Finn, Marshall, Bateman (bib9) 2005; 21 Mosca, Céol, Aloy (bib20) 2013; 10 Barbosa-Morais, Irimia, Pan, Xiong, Gueroussov, Lee, Slobodeniuc, Kutter, Watt, Colak (bib1) 2012; 338 Walhout, Temple, Brasch, Hartley, Lorson, van den Heuvel, Vidal (bib40) 2000; 328 Haynes, Oldfield, Ji, Klitgord, Cusick, Radivojac, Uversky, Vidal, Iakoucheva (bib12) 2006; 2 Kachroo, Laurent, Yellman, Meyer, Wilke, Marcotte (bib15) 2015; 348 Rideau, Gooding, Simpson, Monie, Lorenz, Hüttelmaier, Singer, Matthews, Curry, Smith (bib26) 2006; 13 Vidal, Cusick, Barabási (bib39) 2011; 144 Wojtowicz, Wu, Andre, Qian, Baker, Zipursky (bib42) 2007; 130 Sharon, Tilgner, Grubert, Snyder (bib33) 2013; 31 Finn, Bateman, Clements, Coggill, Eberhardt, Eddy, Heger, Hetherington, Holm, Mistry (bib11) 2014; 42 Inoue (bib13) 2005; 6 Salehi-Ashtiani, Yang, Derti, Tian, Hao, Lin, Makowski, Shen, Murray, Szeto (bib31) 2008; 5 Neduva, Russell (bib22) 2006; 34 Dinkel, Michael, Weatheritt, Davey, Van Roey, Altenberg, Toedt, Uyar, Seiler, Budd (bib5) 2012; 40 Merkin, Russell, Chen, Burge (bib19) 2012; 338 Rual, Venkatesan, Hao, Hirozane-Kishikawa, Dricot, Li, Berriz, Gibbons, Dreze, Ayivi-Guedehoussou (bib29) 2005; 437 Eid, Fehr, Gray, Luong, Lyle, Otto, Peluso, Rank, Baybayan, Bettman (bib7) 2009; 323 Mosca, Céol, Stein, Olivella, Aloy (bib21) 2014; 42 Pollitt, McMahon, Nunn, Bamford, Afifi, Bishop, Dalton (bib24) 2006; 27 Ellis, Barrios-Rodiles, Colak, Irimia, Kim, Calarco, Wang, Pan, O’Hanlon, Kim (bib8) 2012; 46 Dreze, Monachello, Lurin, Cusick, Hill, Vidal, Braun (bib6) 2010; 470 Tilgner, Jahanbani, Blauwkamp, Moshrefi, Jaeger, Chen, Harel, Bustamante, Rasmussen, Snyder (bib36) 2015; 33 Jones, Stewart, Michie, Swindells, Orengo, Thornton (bib14) 1998; 7 Schwerk, Schulze-Osthoff (bib32) 2005; 19 Temple, Gerhard, Rasooly, Feingold, Good, Robinson, Mandich, Derge, Lewis, Shoaf (bib35) 2009; 19 Finn, Clements, Eddy (bib10) 2011; 39 Wang, Sandberg, Luo, Khrebtukova, Zhang, Mayr, Kingsmore, Schroth, Burge (bib41) 2008; 456 Corominas, Yang, Lin, Kang, Shen, Ghamsari, Broly, Rodriguez, Tam, Wanamaker (bib4) 2014; 5 Rolland, Taşan, Charloteaux, Pevzner, Zhong, Sahni, Yi, Lemmens, Fontanillo, Mosca (bib27) 2014; 159 Raff, Craigen, Smith, Keene, Byers (bib25) 2000; 106 Li, Dewey (bib18) 2011; 12 Blencowe (bib2) 2006; 126 Wang (10.1016/j.cell.2016.01.029_bib41) 2008; 456 Finn (10.1016/j.cell.2016.01.029_bib11) 2014; 42 Jones (10.1016/j.cell.2016.01.029_bib14) 1998; 7 Rolland (10.1016/j.cell.2016.01.029_bib27) 2014; 159 Venkatesan (10.1016/j.cell.2016.01.029_bib38) 2009; 6 Corominas (10.1016/j.cell.2016.01.029_bib4) 2014; 5 Salehi-Ashtiani (10.1016/j.cell.2016.01.029_bib31) 2008; 5 Pan (10.1016/j.cell.2016.01.029_bib23) 2008; 40 Temple (10.1016/j.cell.2016.01.029_bib35) 2009; 19 Yellaboina (10.1016/j.cell.2016.01.029_bib43) 2011; 39 Finn (10.1016/j.cell.2016.01.029_bib10) 2011; 39 Pollitt (10.1016/j.cell.2016.01.029_bib24) 2006; 27 Rideau (10.1016/j.cell.2016.01.029_bib26) 2006; 13 Lamesch (10.1016/j.cell.2016.01.029_bib17) 2007; 89 Eid (10.1016/j.cell.2016.01.029_bib7) 2009; 323 Schwerk (10.1016/j.cell.2016.01.029_bib32) 2005; 19 Tilgner (10.1016/j.cell.2016.01.029_bib36) 2015; 33 Inoue (10.1016/j.cell.2016.01.029_bib13) 2005; 6 Mosca (10.1016/j.cell.2016.01.029_bib21) 2014; 42 Raff (10.1016/j.cell.2016.01.029_bib25) 2000; 106 Vidal (10.1016/j.cell.2016.01.029_bib39) 2011; 144 Kelemen (10.1016/j.cell.2016.01.029_bib16) 2013; 514 Walhout (10.1016/j.cell.2016.01.029_bib40) 2000; 328 Blencowe (10.1016/j.cell.2016.01.029_bib2) 2006; 126 Tran (10.1016/j.cell.2016.01.029_bib37) 2011; 480 Buljan (10.1016/j.cell.2016.01.029_bib3) 2012; 46 Dreze (10.1016/j.cell.2016.01.029_bib6) 2010; 470 Finn (10.1016/j.cell.2016.01.029_bib9) 2005; 21 Haynes (10.1016/j.cell.2016.01.029_bib12) 2006; 2 Rual (10.1016/j.cell.2016.01.029_bib29) 2005; 437 Safran (10.1016/j.cell.2016.01.029_bib30) 2010; 2010 Barbosa-Morais (10.1016/j.cell.2016.01.029_bib1) 2012; 338 Mosca (10.1016/j.cell.2016.01.029_bib20) 2013; 10 Neduva (10.1016/j.cell.2016.01.029_bib22) 2006; 34 Kachroo (10.1016/j.cell.2016.01.029_bib15) 2015; 348 Li (10.1016/j.cell.2016.01.029_bib18) 2011; 12 Wojtowicz (10.1016/j.cell.2016.01.029_bib42) 2007; 130 Ellis (10.1016/j.cell.2016.01.029_bib8) 2012; 46 Sharon (10.1016/j.cell.2016.01.029_bib33) 2013; 31 Smith (10.1016/j.cell.2016.01.029_bib34) 2013; 10 Dinkel (10.1016/j.cell.2016.01.029_bib5) 2012; 40 Merkin (10.1016/j.cell.2016.01.029_bib19) 2012; 338 Romero (10.1016/j.cell.2016.01.029_bib28) 2006; 103 27482571 - Nat Methods. 2016 Apr;13(4):291 |
References_xml | – volume: 323 start-page: 133 year: 2009 end-page: 138 ident: bib7 article-title: Real-time DNA sequencing from single polymerase molecules publication-title: Science – volume: 39 start-page: D730 year: 2011 end-page: D735 ident: bib43 article-title: DOMINE: a comprehensive collection of known and predicted domain-domain interactions publication-title: Nucleic Acids Res. – volume: 106 start-page: 19 year: 2000 end-page: 28 ident: bib25 article-title: Partial COL1A2 gene duplication produces features of osteogenesis imperfecta and Ehlers-Danlos syndrome type VII publication-title: Hum. Genet. – volume: 19 start-page: 2324 year: 2009 end-page: 2333 ident: bib35 article-title: The completion of the Mammalian Gene Collection (MGC) publication-title: Genome Res. – volume: 46 start-page: 871 year: 2012 end-page: 883 ident: bib3 article-title: Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks publication-title: Mol. Cell – volume: 40 start-page: D242 year: 2012 end-page: D251 ident: bib5 article-title: ELM--the database of eukaryotic linear motifs publication-title: Nucleic Acids Res. – volume: 6 start-page: 1 year: 2005 end-page: 16 ident: bib13 article-title: PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2 publication-title: Neurogenetics – volume: 46 start-page: 884 year: 2012 end-page: 892 ident: bib8 article-title: Tissue-specific alternative splicing remodels protein-protein interaction networks publication-title: Mol. Cell – volume: 6 start-page: 83 year: 2009 end-page: 90 ident: bib38 article-title: An empirical framework for binary interactome mapping publication-title: Nat. Methods – volume: 89 start-page: 307 year: 2007 end-page: 315 ident: bib17 article-title: hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes publication-title: Genomics – volume: 456 start-page: 470 year: 2008 end-page: 476 ident: bib41 article-title: Alternative isoform regulation in human tissue transcriptomes publication-title: Nature – volume: 27 start-page: 716 year: 2006 ident: bib24 article-title: Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV publication-title: Hum. Mutat. – volume: 328 start-page: 575 year: 2000 end-page: 592 ident: bib40 article-title: GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes publication-title: Methods Enzymol. – volume: 437 start-page: 1173 year: 2005 end-page: 1178 ident: bib29 article-title: Towards a proteome-scale map of the human protein-protein interaction network publication-title: Nature – volume: 126 start-page: 37 year: 2006 end-page: 47 ident: bib2 article-title: Alternative splicing: new insights from global analyses publication-title: Cell – volume: 7 start-page: 233 year: 1998 end-page: 242 ident: bib14 article-title: Domain assignment for protein structures using a consensus approach: characterization and analysis publication-title: Protein Sci. – volume: 42 start-page: D374 year: 2014 end-page: D379 ident: bib21 article-title: 3did: a catalog of domain-based interactions of known three-dimensional structure publication-title: Nucleic Acids Res. – volume: 42 start-page: D222 year: 2014 end-page: D230 ident: bib11 article-title: Pfam: the protein families database publication-title: Nucleic Acids Res. – volume: 12 start-page: 323 year: 2011 ident: bib18 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics – volume: 34 start-page: W350 year: 2006 end-page: W355 ident: bib22 article-title: DILIMOT: discovery of linear motifs in proteins publication-title: Nucleic Acids Res. – volume: 19 start-page: 1 year: 2005 end-page: 13 ident: bib32 article-title: Regulation of apoptosis by alternative pre-mRNA splicing publication-title: Mol. Cell – volume: 2 start-page: e100 year: 2006 ident: bib12 article-title: Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes publication-title: PLoS Comput. Biol. – volume: 10 start-page: 47 year: 2013 end-page: 53 ident: bib20 article-title: Interactome3D: adding structural details to protein networks publication-title: Nat. Methods – volume: 159 start-page: 1212 year: 2014 end-page: 1226 ident: bib27 article-title: A proteome-scale map of the human interactome network publication-title: Cell – volume: 5 start-page: 597 year: 2008 end-page: 600 ident: bib31 article-title: Isoform discovery by targeted cloning, ‘deep-well’ pooling and parallel sequencing publication-title: Nat. Methods – volume: 144 start-page: 986 year: 2011 end-page: 998 ident: bib39 article-title: Interactome networks and human disease publication-title: Cell – volume: 348 start-page: 921 year: 2015 end-page: 925 ident: bib15 article-title: Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity publication-title: Science – volume: 514 start-page: 1 year: 2013 end-page: 30 ident: bib16 article-title: Function of alternative splicing publication-title: Gene – volume: 470 start-page: 281 year: 2010 end-page: 315 ident: bib6 article-title: High-quality binary interactome mapping publication-title: Methods Enzymol. – volume: 10 start-page: 186 year: 2013 end-page: 187 ident: bib34 article-title: Proteoform: a single term describing protein complexity publication-title: Nat. Methods – volume: 103 start-page: 8390 year: 2006 end-page: 8395 ident: bib28 article-title: Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms publication-title: Proc. Natl. Acad. Sci. USA – volume: 39 start-page: W29 year: 2011 end-page: W37 ident: bib10 article-title: HMMER web server: interactive sequence similarity searching publication-title: Nucleic Acids Res. – volume: 480 start-page: 254 year: 2011 end-page: 258 ident: bib37 article-title: Mapping intact protein isoforms in discovery mode using top-down proteomics publication-title: Nature – volume: 31 start-page: 1009 year: 2013 end-page: 1014 ident: bib33 article-title: A single-molecule long-read survey of the human transcriptome publication-title: Nat. Biotechnol. – volume: 130 start-page: 1134 year: 2007 end-page: 1145 ident: bib42 article-title: A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains publication-title: Cell – volume: 338 start-page: 1587 year: 2012 end-page: 1593 ident: bib1 article-title: The evolutionary landscape of alternative splicing in vertebrate species publication-title: Science – volume: 40 start-page: 1413 year: 2008 end-page: 1415 ident: bib23 article-title: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing publication-title: Nat. Genet. – volume: 21 start-page: 410 year: 2005 end-page: 412 ident: bib9 article-title: iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions publication-title: Bioinformatics – volume: 13 start-page: 839 year: 2006 end-page: 848 ident: bib26 article-title: A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain publication-title: Nat. Struct. Mol. Biol. – volume: 2010 start-page: baq020 year: 2010 ident: bib30 article-title: GeneCards Version 3: the human gene integrator publication-title: Database (Oxford) – volume: 33 start-page: 736 year: 2015 end-page: 742 ident: bib36 article-title: Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events publication-title: Nat. Biotechnol. – volume: 338 start-page: 1593 year: 2012 end-page: 1599 ident: bib19 article-title: Evolutionary dynamics of gene and isoform regulation in Mammalian tissues publication-title: Science – volume: 5 start-page: 3650 year: 2014 ident: bib4 article-title: Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism publication-title: Nat. Commun. – volume: 40 start-page: D242 year: 2012 ident: 10.1016/j.cell.2016.01.029_bib5 article-title: ELM--the database of eukaryotic linear motifs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1064 – volume: 13 start-page: 839 year: 2006 ident: 10.1016/j.cell.2016.01.029_bib26 article-title: A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1137 – volume: 21 start-page: 410 year: 2005 ident: 10.1016/j.cell.2016.01.029_bib9 article-title: iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti011 – volume: 40 start-page: 1413 year: 2008 ident: 10.1016/j.cell.2016.01.029_bib23 article-title: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing publication-title: Nat. Genet. doi: 10.1038/ng.259 – volume: 31 start-page: 1009 year: 2013 ident: 10.1016/j.cell.2016.01.029_bib33 article-title: A single-molecule long-read survey of the human transcriptome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2705 – volume: 12 start-page: 323 year: 2011 ident: 10.1016/j.cell.2016.01.029_bib18 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 39 start-page: D730 year: 2011 ident: 10.1016/j.cell.2016.01.029_bib43 article-title: DOMINE: a comprehensive collection of known and predicted domain-domain interactions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1229 – volume: 5 start-page: 3650 year: 2014 ident: 10.1016/j.cell.2016.01.029_bib4 article-title: Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism publication-title: Nat. Commun. doi: 10.1038/ncomms4650 – volume: 34 start-page: W350 year: 2006 ident: 10.1016/j.cell.2016.01.029_bib22 article-title: DILIMOT: discovery of linear motifs in proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl159 – volume: 27 start-page: 716 year: 2006 ident: 10.1016/j.cell.2016.01.029_bib24 article-title: Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV publication-title: Hum. Mutat. doi: 10.1002/humu.9430 – volume: 10 start-page: 186 year: 2013 ident: 10.1016/j.cell.2016.01.029_bib34 article-title: Proteoform: a single term describing protein complexity publication-title: Nat. Methods doi: 10.1038/nmeth.2369 – volume: 10 start-page: 47 year: 2013 ident: 10.1016/j.cell.2016.01.029_bib20 article-title: Interactome3D: adding structural details to protein networks publication-title: Nat. Methods doi: 10.1038/nmeth.2289 – volume: 456 start-page: 470 year: 2008 ident: 10.1016/j.cell.2016.01.029_bib41 article-title: Alternative isoform regulation in human tissue transcriptomes publication-title: Nature doi: 10.1038/nature07509 – volume: 106 start-page: 19 year: 2000 ident: 10.1016/j.cell.2016.01.029_bib25 article-title: Partial COL1A2 gene duplication produces features of osteogenesis imperfecta and Ehlers-Danlos syndrome type VII publication-title: Hum. Genet. – volume: 159 start-page: 1212 year: 2014 ident: 10.1016/j.cell.2016.01.029_bib27 article-title: A proteome-scale map of the human interactome network publication-title: Cell doi: 10.1016/j.cell.2014.10.050 – volume: 126 start-page: 37 year: 2006 ident: 10.1016/j.cell.2016.01.029_bib2 article-title: Alternative splicing: new insights from global analyses publication-title: Cell doi: 10.1016/j.cell.2006.06.023 – volume: 7 start-page: 233 year: 1998 ident: 10.1016/j.cell.2016.01.029_bib14 article-title: Domain assignment for protein structures using a consensus approach: characterization and analysis publication-title: Protein Sci. doi: 10.1002/pro.5560070202 – volume: 130 start-page: 1134 year: 2007 ident: 10.1016/j.cell.2016.01.029_bib42 article-title: A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains publication-title: Cell doi: 10.1016/j.cell.2007.08.026 – volume: 42 start-page: D374 year: 2014 ident: 10.1016/j.cell.2016.01.029_bib21 article-title: 3did: a catalog of domain-based interactions of known three-dimensional structure publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt887 – volume: 33 start-page: 736 year: 2015 ident: 10.1016/j.cell.2016.01.029_bib36 article-title: Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3242 – volume: 5 start-page: 597 year: 2008 ident: 10.1016/j.cell.2016.01.029_bib31 article-title: Isoform discovery by targeted cloning, ‘deep-well’ pooling and parallel sequencing publication-title: Nat. Methods doi: 10.1038/nmeth.1224 – volume: 19 start-page: 2324 year: 2009 ident: 10.1016/j.cell.2016.01.029_bib35 article-title: The completion of the Mammalian Gene Collection (MGC) publication-title: Genome Res. doi: 10.1101/gr.095976.109 – volume: 328 start-page: 575 year: 2000 ident: 10.1016/j.cell.2016.01.029_bib40 article-title: GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(00)28419-X – volume: 437 start-page: 1173 year: 2005 ident: 10.1016/j.cell.2016.01.029_bib29 article-title: Towards a proteome-scale map of the human protein-protein interaction network publication-title: Nature doi: 10.1038/nature04209 – volume: 46 start-page: 884 year: 2012 ident: 10.1016/j.cell.2016.01.029_bib8 article-title: Tissue-specific alternative splicing remodels protein-protein interaction networks publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.037 – volume: 46 start-page: 871 year: 2012 ident: 10.1016/j.cell.2016.01.029_bib3 article-title: Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.039 – volume: 323 start-page: 133 year: 2009 ident: 10.1016/j.cell.2016.01.029_bib7 article-title: Real-time DNA sequencing from single polymerase molecules publication-title: Science doi: 10.1126/science.1162986 – volume: 514 start-page: 1 year: 2013 ident: 10.1016/j.cell.2016.01.029_bib16 article-title: Function of alternative splicing publication-title: Gene doi: 10.1016/j.gene.2012.07.083 – volume: 470 start-page: 281 year: 2010 ident: 10.1016/j.cell.2016.01.029_bib6 article-title: High-quality binary interactome mapping publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)70012-4 – volume: 2010 start-page: baq020 year: 2010 ident: 10.1016/j.cell.2016.01.029_bib30 article-title: GeneCards Version 3: the human gene integrator publication-title: Database (Oxford) doi: 10.1093/database/baq020 – volume: 2 start-page: e100 year: 2006 ident: 10.1016/j.cell.2016.01.029_bib12 article-title: Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0020100 – volume: 103 start-page: 8390 year: 2006 ident: 10.1016/j.cell.2016.01.029_bib28 article-title: Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0507916103 – volume: 6 start-page: 83 year: 2009 ident: 10.1016/j.cell.2016.01.029_bib38 article-title: An empirical framework for binary interactome mapping publication-title: Nat. Methods doi: 10.1038/nmeth.1280 – volume: 42 start-page: D222 year: 2014 ident: 10.1016/j.cell.2016.01.029_bib11 article-title: Pfam: the protein families database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1223 – volume: 19 start-page: 1 year: 2005 ident: 10.1016/j.cell.2016.01.029_bib32 article-title: Regulation of apoptosis by alternative pre-mRNA splicing publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.05.026 – volume: 338 start-page: 1587 year: 2012 ident: 10.1016/j.cell.2016.01.029_bib1 article-title: The evolutionary landscape of alternative splicing in vertebrate species publication-title: Science doi: 10.1126/science.1230612 – volume: 39 start-page: W29 year: 2011 ident: 10.1016/j.cell.2016.01.029_bib10 article-title: HMMER web server: interactive sequence similarity searching publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr367 – volume: 6 start-page: 1 year: 2005 ident: 10.1016/j.cell.2016.01.029_bib13 article-title: PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2 publication-title: Neurogenetics doi: 10.1007/s10048-004-0207-y – volume: 480 start-page: 254 year: 2011 ident: 10.1016/j.cell.2016.01.029_bib37 article-title: Mapping intact protein isoforms in discovery mode using top-down proteomics publication-title: Nature doi: 10.1038/nature10575 – volume: 348 start-page: 921 year: 2015 ident: 10.1016/j.cell.2016.01.029_bib15 article-title: Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity publication-title: Science doi: 10.1126/science.aaa0769 – volume: 144 start-page: 986 year: 2011 ident: 10.1016/j.cell.2016.01.029_bib39 article-title: Interactome networks and human disease publication-title: Cell doi: 10.1016/j.cell.2011.02.016 – volume: 338 start-page: 1593 year: 2012 ident: 10.1016/j.cell.2016.01.029_bib19 article-title: Evolutionary dynamics of gene and isoform regulation in Mammalian tissues publication-title: Science doi: 10.1126/science.1228186 – volume: 89 start-page: 307 year: 2007 ident: 10.1016/j.cell.2016.01.029_bib17 article-title: hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes publication-title: Genomics doi: 10.1016/j.ygeno.2006.11.012 – reference: 27482571 - Nat Methods. 2016 Apr;13(4):291 |
RestrictionsOnAccess | restricted access |
SSID | ssj0008555 |
Score | 2.6408148 |
Snippet | While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to... |
SourceID | swepub pubmedcentral liege proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 805 |
SubjectTerms | Alternative Splicing Animals Cloning, Molecular Evolution, Molecular functional properties genes Genetics & genetic processes Génétique & processus génétiques Humans Life sciences Models, Molecular Open Reading Frames Protein Interaction Domains and Motifs Protein Interaction Maps protein isoforms Protein Isoforms - metabolism protein-protein interactions proteins Proteome - analysis Proteome - metabolism Proteome/analysis/metabolism proteomics Sciences du vivant |
Title | Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing |
URI | https://dx.doi.org/10.1016/j.cell.2016.01.029 https://www.ncbi.nlm.nih.gov/pubmed/26871637 https://www.proquest.com/docview/1765108457 https://www.proquest.com/docview/2000213325 http://orbi.ulg.ac.be/handle/2268/238832 https://pubmed.ncbi.nlm.nih.gov/PMC4882190 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280244 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemISReEN-EwWQkeIJojT_i5LGUTQMkNAkGfTvFjj2CqrTammn777mL00oRbA-8pant1j777nf23c-MvRHW-mBlSIMqTUqUbmmBhjJFtGwcInSb1X20xdf8-FR9nuv5DpttcmEorHLQ_VGn99p6eHMwjObBqmkox7cU2DYhCjrPokRzyiqlJL75h602LrSOtxiUuPKx9JA4E2O8aHOcwrvySN1Z3mSc7izoBPtfIPTvWMoR42hvpY4esPsDvOTT2IOHbMe3j9jdeOHk9WN28rOp_cUKgWLND69QEdBeGV8GfkJ0DU3L-w3CmOvAZ2hH-9BZdKa5vebTxbB5eOn5Nzr2Rqv3hJ0eHX6fHafDnQqpQ2ixTvNcVbpyKi907VytlBC1zbystKuMN8YZW9qJQytfomcWlEID59CnK0trnZdBPmW77bL1zxkXWooi1CqXTipisbEhZMGJvDLYrDMJyzaDCW4gHKd7LxawiSz7DSQAIAHAJAMUQMLebeusIt3GraX1RkYwmjSA9uDWeu97gcLy3DZwKYA4tvvnbnEGlQPrAWFpAYhnUOMl7PVG7oCLj1qrWr_sLiAzOeq0QmlzcxnKhRKZlEIn7FmcK9uu4W-gvyqxthnNom0B-mPjb9rmV08CjooXjc0kYW_jfBtV-dj8mGKHzqDrQBQIw9SL_xyqPXaPPlGcepa9ZLvr886_Qhi2tvvogHz6st-vtj_7eDF3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKKwSXimdJeRkJThB140ecHJel1RZKVYkW9mbFjl2CVtlVu6nov2cmTlaKoD1wiza2s_aMZz7bM58JecuMcd5wH3uRqxgp3eIMHGUMaFlZQOgmKdtoi-N0eiY-z-Rsg0z6XBgMq-xsf7DprbXuftnrRnNvWVWY45szaBsRBZ5nyTtkC9DACFX7cPZxbY4zKcM1BjlMfSjeZc6EIC_cHcf4rjRwd-Y3eaetOR5h_wuF_h1MOaAcbd3UwQOy3eFLOg5deEg2XP2I3A03Tl4_Jic_qtJdLgEplnT_N1gC3CyjC09PkK-hqmm7QxiSHegEHGkbOwuraWqu6Xje7R5eOfoNz73B7T0hZwf7p5Np3F2qEFvAFqs4TUUhCyvSTJbWlkIwVprE8ULaQjmlrDK5GVlw8zkszbwQ4OEsLOry3BjruOdPyWa9qN0zQpnkLPOlSLnlAmlsjPeJtywtFDRrVUSSfjC17RjH8eKLue5Dy35pFIBGAehRokEAEXm_rrMMfBu3lpa9jPRAazQ4hFvrfWgFqhcXptJXTCPJdvvczM91YbVxGnBppgHQgMmLyJte7hpmH7ZW1G7RXOpEpWDUMiHVzWUwGYolnDMZkZ2gK-uuwTdgwcqhthpo0boA_rHhm7r62bKAg-UFbzOKyLugb4Mqn6rvY-jQuW4azTLAYWL3P4fqNbk3Pf16pI8Oj788J_fxDQatJ8kLsrm6aNxLwGQr86qdc38AJy4zoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Widespread+Expansion+of+Protein+Interaction+Capabilities+by+Alternative+Splicing&rft.jtitle=Cell&rft.au=Yang%2C+Xinping&rft.au=Coulombe-Huntington%2C+Jasmin&rft.au=Kang%2C+Shuli&rft.au=Sheynkman%2C+Gloria+M.&rft.date=2016-02-11&rft.issn=1097-4172&rft.volume=164&rft.issue=4&rft.spage=805&rft_id=info:doi/10.1016%2Fj.cell.2016.01.029&rft.externalDocID=oai_DiVA_org_uu_280244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |