Longitudinal multiple sclerosis lesion segmentation: Resource and challenge

In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 148; pp. 77 - 102
Main Authors Carass, Aaron, Roy, Snehashis, Jog, Amod, Cuzzocreo, Jennifer L., Magrath, Elizabeth, Gherman, Adrian, Button, Julia, Nguyen, James, Prados, Ferran, Sudre, Carole H., Jorge Cardoso, Manuel, Cawley, Niamh, Ciccarelli, Olga, Wheeler-Kingshott, Claudia A.M., Ourselin, Sébastien, Catanese, Laurence, Deshpande, Hrishikesh, Maurel, Pierre, Commowick, Olivier, Barillot, Christian, Tomas-Fernandez, Xavier, Warfield, Simon K., Vaidya, Suthirth, Chunduru, Abhijith, Muthuganapathy, Ramanathan, Krishnamurthi, Ganapathy, Jesson, Andrew, Arbel, Tal, Maier, Oskar, Handels, Heinz, Iheme, Leonardo O., Unay, Devrim, Jain, Saurabh, Sima, Diana M., Smeets, Dirk, Ghafoorian, Mohsen, Platel, Bram, Birenbaum, Ariel, Greenspan, Hayit, Bazin, Pierre-Louis, Calabresi, Peter A., Crainiceanu, Ciprian M., Ellingsen, Lotta M., Reich, Daniel S., Prince, Jerry L., Pham, Dzung L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2017
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2016.12.064

Cover

Abstract In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website22The Challenge Evaluation Website is: http://smart-stats-tools.org/lesion-challenge-2015 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters. •Public lesion data base of 21 training data sets and 61 testing data sets.•Fully automated evaluation website.•Comparison between 14 state-of-the-art algorithms and 2 manual delineators.
AbstractList In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website22The Challenge Evaluation Website is: http://smart-stats-tools.org/lesion-challenge-2015 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters. •Public lesion data base of 21 training data sets and 61 testing data sets.•Fully automated evaluation website.•Comparison between 14 state-of-the-art algorithms and 2 manual delineators.
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website22The Challenge Evaluation Website is:http://smart-stats-tools.org/lesion-challenge-2015as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website 2 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: 1) the sharing of a rich data set; 2) collaboration and comparison of the various avenues of research being pursued in the community; and 3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website1 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website2 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.
Author Ciccarelli, Olga
Birenbaum, Ariel
Platel, Bram
Sudre, Carole H.
Cuzzocreo, Jennifer L.
Catanese, Laurence
Jain, Saurabh
Iheme, Leonardo O.
Roy, Snehashis
Magrath, Elizabeth
Pham, Dzung L.
Bazin, Pierre-Louis
Deshpande, Hrishikesh
Maurel, Pierre
Muthuganapathy, Ramanathan
Nguyen, James
Cawley, Niamh
Vaidya, Suthirth
Warfield, Simon K.
Arbel, Tal
Unay, Devrim
Jesson, Andrew
Ghafoorian, Mohsen
Reich, Daniel S.
Handels, Heinz
Greenspan, Hayit
Ourselin, Sébastien
Krishnamurthi, Ganapathy
Carass, Aaron
Wheeler-Kingshott, Claudia A.M.
Chunduru, Abhijith
Sima, Diana M.
Barillot, Christian
Jog, Amod
Commowick, Olivier
Smeets, Dirk
Button, Julia
Crainiceanu, Ciprian M.
Jorge Cardoso, Manuel
Tomas-Fernandez, Xavier
Maier, Oskar
Ellingsen, Lotta M.
Prince, Jerry L.
Gherman, Adrian
Prados, Ferran
Calabresi, Peter A.
AuthorAffiliation a Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
j Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA
o Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
i VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
e Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
f Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
d Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
v Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland
c CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
m Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
q Institute for Computing and Information Sciences, Radboud University, 6525 HP Nijmegen, Netherlands
u Department of Neur
AuthorAffiliation_xml – name: e Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
– name: n Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
– name: u Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany
– name: h Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
– name: a Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– name: t Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
– name: i VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
– name: r Diagnostic Image Analysis Group, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
– name: f Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
– name: l Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
– name: s Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
– name: v Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland
– name: m Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
– name: b Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
– name: p ico metrix , 3012 Leuven, Belgium
– name: d Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– name: k Harvard Medical School, Boston, MA 02115, USA
– name: q Institute for Computing and Information Sciences, Radboud University, 6525 HP Nijmegen, Netherlands
– name: g NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
– name: w Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
– name: o Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
– name: c CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
– name: j Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA
Author_xml – sequence: 1
  givenname: Aaron
  surname: Carass
  fullname: Carass, Aaron
  email: aaron_carass@jhu.edu
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 2
  givenname: Snehashis
  surname: Roy
  fullname: Roy, Snehashis
  organization: CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
– sequence: 3
  givenname: Amod
  surname: Jog
  fullname: Jog, Amod
  organization: Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 4
  givenname: Jennifer L.
  surname: Cuzzocreo
  fullname: Cuzzocreo, Jennifer L.
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 5
  givenname: Elizabeth
  surname: Magrath
  fullname: Magrath, Elizabeth
  organization: CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
– sequence: 6
  givenname: Adrian
  surname: Gherman
  fullname: Gherman, Adrian
  organization: Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
– sequence: 7
  givenname: Julia
  surname: Button
  fullname: Button, Julia
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 8
  givenname: James
  surname: Nguyen
  fullname: Nguyen, James
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 9
  givenname: Ferran
  surname: Prados
  fullname: Prados, Ferran
  organization: Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
– sequence: 10
  givenname: Carole H.
  surname: Sudre
  fullname: Sudre, Carole H.
  organization: Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
– sequence: 11
  givenname: Manuel
  surname: Jorge Cardoso
  fullname: Jorge Cardoso, Manuel
  organization: Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
– sequence: 12
  givenname: Niamh
  surname: Cawley
  fullname: Cawley, Niamh
  organization: NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
– sequence: 13
  givenname: Olga
  surname: Ciccarelli
  fullname: Ciccarelli, Olga
  organization: NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
– sequence: 14
  givenname: Claudia A.M.
  surname: Wheeler-Kingshott
  fullname: Wheeler-Kingshott, Claudia A.M.
  organization: NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
– sequence: 15
  givenname: Sébastien
  surname: Ourselin
  fullname: Ourselin, Sébastien
  organization: Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
– sequence: 16
  givenname: Laurence
  surname: Catanese
  fullname: Catanese, Laurence
  organization: VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
– sequence: 17
  givenname: Hrishikesh
  surname: Deshpande
  fullname: Deshpande, Hrishikesh
  organization: VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
– sequence: 18
  givenname: Pierre
  surname: Maurel
  fullname: Maurel, Pierre
  organization: VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
– sequence: 19
  givenname: Olivier
  surname: Commowick
  fullname: Commowick, Olivier
  organization: VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
– sequence: 20
  givenname: Christian
  surname: Barillot
  fullname: Barillot, Christian
  organization: VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
– sequence: 21
  givenname: Xavier
  surname: Tomas-Fernandez
  fullname: Tomas-Fernandez, Xavier
  organization: Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA
– sequence: 22
  givenname: Simon K.
  surname: Warfield
  fullname: Warfield, Simon K.
  organization: Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA
– sequence: 23
  givenname: Suthirth
  surname: Vaidya
  fullname: Vaidya, Suthirth
  organization: Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
– sequence: 24
  givenname: Abhijith
  surname: Chunduru
  fullname: Chunduru, Abhijith
  organization: Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
– sequence: 25
  givenname: Ramanathan
  surname: Muthuganapathy
  fullname: Muthuganapathy, Ramanathan
  organization: Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
– sequence: 26
  givenname: Ganapathy
  surname: Krishnamurthi
  fullname: Krishnamurthi, Ganapathy
  organization: Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
– sequence: 27
  givenname: Andrew
  surname: Jesson
  fullname: Jesson, Andrew
  organization: Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
– sequence: 28
  givenname: Tal
  surname: Arbel
  fullname: Arbel, Tal
  organization: Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
– sequence: 29
  givenname: Oskar
  surname: Maier
  fullname: Maier, Oskar
  organization: Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
– sequence: 30
  givenname: Heinz
  surname: Handels
  fullname: Handels, Heinz
  organization: Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
– sequence: 31
  givenname: Leonardo O.
  surname: Iheme
  fullname: Iheme, Leonardo O.
  organization: Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
– sequence: 32
  givenname: Devrim
  surname: Unay
  fullname: Unay, Devrim
  organization: Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
– sequence: 33
  givenname: Saurabh
  surname: Jain
  fullname: Jain, Saurabh
  organization: icometrix, 3012 Leuven, Belgium
– sequence: 34
  givenname: Diana M.
  surname: Sima
  fullname: Sima, Diana M.
  organization: icometrix, 3012 Leuven, Belgium
– sequence: 35
  givenname: Dirk
  surname: Smeets
  fullname: Smeets, Dirk
  organization: icometrix, 3012 Leuven, Belgium
– sequence: 36
  givenname: Mohsen
  surname: Ghafoorian
  fullname: Ghafoorian, Mohsen
  organization: Institute for Computing and Information Sciences, Radboud University, 6525 HP Nijmegen, Netherlands
– sequence: 37
  givenname: Bram
  surname: Platel
  fullname: Platel, Bram
  organization: Diagnostic Image Analysis Group, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
– sequence: 38
  givenname: Ariel
  surname: Birenbaum
  fullname: Birenbaum, Ariel
  organization: Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
– sequence: 39
  givenname: Hayit
  surname: Greenspan
  fullname: Greenspan, Hayit
  organization: Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
– sequence: 40
  givenname: Pierre-Louis
  surname: Bazin
  fullname: Bazin, Pierre-Louis
  organization: Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany
– sequence: 41
  givenname: Peter A.
  surname: Calabresi
  fullname: Calabresi, Peter A.
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 42
  givenname: Ciprian M.
  surname: Crainiceanu
  fullname: Crainiceanu, Ciprian M.
  organization: Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
– sequence: 43
  givenname: Lotta M.
  surname: Ellingsen
  fullname: Ellingsen, Lotta M.
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 44
  givenname: Daniel S.
  surname: Reich
  fullname: Reich, Daniel S.
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– sequence: 45
  givenname: Jerry L.
  surname: Prince
  fullname: Prince, Jerry L.
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 46
  givenname: Dzung L.
  surname: Pham
  fullname: Pham, Dzung L.
  organization: CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28087490$$D View this record in MEDLINE/PubMed
https://inserm.hal.science/inserm-01480156$$DView record in HAL
BookMark eNqdkktv1DAUhSNURB_wF1AkNizIYCeOHywQpSoUMRISgrXlODcZD4492Mmg-fd4mtLCrEas_Drnu_a5Ps9OnHeQZTlGC4wwfb1eOJiCN4PqYVGmnQUuF4iSR9kZRqIuRM3Kk_28rgqOsTjNzmNcI4QEJvxJdlpyxBkR6Cz7vPSuN-PUGqdsPkx2NBsLedQWgo8m5hai8S6P0A_gRjWmxZv8K0Q_BQ25cm2uV8pacD08zR53ykZ4djdeZN8_XH-7uimWXz5-urpcFppWZCw63TLcYkE6rYVoCKakrlvGgGPdkqYqkVC0bjuNGtYhxWvalVjQsu5o0yncVBeZmLmT26jdr1RdbkLKIuwkRnIfkFzLh4DkPiCJS5kCSt63s3czNQO0Or0pqAe_V0b-e-LMSvZ-K-uKEEbLBHg1A1YHtpvLpTQuQhgkSikjXNMtTvKXd_WC_zlBHOVgogZrlQM_RYk5Y5zQCtEjpBQTwcqKJemLA-k69SN18BZICOFVtb_q87_fen_bP91PAj4LdOp1DND9R473Vm3m35FSM_YYwPsZAOmnbA0EGbUBp6E1AfQoW2-Ogbw7gGhrnNHK_oDdcYjfJW0MPA
CitedBy_id crossref_primary_10_1016_j_artmed_2024_102872
crossref_primary_10_3389_fnins_2022_981523
crossref_primary_10_1016_j_neuroimage_2019_03_068
crossref_primary_10_1111_jon_12718
crossref_primary_10_1016_j_compmedimag_2018_10_002
crossref_primary_10_1007_s11517_021_02414_x
crossref_primary_10_3389_fnins_2023_1177540
crossref_primary_10_1016_j_nicl_2020_102542
crossref_primary_10_1007_s11831_020_09403_7
crossref_primary_10_1016_j_bspc_2017_07_008
crossref_primary_10_1007_s00234_022_03019_3
crossref_primary_10_1002_jmri_28847
crossref_primary_10_1002_nbm_5143
crossref_primary_10_1016_j_irbm_2022_05_002
crossref_primary_10_1016_j_dib_2017_04_004
crossref_primary_10_1038_s42256_023_00670_0
crossref_primary_10_1016_j_compbiomed_2021_104697
crossref_primary_10_1016_j_compbiomed_2023_107840
crossref_primary_10_1016_j_media_2025_103503
crossref_primary_10_1177_0271678X17740501
crossref_primary_10_3390_diagnostics12020230
crossref_primary_10_3390_s20113243
crossref_primary_10_1016_j_media_2020_101952
crossref_primary_10_1016_j_media_2021_101972
crossref_primary_10_1109_JBHI_2021_3109119
crossref_primary_10_1016_j_neuroimage_2023_119898
crossref_primary_10_1111_jon_13014
crossref_primary_10_1016_j_bspc_2022_104565
crossref_primary_10_1016_j_jneumeth_2025_110424
crossref_primary_10_1016_j_nicl_2019_101849
crossref_primary_10_3389_fnins_2023_1188336
crossref_primary_10_1002_jmri_28275
crossref_primary_10_1016_j_neuroimage_2021_118568
crossref_primary_10_1016_j_compmedimag_2020_101772
crossref_primary_10_1002_hbm_24568
crossref_primary_10_1002_hbm_26109
crossref_primary_10_1016_j_nicl_2023_103491
crossref_primary_10_1016_j_neucom_2019_09_027
crossref_primary_10_1109_JBHI_2022_3151741
crossref_primary_10_3389_fnins_2023_1167612
crossref_primary_10_1109_ACCESS_2019_2900198
crossref_primary_10_1007_s00234_022_03074_w
crossref_primary_10_1038_s41592_020_01008_z
crossref_primary_10_1038_s41597_021_00946_3
crossref_primary_10_1016_j_patcog_2023_109400
crossref_primary_10_1016_j_nicl_2020_102522
crossref_primary_10_1038_s41698_024_00624_8
crossref_primary_10_61186_shefa_12_1_67
crossref_primary_10_1016_j_bspc_2018_12_010
crossref_primary_10_3389_fnins_2022_964250
crossref_primary_10_1038_s41597_024_03986_7
crossref_primary_10_1098_rsos_241052
crossref_primary_10_1117_1_JMI_5_1_011007
crossref_primary_10_1016_j_media_2023_102796
crossref_primary_10_3892_etm_2021_10583
crossref_primary_10_1016_j_media_2023_102846
crossref_primary_10_1016_j_bspc_2019_101591
crossref_primary_10_1109_ACCESS_2024_3440318
crossref_primary_10_1016_j_engappai_2017_06_006
crossref_primary_10_1016_j_nicl_2020_102357
crossref_primary_10_3174_ajnr_A7858
crossref_primary_10_3389_fnins_2024_1473132
crossref_primary_10_1016_j_artmed_2018_08_008
crossref_primary_10_1016_j_bspc_2018_12_021
crossref_primary_10_1016_j_compbiomed_2020_103735
crossref_primary_10_1016_j_nicl_2024_103611
crossref_primary_10_1080_21681163_2022_2129454
crossref_primary_10_32604_cmc_2020_012448
crossref_primary_10_1038_s41598_024_72649_9
crossref_primary_10_1038_s41598_023_48578_4
crossref_primary_10_1142_S0129065725500066
crossref_primary_10_1155_2021_4138137
crossref_primary_10_1016_j_neuroimage_2018_08_003
crossref_primary_10_1016_j_metrad_2024_100082
crossref_primary_10_1109_ACCESS_2018_2886371
crossref_primary_10_1007_s11042_024_19333_2
crossref_primary_10_1109_ACCESS_2024_3489798
crossref_primary_10_1109_JPROC_2022_3141367
crossref_primary_10_1212_WNL_0000000000012884
crossref_primary_10_1109_TNB_2017_2763246
crossref_primary_10_3390_math11173771
crossref_primary_10_1016_j_ijmedinf_2022_104965
crossref_primary_10_1055_a_2133_2138
crossref_primary_10_1016_j_nicl_2018_101638
crossref_primary_10_1016_j_media_2022_102571
crossref_primary_10_1088_2057_1976_ab08fc
crossref_primary_10_1038_s41598_020_64803_w
crossref_primary_10_1117_1_JMI_11_2_024013
crossref_primary_10_1109_JTEHM_2022_3172025
crossref_primary_10_1016_j_nicl_2019_102104
crossref_primary_10_1016_j_nicl_2020_102335
crossref_primary_10_1016_j_media_2020_101759
crossref_primary_10_1016_j_nicl_2022_102979
crossref_primary_10_3389_fninf_2020_610967
crossref_primary_10_3389_fnins_2022_1007453
crossref_primary_10_1016_j_neurad_2020_01_083
crossref_primary_10_1038_s41598_018_31911_7
crossref_primary_10_1109_TCAD_2023_3309744
crossref_primary_10_1109_TMI_2018_2859478
crossref_primary_10_1016_j_nicl_2019_102074
crossref_primary_10_1016_j_media_2020_101747
crossref_primary_10_1212_WNL_0000000000005256
crossref_primary_10_1109_ACCESS_2019_2949078
crossref_primary_10_1016_j_compbiomed_2024_109336
crossref_primary_10_1145_3615862
crossref_primary_10_1111_jon_12611
crossref_primary_10_1007_s00062_021_01089_z
crossref_primary_10_1016_j_nicl_2019_101938
crossref_primary_10_1016_j_procs_2024_09_210
crossref_primary_10_1016_j_compbiomed_2022_105402
crossref_primary_10_1016_j_nicl_2022_103065
crossref_primary_10_1136_bmjopen_2021_053103
crossref_primary_10_1016_j_clinimag_2020_11_006
crossref_primary_10_1111_jon_70024
crossref_primary_10_1016_j_compbiomed_2023_107021
crossref_primary_10_1016_j_media_2021_102312
crossref_primary_10_3389_fmed_2022_797586
crossref_primary_10_1007_s11042_021_11699_x
crossref_primary_10_3174_ajnr_A5594
crossref_primary_10_1016_j_nicl_2019_102085
crossref_primary_10_1016_j_compmedimag_2019_101673
crossref_primary_10_1136_bmjopen_2020_042660
crossref_primary_10_1016_j_ynirp_2024_100195
crossref_primary_10_3390_diagnostics13162670
crossref_primary_10_1111_jon_12506
crossref_primary_10_1016_j_neuroimage_2018_09_081
crossref_primary_10_1097_RLI_0000000000000551
crossref_primary_10_1016_j_nicl_2021_102854
crossref_primary_10_1007_s11682_018_9970_5
crossref_primary_10_26599_TST_2024_9010047
crossref_primary_10_1016_j_nicl_2022_103205
crossref_primary_10_1073_pnas_1818978116
crossref_primary_10_1109_TMI_2022_3166131
crossref_primary_10_1002_ima_22941
crossref_primary_10_3389_fnins_2024_1457420
crossref_primary_10_1016_j_neuroimage_2021_118589
crossref_primary_10_1016_j_nicl_2019_101709
crossref_primary_10_1109_ACCESS_2020_3038909
crossref_primary_10_3389_fmed_2021_740248
crossref_primary_10_1038_s41598_023_31207_5
crossref_primary_10_1016_j_neuroimage_2020_117471
crossref_primary_10_1109_TBME_2021_3117407
crossref_primary_10_1007_s00330_019_06593_y
crossref_primary_10_1038_s41467_018_07619_7
crossref_primary_10_1177_1352458519856843
Cites_doi 10.1007/s10439-005-9009-0
10.1093/brain/118.6.1601
10.1007/978-3-319-24574-4_1
10.1016/0734-189X(84)90131-2
10.1109/CBMS.2001.941749
10.1109/ICPR.2006.318
10.1007/3-540-45729-1_12
10.1117/12.2043917
10.1109/42.363096
10.1007/978-3-319-12289-2_11
10.1109/ISBI.2010.5490140
10.1016/j.jneumeth.2014.11.011
10.1016/j.media.2009.06.003
10.1117/12.2082157
10.1017/S0317167100027724
10.1109/SIU.2013.6531409
10.1016/j.media.2012.05.008
10.1007/978-3-642-15558-1_3
10.1155/2015/813696
10.1212/WNL.58.8.1147
10.1109/TMI.2009.2013851
10.1109/TMI.2007.906087
10.1109/TMI.2004.828354
10.1109/TMI.2011.2114671
10.1016/j.neuroimage.2011.03.080
10.1007/978-3-319-10581-9_31
10.1016/j.media.2012.09.004
10.1016/S1361-8415(00)00003-7
10.2307/3001968
10.1098/rspl.1895.0041
10.1007/978-3-642-04271-3_71
10.1109/ISBI.2004.1398498
10.1016/j.nicl.2015.05.003
10.1109/IEMBS.2004.1403532
10.1109/ISBI.2008.4540940
10.1007/3-540-48714-X_12
10.1016/j.neuroimage.2011.02.076
10.1016/j.neuroimage.2009.09.005
10.1109/TMI.2010.2046908
10.1016/j.neuroimage.2014.04.056
10.54294/lmkqvm
10.1007/978-3-642-15745-5_36
10.1016/j.neuroimage.2011.11.032
10.1007/978-3-319-46723-8_54
10.1109/TMI.2015.2393853
10.1016/S1361-8415(02)00056-7
10.1109/ISBI.2012.6235867
10.1002/(SICI)1522-2586(199904)9:4<519::AID-JMRI3>3.0.CO;2-M
10.1007/3-540-45786-0_45
10.1016/j.neuroimage.2005.09.054
10.1002/hbm.22409
10.1117/12.595602
10.1109/ISBI.2011.5872683
10.1007/s00415-015-7689-4
10.1007/s00234-015-1552-2
10.1002/ana.410410123
10.1007/978-3-319-10404-1_65
10.1002/ana.22366
10.1109/42.938237
10.1109/42.712135
10.1109/ISBI.2015.7163834
10.1186/1471-2105-8-S2-S4
10.1016/j.media.2007.06.004
10.1007/978-3-319-19992-4_40
10.1109/42.816072
10.1016/j.neuroimage.2003.10.012
10.1007/s12021-011-9109-y
10.3174/ajnr.A3172
10.54294/1pbpd4
10.1016/j.mri.2012.01.007
10.1007/978-3-319-10443-0_14
10.1016/j.compbiomed.2007.12.005
10.1016/j.media.2016.08.014
10.1016/S0140-6736(08)61620-7
10.1109/TMI.2014.2377694
10.1016/S0733-8619(18)31146-0
10.1109/TPAMI.1980.4766964
10.1109/TMI.2016.2528821
10.1109/42.906424
10.1016/j.media.2016.08.009
10.1109/JBHI.2015.2439242
10.1016/j.nic.2008.09.002
10.1007/11566465_51
10.1109/TMI.2013.2258403
10.1109/42.491417
10.1097/WCO.0000000000000095
10.1007/978-3-319-24888-2_24
10.1002/ana.22472
10.1002/ana.22622
10.1007/s00415-012-6762-5
10.1109/ISBI.2007.356937
10.1002/jmri.24293
10.1109/42.414608
10.1007/s12021-009-9061-2
10.1016/S1053-8119(03)00406-3
10.1007/978-3-642-40811-3_24
10.1109/42.640750
10.2307/1932409
10.1007/s10994-006-6226-1
10.1016/j.media.2016.07.009
10.1098/rstb.2001.0915
10.1007/s00234-014-1343-1
10.1007/3-540-45729-1_46
10.1016/j.nicl.2013.03.002
10.1016/S1474-4422(12)70003-0
10.1007/978-3-642-40811-3_92
10.1016/j.neuroimage.2011.03.045
10.3174/ajnr.A0701
10.1016/j.ins.2011.10.011
10.1016/j.neuroimage.2006.04.211
10.1016/j.media.2008.06.008
10.1023/A:1010933404324
10.1109/TMI.2015.2419072
10.1117/12.878237
10.1177/1051228405283362
10.1016/S0140-6736(14)61682-2
10.1117/12.481377
10.1007/978-3-642-15705-9_14
10.1117/1.JMI.1.2.024003
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Mar 1, 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Mar 1, 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
1XC
VOOES
5PM
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2016.12.064
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
MEDLINE
ProQuest One Psychology
Engineering Research Database


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 102
ExternalDocumentID oai:kclpure.kcl.ac.uk:publications/b5ad2986-7282-46dd-ba6a-238e71f8525b
PMC5344762
oai:HAL:inserm-01480156v1
4318824701
28087490
10_1016_j_neuroimage_2016_12_064
S1053811916307819
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS060910
– fundername: NINDS NIH HHS
  grantid: R01 NS070906
– fundername: Medical Research Council
  grantid: MR/J01107X/1
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
PUEGO
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
1XC
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c634t-fcd71d194fcc99b416455d77e81cd4b3209a65dfc0b7f0a856f219625f6bfa1b3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Sun Oct 26 04:02:39 EDT 2025
Tue Sep 30 16:53:24 EDT 2025
Sat Oct 25 08:32:28 EDT 2025
Tue Oct 07 10:02:04 EDT 2025
Wed Oct 01 14:24:08 EDT 2025
Tue Oct 07 06:44:33 EDT 2025
Mon Jul 21 06:02:33 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Wed Oct 01 03:43:04 EDT 2025
Fri Feb 23 02:25:09 EST 2024
Tue Oct 14 19:31:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Magnetic resonance imaging
Multiple sclerosis
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
public-domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-fcd71d194fcc99b416455d77e81cd4b3209a65dfc0b7f0a856f219625f6bfa1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC5344762
These authors co-organized the challenge, all others contributed results.
ORCID 0000-0001-7345-6752
0000-0003-2539-7414
0000-0002-1589-7696
OpenAccessLink https://proxy.k.utb.cz/login?url=http://discovery.ucl.ac.uk/id/eprint/1536181
PMID 28087490
PQID 1874448332
PQPubID 2031077
PageCount 26
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2016_12_064
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5344762
hal_primary_oai_HAL_inserm_01480156v1
proquest_miscellaneous_1877846306
proquest_miscellaneous_1861497237
proquest_journals_1874448332
pubmed_primary_28087490
crossref_primary_10_1016_j_neuroimage_2016_12_064
crossref_citationtrail_10_1016_j_neuroimage_2016_12_064
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_12_064
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_12_064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Carass, Cuzzocreo, Wheeler, Bazin, Resnick, Prince (bib17) 2010; 56
Jog, Carass, Roy, Pham, Prince (bib60) 2017; 35
Mendrik, Vincken, Kuijf, Breeuwer, Bouvy, de Bresser, Alansary, de Bruijn, Carass, El-Baz, Jog, Katyali, Khan, van der Lijn, Mahmood, Mukherjee, van Opbroek, Paneri, Pereira, Persson, Rajchl, Sarikayan, Smedby, Silva, Vrooman, Vyas, Wang, Zhaon, Biessels, Viergever (bib78) 2015
Jonkman, Lopez Soriano, Amor, Barkhof, van der Valk, Vrenken, Geurts (bib62) 2015; 262
Tomas-Fernandez, Warfield (bib113) 2015; 34
Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Evans, A.C., 1997. BrainWeb: Online interface to a 3D MRI simulated brain database. In: Proceedings of the 3rd International Conference on Functional Mapping of the Human Brain, p. S425.
Gaitán, Shea, Evangelou, Stone, Fenton, Bielekova, Massacesi, Reich (bib39) 2011; 70
Tomas-Fernandez, X., Warfield, S.K., 2012. Population intensity outliers or a new model for brain WM abnormalities. In: Proceedings of the 9th International Symposium on Biomedical Imaging (ISBI 2012), pp. 1543–1546.
Breiman (bib12) 2001; 45
Xie, Y., Tao, X., 2011. White matter lesion segmentation using machine learning and weakly labeled MR images. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2011), Orlando, FL, February 12–17, 2011, pp. 79622G–79622G–9.
Elliott, Arnold, Collins, Arbel (bib29) 2013; 32
Prima, S., Ayache, N., Janke, A., Francis, S.J., Arnold, D.L., Collins, D.L., 2002. Statistical analysis of longitudinal MRI data: applications for detection of disease activity in MS. In: Proceedings of the 5th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2002), Springer Berlin Heidelberg. pp. 363–371.
Styner, M., Lee, J., Chin, B., Chin, M.S., Commowick, O., Tran, H.H., Markovic-Plese, S., Jewells, V., Warfield, S., 2008. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2008) 3D Segmentation in the Clinic: A Grand Challenge II, pp. 1–6.
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest, Lanczi, Gerstner, Weber, Arbel, Avants, Ayache, Buendia, Collins, Cordier, Corso, Criminisi, Das, Delingette, Demiralp, Durst, Dojat, Doyle, Festa, Forbes, Geremia, Glocker, Golland, Guo, Hamamci, Iftekharuddin, Jena, John, Konukoglu, Lashkari, Mariz, Meier, Pereira, Precup, Price, Riklin-Raviv, Reza, Ryan, Sarikaya, Schwartz, Shin, Shotton, Silva, Sousa, Subbanna, Székely, Taylor, Thomas, Tustison, Unal, Vasseur, Wintermark, Ye, Zhao, Zhao, Zikic, Prastawa, Reyes, Van Leemput (bib79) 2015; 34
Mechrez, Goldberger, Greenspan (bib76) 2016
Shiee, Bazin, Ozturk, Reich, Calabresi, Pham (bib104) 2010; 49
World Health Organization, 2008. Atlas: Multiple Sclerosis Resources in the World 2008. Springer, Geneva, Switzerland.
Valverde, Oliver, Roura, González-Villà, Pareto, Vilanova, Ramió-Torrentà, Rovira, Lladó (bib116) 2017; 35
Collins, Zijdenbos, Kollokian, Sled, Kabani, Holmes, Evans (bib21) 1998; 17
Confavreux, Vukusic (bib23) 2008; 18
Kamber, Shinghal, Collins, Francis, Evans (bib63) 1996; 14
Zhang, Brady, Smith (bib129) 2001; 20
Kwan, Evans, Pike (bib67) 1999; 18
Collins, D.L., Montagnat, J., Zijdenbos, A.P., Evans, A.C., Arnold, D.L., 2001. Automated estimation of brain volume in multiple sclerosis with BICCR. In: 17th Inf. Proceedings in Med. Imaging (IPMI 2001), Springer Berlin Heidelberg. pp. 141–147.
Bosc, Heitz, Armspach, Namer, Gounot, Rumbach (bib11) 2003; 20
Wu, Warfield, Tan, Wells, Meier, van Schijndel, Barkhof, Guttmanna (bib125) 2006; 32
Heimann, van Ginneken, Styner, Arzhaeva, Aurich, Bauer, Beck, Becker, Beichel, Bekes, Bello, Binnig, Bischof, Bornik, Cashman, Ying, Cordova, Dawant, Fidrich, Furst, Furukawa, Grenacher, Hornegger, Kainmuller, Kitney, Kobatake, Lamecker, Lange, Lee, Lennon, Li, Li, Meinzer, Nemeth, Raicu, Rau, van Rikxoort, Rousson, Rusko, Saddi, Schmidt, Seghers, Shimizu, Slagmolen, Sorantin, Soza, Susomboon, Waite, Wimmer, Wolf (bib53) 2009; 28
Rey, D., Subsol, G., Delingette, H., Ayache, N., 1999. Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. In: 16th Inf. Proceedings in Med. Imaging (IPMI 1999), Springer Berlin Heidelberg. pp. 154–167.
Jain, Sima, Ribbens, Cambron, Maertens, Van Hecke, De Mey, Barkhof, Steenwijk, Daams, Maes, Van Huffel, Vrenken, Smeets (bib58) 2015; 8
.
Roy, S., Carass, A., Prince, J.L., Pham, D.L., 2015a. Longitudinal patch-based segmentation of multiple sclerosis white matter lesions. In: Machine Learning in Medical Imaging (MLMI 2015), Springer Berlin Heidelberg. pp. 194–202.
Sweeney, Shinohara, Shea, Reich, Crainiceanu (bib108) 2013; 34
Coupé, Yger, Prima, Hellier, Kervrann, Barillot (bib24) 2008; 27
Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, M., Schnabel, J.A., 2013. Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Proceedings of the 16th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2013), Springer Berlin Heidelberg. pp. 187–194.
Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M., 2014. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Proceedings of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2014), Springer Berlin Heidelberg. pp. 520–527.
Modat, Cash, Daga, Winston, Duncan, Ourselin (bib81) 2014; 1
Lladó, Oliver, Cabezas, Freixenet, Vilanova, Quiles, Valls, Ramió-Torrentà, Rovira (bib69) 2012; 186
He, Grossman, Ge, Mannon (bib52) 2001; 22
Li, H., Zhao, R., Wang, X., 2014. Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks for Pixelwise Classification. CoRR
Pearson (bib84) 1895; 58
Elliott, C., Francois, S., Arnold, D.L., Collins, D.L., Arbel, T., 2010. Bayesian classification of multiple sclerosis lesions in longitudinal MRI using subtraction images. In: Proceedings of the 13th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2010), Springer Berlin Heidelberg. pp. 290–297.
Barnes, C., Shechtman, E., Golman, D.B., Finkelstein, A., 2010. The generalized patchmatch correspondence algorithm. In: 2010 European Conference on Computer Vision (ECCV 2010). Springer Berlin Heidelberg. pp. 29–43.
Reuter, Fischl (bib88) 2011; 57
Global Burden of Disease Study 2013 Mortality and Causes of Death Collaborators, 2015. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171.
Qian, Cadavid, Wolansky, Cook, Naismith (bib87) 2011; 70
Evans, Frank, Antel, Miller (bib32) 1997; 41
Heinrich, Jenkinson, Bhushan, Matin, Gleeson, Brady, Schnabel (bib54) 2012; 16
Deshpande, H., Maurel, P., Barillot, C., 2015. Adaptive dictionary learning for competitive classification of multiple sclerosis lesions. In: Proceedings of the 12th International Symposium on Biomedical Imaging (ISBI 2015), pp. 136–139.
Jog, A., Carass, A., Pham, D.L., Prince, J.L., 2015. Multi-output decision trees for lesion segmentation in multiple sclerosis. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2015), Orlando, FL, February 21–26, 2015, pp. 94131C–94131C–6.
Subbanna, N., Precup, D., Arnold, D.L., Arbel, T., 2015. IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI. In: 24th Inf. Proceedings in Med. Imaging (IPMI 2015), Springer Berlin Heidelberg. pp. 514–526.
Aït-Ali, L., Prima, S., Heiler, P., Carsin, B., Edan, G., Barillot, C., 2005. STREM: a robust multidimensional parametric method to segment MS lesions in MRI. In: Proceedings of the 8th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2005). Springer Berlin Heidelberg. pp. 409–416.
García-Lorenzo, Prima, Arnold, Collins, Barillot (bib43) 2011; 30
Roy, S., Carass, A., Prince, J.L., Pham, D.L., 2014a. Subject specific sparse dictionary learning for atlas based brain MRI segmentation. In: Machine Learning in Medical Imaging (MLMI 2014), Springer Berlin Heidelberg. pp. 248–255.
Khayati, Vafadust, Towhidkhah, Nabavi (bib65) 2008; 38
Harmouche, R., Collins, D.L., Arnold, D.L., Francis, S., Arbel, T., 2006. Bayesian MS lesion classification modeling regional and local spatial information. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR), 2006, pp. 984–987.
Iheme, L.O., Unay, D., Baskaya, O., Sennaz, A., Kandemir, M., Yalciner, Z.B., Tepe, M.S., Kahraman, T., Unal, G., 2013. Concordance between computer-based neuroimaging findings and expert assessments in dementia grading. In: Signal Processing and Communications Applications Conference (SIU), pp. 1–4.
García-Lorenzo, D., Prima, S., Collins, D.L., Arnold, D.L., Morrissey, S.P., Barillot, C., 2008. Combining robust expectation maximization and mean shift algorithms for multiple sclerosis brain segmentation. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2008) workshop on Medical Image Analysis on Multiple Sclerosis (MIAMS 2008), pp. 82–91.
Xue, Shen, Davatzikos (bib127) 2006; 30
Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R., 2015. Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2015). Springer Berlin Heidelberg. pp. 3–11.
Karpate, Commowick, Barillot, Edan (bib64) 2014; 8680
Sweeney, Shinohara, Shiee, Mateen, Chudgar, Cuzzocreo, Calabresi, Pham, Reich, Crainiceanu (bib109) 2013; 2
Elliott, C., Arnold, D.L., Collins, D.L., Arbel, T., 201
Qian (10.1016/j.neuroimage.2016.12.064_bib87) 2011; 70
Geurts (10.1016/j.neuroimage.2016.12.064_bib48) 2007; 8
Sweeney (10.1016/j.neuroimage.2016.12.064_bib108) 2013; 34
Wu (10.1016/j.neuroimage.2016.12.064_bib125) 2006; 32
Schmidt (10.1016/j.neuroimage.2016.12.064_bib102) 2012; 59
Vrenken (10.1016/j.neuroimage.2016.12.064_bib118) 2013; 260
Filippi (10.1016/j.neuroimage.2016.12.064_bib35) 1995; 118
Confavreux (10.1016/j.neuroimage.2016.12.064_bib23) 2008; 18
Valverde (10.1016/j.neuroimage.2016.12.064_bib116) 2017; 35
10.1016/j.neuroimage.2016.12.064_bib42
10.1016/j.neuroimage.2016.12.064_bib44
10.1016/j.neuroimage.2016.12.064_bib46
Collins (10.1016/j.neuroimage.2016.12.064_bib21) 1998; 17
Udupa (10.1016/j.neuroimage.2016.12.064_bib115) 1997; 16
Meier (10.1016/j.neuroimage.2016.12.064_bib77) 2007; 28
10.1016/j.neuroimage.2016.12.064_bib49
Mendrik (10.1016/j.neuroimage.2016.12.064_bib78) 2015
Shiee (10.1016/j.neuroimage.2016.12.064_bib103) 2014; 35
Sweeney (10.1016/j.neuroimage.2016.12.064_bib109) 2013; 2
10.1016/j.neuroimage.2016.12.064_bib50
10.1016/j.neuroimage.2016.12.064_bib51
Khayati (10.1016/j.neuroimage.2016.12.064_bib65) 2008; 38
10.1016/j.neuroimage.2016.12.064_bib55
10.1016/j.neuroimage.2016.12.064_bib57
10.1016/j.neuroimage.2016.12.064_bib59
10.1016/j.neuroimage.2016.12.064_bib18
Mechrez (10.1016/j.neuroimage.2016.12.064_bib76) 2016
10.1016/j.neuroimage.2016.12.064_bib19
Mazziotta (10.1016/j.neuroimage.2016.12.064_bib74) 2001; 356
Johnston (10.1016/j.neuroimage.2016.12.064_bib61) 1996; 15
Ong (10.1016/j.neuroimage.2016.12.064_bib82) 2012; 30
Filippi (10.1016/j.neuroimage.2016.12.064_bib37) 2012; 11
Heinrich (10.1016/j.neuroimage.2016.12.064_bib54) 2012; 16
Bezdek (10.1016/j.neuroimage.2016.12.064_bib10) 1980; 20
Tomas-Fernandez (10.1016/j.neuroimage.2016.12.064_bib113) 2015; 34
10.1016/j.neuroimage.2016.12.064_bib121
10.1016/j.neuroimage.2016.12.064_bib122
Battaglini (10.1016/j.neuroimage.2016.12.064_bib7) 2014; 39
10.1016/j.neuroimage.2016.12.064_bib20
10.1016/j.neuroimage.2016.12.064_bib128
Roura (10.1016/j.neuroimage.2016.12.064_bib92) 2015; 57
10.1016/j.neuroimage.2016.12.064_bib25
10.1016/j.neuroimage.2016.12.064_bib124
10.1016/j.neuroimage.2016.12.064_bib27
10.1016/j.neuroimage.2016.12.064_bib126
10.1016/j.neuroimage.2016.12.064_bib28
Evans (10.1016/j.neuroimage.2016.12.064_bib32) 1997; 41
Jonkman (10.1016/j.neuroimage.2016.12.064_bib62) 2015; 262
Rey (10.1016/j.neuroimage.2016.12.064_bib90) 2002; 6
Karpate (10.1016/j.neuroimage.2016.12.064_bib64) 2014; 8680
Sudre (10.1016/j.neuroimage.2016.12.064_bib107) 2015; 34
Coupé (10.1016/j.neuroimage.2016.12.064_bib24) 2008; 27
Buonanno (10.1016/j.neuroimage.2016.12.064_bib16) 1983; 1
10.1016/j.neuroimage.2016.12.064_bib1
Paty (10.1016/j.neuroimage.2016.12.064_bib83) 1988; 15
Zhang (10.1016/j.neuroimage.2016.12.064_bib129) 2001; 20
10.1016/j.neuroimage.2016.12.064_bib30
10.1016/j.neuroimage.2016.12.064_bib31
10.1016/j.neuroimage.2016.12.064_bib6
10.1016/j.neuroimage.2016.12.064_bib9
10.1016/j.neuroimage.2016.12.064_bib33
Freifeld (10.1016/j.neuroimage.2016.12.064_bib38) 2009; 2009
Maier (10.1016/j.neuroimage.2016.12.064_bib72) 2015; 240
Kikinis (10.1016/j.neuroimage.2016.12.064_bib66) 1999; 9
Lladó (10.1016/j.neuroimage.2016.12.064_bib69) 2012; 186
Reuter (10.1016/j.neuroimage.2016.12.064_bib88) 2011; 57
Polman (10.1016/j.neuroimage.2016.12.064_bib85) 2011; 69
Pearson (10.1016/j.neuroimage.2016.12.064_bib84) 1895; 58
Tustison (10.1016/j.neuroimage.2016.12.064_bib114) 2010; 29
Avants (10.1016/j.neuroimage.2016.12.064_bib3) 2008; 12
Menze (10.1016/j.neuroimage.2016.12.064_bib79) 2015; 34
Bosc (10.1016/j.neuroimage.2016.12.064_bib11) 2003; 20
10.1016/j.neuroimage.2016.12.064_bib86
10.1016/j.neuroimage.2016.12.064_bib105
10.1016/j.neuroimage.2016.12.064_bib106
10.1016/j.neuroimage.2016.12.064_bib89
Modat (10.1016/j.neuroimage.2016.12.064_bib81) 2014; 1
Anbeek (10.1016/j.neuroimage.2016.12.064_bib2) 2004; 21
Van Leemput (10.1016/j.neuroimage.2016.12.064_bib117) 2001; 20
Shiee (10.1016/j.neuroimage.2016.12.064_bib104) 2010; 49
Jog (10.1016/j.neuroimage.2016.12.064_bib60) 2017; 35
Elliott (10.1016/j.neuroimage.2016.12.064_bib29) 2013; 32
Carass (10.1016/j.neuroimage.2016.12.064_bib17) 2010; 56
Wilcoxon (10.1016/j.neuroimage.2016.12.064_bib123) 1945; 1
Ganiler (10.1016/j.neuroimage.2016.12.064_bib40) 2014; 56
Sahraian (10.1016/j.neuroimage.2016.12.064_bib98) 2007
Geurts (10.1016/j.neuroimage.2016.12.064_bib47) 2006; 36
He (10.1016/j.neuroimage.2016.12.064_bib52) 2001; 22
10.1016/j.neuroimage.2016.12.064_bib91
10.1016/j.neuroimage.2016.12.064_bib110
10.1016/j.neuroimage.2016.12.064_bib111
Bazin (10.1016/j.neuroimage.2016.12.064_bib8) 2008; 12
10.1016/j.neuroimage.2016.12.064_bib93
Filippi (10.1016/j.neuroimage.2016.12.064_bib36) 2014; 27
10.1016/j.neuroimage.2016.12.064_bib94
Dice (10.1016/j.neuroimage.2016.12.064_bib26) 1945; 26
10.1016/j.neuroimage.2016.12.064_bib95
10.1016/j.neuroimage.2016.12.064_bib96
Warfield (10.1016/j.neuroimage.2016.12.064_bib119) 2000; 4
10.1016/j.neuroimage.2016.12.064_bib99
10.1016/j.neuroimage.2016.12.064_bib13
10.1016/j.neuroimage.2016.12.064_bib112
10.1016/j.neuroimage.2016.12.064_bib15
Roy (10.1016/j.neuroimage.2016.12.064_bib97) 2015; 19
Kamber (10.1016/j.neuroimage.2016.12.064_bib63) 1996; 14
Filippi (10.1016/j.neuroimage.2016.12.064_bib34) 2002; 58
Xue (10.1016/j.neuroimage.2016.12.064_bib127) 2006; 30
Bakshi (10.1016/j.neuroimage.2016.12.064_bib5) 2005; 15
Maier (10.1016/j.neuroimage.2016.12.064_bib71) 2017; 35
García-Lorenzo (10.1016/j.neuroimage.2016.12.064_bib41) 2013; 17
García-Lorenzo (10.1016/j.neuroimage.2016.12.064_bib43) 2011; 30
Hsu (10.1016/j.neuroimage.2016.12.064_bib56) 1984; 26
Brosch (10.1016/j.neuroimage.2016.12.064_bib14) 2016; 35
Breiman (10.1016/j.neuroimage.2016.12.064_bib12) 2001; 45
Mitra (10.1016/j.neuroimage.2016.12.064_bib80) 2014; 98
Avants (10.1016/j.neuroimage.2016.12.064_bib4) 2011; 9
10.1016/j.neuroimage.2016.12.064_bib68
Sajja (10.1016/j.neuroimage.2016.12.064_bib100) 2006; 34
Heimann (10.1016/j.neuroimage.2016.12.064_bib53) 2009; 28
Compston (10.1016/j.neuroimage.2016.12.064_bib22) 2008; 372
Geremia (10.1016/j.neuroimage.2016.12.064_bib45) 2011; 57
Kwan (10.1016/j.neuroimage.2016.12.064_bib67) 1999; 18
Zijdenbos (10.1016/j.neuroimage.2016.12.064_bib130) 1994; 13
Warfield (10.1016/j.neuroimage.2016.12.064_bib120) 2004; 23
Lucas (10.1016/j.neuroimage.2016.12.064_bib70) 2010; 8
10.1016/j.neuroimage.2016.12.064_bib73
10.1016/j.neuroimage.2016.12.064_bib75
Jain (10.1016/j.neuroimage.2016.12.064_bib58) 2015; 8
Schaap (10.1016/j.neuroimage.2016.12.064_bib101) 2009; 13
Gaitán (10.1016/j.neuroimage.2016.12.064_bib39) 2011; 70
References_xml – volume: 240
  start-page: 89
  year: 2015
  end-page: 100
  ident: bib72
  article-title: Extra Tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences
  publication-title: J. Neurosci. Methods
– volume: 70
  start-page: 22
  year: 2011
  end-page: 29
  ident: bib39
  article-title: Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions
  publication-title: Ann. Neurol.
– reference: Ferrari, R.J., Wei, X., Zhang, Y., Scott, J.N., Mitchell, J.R., 2003. Segmentation of multiple sclerosis lesions using support vector machines. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2003), pp. 16–26.
– volume: 35
  start-page: 446
  year: 2017
  end-page: 457
  ident: bib116
  article-title: Automated tissue segmentation of MR brain images in the presence of white matter lesions
  publication-title: Med. Image Anal.
– volume: 6
  start-page: 163
  year: 2002
  end-page: 179
  ident: bib90
  article-title: Automatic detection and segmentation of evolving processes in 3D medical images
  publication-title: Med. Image Anal.
– volume: 2009
  start-page: 14:1
  year: 2009
  end-page: 14:13
  ident: bib38
  article-title: Multiple sclerosis lesion detection using constrained GMM and curve evolution
  publication-title: J. Biomed. Imaging
– volume: 356
  start-page: 1293
  year: 2001
  end-page: 1322
  ident: bib74
  article-title: A probabilistic atlas and reference system for the human brain
  publication-title: Philos. Trans. R. Soc. Lond. B
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib123
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
– reference: Global Burden of Disease Study 2013 Mortality and Causes of Death Collaborators, 2015. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171.
– volume: 4
  start-page: 43
  year: 2000
  end-page: 55
  ident: bib119
  article-title: Adaptive, template moderated, spatially varying statistical classification
  publication-title: Med. Image Anal.
– volume: 18
  start-page: 1085
  year: 1999
  end-page: 1097
  ident: bib67
  article-title: MRI simulation-based evaluation of image-processing and classification methods
  publication-title: IEEE Trans. Med. Imag.
– volume: 32
  start-page: 1205
  year: 2006
  end-page: 1215
  ident: bib125
  article-title: Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI
  publication-title: NeuroImage
– reference: Bricq, S., Collet, C., Armspach, J.P., 2008. Lesion detection in 3D brain MRI using trimmed likelihood estimator and probabilistic atlas. In: Proceedings of the 5th International Symposium on Biomedical Imaging (ISBI 2008), pp. 93–96.
– reference: Aït-Ali, L., Prima, S., Heiler, P., Carsin, B., Edan, G., Barillot, C., 2005. STREM: a robust multidimensional parametric method to segment MS lesions in MRI. In: Proceedings of the 8th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2005). Springer Berlin Heidelberg. pp. 409–416.
– volume: 1
  start-page: 757
  year: 1983
  end-page: 764
  ident: bib16
  article-title: 1H Nuclear magnetic resonance imaging in multiple sclerosis
  publication-title: Neurol. Clin.
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: bib120
  article-title: Simultaneous Truth and Performance Level Estimation (STAPLE)
  publication-title: IEEE Trans. Med. Imag.
– volume: 39
  start-page: 1543
  year: 2014
  end-page: 1549
  ident: bib7
  article-title: Automated identification of brain new lesions in multiple sclerosis using subtraction images
  publication-title: Mag. Reson. Im.
– volume: 8680
  start-page: 118
  year: 2014
  end-page: 125
  ident: bib64
  article-title: Longitudinal intensity normalization in multiple sclerosis patients
  publication-title: Transl. Res. Med. Imaging
– volume: 26
  start-page: 73
  year: 1984
  end-page: 106
  ident: bib56
  article-title: New likelihood test methods for change detection in image sequences
  publication-title: Comput. Vision., Graph., Image Process.
– volume: 58
  start-page: 1147
  year: 2002
  end-page: 1153
  ident: bib34
  article-title: MRI techniques to monitor MS evolution
  publication-title: Neurology
– volume: 38
  start-page: 379
  year: 2008
  end-page: 390
  ident: bib65
  article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model
  publication-title: Comput. Biol. Med.
– volume: 17
  start-page: 1
  year: 2013
  end-page: 18
  ident: bib41
  article-title: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging
  publication-title: Med. Image Anal.
– volume: 35
  start-page: 1229
  year: 2016
  end-page: 1239
  ident: bib14
  article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
  publication-title: IEEE Trans. Med. Imag.
– year: 2015
  ident: bib78
  article-title: MRBrainS challenge
  publication-title: Comput. Intell. Neurosci.
– reference: Tomas-Fernandez, X., Warfield, S.K., 2011. A new classifier feature space for an improved multiple sclerosis lesion segmentation. In: Proceedings of the 8th International Symposium on Biomedical Imaging (ISBI 2011), pp. 1492–1495.
– volume: 118
  start-page: 1601
  year: 1995
  end-page: 1612
  ident: bib35
  article-title: Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis
  publication-title: Brain
– reference: Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N., 2010. Spatial decision forests for MS lesion segmentation in multi-channel MR images. In: Proceedings of the 13th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2010), Springer Berlin Heidelberg. pp. 111–118.
– volume: 30
  start-page: 1455
  year: 2011
  end-page: 1467
  ident: bib43
  article-title: Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis
  publication-title: IEEE Trans. Med. Imag.
– volume: 262
  start-page: 11074
  year: 2015
  end-page: 11080
  ident: bib62
  article-title: Can MS lesion stages be distinguished with MRI? A postmortem MRI and histopathology study
  publication-title: J. Neurol.
– reference: Havaei, M., Guizard, N., Chapados, N., Bengio, Y., 2016. HeMIS: Hetero-modal image segmentation. In: Proceedings of the 19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2016), Springer Berlin Heidelberg. pp. 469–477.
– reference: McAuliffe, M.J., Lalonde, F.M., McGarry, D., Gandler, W., Csaky, K., Trus, B.L., 2001. Medical image processing, analysis & visualization in clinical research. In: IEEE Compuer Based Medical Systems (CBMS) 2001, pp. 381–386.
– reference: Elliott, C., Francois, S., Arnold, D.L., Collins, D.L., Arbel, T., 2010. Bayesian classification of multiple sclerosis lesions in longitudinal MRI using subtraction images. In: Proceedings of the 13th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2010), Springer Berlin Heidelberg. pp. 290–297.
– reference: Prima, S., Ayache, N., Janke, A., Francis, S.J., Arnold, D.L., Collins, D.L., 2002. Statistical analysis of longitudinal MRI data: applications for detection of disease activity in MS. In: Proceedings of the 5th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2002), Springer Berlin Heidelberg. pp. 363–371.
– volume: 372
  start-page: 1502
  year: 2008
  end-page: 1517
  ident: bib22
  article-title: Multiple sclerosis
  publication-title: Lancet
– volume: 27
  start-page: 425
  year: 2008
  end-page: 441
  ident: bib24
  article-title: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images
  publication-title: IEEE Trans. Med. Imag.
– volume: 28
  start-page: 1251
  year: 2009
  end-page: 1265
  ident: bib53
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imag.
– year: 2007
  ident: bib98
  article-title: MRI Atlas of MS Lesions
– volume: 34
  start-page: 68
  year: 2013
  end-page: 73
  ident: bib108
  article-title: Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal MRI
  publication-title: Am. J. Neuroradiol.
– reference: García-Lorenzo, D., Prima, S., Collins, D.L., Arnold, D.L., Morrissey, S.P., Barillot, C., 2008. Combining robust expectation maximization and mean shift algorithms for multiple sclerosis brain segmentation. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2008) workshop on Medical Image Analysis on Multiple Sclerosis (MIAMS 2008), pp. 82–91.
– volume: 8
  start-page: 5
  year: 2010
  end-page: 17
  ident: bib70
  article-title: The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software
  publication-title: Neuroinformatics
– reference: Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Evans, A.C., 1997. BrainWeb: Online interface to a 3D MRI simulated brain database. In: Proceedings of the 3rd International Conference on Functional Mapping of the Human Brain, p. S425.
– volume: 41
  start-page: 125
  year: 1997
  end-page: 132
  ident: bib32
  article-title: The role of MRI in clinical trials of multiple sclerosis
  publication-title: Ann. Neurol.
– volume: 34
  start-page: 142
  year: 2006
  end-page: 151
  ident: bib100
  article-title: Unified approach for multiple sclerosis lesion segmentation on brain MRI
  publication-title: Ann. Biomed. Eng.
– reference: Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A., 2009. Supervised dictionary learning. In: Advances in Neural Information Processing Systems (NIPS) 21, Curran Associates, Inc., pp. 1033–1040.
– volume: 13
  start-page: 716
  year: 1994
  end-page: 724
  ident: bib130
  article-title: Morphometric analysis of white matter lesions in MR images
  publication-title: IEEE Trans. Med. Imag.
– reference: Elliott, C., Arnold, D.L., Collins, D.L., Arbel, T., 2014. A generative model for automatic detection of resolving multiple sclerosis lesions. In: Proceedings of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2014), Springer Berlin Heidelberg. pp. 118–129.
– volume: 28
  start-page: 1956
  year: 2007
  end-page: 1963
  ident: bib77
  article-title: MR imaging intensity modeling of damage and repair in multiple sclerosis
  publication-title: Am. J. Neuroradiol.
– volume: 57
  start-page: 19
  year: 2011
  end-page: 21
  ident: bib88
  article-title: Avoiding asymmetry-induced bias in longitudinal image processing
  publication-title: NeuroImage
– volume: 98
  start-page: 324
  year: 2014
  end-page: 335
  ident: bib80
  article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke
  publication-title: NeuroImage
– reference: Roy, S., Carass, A., Prince, J.L., Pham, D.L., 2015a. Longitudinal patch-based segmentation of multiple sclerosis white matter lesions. In: Machine Learning in Medical Imaging (MLMI 2015), Springer Berlin Heidelberg. pp. 194–202.
– reference: World Health Organization, 2008. Atlas: Multiple Sclerosis Resources in the World 2008. Springer, Geneva, Switzerland.
– reference: Rey, D., Subsol, G., Delingette, H., Ayache, N., 1999. Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. In: 16th Inf. Proceedings in Med. Imaging (IPMI 1999), Springer Berlin Heidelberg. pp. 154–167.
– volume: 34
  start-page: 1349
  year: 2015
  end-page: 1361
  ident: bib113
  article-title: A Model of Population and Subject (MOPS) intensities with application to multiple sclerosis lesion segmentation
  publication-title: IEEE Trans. Med. Imag.
– reference: Subbanna, N., Precup, D., Arnold, D.L., Arbel, T., 2015. IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI. In: 24th Inf. Proceedings in Med. Imaging (IPMI 2015), Springer Berlin Heidelberg. pp. 514–526.
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bib26
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 34
  start-page: 2079
  year: 2015
  end-page: 2102
  ident: bib107
  article-title: Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation
  publication-title: IEEE Trans. Med. Imag.
– volume: 30
  start-page: 388
  year: 2006
  end-page: 399
  ident: bib127
  article-title: CLASSIC
  publication-title: NeuroImage
– reference: Zeiler, M.D., 2012. ADADELTA: an adaptive learning rate method
– volume: 15
  start-page: 266
  year: 1988
  end-page: 272
  ident: bib83
  article-title: Magnetic resonance imaging in the assessment of disease activity in multiple sclerosis
  publication-title: Can. J. Neurol. Sci.
– reference: Tomas-Fernandez, X., Warfield, S.K., 2012. Population intensity outliers or a new model for brain WM abnormalities. In: Proceedings of the 9th International Symposium on Biomedical Imaging (ISBI 2012), pp. 1543–1546.
– volume: 13
  start-page: 701
  year: 2009
  end-page: 714
  ident: bib101
  article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms
  publication-title: Med. Image Anal.
– reference: Styner, M., Lee, J., Chin, B., Chin, M.S., Commowick, O., Tran, H.H., Markovic-Plese, S., Jewells, V., Warfield, S., 2008. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2008) 3D Segmentation in the Clinic: A Grand Challenge II, pp. 1–6.
– reference: Barnes, C., Shechtman, E., Golman, D.B., Finkelstein, A., 2010. The generalized patchmatch correspondence algorithm. In: 2010 European Conference on Computer Vision (ECCV 2010). Springer Berlin Heidelberg. pp. 29–43.
– volume: 30
  start-page: 807
  year: 2012
  end-page: 823
  ident: bib82
  article-title: Automatic white matter lesion segmentation using an adaptive outlier detection method
  publication-title: Mag. Reson. Im.
– reference: Jog, A., Carass, A., Pham, D.L., Prince, J.L., 2015. Multi-output decision trees for lesion segmentation in multiple sclerosis. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2015), Orlando, FL, February 21–26, 2015, pp. 94131C–94131C–6.
– volume: 56
  start-page: 363
  year: 2014
  end-page: 374
  ident: bib40
  article-title: A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies
  publication-title: Neuroradiology
– volume: 58
  start-page: 240
  year: 1895
  end-page: 242
  ident: bib84
  article-title: Notes on regression and inheritance in the case of two parents
  publication-title: Proc. R. Soc. Lond.
– volume: 11
  start-page: 349
  year: 2012
  end-page: 360
  ident: bib37
  article-title: Association between pathological and MRI findings in multiple sclerosis for the Attendees of the Correlation between Pathological MRI findings in MS workshop
  publication-title: Lancet Neurol.
– reference: Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R., 2015. Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2015). Springer Berlin Heidelberg. pp. 3–11.
– volume: 27
  start-page: 290
  year: 2014
  end-page: 299
  ident: bib36
  article-title: Magnetic resonance outcome measures in multiple sclerosis trials
  publication-title: Curr. Opin. Neurol.
– volume: 18
  start-page: 589
  year: 2008
  end-page: 622
  ident: bib23
  article-title: The clinical epidemiology of multiple sclerosis
  publication-title: Neuroimaging Clin. N. Am.
– volume: 16
  start-page: 1432
  year: 2012
  end-page: 1435
  ident: bib54
  article-title: MIND
  publication-title: Med. Image Anal.
– reference: Sajja, B., Datta, S., He, R., Narayana, P., 2004. A unified approach for lesion segmentation on MRI of multiple sclerosis. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1778–1781.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib12
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 2
  start-page: 402
  year: 2013
  end-page: 413
  ident: bib109
  article-title: OASIS is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in MRI
  publication-title: NeuroImage: Clin.
– volume: 36
  start-page: 3
  year: 2006
  end-page: 42
  ident: bib47
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
– volume: 8
  start-page: 367
  year: 2015
  end-page: 375
  ident: bib58
  article-title: Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images
  publication-title: NeuroImage: Clin.
– reference: Bazin, P.L., Pham, D.L., Gandler, W., McAuliffe, M., 2005. Free software tools for atlas-based volumetric neuroimage analysis. In: Proceedings of the SPIE Medical Imaging (SPIE-MI 2005), San Diego, CA, February 19–21, 2005, pp. 1824–1833.
– reference: Carass, A., Wheeler, M.B., Cuzzocreo, J., Bazin, P.L., Bassett, S.S., Prince, J.L., 2007. A joint registration and segmentation approach to skull stripping. In: Proceedings of the 4th International Symposium on Biomedical Imaging (ISBI 2007), IEEE. pp. 656–659.
– reference: Roy, S., He, Q., Carass, A., Jog, A., Cuzzocreo, J.L., Reich, D.S., Prince, J.L., Pham, D.L., 2014b. Example based lesion segmentation. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2014), San Diego, CA, February 15–20, 2014, pp. 90341Y–90341Y–8.
– reference: Ta, V.T., Giraud, R., Collins, D.L., Coupé, P., 2014. Optimized PatchMatch for near real time and accurate label fusion. In: Proceedings of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2014), Springer Berlin Heidelberg. pp. 105–112.
– volume: 15
  start-page: 154
  year: 1996
  end-page: 169
  ident: bib61
  article-title: Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI
  publication-title: IEEE Trans. Med. Imag.
– volume: 21
  start-page: 1037
  year: 2004
  end-page: 1044
  ident: bib2
  article-title: Probabilistic segmentation of white matter lesions in MR imaging
  publication-title: NeuroImage
– volume: 16
  start-page: 598
  year: 1997
  end-page: 609
  ident: bib115
  article-title: Multiple sclerosis lesion quantification using fuzzy-connectedness principles
  publication-title: IEEE Trans. Med. Imag.
– volume: 186
  start-page: 164
  year: 2012
  end-page: 185
  ident: bib69
  article-title: Segmentation of multiple sclerosis lesions in brain MRI
  publication-title: Inf. Sci.
– volume: 1
  start-page: 024003
  year: 2014
  ident: bib81
  article-title: Global image registration using a symmetric block-matching approach
  publication-title: J. Med. Imaging
– volume: 14
  start-page: 442
  year: 1996
  end-page: 453
  ident: bib63
  article-title: Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images
  publication-title: IEEE Trans. Med. Imag.
– reference: Dugas-Phocion, G., Gonzalez, M.A., Lebrun, C., Chanalet, S., Bensa, C., Malandain, G., Ayache, N., 2004. Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI. In: Proceedings of the 2nd International Symposium on Biomedical Imaging (ISBI 2004), pp. 157–160.
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib114
  article-title: N4ITK
  publication-title: IEEE Trans. Med. Imag.
– volume: 19
  start-page: 1598
  year: 2015
  end-page: 1609
  ident: bib97
  article-title: Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 20
  start-page: 643
  year: 2003
  end-page: 656
  ident: bib11
  article-title: Automatic change detection in multimodal serial MRI
  publication-title: NeuroImage
– reference: Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M., 2014. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Proceedings of the 17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2014), Springer Berlin Heidelberg. pp. 520–527.
– volume: 22
  start-page: 664
  year: 2001
  end-page: 669
  ident: bib52
  article-title: Enhancing patterns in multiple sclerosis: evolution and persistence
  publication-title: Am. J. Neuroradiol.
– reference: Xie, Y., Tao, X., 2011. White matter lesion segmentation using machine learning and weakly labeled MR images. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2011), Orlando, FL, February 12–17, 2011, pp. 79622G–79622G–9.
– volume: 9
  start-page: 519
  year: 1999
  end-page: 530
  ident: bib66
  article-title: Quantitative follow-up of patients with multiple sclerosis using MRI
  publication-title: Jrnl. Magn. Reson. Imaging
– reference: García-Lorenzo, D., Lecoeur, J., Arnold, D.L., Collins, D.L., Barillot, C., 2009. Multiple sclerosis lesion segmentation using an automated multimodal graph cuts. In: Proceedings of the 12th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2009), Springer Berlin Heidelberg. pp. 584–591.
– reference: Li, H., Zhao, R., Wang, X., 2014. Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks for Pixelwise Classification. CoRR
– reference: Weiss, N., Rueckert, D., Rao, A., 2013. Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. In: Proceedings of the 16th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2013), Springer Berlin Heidelberg. pp. 735–742.
– volume: 17
  start-page: 463
  year: 1998
  end-page: 468
  ident: bib21
  article-title: Design and construction of a realistic digital brain phantom
  publication-title: IEEE Trans. Med. Imag.
– volume: 8
  start-page: S4
  year: 2007
  ident: bib48
  article-title: Inferring biological networks with output kernel trees
  publication-title: BMC Bioinforma.
– volume: 20
  start-page: 677
  year: 2001
  end-page: 688
  ident: bib117
  article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection
  publication-title: IEEE Trans. Med. Imag.
– reference: Welti, D., Gerig, G., Radü, E.W., Kappos, L., Székely, G., 2001. Spatio-temporal segmentation of active multiple scleroris lesions in serial MRI data. In: 17th Inf. Proceedings in Med. Imaging (IPMI 2001), Springer Berlin Heidelberg. pp. 438–445.
– reference: Collins, D.L., Montagnat, J., Zijdenbos, A.P., Evans, A.C., Arnold, D.L., 2001. Automated estimation of brain volume in multiple sclerosis with BICCR. In: 17th Inf. Proceedings in Med. Imaging (IPMI 2001), Springer Berlin Heidelberg. pp. 141–147.
– volume: 20
  start-page: 1
  year: 1980
  end-page: 8
  ident: bib10
  article-title: A convergence theorem for the fuzzy ISO-DATA clustering algorithms
  publication-title: IEEE Trans. Pattern. Anal. Mach. Intell.
– volume: 49
  start-page: 1524
  year: 2010
  end-page: 1535
  ident: bib104
  article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions
  publication-title: NeuroImage
– volume: 12
  start-page: 616
  year: 2008
  end-page: 625
  ident: bib8
  article-title: Homeomorphic brain image segmentation with topological and statistical atlases
  publication-title: Med. Image Anal.
– volume: 56
  start-page: 1982
  year: 2010
  end-page: 1992
  ident: bib17
  article-title: Simple paradigm for extra-cerebral tissue removal
  publication-title: NeuroImage
– reference: Roy, S., Carass, A., Shiee, N., Pham, D.L., Prince, J.L., 2010. MR contrast synthesis for lesion segmentation. In: Proceedings of the 7th International Symposium on Biomedical Imaging (ISBI 2010), pp. 932–935.
– volume: 57
  start-page: 1013
  year: 2015
  end-page: 1043
  ident: bib92
  article-title: A toolbox for multiple sclerosis lesion segmentation
  publication-title: Neuroradiology
– volume: 260
  start-page: 2458
  year: 2013
  end-page: 2471
  ident: bib118
  article-title: Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis
  publication-title: J. Neurol.
– reference: Ekin, A., 2006. Feature-based brain mid-sagittal plane detection by RANSAC. In: Proceedings of the 14th European Signal Processing Conference, pp. 1–4.
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: bib79
  article-title: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imag.
– volume: 15
  start-page: 5
  year: 2005
  end-page: 9
  ident: bib5
  article-title: Magnetic resonance imaging advances in multiple sclerosis
  publication-title: J. Neuroimaging
– volume: 32
  start-page: 1490
  year: 2013
  end-page: 1503
  ident: bib29
  article-title: Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI
  publication-title: IEEE Trans. Med. Imag.
– reference: Harmouche, R., Collins, D.L., Arnold, D.L., Francis, S., Arbel, T., 2006. Bayesian MS lesion classification modeling regional and local spatial information. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR), 2006, pp. 984–987.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib129
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imag.
– volume: 35
  start-page: 250
  year: 2017
  end-page: 269
  ident: bib71
  article-title: ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
– reference: Roy, S., Carass, A., Prince, J.L., Pham, D.L., 2014a. Subject specific sparse dictionary learning for atlas based brain MRI segmentation. In: Machine Learning in Medical Imaging (MLMI 2014), Springer Berlin Heidelberg. pp. 248–255.
– volume: 35
  start-page: 3385
  year: 2014
  end-page: 3401
  ident: bib103
  article-title: Reconstruction of the human cerebral cortex robust to white matter lesions
  publication-title: Human. Brain Mapp.
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: bib3
  article-title: Symmetric diffeomorphic image registration with cross-correlation
  publication-title: Med. Image Anal.
– reference: Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, M., Schnabel, J.A., 2013. Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Proceedings of the 16th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2013), Springer Berlin Heidelberg. pp. 187–194.
– volume: 35
  start-page: 475
  year: 2017
  end-page: 488
  ident: bib60
  article-title: Random forest regression for magnetic resonance image synthesis
  publication-title: Med. Image Anal.
– volume: 69
  start-page: 292
  year: 2011
  end-page: 302
  ident: bib85
  article-title: Diagnostic criteria for multiple sclerosis
  publication-title: Ann. Neurol.
– volume: 57
  start-page: 378
  year: 2011
  end-page: 390
  ident: bib45
  article-title: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images
  publication-title: NeuroImage
– volume: 9
  start-page: 381
  year: 2011
  end-page: 400
  ident: bib4
  article-title: An open source multivariate framework for n-tissue segmentation with evaluation on public data
  publication-title: Neuroinformatics
– reference: .
– reference: Iheme, L.O., Unay, D., Baskaya, O., Sennaz, A., Kandemir, M., Yalciner, Z.B., Tepe, M.S., Kahraman, T., Unal, G., 2013. Concordance between computer-based neuroimaging findings and expert assessments in dementia grading. In: Signal Processing and Communications Applications Conference (SIU), pp. 1–4.
– volume: 59
  start-page: 3774
  year: 2012
  end-page: 3783
  ident: bib102
  article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis
  publication-title: NeuroImage
– reference: Deshpande, H., Maurel, P., Barillot, C., 2015. Adaptive dictionary learning for competitive classification of multiple sclerosis lesions. In: Proceedings of the 12th International Symposium on Biomedical Imaging (ISBI 2015), pp. 136–139.
– volume: 70
  start-page: 668
  year: 2011
  end-page: 670
  ident: bib87
  article-title: Heterogeneity in longitudinal evolution of ring-enhancing MS lesions
  publication-title: Ann. Neurol.
– start-page: 1
  year: 2016
  end-page: 13
  ident: bib76
  article-title: Patch-based segmentation with spatial consistency
  publication-title: J. Biomed. Imaging
– volume: 34
  start-page: 142
  year: 2006
  ident: 10.1016/j.neuroimage.2016.12.064_bib100
  article-title: Unified approach for multiple sclerosis lesion segmentation on brain MRI
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-005-9009-0
– volume: 118
  start-page: 1601
  year: 1995
  ident: 10.1016/j.neuroimage.2016.12.064_bib35
  article-title: Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis
  publication-title: Brain
  doi: 10.1093/brain/118.6.1601
– ident: 10.1016/j.neuroimage.2016.12.064_bib15
  doi: 10.1007/978-3-319-24574-4_1
– volume: 26
  start-page: 73
  year: 1984
  ident: 10.1016/j.neuroimage.2016.12.064_bib56
  article-title: New likelihood test methods for change detection in image sequences
  publication-title: Comput. Vision., Graph., Image Process.
  doi: 10.1016/0734-189X(84)90131-2
– ident: 10.1016/j.neuroimage.2016.12.064_bib75
  doi: 10.1109/CBMS.2001.941749
– ident: 10.1016/j.neuroimage.2016.12.064_bib50
  doi: 10.1109/ICPR.2006.318
– ident: 10.1016/j.neuroimage.2016.12.064_bib20
  doi: 10.1007/3-540-45729-1_12
– ident: 10.1016/j.neuroimage.2016.12.064_bib96
  doi: 10.1117/12.2043917
– volume: 13
  start-page: 716
  year: 1994
  ident: 10.1016/j.neuroimage.2016.12.064_bib130
  article-title: Morphometric analysis of white matter lesions in MR images
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.363096
– ident: 10.1016/j.neuroimage.2016.12.064_bib30
  doi: 10.1007/978-3-319-12289-2_11
– ident: 10.1016/j.neuroimage.2016.12.064_bib95
  doi: 10.1109/ISBI.2010.5490140
– volume: 240
  start-page: 89
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.064_bib72
  article-title: Extra Tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.11.011
– volume: 13
  start-page: 701
  year: 2009
  ident: 10.1016/j.neuroimage.2016.12.064_bib101
  article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.06.003
– ident: 10.1016/j.neuroimage.2016.12.064_bib59
  doi: 10.1117/12.2082157
– volume: 15
  start-page: 266
  year: 1988
  ident: 10.1016/j.neuroimage.2016.12.064_bib83
  article-title: Magnetic resonance imaging in the assessment of disease activity in multiple sclerosis
  publication-title: Can. J. Neurol. Sci.
  doi: 10.1017/S0317167100027724
– volume: 2009
  start-page: 14:1
  year: 2009
  ident: 10.1016/j.neuroimage.2016.12.064_bib38
  article-title: Multiple sclerosis lesion detection using constrained GMM and curve evolution
  publication-title: J. Biomed. Imaging
– ident: 10.1016/j.neuroimage.2016.12.064_bib57
  doi: 10.1109/SIU.2013.6531409
– volume: 16
  start-page: 1432
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.064_bib54
  article-title: MIND
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.05.008
– ident: 10.1016/j.neuroimage.2016.12.064_bib6
  doi: 10.1007/978-3-642-15558-1_3
– year: 2015
  ident: 10.1016/j.neuroimage.2016.12.064_bib78
  article-title: MRBrainS challenge
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2015/813696
– volume: 58
  start-page: 1147
  year: 2002
  ident: 10.1016/j.neuroimage.2016.12.064_bib34
  article-title: MRI techniques to monitor MS evolution
  publication-title: Neurology
  doi: 10.1212/WNL.58.8.1147
– volume: 28
  start-page: 1251
  year: 2009
  ident: 10.1016/j.neuroimage.2016.12.064_bib53
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2009.2013851
– volume: 27
  start-page: 425
  year: 2008
  ident: 10.1016/j.neuroimage.2016.12.064_bib24
  article-title: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2007.906087
– ident: 10.1016/j.neuroimage.2016.12.064_bib73
– volume: 23
  start-page: 903
  year: 2004
  ident: 10.1016/j.neuroimage.2016.12.064_bib120
  article-title: Simultaneous Truth and Performance Level Estimation (STAPLE)
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2004.828354
– volume: 30
  start-page: 1455
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.064_bib43
  article-title: Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2011.2114671
– ident: 10.1016/j.neuroimage.2016.12.064_bib124
– volume: 57
  start-page: 378
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.064_bib45
  article-title: Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.080
– ident: 10.1016/j.neuroimage.2016.12.064_bib93
  doi: 10.1007/978-3-319-10581-9_31
– volume: 17
  start-page: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.064_bib41
  article-title: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.09.004
– volume: 4
  start-page: 43
  year: 2000
  ident: 10.1016/j.neuroimage.2016.12.064_bib119
  article-title: Adaptive, template moderated, spatially varying statistical classification
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(00)00003-7
– volume: 1
  start-page: 80
  year: 1945
  ident: 10.1016/j.neuroimage.2016.12.064_bib123
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
  doi: 10.2307/3001968
– volume: 58
  start-page: 240
  year: 1895
  ident: 10.1016/j.neuroimage.2016.12.064_bib84
  article-title: Notes on regression and inheritance in the case of two parents
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspl.1895.0041
– ident: 10.1016/j.neuroimage.2016.12.064_bib42
  doi: 10.1007/978-3-642-04271-3_71
– volume: 8680
  start-page: 118
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.064_bib64
  article-title: Longitudinal intensity normalization in multiple sclerosis patients
  publication-title: Transl. Res. Med. Imaging
– ident: 10.1016/j.neuroimage.2016.12.064_bib27
  doi: 10.1109/ISBI.2004.1398498
– volume: 8
  start-page: 367
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.064_bib58
  article-title: Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2015.05.003
– ident: 10.1016/j.neuroimage.2016.12.064_bib99
  doi: 10.1109/IEMBS.2004.1403532
– ident: 10.1016/j.neuroimage.2016.12.064_bib13
  doi: 10.1109/ISBI.2008.4540940
– ident: 10.1016/j.neuroimage.2016.12.064_bib89
  doi: 10.1007/3-540-48714-X_12
– volume: 57
  start-page: 19
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.064_bib88
  article-title: Avoiding asymmetry-induced bias in longitudinal image processing
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.076
– ident: 10.1016/j.neuroimage.2016.12.064_bib28
– volume: 49
  start-page: 1524
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.064_bib104
  article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.09.005
– volume: 29
  start-page: 1310
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.064_bib114
  article-title: N4ITK
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2010.2046908
– volume: 98
  start-page: 324
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.064_bib80
  article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.056
– ident: 10.1016/j.neuroimage.2016.12.064_bib105
  doi: 10.54294/lmkqvm
– ident: 10.1016/j.neuroimage.2016.12.064_bib31
  doi: 10.1007/978-3-642-15745-5_36
– volume: 22
  start-page: 664
  year: 2001
  ident: 10.1016/j.neuroimage.2016.12.064_bib52
  article-title: Enhancing patterns in multiple sclerosis: evolution and persistence
  publication-title: Am. J. Neuroradiol.
– volume: 59
  start-page: 3774
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.064_bib102
  article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.032
– ident: 10.1016/j.neuroimage.2016.12.064_bib51
  doi: 10.1007/978-3-319-46723-8_54
– volume: 34
  start-page: 1349
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.064_bib113
  article-title: A Model of Population and Subject (MOPS) intensities with application to multiple sclerosis lesion segmentation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2015.2393853
– volume: 6
  start-page: 163
  year: 2002
  ident: 10.1016/j.neuroimage.2016.12.064_bib90
  article-title: Automatic detection and segmentation of evolving processes in 3D medical images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(02)00056-7
– ident: 10.1016/j.neuroimage.2016.12.064_bib112
  doi: 10.1109/ISBI.2012.6235867
– volume: 9
  start-page: 519
  year: 1999
  ident: 10.1016/j.neuroimage.2016.12.064_bib66
  article-title: Quantitative follow-up of patients with multiple sclerosis using MRI
  publication-title: Jrnl. Magn. Reson. Imaging
  doi: 10.1002/(SICI)1522-2586(199904)9:4<519::AID-JMRI3>3.0.CO;2-M
– ident: 10.1016/j.neuroimage.2016.12.064_bib86
  doi: 10.1007/3-540-45786-0_45
– volume: 30
  start-page: 388
  year: 2006
  ident: 10.1016/j.neuroimage.2016.12.064_bib127
  article-title: CLASSIC
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.09.054
– volume: 35
  start-page: 3385
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.064_bib103
  article-title: Reconstruction of the human cerebral cortex robust to white matter lesions
  publication-title: Human. Brain Mapp.
  doi: 10.1002/hbm.22409
– ident: 10.1016/j.neuroimage.2016.12.064_bib9
  doi: 10.1117/12.595602
– ident: 10.1016/j.neuroimage.2016.12.064_bib111
  doi: 10.1109/ISBI.2011.5872683
– volume: 262
  start-page: 11074
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.064_bib62
  article-title: Can MS lesion stages be distinguished with MRI? A postmortem MRI and histopathology study
  publication-title: J. Neurol.
  doi: 10.1007/s00415-015-7689-4
– volume: 57
  start-page: 1013
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.064_bib92
  article-title: A toolbox for multiple sclerosis lesion segmentation
  publication-title: Neuroradiology
  doi: 10.1007/s00234-015-1552-2
– volume: 41
  start-page: 125
  year: 1997
  ident: 10.1016/j.neuroimage.2016.12.064_bib32
  article-title: The role of MRI in clinical trials of multiple sclerosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410410123
– ident: 10.1016/j.neuroimage.2016.12.064_bib91
  doi: 10.1007/978-3-319-10404-1_65
– volume: 69
  start-page: 292
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.064_bib85
  article-title: Diagnostic criteria for multiple sclerosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22366
– volume: 20
  start-page: 677
  year: 2001
  ident: 10.1016/j.neuroimage.2016.12.064_bib117
  article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.938237
– volume: 17
  start-page: 463
  year: 1998
  ident: 10.1016/j.neuroimage.2016.12.064_bib21
  article-title: Design and construction of a realistic digital brain phantom
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.712135
– ident: 10.1016/j.neuroimage.2016.12.064_bib25
  doi: 10.1109/ISBI.2015.7163834
– ident: 10.1016/j.neuroimage.2016.12.064_bib68
– volume: 8
  start-page: S4
  year: 2007
  ident: 10.1016/j.neuroimage.2016.12.064_bib48
  article-title: Inferring biological networks with output kernel trees
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-8-S2-S4
– year: 2007
  ident: 10.1016/j.neuroimage.2016.12.064_bib98
– volume: 12
  start-page: 26
  year: 2008
  ident: 10.1016/j.neuroimage.2016.12.064_bib3
  article-title: Symmetric diffeomorphic image registration with cross-correlation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– ident: 10.1016/j.neuroimage.2016.12.064_bib106
  doi: 10.1007/978-3-319-19992-4_40
– volume: 18
  start-page: 1085
  year: 1999
  ident: 10.1016/j.neuroimage.2016.12.064_bib67
  article-title: MRI simulation-based evaluation of image-processing and classification methods
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.816072
– volume: 21
  start-page: 1037
  year: 2004
  ident: 10.1016/j.neuroimage.2016.12.064_bib2
  article-title: Probabilistic segmentation of white matter lesions in MR imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.10.012
– volume: 9
  start-page: 381
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.064_bib4
  article-title: An open source multivariate framework for n-tissue segmentation with evaluation on public data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-011-9109-y
– volume: 34
  start-page: 68
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.064_bib108
  article-title: Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal MRI
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A3172
– ident: 10.1016/j.neuroimage.2016.12.064_bib44
  doi: 10.54294/1pbpd4
– volume: 30
  start-page: 807
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.064_bib82
  article-title: Automatic white matter lesion segmentation using an adaptive outlier detection method
  publication-title: Mag. Reson. Im.
  doi: 10.1016/j.mri.2012.01.007
– ident: 10.1016/j.neuroimage.2016.12.064_bib110
  doi: 10.1007/978-3-319-10443-0_14
– volume: 38
  start-page: 379
  year: 2008
  ident: 10.1016/j.neuroimage.2016.12.064_bib65
  article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.12.005
– volume: 35
  start-page: 446
  year: 2017
  ident: 10.1016/j.neuroimage.2016.12.064_bib116
  article-title: Automated tissue segmentation of MR brain images in the presence of white matter lesions
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.014
– ident: 10.1016/j.neuroimage.2016.12.064_bib128
– volume: 372
  start-page: 1502
  year: 2008
  ident: 10.1016/j.neuroimage.2016.12.064_bib22
  article-title: Multiple sclerosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)61620-7
– volume: 34
  start-page: 1993
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.064_bib79
  article-title: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2014.2377694
– volume: 1
  start-page: 757
  year: 1983
  ident: 10.1016/j.neuroimage.2016.12.064_bib16
  article-title: 1H Nuclear magnetic resonance imaging in multiple sclerosis
  publication-title: Neurol. Clin.
  doi: 10.1016/S0733-8619(18)31146-0
– volume: 20
  start-page: 1
  year: 1980
  ident: 10.1016/j.neuroimage.2016.12.064_bib10
  article-title: A convergence theorem for the fuzzy ISO-DATA clustering algorithms
  publication-title: IEEE Trans. Pattern. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1980.4766964
– ident: 10.1016/j.neuroimage.2016.12.064_bib19
– volume: 35
  start-page: 1229
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.064_bib14
  article-title: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2016.2528821
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.neuroimage.2016.12.064_bib129
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.906424
– volume: 35
  start-page: 475
  year: 2017
  ident: 10.1016/j.neuroimage.2016.12.064_bib60
  article-title: Random forest regression for magnetic resonance image synthesis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.009
– volume: 19
  start-page: 1598
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.064_bib97
  article-title: Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2439242
– volume: 18
  start-page: 589
  year: 2008
  ident: 10.1016/j.neuroimage.2016.12.064_bib23
  article-title: The clinical epidemiology of multiple sclerosis
  publication-title: Neuroimaging Clin. N. Am.
  doi: 10.1016/j.nic.2008.09.002
– ident: 10.1016/j.neuroimage.2016.12.064_bib1
  doi: 10.1007/11566465_51
– volume: 32
  start-page: 1490
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.064_bib29
  article-title: Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2013.2258403
– volume: 15
  start-page: 154
  year: 1996
  ident: 10.1016/j.neuroimage.2016.12.064_bib61
  article-title: Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.491417
– volume: 27
  start-page: 290
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.064_bib36
  article-title: Magnetic resonance outcome measures in multiple sclerosis trials
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000095
– ident: 10.1016/j.neuroimage.2016.12.064_bib94
  doi: 10.1007/978-3-319-24888-2_24
– volume: 70
  start-page: 22
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.064_bib39
  article-title: Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22472
– volume: 70
  start-page: 668
  year: 2011
  ident: 10.1016/j.neuroimage.2016.12.064_bib87
  article-title: Heterogeneity in longitudinal evolution of ring-enhancing MS lesions
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22622
– volume: 260
  start-page: 2458
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.064_bib118
  article-title: Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis
  publication-title: J. Neurol.
  doi: 10.1007/s00415-012-6762-5
– ident: 10.1016/j.neuroimage.2016.12.064_bib18
  doi: 10.1109/ISBI.2007.356937
– volume: 39
  start-page: 1543
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.064_bib7
  article-title: Automated identification of brain new lesions in multiple sclerosis using subtraction images
  publication-title: Mag. Reson. Im.
  doi: 10.1002/jmri.24293
– volume: 14
  start-page: 442
  year: 1996
  ident: 10.1016/j.neuroimage.2016.12.064_bib63
  article-title: Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.414608
– volume: 8
  start-page: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.064_bib70
  article-title: The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-009-9061-2
– volume: 20
  start-page: 643
  year: 2003
  ident: 10.1016/j.neuroimage.2016.12.064_bib11
  article-title: Automatic change detection in multimodal serial MRI
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00406-3
– ident: 10.1016/j.neuroimage.2016.12.064_bib55
  doi: 10.1007/978-3-642-40811-3_24
– volume: 16
  start-page: 598
  year: 1997
  ident: 10.1016/j.neuroimage.2016.12.064_bib115
  article-title: Multiple sclerosis lesion quantification using fuzzy-connectedness principles
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.640750
– start-page: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2016.12.064_bib76
  article-title: Patch-based segmentation with spatial consistency
  publication-title: J. Biomed. Imaging
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.neuroimage.2016.12.064_bib26
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 36
  start-page: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2016.12.064_bib47
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 35
  start-page: 250
  year: 2017
  ident: 10.1016/j.neuroimage.2016.12.064_bib71
  article-title: ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.009
– volume: 356
  start-page: 1293
  year: 2001
  ident: 10.1016/j.neuroimage.2016.12.064_bib74
  article-title: A probabilistic atlas and reference system for the human brain
  publication-title: Philos. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.2001.0915
– volume: 56
  start-page: 363
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.064_bib40
  article-title: A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies
  publication-title: Neuroradiology
  doi: 10.1007/s00234-014-1343-1
– ident: 10.1016/j.neuroimage.2016.12.064_bib122
  doi: 10.1007/3-540-45729-1_46
– volume: 2
  start-page: 402
  year: 2013
  ident: 10.1016/j.neuroimage.2016.12.064_bib109
  article-title: OASIS is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in MRI
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2013.03.002
– volume: 11
  start-page: 349
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.064_bib37
  article-title: Association between pathological and MRI findings in multiple sclerosis for the Attendees of the Correlation between Pathological MRI findings in MS workshop
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(12)70003-0
– ident: 10.1016/j.neuroimage.2016.12.064_bib121
  doi: 10.1007/978-3-642-40811-3_92
– volume: 56
  start-page: 1982
  year: 2010
  ident: 10.1016/j.neuroimage.2016.12.064_bib17
  article-title: Simple paradigm for extra-cerebral tissue removal
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.045
– volume: 28
  start-page: 1956
  year: 2007
  ident: 10.1016/j.neuroimage.2016.12.064_bib77
  article-title: MR imaging intensity modeling of damage and repair in multiple sclerosis
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A0701
– volume: 186
  start-page: 164
  year: 2012
  ident: 10.1016/j.neuroimage.2016.12.064_bib69
  article-title: Segmentation of multiple sclerosis lesions in brain MRI
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.10.011
– volume: 32
  start-page: 1205
  year: 2006
  ident: 10.1016/j.neuroimage.2016.12.064_bib125
  article-title: Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.04.211
– volume: 12
  start-page: 616
  year: 2008
  ident: 10.1016/j.neuroimage.2016.12.064_bib8
  article-title: Homeomorphic brain image segmentation with topological and statistical atlases
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2008.06.008
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.neuroimage.2016.12.064_bib12
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 34
  start-page: 2079
  year: 2015
  ident: 10.1016/j.neuroimage.2016.12.064_bib107
  article-title: Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2015.2419072
– ident: 10.1016/j.neuroimage.2016.12.064_bib126
  doi: 10.1117/12.878237
– volume: 15
  start-page: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2016.12.064_bib5
  article-title: Magnetic resonance imaging advances in multiple sclerosis
  publication-title: J. Neuroimaging
  doi: 10.1177/1051228405283362
– ident: 10.1016/j.neuroimage.2016.12.064_bib49
  doi: 10.1016/S0140-6736(14)61682-2
– ident: 10.1016/j.neuroimage.2016.12.064_bib33
  doi: 10.1117/12.481377
– ident: 10.1016/j.neuroimage.2016.12.064_bib46
  doi: 10.1007/978-3-642-15705-9_14
– volume: 1
  start-page: 024003
  year: 2014
  ident: 10.1016/j.neuroimage.2016.12.064_bib81
  article-title: Global image registration using a symmetric block-matching approach
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.1.2.024003
SSID ssj0009148
Score 2.6524823
Snippet In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered...
SourceID unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 77
SubjectTerms Adult
Algorithms
Automation
Bioengineering
Female
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Life Sciences
Longitudinal Studies
Magnetic Resonance Imaging
Male
Middle Aged
Multiple sclerosis
Multiple Sclerosis - diagnostic imaging
Neural networks
Neurons and Cognition
NMR
Nuclear magnetic resonance
Observer Variation
White Matter - diagnostic imaging
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2TgJeEN8EBgoSPEbEn0lACA20qYKtQohJe7P8kWxFbdqtLYj_nrskTqkmpj7Hp1595_PP9t39CHlNmTGSe5m4XPhEGFUk1jubMK5ym8q0cs2L6clIDU_FlzN5tkNGoRYG0ypDTGwCtZ85vCN_i9xxcJTgnH2cXybIGoWvq4FCw3TUCv5D02Jsl-wx7Iw1IHufDkffvq_b8FLRFsdJnuSUFl1uT5vx1XSQHE9hHWPKl2quCZX434a1e4GZk9dh6fXsyturem7-_DaTyT9b19E9crfDnPFB6yT3yU5ZPyC3TrpX9Yfk6_EMWYtWHhmy4pBiGC9gMKg0XsSTEu_U4kV5Pu1Klep3cbj4j03tYxc4WR6R06PDH5-HSUeykDjFxTKpnM-op4WonCsKC_hMSOmzrMyp88JylhZGSV-51GZVanKpKghycGqqlK0MtfwxGdSzunxKYk59WliXe8648AjmrITTTWEEzHRJXUSyMJPadR3IkQhjokOq2U-9toFGG2jKNNggIrSXnLddOLaQKYKxdKgyhbioYavYQvZ9L9shkRZhbCn9Bia9VxQbeA8PjvW4hqAy1XiFi_Xrv2hE9oP36C5yLPTazyPyqv8Max4fckxdzlY4BkAV0sVlN43JMsCWcCKMyJPWIXuNWJ7CrxQpGGTDVTdU3vxSjy-a3uMSO0Qq0I31Tr21RZ7d_H-fkzsMMVOT4LdPBsurVfkCEN_SvuyW8V-_j1fR
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXKVoJe-IYGCgoSHFPiOHYSOK0Q1Qq6FQdWKifLH0m7kM1WbAKCX89MEgdWK1DEOR7FydjjZ_vNPEKe00gpziwPTBrbIFYiC7Q1OoiYSHXIw8K0N6bzMzFbxO_O-fkecVJymIqK1EWItabss6nAKTkectUvYXYKinnW-4ID8p6Q_cXZh-mn9kKTsyClrY4HDVF-kCeOuNPRudrykMsVTFLkc4n2DFDEf1uNrl0iLXIXc-5SJ2801ZX68V2V5R_r0sktMnfZPR0d5ctxU-tj83O32OOoT75NbvYA1Z92I-oO2curu-T6vL-Cv0fen65R4qixKKflOz6iv4HG8InLjV_meADnb_KLVZ_XVL3y3S2BryrrGyfgcp8sTt5-fDMLekWGwAgW10FhbEItzeLCmCzTAOZizm2S5Ck1NtYsCjMluC1MqJMiVCkXBURE2GIVQheKavaATKp1lR8Sn1EbZtqklkUstoj8NIetUKZi8GJOjUcS5xlp-nLlqJpRSsdL-yx_-1SiTyWNJPjUI3SwvOpKdoywyZzzpUtJhSAqYV0ZYft6sO1hSwdHRlq_gJ8-dBSrfc-mp3JZQQRaSTzvxWT3b9QjR240yj7MbCQKKsL-mrHII8-GxxAg8NZHVfm6wTaAwFBbLvlXmyQBIArbR4887Ab40KMoDeEtWQgO2Rr6W13eflItL9tC5RzLSQroWzRMktEeefQ_Ro_JQYSwq-UIHpFJ_bXJnwBorPXTPlb8Ap_xbfg
  priority: 102
  providerName: Unpaywall
Title Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916307819
https://dx.doi.org/10.1016/j.neuroimage.2016.12.064
https://www.ncbi.nlm.nih.gov/pubmed/28087490
https://www.proquest.com/docview/1874448332
https://www.proquest.com/docview/1861497237
https://www.proquest.com/docview/1877846306
https://inserm.hal.science/inserm-01480156
https://pubmed.ncbi.nlm.nih.gov/PMC5344762
http://discovery.ucl.ac.uk/id/eprint/1536181
UnpaywallVersion submittedVersion
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0BpDAl4Qn6NjTEGCx9A4duwEnkq1qbCuqgaVypPlj4QFtWm1tiBe-O3c5WtUE6gSL7XU-JTL3fl8Z98HIa9oqHXEXOTbmDufa5H4xlnjh0zEJoiCzJY3pucjMZjwj9Noukf6TS4MhlXWur_S6aW2rv_p1tTsLvO8-wksA9huwN8QDCvWYBIf5xK7GLz5dR3mkVBepcNFzMfZdTRPFeNV1ozM57ByMchLlAeDgv9ti7p1ibGSNw3Rm_GUdzfFUv_8oWezPzar0wfkfm1ler3qQx6SvbR4RO6c1_foj8nZcIF9ijYOe2J5TVCht4LJgFK-8mYpnqJ5q_TrvE5OKt56zVG_pwvn2aYLyxMyOT353B_4dVsF3wrG135mnaSOJjyzNkkMWGQ8ipyUaUyt44aFQaJF5DIbGJkFOo5EBmoN_KRMmExTw56S_WJRpM-Ix6gLEmNjx0LGHZpvJgJ_JtEcKJ1S2yGyoaSydc1xbH0xU01w2Td1zQOFPFA0VMCDDqEt5LKqu7EDTNIwSzV5paAJFWwOO8C-a2G35G9H6NdA9BZRLNk96A1VXoAamSs8tMWM9e-0Q44a6VG1rlgp7IoITjJjYYe8bB_DKserG12kiw3OATMKG8TJf82REqxJ8AE75KASyBajMA7gLUkADNkS1S2Ut58U-WVZbTzCmpACcAtbod6ZI4f_RdXn5F4IJmUVI39E9tdXm_QFmIBrc1yucfiVU3lMbvf6F8Mxjh_OBiMY35-MxhcwTkbj3pffvv9j_Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZ6SJQXxE2gQJDoY0R85QBVqECrLXsIoVbqm_GR0EW72YXdpeqf47cxTuwsq4pqX_ocO5l4xuNvPBdCrzGRklPDI50xEzGZ5JEyWkWEJpmKeVzq2mPaHySdU_b5jJ9toD8-F8aGVXqdWCtqM9H2jvyN7R0HpgSl5P30Z2S7Rlnvqm-hIV1rBbNflxhziR3d4vICTLjZ_vEn4PceIUeHJx87kesyEOmEsnlUapNiA7Z8qXWeKwAojHOTpkWGtWGKkjiXCTeljlVaxjLjSQm7HMyGMlGlxIrCezfRNqMsB-Nv-8Ph4MvXZdlfzJpkPE6jDOPcxRI1EWZ1xcrhGPSGDTFL6mvJhP3vgNw8t5GaV2Hw1WjOnUU1lZcXcjT656g8uovuOIwbHjRCeQ9tFNV9dKvvvPgPULc3sV2SFsZ25Ap9SGM4g8FA0nAWjgp7hxfOiu9jlxpVvQ29oyGUlQm17wHzEJ3eyHI_QlvVpCqeoJBiE-dKZ4YSyowFj4qDNZVLBitdYB2g1K-k0K7iuW28MRI-tO2HWPJAWB4ITATwIEC4nTltqn6sMSf3zBI-qxX0sICjaY2579q5Dvk0iGbN2Xuw6C2htmB456AnhhUosbGwV8Y2X_43DtCulx7hNNVMLPdVgF61j0HHWMeRrIrJwo4BEGfb06XXjUlTwLJggQbocSOQLUUki-EreQwMWRHVFZJXn1TD87rWObcVKROgjbRCvTZHnl7_vy_RTuek3xO940H3GbpNLF6rgwt30db816J4Dmhzrl64LR2ibzetRf4CDKOVYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQ1eEN8UBgSJPUaL7ThOQAhNjKqj3cQDk_pm_JGwojYttGXav8Zfx10Sp1QTU1_2HDu5-M7nO9_v7gh5Q5nWgjsR2jR2YayTLDTOmpDxJDWRiApbRUxPTpPeWfx5KIZb5I_PhUFYpdeJlaJ2U4t35AfYOw5cCc7ZQdHAIr4cdT_MfobYQQojrb6dRi0i_fzyAty3-fvjI-D1PmPdT18_9sKmw0BoEx4vwsI6SR348YW1WWbAOImFcFLmKbUuNpxFmU6EK2xkZBHpVCQF7HBwGYrEFJoaDu_dJrck5xnCCeVQrgr-0rhOwxM8TCnNGhRRjS2ralWOJqAxEFyWVBeSSfy_o3H7HDGaVw3gqzjO28typi8v9Hj8zyHZvUfuNtZtcFiL432ylZcPyO5JE79_SPqDKfZHWjrsxRV4MGMwh8FA0mgejHO8vQvm-fdJkxRVvg18iCHQpQus7_7yiJzdyGI_JjvltMyfkoBTF2XGpo4zHjs0G40APyrTMax0Tm2HSL-Syja1zrHlxlh5UNsPteKBQh4oyhTwoENoO3NW1_vYYE7mmaV8PitoYAWH0gZz37VzG5untmU2nL0Pi94SiqXCe4cDNSpBfU0UXhZjpvxv2iF7XnpUo6PmarWjOuR1-xi0C4aMdJlPlzgGzDdsTCevGyMlWLHge3bIk1ogW4pYGsFXsggYsiaqaySvPylH51WVc4G1KBOgjbVCvTFHnl3_v6_ILugONTg-7T8ndxgaahWqcI_sLH4t8xdgZi7My2o_B-TbTSuQv_9xkv0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXKVoJe-IYGCgoSHFPiOHYSOK0Q1Qq6FQdWKifLH0m7kM1WbAKCX89MEgdWK1DEOR7FydjjZ_vNPEKe00gpziwPTBrbIFYiC7Q1OoiYSHXIw8K0N6bzMzFbxO_O-fkecVJymIqK1EWItabss6nAKTkectUvYXYKinnW-4ID8p6Q_cXZh-mn9kKTsyClrY4HDVF-kCeOuNPRudrykMsVTFLkc4n2DFDEf1uNrl0iLXIXc-5SJ2801ZX68V2V5R_r0sktMnfZPR0d5ctxU-tj83O32OOoT75NbvYA1Z92I-oO2curu-T6vL-Cv0fen65R4qixKKflOz6iv4HG8InLjV_meADnb_KLVZ_XVL3y3S2BryrrGyfgcp8sTt5-fDMLekWGwAgW10FhbEItzeLCmCzTAOZizm2S5Ck1NtYsCjMluC1MqJMiVCkXBURE2GIVQheKavaATKp1lR8Sn1EbZtqklkUstoj8NIetUKZi8GJOjUcS5xlp-nLlqJpRSsdL-yx_-1SiTyWNJPjUI3SwvOpKdoywyZzzpUtJhSAqYV0ZYft6sO1hSwdHRlq_gJ8-dBSrfc-mp3JZQQRaSTzvxWT3b9QjR240yj7MbCQKKsL-mrHII8-GxxAg8NZHVfm6wTaAwFBbLvlXmyQBIArbR4887Ab40KMoDeEtWQgO2Rr6W13eflItL9tC5RzLSQroWzRMktEeefQ_Ro_JQYSwq-UIHpFJ_bXJnwBorPXTPlb8Ap_xbfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+multiple+sclerosis+lesion+segmentation%3A+Resource+and+challenge&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Carass%2C+Aaron&rft.au=Roy%2C+Snehashis&rft.au=Jog%2C+Amod&rft.au=Cuzzocreo%2C+Jennifer+L.&rft.date=2017-03-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=148&rft.spage=77&rft.epage=102&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.12.064&rft.externalDocID=S1053811916307819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon