Substrate stiffness and VE-cadherin mechano-transduction coordinate to regulate endothelial monolayer integrity

The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through integrin adhesions, mechanical perturbations such as changes in fluid shear stress can also activate force transduction signals at intercellular...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 140; pp. 45 - 57
Main Authors Andresen Eguiluz, Roberto C., Kaylan, Kerim B., Underhill, Gregory H., Leckband, Deborah E.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.09.2017
Subjects
Online AccessGet full text
ISSN0142-9612
1878-5905
1878-5905
DOI10.1016/j.biomaterials.2017.06.010

Cover

Abstract The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through integrin adhesions, mechanical perturbations such as changes in fluid shear stress can also activate force transduction signals at intercellular junctions. This study investigated how extracellular matrix rigidity and intercellular force transduction, activated by vascular endothelial cadherin, coordinate to regulate the integrity of endothelial monolayers. Studies used complementary mechanical measurements of endothelial monolayers grown on patterned substrates of variable stiffness. Specifically perturbing VE-cadherin receptors activated intercellular force transduction signals that increased integrin-dependent cell contractility and disrupted cell-cell and cell-matrix adhesions. Further investigations of the impact of substrate rigidity on force transduction signaling demonstrated how cells integrate extracellular mechanics cues and intercellular force transduction signals, to regulate endothelial integrity and global tissue mechanics. VE-cadherin specific signaling increased focal adhesion remodeling and cell contractility, while sustaining the overall mechanical equilibrium at the mesoscale. Conversely, increased substrate rigidity exacerbates the disruptive effects of intercellular force transduction signals, by increasing heterogeneity in monolayer stress distributions. The results provide new insights into how substrate stiffness and intercellular force transduction coordinate to regulate endothelial monolayer integrity.
AbstractList Abstract The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through integrin adhesions, mechanical perturbations such as changes in fluid shear stress can also activate force transduction signals at intercellular junctions. This study investigated how extracellular matrix rigidity and intercellular force transduction, activated by vascular endothelial cadherin, coordinate to regulate the integrity of endothelial monolayers. Studies used complementary mechanical measurements of endothelial monolayers grown on patterned substrates of variable stiffness. Specifically perturbing VE-cadherin receptors activated intercellular force transduction signals that increased integrin-dependent cell contractility and disrupted cell-cell and cell-matrix adhesions. Further investigations of the impact of substrate rigidity on force transduction signaling demonstrated how cells integrate extracellular mechanics cues and intercellular force transduction signals, to regulate endothelial integrity and global tissue mechanics. VE-cadherin specific signaling increased focal adhesion remodeling and cell contractility, while sustaining the overall mechanical equilibrium at the mesoscale. Conversely, increased substrate rigidity exacerbates the disruptive effects of intercellular force transduction signals, by increasing heterogeneity in monolayer stress distributions. The results provide new insights into how substrate stiffness and intercellular force transduction coordinate to regulate endothelial monolayer integrity.
The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through integrin adhesions, mechanical perturbations such as changes in fluid shear stress can also activate force transduction signals at intercellular junctions. This study investigated how extracellular matrix rigidity and intercellular force transduction, activated by vascular endothelial cadherin, coordinate to regulate the integrity of endothelial monolayers. Studies used complementary mechanical measurements of endothelial monolayers grown on patterned substrates of variable stiffness. Specifically perturbing VE-cadherin receptors activated intercellular force transduction signals that increased integrin-dependent cell contractility and disrupted cell-cell and cell-matrix adhesions. Further investigations of the impact of substrate rigidity on force transduction signaling demonstrated how cells integrate extracellular mechanics cues and intercellular force transduction signals, to regulate endothelial integrity and global tissue mechanics. VE-cadherin specific signaling increased focal adhesion remodeling and cell contractility, while sustaining the overall mechanical equilibrium at the mesoscale. Conversely, increased substrate rigidity exacerbates the disruptive effects of intercellular force transduction signals, by increasing heterogeneity in monolayer stress distributions. The results provide new insights into how substrate stiffness and intercellular force transduction coordinate to regulate endothelial monolayer integrity.
The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through integrin adhesions, mechanical perturbations such as changes in fluid shear stress can also activate force transduction signals at intercellular junctions. This study investigated how extracellular matrix rigidity and intercellular force transduction, activated by vascular endothelial cadherin, coordinate to regulate the integrity of endothelial monolayers. Studies used complementary mechanical measurements of endothelial monolayers grown on patterned substrates of variable stiffness. Specifically perturbing VE-cadherin receptors activated intercellular force transduction signals that increased integrin-dependent cell contractility and disrupted cell-cell and cell-matrix adhesions. Further investigations of the impact of substrate rigidity on force transduction signaling, demonstrated how cells integrate extracellular mechanics cues and intercellular force transduction signals, to regulate endothelial integrity and global tissue mechanics. VE-cadherin specific signaling increased focal adhesion remodeling and cell contractility, while sustaining the overall mechanical equilibrium at the mesoscale. Conversely, increased substrate rigidity exacerbates the disruptive effects of intercellular force transduction, by increasing heterogeneity in monolayer stress distributions. The results provide new insights into how substrate stiffness and intercellular force transduction coordinate to regulate endothelial monolayer integrity.
The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through integrin adhesions, mechanical perturbations such as changes in fluid shear stress can also activate force transduction signals at intercellular junctions. This study investigated how extracellular matrix rigidity and intercellular force transduction, activated by vascular endothelial cadherin, coordinate to regulate the integrity of endothelial monolayers. Studies used complementary mechanical measurements of endothelial monolayers grown on patterned substrates of variable stiffness. Specifically perturbing VE-cadherin receptors activated intercellular force transduction signals that increased integrin-dependent cell contractility and disrupted cell-cell and cell-matrix adhesions. Further investigations of the impact of substrate rigidity on force transduction signaling demonstrated how cells integrate extracellular mechanics cues and intercellular force transduction signals, to regulate endothelial integrity and global tissue mechanics. VE-cadherin specific signaling increased focal adhesion remodeling and cell contractility, while sustaining the overall mechanical equilibrium at the mesoscale. Conversely, increased substrate rigidity exacerbates the disruptive effects of intercellular force transduction signals, by increasing heterogeneity in monolayer stress distributions. The results provide new insights into how substrate stiffness and intercellular force transduction coordinate to regulate endothelial monolayer integrity.The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through integrin adhesions, mechanical perturbations such as changes in fluid shear stress can also activate force transduction signals at intercellular junctions. This study investigated how extracellular matrix rigidity and intercellular force transduction, activated by vascular endothelial cadherin, coordinate to regulate the integrity of endothelial monolayers. Studies used complementary mechanical measurements of endothelial monolayers grown on patterned substrates of variable stiffness. Specifically perturbing VE-cadherin receptors activated intercellular force transduction signals that increased integrin-dependent cell contractility and disrupted cell-cell and cell-matrix adhesions. Further investigations of the impact of substrate rigidity on force transduction signaling demonstrated how cells integrate extracellular mechanics cues and intercellular force transduction signals, to regulate endothelial integrity and global tissue mechanics. VE-cadherin specific signaling increased focal adhesion remodeling and cell contractility, while sustaining the overall mechanical equilibrium at the mesoscale. Conversely, increased substrate rigidity exacerbates the disruptive effects of intercellular force transduction signals, by increasing heterogeneity in monolayer stress distributions. The results provide new insights into how substrate stiffness and intercellular force transduction coordinate to regulate endothelial monolayer integrity.
The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through integrin adhesions, mechanical perturbations such as changes in fluid shear stress can also activate force transduction signals at intercellular junctions. This study investigated how extracellular matrix rigidity and intercellular force transduction, activated by vascular endothelial cadherin, coordinate to regulate the integrity of endothelial monolayers. Studies used complementary mechanical measurements of endothelial monolayers grown on patterned substrates of variable stiffness. Specifically perturbing VE-cadherin receptors activated intercellular force transduction signals that increased integrin-dependent cell contractility and disrupted cell-cell and cell-matrix adhesions. Further investigations of the impact of substrate rigidity on force transduction signaling, demonstrated how cells integrate extracellular mechanics cues and intercellular force transduction signals, to regulate endothelial integrity and global tissue mechanics. VE-cadherin specific signaling increased focal adhesion remodeling and cell contractility, while sustaining the overall mechanical equilibrium at the mesoscale. Conversely, increased substrate rigidity exacerbates the disruptive effects of intercellular force transduction, by increasing heterogeneity in monolayer stress distributions. The results provide new insights into how substrate stiffness and intercellular force transduction coordinate to regulate endothelial monolayer integrity.
Author Kaylan, Kerim B.
Andresen Eguiluz, Roberto C.
Leckband, Deborah E.
Underhill, Gregory H.
AuthorAffiliation a Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
b Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
c Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
AuthorAffiliation_xml – name: b Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
– name: c Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
– name: a Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
Author_xml – sequence: 1
  givenname: Roberto C.
  surname: Andresen Eguiluz
  fullname: Andresen Eguiluz, Roberto C.
  organization: Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
– sequence: 2
  givenname: Kerim B.
  surname: Kaylan
  fullname: Kaylan, Kerim B.
  organization: Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
– sequence: 3
  givenname: Gregory H.
  surname: Underhill
  fullname: Underhill, Gregory H.
  organization: Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
– sequence: 4
  givenname: Deborah E.
  surname: Leckband
  fullname: Leckband, Deborah E.
  email: leckband@illinois.edu
  organization: Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28624707$$D View this record in MEDLINE/PubMed
BookMark eNqVkktv1DAUhS1URB_wF1DEik0GXycTJyAhoJSHVIlFga3l2DczHhx7sJ2i-fc4mlIKEqJdJVHO-XzuuT4mB847JOQJ0AVQaJ5tFr3xo0wYjLRxwSjwBW0WFOg9cgQtb8tlR5cH5IhCzcquAXZIjmPc0PxNa_aAHLK2YTWn_Ij4i6mPKWRYEZMZBocxFtLp4utZqaRe5zNcMaJaS-fLrHNRTyoZ7wrlfdDGzc7ki4Cryc7v6LRPa7Q5WjF6563cYSiMS7gKJu0ekvtDDo2Prp4n5Mu7s8-nH8rzT-8_nr4-L1VT1anssOsGGOqeo5a6QkU5hVZTNTDOe9ZK3SMyiT0doGnrGkA3DVNSymYJGmV1Ql7suZPbyt0Paa3YBjPKsBNAxVyj2IibNYq5RkEbkWvM7pd793bqR9QKXR79N8FLI_7848xarPylWPIlr3iXAU-vAMF_nzAmMZqo0Frp0E_zYZTWFTR1_V8pdADQtS2HLH18M9Z1nl_rzILne4EKPsaAw92GfvWXWZkk513nEY29HeLtHoF5tZcGg4jKoFOoTUCVhPbmTvVfY5Q1zihpv-EO48ZPwc0eEJEJKi7mez5fc-AVrWk11__m34DbpvgJB5kZwQ
CitedBy_id crossref_primary_10_1016_j_bbcan_2020_188402
crossref_primary_10_1016_j_tibtech_2018_01_003
crossref_primary_10_1038_s42003_021_02285_w
crossref_primary_10_1093_nsr_nwx153
crossref_primary_10_3389_fphys_2020_00684
crossref_primary_10_1016_j_bioadv_2025_214240
crossref_primary_10_1016_j_tcb_2018_01_008
crossref_primary_10_1091_mbc_e17_04_0228
crossref_primary_10_1016_j_bpj_2023_12_026
crossref_primary_10_1007_s00018_024_05407_9
crossref_primary_10_3390_ijms252011234
crossref_primary_10_1002_adhm_202002048
crossref_primary_10_4236_jbnb_2022_133004
crossref_primary_10_1016_j_apmt_2021_101198
crossref_primary_10_1177_08839115231157096
crossref_primary_10_1016_j_actbio_2020_03_022
crossref_primary_10_1007_s43152_020_00027_4
crossref_primary_10_1038_s41567_022_01826_2
crossref_primary_10_1016_j_biomaterials_2021_120947
crossref_primary_10_1016_j_bpj_2019_03_041
crossref_primary_10_1186_s12967_023_04315_z
crossref_primary_10_3389_fbioe_2019_00172
crossref_primary_10_1002_advs_202402757
crossref_primary_10_1002_smll_202200883
crossref_primary_10_1093_nsr_nwz188
crossref_primary_10_1063_5_0227692
crossref_primary_10_1088_1748_605X_ace7a4
crossref_primary_10_1002_advs_202003937
crossref_primary_10_1016_j_thromres_2020_08_012
crossref_primary_10_1038_s41467_021_22873_y
crossref_primary_10_1371_journal_pcbi_1006395
crossref_primary_10_1007_s12274_022_4670_2
crossref_primary_10_1016_j_bioadv_2024_213938
crossref_primary_10_1002_advs_202104649
crossref_primary_10_1007_s10409_021_01056_4
crossref_primary_10_1007_s00018_023_04801_z
crossref_primary_10_1016_j_actbio_2018_08_018
crossref_primary_10_1002_adbi_201800252
crossref_primary_10_1016_j_tcb_2024_12_014
crossref_primary_10_1016_j_bpj_2019_10_015
crossref_primary_10_1039_C8IB00124C
crossref_primary_10_1021_acsbiomaterials_7b00645
crossref_primary_10_1016_j_msec_2020_111418
crossref_primary_10_1091_mbc_E22_03_0075
crossref_primary_10_1161_ATVBAHA_122_318235
crossref_primary_10_3390_ijms23031477
crossref_primary_10_3389_fcell_2021_635263
crossref_primary_10_1016_j_actbio_2021_01_035
crossref_primary_10_1016_j_lfs_2023_122233
crossref_primary_10_1002_admt_202100138
crossref_primary_10_1007_s12195_018_0527_x
crossref_primary_10_1016_j_apmt_2020_100690
crossref_primary_10_3389_fphys_2021_714064
crossref_primary_10_1096_fj_202000662RR
crossref_primary_10_1063_5_0097602
crossref_primary_10_3389_fphys_2021_734215
crossref_primary_10_1016_j_mser_2019_100522
crossref_primary_10_3390_cells8121479
crossref_primary_10_1177_09506608241303436
crossref_primary_10_1177_2045894018773044
crossref_primary_10_1242_jcs_244533
crossref_primary_10_1002_jbm_a_37774
crossref_primary_10_1242_jcs_216010
crossref_primary_10_1021_acsapm_3c03154
crossref_primary_10_1002_adfm_202203069
crossref_primary_10_1152_physrev_00013_2019
Cites_doi 10.1161/ATVBAHA.113.301826
10.1161/ATVBAHA.108.181081
10.1038/nature03952
10.1103/PhysRevLett.87.148102
10.1007/BF00586277
10.1083/jcb.201004082
10.1242/jcs.185447
10.1083/jcb.201108120
10.1073/pnas.0914547107
10.1073/pnas.1011123108
10.1242/jcs.159954
10.1152/jappl.2001.91.4.1487
10.1016/S0002-9149(77)80004-0
10.2215/CJN.03050509
10.1016/j.bpj.2014.12.023
10.1152/physrev.00047.2009
10.1007/s12195-009-0082-6
10.1074/jbc.M115.690487
10.1242/jcs.112.11.1655
10.1038/ncb3336
10.1002/cm.20041
10.3389/fgene.2015.00112
10.1161/CIRCULATIONAHA.105.541078
10.1161/01.HYP.31.1.162
10.1016/j.ceb.2008.05.005
10.1152/ajpcell.00270.2001
10.1016/j.mvr.2012.12.006
10.1016/j.febslet.2005.09.090
10.1016/j.cub.2014.11.017
10.1136/thoraxjnl-2015-207461
10.7554/eLife.03282
10.1016/j.yexcr.2016.07.029
10.1038/nphys1269
10.1038/nprot.2012.017
10.1371/journal.pone.0055172
10.1681/ASN.2008060621
10.1161/01.ATV.0000160548.78317.29
10.1152/ajpcell.00195.2010
10.1083/jcb.201408103
10.1126/scitranslmed.3002761
10.1038/nmat3960
10.1073/pnas.0510774103
10.1007/s00441-013-1792-6
10.1016/j.cub.2012.08.051
10.1016/j.yexcr.2008.09.003
10.1152/ajpcell.00269.2001
10.1083/jcb.201001149
10.1002/cm.20472
10.1152/jappl.2001.91.2.986
10.1038/nmeth736
10.1103/PhysRevLett.109.108101
10.2353/ajpath.2006.050431
10.1152/physrev.1982.62.2.347
10.1016/j.cub.2013.04.049
10.1152/ajpheart.00304.2006
10.1039/C6IB00113K
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1016/j.biomaterials.2017.06.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 57
ExternalDocumentID oai:pubmedcentral.nih.gov:5757379
PMC5757379
28624707
10_1016_j_biomaterials_2017_06_010
S0142961217304039
1_s2_0_S0142961217304039
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: P01 HL060678
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
AAYXX
CITATION
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c634t-9e99f1f4b7edad3ec07018d0cf277b28adbee2aeb0f1684411d662caaa651dea3
IEDL.DBID UNPAY
ISSN 0142-9612
1878-5905
IngestDate Sun Oct 26 04:06:37 EDT 2025
Tue Sep 30 16:47:35 EDT 2025
Mon Sep 29 02:08:01 EDT 2025
Sat Sep 27 18:30:02 EDT 2025
Mon Jul 21 06:07:12 EDT 2025
Thu Oct 02 04:25:30 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Fri Feb 23 02:31:38 EST 2024
Tue Feb 25 19:57:20 EST 2025
Tue Oct 14 19:30:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Magnetic twisting cytometry
Micropatterned substrates
Mechanotransduction
Cell traction
VE-cadherin
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-9e99f1f4b7edad3ec07018d0cf277b28adbee2aeb0f1684411d662caaa651dea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5757379
PMID 28624707
PQID 1911198871
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_1016_j_biomaterials_2017_06_010
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5757379
proquest_miscellaneous_2000431644
proquest_miscellaneous_1911198871
pubmed_primary_28624707
crossref_primary_10_1016_j_biomaterials_2017_06_010
crossref_citationtrail_10_1016_j_biomaterials_2017_06_010
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2017_06_010
elsevier_clinicalkeyesjournals_1_s2_0_S0142961217304039
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2017_06_010
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Valent, van Nieuw Amerongen, van Hinsbergh, Hordijk (bib9) 2016; 347
Elosegui-Artola, Oria, Chen, Kosmalska, Pérez-González, Castro, Zhu, Trepat, Roca-Cusachs (bib48) 2016; 18
Coon, Baeyens, Han, Budatha, Ross, Fang, Yun, Thomas, Schwartz (bib19) 2015; 208
Chiang, Korshunov, Serour, Shi, Sottile (bib33) 2009; 29
Tian, Gawlak, O'Donnell, Birukova, Birukov (bib20) 2016; 291
Liu, Tan, Cohen, Yang, Sniadecki, Ruiz, Nelson, Chen (bib54) 2010; 107
Dan, Huang, Leckband (bib4) 2016
Tambe, Croutelle, Trepat, Park, Kim, Millet, Butler, Fredberg (bib38) 2013; 8
Tzima, Irani-Tehrani, Kiosses, DeJana, Schultz, Engelhardt, Cao, DeLisser, Schwartz (bib1) 2005; 437
Barry, Wang, Leckband (bib27) 2015; 128
Krishnan, Klumpers, Park, Rajendran, Trepat, van Bezu, van Hinsbergh, Carman, Brain, Fredberg, Butler, van Nieuw Amerongen (bib8) 2011; 300
Barry, Wang, Leckband, Leckband, Sciences (bib21) 2015; 128
Zamir, Katz, Aota, Yamada, Geiger, Kam (bib40) 1999; 112
Redfield, Jacobsen, Borlaug, Rodeheffer, Kass (bib15) 2005; 112
Chien, Li, Shyy (bib12) 1998; 31
Wang, Tolić-Nørrelykke, Chen, Mijailovich, Butler, Fredberg, Stamenović (bib43) 2002; 282
Le Duc, Shi, Blonk, Sonnenberg, Wang, Leckband, De Rooij (bib47) 2010; 189
Trepat, Wasserman, Angelini, Millet, Weitz, Butler, Fredberg (bib37) 2009; 5
Ng, Besser, Brugge, Danuser (bib39) 2014; 4
Kohn, Lampi, Reinhart-King (bib22) 2015; 6
Banerjee, Marchetti (bib50) 2012; 109
Kim, Zheng, Sun, Muhamed, Wu, Lei, Kong, Leckband, Wang (bib44) 2015; 25
Schwartz, DeSimone (bib46) 2008; 20
Elosegui-Artola, Bazellières, Allen, Andreu, Oria, Sunyer, Gomm, Marshall, Jones, Trepat, Roca-Cusachs (bib24) 2014; 13
Wang, Baker, Chen, Schwartz (bib52) 2013; 33
Brafman, Chien, Willert (bib32) 2012; 7
Zieman, Melenovsky, Kass (bib14) 2005; 25
Tse, Engler (bib29) 2010
Conway, Breckenridge, Hinde, Gratton, Chen, Schwartz (bib18) 2013; 23
Dudek, Garcia (bib7) 2001; 91
Oldenburg, de Rooij (bib10) 2014; 355
Maruthamuthu, Sabass, Schwarz, Gardel (bib45) 2011; 108
Muhamed, Wu, Sehgal, Kong, Tajik, Wang, Leckband (bib26) 2016
Fabry, Maksym, Shore, Moore, Panettieri, Butler, Fredberg, Maksym, Shore, Moore, Panettieri, But, Fredberg (bib35) 2001; 91
Cummins, Sweeney, Killeen, Birney, Redmond, Cahill (bib5) 2007; 292
Mui, Chen, Assoian (bib11) 2016
Kohn, Zhou, Bordeleau, Zhou, Mason, Mitchell, King, Reinhart-King (bib2) 2015; 108
Hur, Zhao, Li, Botvinick, Chien (bib55) 2009; 2
Freedman, Sedor (bib59) 2008; 19
Folkow (bib13) 1982; 62
Collins, Guilluy, Welch, O'Brien, Hahn, Superfine, Burridge, Tzima (bib49) 2012; 22
Rahil, Pedron, Wang, Ha, Harley, Leckband (bib53) 2016; 8
Ross, Agius (bib61) 1992; 100
Liu, Mih, Shea, Kho, Sharif, Tager, Tschumperlin (bib60) 2010; 190
Butler, Tolić-Nørrelykke, Fabry, Fredberg (bib28) 2002; 282
Birukova, Tian, Cokic, Beckham, Gardel, Birukov (bib36) 2013; 87
Schlatmann, Becker (bib16) 1977; 39
Millar, Summers, Griffiths, Toshner, Proudfoot (bib57) 2016; 71
Huveneers, Oldenburg, Spanjaard, van der Krogt, Grigoriev, Akhmanova, Rehmann, de Rooij (bib42) 2012; 196
Fabry, Maksym, Butler, Glogauer, Navajas, Fredberg (bib34) 2001; 87
Gonon, Skalski, Kean, Coppolino (bib41) 2005; 579
Birukova, Chatchavalvanich, Rios, Kawkitinarong, Garcia, Birukov (bib3) 2006; 168
Weir (bib58) 2009; 4
Birukova, Rios, Birukov (bib6) 2008; 314
Chiu, Chien (bib56) 2011; 91
Huynh, Nishimura, Rana, Peloquin, Califano, Montague, King, Schaffer, Reinhart-King (bib17) 2011; 3
Wang, Jin, Miao, Li, Usami, Chien (bib25) 2006; 103
Yeung, Georges, Flanagan, Marg, Ortiz, Funaki, Zahir, Ming, Weaver, Janmey (bib51) 2005; 60
Flaim, Chien, Bhatia (bib30) 2005; 2
Amano, Nakayama, Kaibuchi (bib23) 2010; 67
Birukova (10.1016/j.biomaterials.2017.06.010_bib36) 2013; 87
Coon (10.1016/j.biomaterials.2017.06.010_bib19) 2015; 208
Weir (10.1016/j.biomaterials.2017.06.010_bib58) 2009; 4
Fabry (10.1016/j.biomaterials.2017.06.010_bib35) 2001; 91
Schlatmann (10.1016/j.biomaterials.2017.06.010_bib16) 1977; 39
Valent (10.1016/j.biomaterials.2017.06.010_bib9) 2016; 347
Schwartz (10.1016/j.biomaterials.2017.06.010_bib46) 2008; 20
Le Duc (10.1016/j.biomaterials.2017.06.010_bib47) 2010; 189
Kohn (10.1016/j.biomaterials.2017.06.010_bib2) 2015; 108
Liu (10.1016/j.biomaterials.2017.06.010_bib60) 2010; 190
Chien (10.1016/j.biomaterials.2017.06.010_bib12) 1998; 31
Fabry (10.1016/j.biomaterials.2017.06.010_bib34) 2001; 87
Tambe (10.1016/j.biomaterials.2017.06.010_bib38) 2013; 8
Flaim (10.1016/j.biomaterials.2017.06.010_bib30) 2005; 2
Chiang (10.1016/j.biomaterials.2017.06.010_bib33) 2009; 29
Maruthamuthu (10.1016/j.biomaterials.2017.06.010_bib45) 2011; 108
Elosegui-Artola (10.1016/j.biomaterials.2017.06.010_bib48) 2016; 18
Folkow (10.1016/j.biomaterials.2017.06.010_bib13) 1982; 62
Brafman (10.1016/j.biomaterials.2017.06.010_bib32) 2012; 7
Elosegui-Artola (10.1016/j.biomaterials.2017.06.010_bib24) 2014; 13
Wang (10.1016/j.biomaterials.2017.06.010_bib25) 2006; 103
Barry (10.1016/j.biomaterials.2017.06.010_bib27) 2015; 128
Birukova (10.1016/j.biomaterials.2017.06.010_bib3) 2006; 168
Barry (10.1016/j.biomaterials.2017.06.010_bib21) 2015; 128
Hur (10.1016/j.biomaterials.2017.06.010_bib55) 2009; 2
Wang (10.1016/j.biomaterials.2017.06.010_bib52) 2013; 33
Krishnan (10.1016/j.biomaterials.2017.06.010_bib8) 2011; 300
Freedman (10.1016/j.biomaterials.2017.06.010_bib59) 2008; 19
Huynh (10.1016/j.biomaterials.2017.06.010_bib17) 2011; 3
Liu (10.1016/j.biomaterials.2017.06.010_bib54) 2010; 107
Trepat (10.1016/j.biomaterials.2017.06.010_bib37) 2009; 5
Gonon (10.1016/j.biomaterials.2017.06.010_bib41) 2005; 579
Oldenburg (10.1016/j.biomaterials.2017.06.010_bib10) 2014; 355
Tian (10.1016/j.biomaterials.2017.06.010_bib20) 2016; 291
Mui (10.1016/j.biomaterials.2017.06.010_bib11) 2016
Amano (10.1016/j.biomaterials.2017.06.010_bib23) 2010; 67
Ng (10.1016/j.biomaterials.2017.06.010_bib39) 2014; 4
Muhamed (10.1016/j.biomaterials.2017.06.010_bib26) 2016
Yeung (10.1016/j.biomaterials.2017.06.010_bib51) 2005; 60
Redfield (10.1016/j.biomaterials.2017.06.010_bib15) 2005; 112
Banerjee (10.1016/j.biomaterials.2017.06.010_bib50) 2012; 109
Tse (10.1016/j.biomaterials.2017.06.010_bib29) 2010
Cummins (10.1016/j.biomaterials.2017.06.010_bib5) 2007; 292
Zieman (10.1016/j.biomaterials.2017.06.010_bib14) 2005; 25
Millar (10.1016/j.biomaterials.2017.06.010_bib57) 2016; 71
Kim (10.1016/j.biomaterials.2017.06.010_bib44) 2015; 25
Huveneers (10.1016/j.biomaterials.2017.06.010_bib42) 2012; 196
Birukova (10.1016/j.biomaterials.2017.06.010_bib6) 2008; 314
Rahil (10.1016/j.biomaterials.2017.06.010_bib53) 2016; 8
Dan (10.1016/j.biomaterials.2017.06.010_bib4) 2016
Chiu (10.1016/j.biomaterials.2017.06.010_bib56) 2011; 91
Collins (10.1016/j.biomaterials.2017.06.010_bib49) 2012; 22
Ross (10.1016/j.biomaterials.2017.06.010_bib61) 1992; 100
Tzima (10.1016/j.biomaterials.2017.06.010_bib1) 2005; 437
Kohn (10.1016/j.biomaterials.2017.06.010_bib22) 2015; 6
Zamir (10.1016/j.biomaterials.2017.06.010_bib40) 1999; 112
Wang (10.1016/j.biomaterials.2017.06.010_bib43) 2002; 282
Conway (10.1016/j.biomaterials.2017.06.010_bib18) 2013; 23
Dudek (10.1016/j.biomaterials.2017.06.010_bib7) 2001; 91
Butler (10.1016/j.biomaterials.2017.06.010_bib28) 2002; 282
References_xml – volume: 91
  start-page: 986
  year: 2001
  end-page: 994
  ident: bib35
  article-title: Signal transduction in smooth muscle selected contribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells
  publication-title: J. Appl. Physiol.
– volume: 437
  start-page: 426
  year: 2005
  end-page: 431
  ident: bib1
  article-title: A mechanosensory complex that mediates the endothelial cell response to fluid shear stress
  publication-title: Nature
– volume: 292
  start-page: H28
  year: 2007
  end-page: H42
  ident: bib5
  article-title: Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium?: a force to be reckoned with
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– year: 2016
  ident: bib26
  article-title: E-Cadherin-mediated force transduction signals regulate global cell mechanics
  publication-title: J. Cell Sci.
– volume: 300
  start-page: C146
  year: 2011
  end-page: C154
  ident: bib8
  article-title: Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 109
  start-page: 1
  year: 2012
  end-page: 5
  ident: bib50
  article-title: Contractile stresses in cohesive cell layers on finite-thickness substrates
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 17
  ident: bib22
  article-title: Age-related vascular stiffening: causes and consequences
  publication-title: Front. Genet.
– volume: 103
  start-page: 1774
  year: 2006
  end-page: 1779
  ident: bib25
  article-title: Integrins regulate VE-cadherin and catenins: dependence of this regulation on Src, but not on Ras
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 314
  start-page: 3466
  year: 2008
  end-page: 3477
  ident: bib6
  article-title: Long-term cyclic stretch controls pulmonary endothelial permeability at translational and post-translational levels
  publication-title: Exp. Cell Res.
– volume: 39
  start-page: 13
  year: 1977
  end-page: 20
  ident: bib16
  article-title: Histologic changes in the normal aging aorta: implications for dissecting aortic aneurysm
  publication-title: Am. J. Cardiol.
– volume: 23
  start-page: 1024
  year: 2013
  end-page: 1030
  ident: bib18
  article-title: Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1
  publication-title: Curr. Biol.
– volume: 60
  start-page: 24
  year: 2005
  end-page: 34
  ident: bib51
  article-title: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, cell Motil
  publication-title: Cytoskeleton
– volume: 5
  start-page: 426
  year: 2009
  end-page: 430
  ident: bib37
  article-title: Physical forces during collective cell migration
  publication-title: Nat. Phys.
– volume: 189
  start-page: 1107
  year: 2010
  end-page: 1115
  ident: bib47
  article-title: Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner
  publication-title: J. Cell Biol.
– volume: 8
  start-page: 929
  year: 2016
  end-page: 935
  ident: bib53
  article-title: Nanoscale mechanics guides cellular decision making
  publication-title: Integr. Biol.
– volume: 91
  start-page: 1487
  year: 2001
  end-page: 1500
  ident: bib7
  article-title: Cytoskeletal regulation of pulmonary vascular permeability
  publication-title: J. Appl. Physiol.
– volume: 7
  start-page: 703
  year: 2012
  end-page: 717
  ident: bib32
  article-title: Arrayed cellular microenvironments for identifying culture and differentiation conditions for stem, primary and rare cell populations
  publication-title: Nat. Protoc.
– volume: 71
  start-page: 462
  year: 2016
  end-page: 473
  ident: bib57
  article-title: The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities
  publication-title: Thorax
– volume: 87
  start-page: 1
  year: 2001
  end-page: 4
  ident: bib34
  article-title: Scaling the microrheology of living cells
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 4708
  year: 2011
  end-page: 4713
  ident: bib45
  article-title: Cell-ECM traction force modulates endogenous tension at cell-cell contacts
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 112
  start-page: 2254
  year: 2005
  end-page: 2262
  ident: bib15
  article-title: Age- and gender-related ventricular-vascular stiffening: a community-based study
  publication-title: Circulation
– start-page: 1
  year: 2016
  end-page: 13
  ident: bib4
  article-title: Dynamic imaging reveals coordinate effects of cyclic stretch and substrate stiffness on endothelial integrity
  publication-title: Ann. Biomed. Eng.
– volume: 25
  start-page: 932
  year: 2005
  end-page: 943
  ident: bib14
  article-title: Mechanisms, pathophysiology, and therapy of arterial stiffness
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– start-page: 1
  year: 2010
  end-page: 16
  ident: bib29
  article-title: Preparation of hydrogel substrates with tunable mechanical properties
  publication-title: Curr. Protoc. Cell Biol.
– volume: 112
  start-page: 1655
  year: 1999
  end-page: 1669
  ident: bib40
  article-title: Molecular diversity of cell-matrix adhesions
  publication-title: J. Cell Sci.
– volume: 282
  start-page: C606
  year: 2002
  end-page: C616
  ident: bib43
  article-title: Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 25
  start-page: 218
  year: 2015
  end-page: 224
  ident: bib44
  article-title: Dynamic visualization of α-catenin reveals rapid, reversible conformation switching between tension states
  publication-title: Curr. Biol.
– volume: 128
  start-page: 1341
  year: 2015
  end-page: 1351
  ident: bib27
  article-title: Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers
  publication-title: J. Cell Sci.
– volume: 2
  start-page: 119
  year: 2005
  end-page: 125
  ident: bib30
  article-title: An extracellular matrix microarray for probing cellular differentiation
  publication-title: Nat. Methods
– volume: 347
  start-page: 161
  year: 2016
  end-page: 170
  ident: bib9
  article-title: Traction force dynamics predict gap formation in activated endothelium
  publication-title: Exp. Cell Res.
– volume: 108
  start-page: 471
  year: 2015
  end-page: 478
  ident: bib2
  article-title: Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior
  publication-title: Biophys. J.
– volume: 355
  start-page: 545
  year: 2014
  end-page: 555
  ident: bib10
  article-title: Mechanical control of the endothelial barrier
  publication-title: Cell Tissue Res.
– volume: 31
  start-page: 162
  year: 1998
  end-page: 169
  ident: bib12
  article-title: Effects of mechanical forces on signal transduction gene expression in endothelial
  publication-title: Hypertension
– start-page: 1
  year: 2016
  end-page: 8
  ident: bib11
  article-title: The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces
  publication-title: J. Cell Sci.
– volume: 62
  start-page: 347
  year: 1982
  end-page: 504
  ident: bib13
  article-title: Physiological aspects of primary hypertension
  publication-title: Physiol. Rev.
– volume: 291
  start-page: 10032
  year: 2016
  end-page: 10045
  ident: bib20
  article-title: Activation of Vascular Endothelial Growth Factor (VEGF) receptor 2 mediates endothelial permeability caused by cyclic stretch
  publication-title: J. Biol. Chem.
– volume: 168
  start-page: 1749
  year: 2006
  end-page: 1761
  ident: bib3
  article-title: Differential regulation of pulmonary endothelial monolayer integrity by varying degrees of cyclic stretch
  publication-title: Am. J. Pathol.
– volume: 282
  start-page: C595
  year: 2002
  end-page: C605
  ident: bib28
  article-title: Traction fields, moments, and strain energy that cells exert on their surroundings
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 4
  start-page: e03282
  year: 2014
  ident: bib39
  article-title: Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters
  publication-title: Elife
– volume: 20
  start-page: 551
  year: 2008
  end-page: 556
  ident: bib46
  article-title: Cell adhesion receptors in mechanotransduction
  publication-title: Curr. Opin. Cell Biol.
– volume: 91
  start-page: 327
  year: 2011
  end-page: 387
  ident: bib56
  article-title: Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives
  publication-title: Physiol. Rev.
– volume: 8
  start-page: e55172
  year: 2013
  ident: bib38
  article-title: Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses
  publication-title: PLoS One
– volume: 190
  start-page: 693
  year: 2010
  end-page: 706
  ident: bib60
  article-title: Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression
  publication-title: J. Cell Biol.
– volume: 196
  start-page: 641
  year: 2012
  end-page: 652
  ident: bib42
  article-title: Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling
  publication-title: J. Cell Biol.
– volume: 128
  start-page: e0705
  year: 2015
  ident: bib21
  article-title: Local VE-cadherin mechanotransduction triggers long- ranged remodeling of endothelial monolayers
  publication-title: J. Cell Sci.
– volume: 29
  start-page: 1074
  year: 2009
  end-page: 1079
  ident: bib33
  article-title: Fibronectin is an important regulator of flow-induced vascular remodeling
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 19
  start-page: 2047
  year: 2008
  end-page: 2051
  ident: bib59
  article-title: Hypertension-associated kidney disease: perhaps no more
  publication-title: J. Am. Soc. Nephrol.
– volume: 3
  start-page: 112ra122
  year: 2011
  ident: bib17
  article-title: Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration
  publication-title: Sci. Transl. Med.
– volume: 18
  start-page: 540
  year: 2016
  end-page: 548
  ident: bib48
  article-title: Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity
  publication-title: Nat. Cell Biol.
– volume: 107
  start-page: 9944
  year: 2010
  end-page: 9949
  ident: bib54
  article-title: Mechanical tugging force regulates the size of cell-cell junctions
  publication-title: Proc. Natl. Acad. Sci.
– volume: 4
  start-page: 2045
  year: 2009
  end-page: 2050
  ident: bib58
  article-title: Hypertension and the kidney: perspectives on the relationship of kidney disease and cardiovascular disease
  publication-title: Clin. J. Am. Soc. Nephrol.
– volume: 100
  start-page: 34
  year: 1992
  end-page: 40
  ident: bib61
  article-title: The process of atherogenesis m cellular and molecular interaction: from experimental animal models to humans
  publication-title: Diabetologia
– volume: 87
  start-page: 50
  year: 2013
  end-page: 57
  ident: bib36
  article-title: Endothelial barrier disruption and recovery is controlled by substrate stiffness
  publication-title: Microvasc. Res.
– volume: 13
  start-page: 631
  year: 2014
  end-page: 637
  ident: bib24
  article-title: Rigidity sensing and adaptation through regulation of integrin types
  publication-title: Nat. Mater.
– volume: 579
  start-page: 6169
  year: 2005
  end-page: 6178
  ident: bib41
  article-title: SNARE-mediated membrane traffic modulates RhoA-regulated focal adhesion formation
  publication-title: FEBS Lett.
– volume: 22
  start-page: 2087
  year: 2012
  end-page: 2094
  ident: bib49
  article-title: Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway
  publication-title: Curr. Biol.
– volume: 67
  start-page: 545
  year: 2010
  end-page: 554
  ident: bib23
  article-title: Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity
  publication-title: Cytoskeleton
– volume: 33
  start-page: 2130
  year: 2013
  end-page: 2136
  ident: bib52
  article-title: Endothelial cell sensing of flow direction
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 208
  start-page: 975
  year: 2015
  end-page: 986
  ident: bib19
  article-title: Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex
  publication-title: J. Cell Biol.
– volume: 2
  start-page: 425
  year: 2009
  end-page: 436
  ident: bib55
  article-title: Live cells exert 3-dimensional traction forces on their substrata
  publication-title: Cell. Mol. Bioeng.
– volume: 33
  start-page: 2130
  year: 2013
  ident: 10.1016/j.biomaterials.2017.06.010_bib52
  article-title: Endothelial cell sensing of flow direction
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.113.301826
– volume: 29
  start-page: 1074
  year: 2009
  ident: 10.1016/j.biomaterials.2017.06.010_bib33
  article-title: Fibronectin is an important regulator of flow-induced vascular remodeling
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.108.181081
– volume: 437
  start-page: 426
  year: 2005
  ident: 10.1016/j.biomaterials.2017.06.010_bib1
  article-title: A mechanosensory complex that mediates the endothelial cell response to fluid shear stress
  publication-title: Nature
  doi: 10.1038/nature03952
– volume: 87
  start-page: 1
  year: 2001
  ident: 10.1016/j.biomaterials.2017.06.010_bib34
  article-title: Scaling the microrheology of living cells
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.148102
– volume: 100
  start-page: 34
  year: 1992
  ident: 10.1016/j.biomaterials.2017.06.010_bib61
  article-title: The process of atherogenesis m cellular and molecular interaction: from experimental animal models to humans
  publication-title: Diabetologia
  doi: 10.1007/BF00586277
– volume: 190
  start-page: 693
  year: 2010
  ident: 10.1016/j.biomaterials.2017.06.010_bib60
  article-title: Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201004082
– year: 2016
  ident: 10.1016/j.biomaterials.2017.06.010_bib26
  article-title: E-Cadherin-mediated force transduction signals regulate global cell mechanics
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.185447
– start-page: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2017.06.010_bib11
  article-title: The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces
  publication-title: J. Cell Sci.
– volume: 196
  start-page: 641
  year: 2012
  ident: 10.1016/j.biomaterials.2017.06.010_bib42
  article-title: Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201108120
– volume: 107
  start-page: 9944
  year: 2010
  ident: 10.1016/j.biomaterials.2017.06.010_bib54
  article-title: Mechanical tugging force regulates the size of cell-cell junctions
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0914547107
– start-page: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2017.06.010_bib4
  article-title: Dynamic imaging reveals coordinate effects of cyclic stretch and substrate stiffness on endothelial integrity
  publication-title: Ann. Biomed. Eng.
– volume: 108
  start-page: 4708
  year: 2011
  ident: 10.1016/j.biomaterials.2017.06.010_bib45
  article-title: Cell-ECM traction force modulates endogenous tension at cell-cell contacts
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1011123108
– volume: 128
  start-page: 1341
  year: 2015
  ident: 10.1016/j.biomaterials.2017.06.010_bib27
  article-title: Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.159954
– volume: 91
  start-page: 1487
  year: 2001
  ident: 10.1016/j.biomaterials.2017.06.010_bib7
  article-title: Cytoskeletal regulation of pulmonary vascular permeability
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.2001.91.4.1487
– volume: 39
  start-page: 13
  year: 1977
  ident: 10.1016/j.biomaterials.2017.06.010_bib16
  article-title: Histologic changes in the normal aging aorta: implications for dissecting aortic aneurysm
  publication-title: Am. J. Cardiol.
  doi: 10.1016/S0002-9149(77)80004-0
– volume: 4
  start-page: 2045
  year: 2009
  ident: 10.1016/j.biomaterials.2017.06.010_bib58
  article-title: Hypertension and the kidney: perspectives on the relationship of kidney disease and cardiovascular disease
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.03050509
– volume: 108
  start-page: 471
  year: 2015
  ident: 10.1016/j.biomaterials.2017.06.010_bib2
  article-title: Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.12.023
– volume: 91
  start-page: 327
  year: 2011
  ident: 10.1016/j.biomaterials.2017.06.010_bib56
  article-title: Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00047.2009
– volume: 2
  start-page: 425
  year: 2009
  ident: 10.1016/j.biomaterials.2017.06.010_bib55
  article-title: Live cells exert 3-dimensional traction forces on their substrata
  publication-title: Cell. Mol. Bioeng.
  doi: 10.1007/s12195-009-0082-6
– volume: 291
  start-page: 10032
  year: 2016
  ident: 10.1016/j.biomaterials.2017.06.010_bib20
  article-title: Activation of Vascular Endothelial Growth Factor (VEGF) receptor 2 mediates endothelial permeability caused by cyclic stretch
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.690487
– volume: 128
  start-page: e0705
  year: 2015
  ident: 10.1016/j.biomaterials.2017.06.010_bib21
  article-title: Local VE-cadherin mechanotransduction triggers long- ranged remodeling of endothelial monolayers
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.159954
– volume: 112
  start-page: 1655
  issue: pt11
  year: 1999
  ident: 10.1016/j.biomaterials.2017.06.010_bib40
  article-title: Molecular diversity of cell-matrix adhesions
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.11.1655
– volume: 18
  start-page: 540
  year: 2016
  ident: 10.1016/j.biomaterials.2017.06.010_bib48
  article-title: Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3336
– volume: 60
  start-page: 24
  year: 2005
  ident: 10.1016/j.biomaterials.2017.06.010_bib51
  article-title: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, cell Motil
  publication-title: Cytoskeleton
  doi: 10.1002/cm.20041
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2017.06.010_bib22
  article-title: Age-related vascular stiffening: causes and consequences
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2015.00112
– volume: 112
  start-page: 2254
  year: 2005
  ident: 10.1016/j.biomaterials.2017.06.010_bib15
  article-title: Age- and gender-related ventricular-vascular stiffening: a community-based study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.541078
– volume: 31
  start-page: 162
  year: 1998
  ident: 10.1016/j.biomaterials.2017.06.010_bib12
  article-title: Effects of mechanical forces on signal transduction gene expression in endothelial
  publication-title: Hypertension
  doi: 10.1161/01.HYP.31.1.162
– volume: 20
  start-page: 551
  year: 2008
  ident: 10.1016/j.biomaterials.2017.06.010_bib46
  article-title: Cell adhesion receptors in mechanotransduction
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2008.05.005
– volume: 282
  start-page: C595
  year: 2002
  ident: 10.1016/j.biomaterials.2017.06.010_bib28
  article-title: Traction fields, moments, and strain energy that cells exert on their surroundings
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00270.2001
– volume: 87
  start-page: 50
  year: 2013
  ident: 10.1016/j.biomaterials.2017.06.010_bib36
  article-title: Endothelial barrier disruption and recovery is controlled by substrate stiffness
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2012.12.006
– volume: 579
  start-page: 6169
  year: 2005
  ident: 10.1016/j.biomaterials.2017.06.010_bib41
  article-title: SNARE-mediated membrane traffic modulates RhoA-regulated focal adhesion formation
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.09.090
– volume: 25
  start-page: 218
  year: 2015
  ident: 10.1016/j.biomaterials.2017.06.010_bib44
  article-title: Dynamic visualization of α-catenin reveals rapid, reversible conformation switching between tension states
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.11.017
– volume: 71
  start-page: 462
  year: 2016
  ident: 10.1016/j.biomaterials.2017.06.010_bib57
  article-title: The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2015-207461
– volume: 4
  start-page: e03282
  year: 2014
  ident: 10.1016/j.biomaterials.2017.06.010_bib39
  article-title: Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters
  publication-title: Elife
  doi: 10.7554/eLife.03282
– volume: 347
  start-page: 161
  year: 2016
  ident: 10.1016/j.biomaterials.2017.06.010_bib9
  article-title: Traction force dynamics predict gap formation in activated endothelium
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2016.07.029
– volume: 5
  start-page: 426
  year: 2009
  ident: 10.1016/j.biomaterials.2017.06.010_bib37
  article-title: Physical forces during collective cell migration
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1269
– volume: 7
  start-page: 703
  year: 2012
  ident: 10.1016/j.biomaterials.2017.06.010_bib32
  article-title: Arrayed cellular microenvironments for identifying culture and differentiation conditions for stem, primary and rare cell populations
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.017
– volume: 8
  start-page: e55172
  year: 2013
  ident: 10.1016/j.biomaterials.2017.06.010_bib38
  article-title: Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0055172
– volume: 19
  start-page: 2047
  year: 2008
  ident: 10.1016/j.biomaterials.2017.06.010_bib59
  article-title: Hypertension-associated kidney disease: perhaps no more
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2008060621
– volume: 25
  start-page: 932
  year: 2005
  ident: 10.1016/j.biomaterials.2017.06.010_bib14
  article-title: Mechanisms, pathophysiology, and therapy of arterial stiffness
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000160548.78317.29
– volume: 300
  start-page: C146
  year: 2011
  ident: 10.1016/j.biomaterials.2017.06.010_bib8
  article-title: Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00195.2010
– volume: 208
  start-page: 975
  year: 2015
  ident: 10.1016/j.biomaterials.2017.06.010_bib19
  article-title: Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201408103
– volume: 3
  start-page: 112ra122
  year: 2011
  ident: 10.1016/j.biomaterials.2017.06.010_bib17
  article-title: Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3002761
– volume: 13
  start-page: 631
  year: 2014
  ident: 10.1016/j.biomaterials.2017.06.010_bib24
  article-title: Rigidity sensing and adaptation through regulation of integrin types
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3960
– volume: 103
  start-page: 1774
  year: 2006
  ident: 10.1016/j.biomaterials.2017.06.010_bib25
  article-title: Integrins regulate VE-cadherin and catenins: dependence of this regulation on Src, but not on Ras
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0510774103
– start-page: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2017.06.010_bib29
  article-title: Preparation of hydrogel substrates with tunable mechanical properties
  publication-title: Curr. Protoc. Cell Biol.
– volume: 355
  start-page: 545
  year: 2014
  ident: 10.1016/j.biomaterials.2017.06.010_bib10
  article-title: Mechanical control of the endothelial barrier
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-013-1792-6
– volume: 22
  start-page: 2087
  year: 2012
  ident: 10.1016/j.biomaterials.2017.06.010_bib49
  article-title: Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.08.051
– volume: 314
  start-page: 3466
  year: 2008
  ident: 10.1016/j.biomaterials.2017.06.010_bib6
  article-title: Long-term cyclic stretch controls pulmonary endothelial permeability at translational and post-translational levels
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2008.09.003
– volume: 282
  start-page: C606
  year: 2002
  ident: 10.1016/j.biomaterials.2017.06.010_bib43
  article-title: Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00269.2001
– volume: 189
  start-page: 1107
  year: 2010
  ident: 10.1016/j.biomaterials.2017.06.010_bib47
  article-title: Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201001149
– volume: 67
  start-page: 545
  year: 2010
  ident: 10.1016/j.biomaterials.2017.06.010_bib23
  article-title: Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity
  publication-title: Cytoskeleton
  doi: 10.1002/cm.20472
– volume: 91
  start-page: 986
  year: 2001
  ident: 10.1016/j.biomaterials.2017.06.010_bib35
  article-title: Signal transduction in smooth muscle selected contribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.2001.91.2.986
– volume: 2
  start-page: 119
  year: 2005
  ident: 10.1016/j.biomaterials.2017.06.010_bib30
  article-title: An extracellular matrix microarray for probing cellular differentiation
  publication-title: Nat. Methods
  doi: 10.1038/nmeth736
– volume: 109
  start-page: 1
  year: 2012
  ident: 10.1016/j.biomaterials.2017.06.010_bib50
  article-title: Contractile stresses in cohesive cell layers on finite-thickness substrates
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.108101
– volume: 168
  start-page: 1749
  year: 2006
  ident: 10.1016/j.biomaterials.2017.06.010_bib3
  article-title: Differential regulation of pulmonary endothelial monolayer integrity by varying degrees of cyclic stretch
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2006.050431
– volume: 62
  start-page: 347
  year: 1982
  ident: 10.1016/j.biomaterials.2017.06.010_bib13
  article-title: Physiological aspects of primary hypertension
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1982.62.2.347
– volume: 23
  start-page: 1024
  year: 2013
  ident: 10.1016/j.biomaterials.2017.06.010_bib18
  article-title: Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.04.049
– volume: 292
  start-page: H28
  year: 2007
  ident: 10.1016/j.biomaterials.2017.06.010_bib5
  article-title: Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium?: a force to be reckoned with
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00304.2006
– volume: 8
  start-page: 929
  year: 2016
  ident: 10.1016/j.biomaterials.2017.06.010_bib53
  article-title: Nanoscale mechanics guides cellular decision making
  publication-title: Integr. Biol.
  doi: 10.1039/C6IB00113K
SSID ssj0014042
Score 2.4988124
Snippet The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through...
Abstract The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing...
The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 45
SubjectTerms Advanced Basic Science
Antigens, CD - metabolism
Biocompatible Materials - chemistry
Biomechanical Phenomena
cadherins
Cadherins - metabolism
Cell Adhesion
Cell Line
Cell traction
Cell-Matrix Junctions - metabolism
Dentistry
Endothelial Cells - cytology
Endothelial Cells - metabolism
endothelium
Endothelium, Vascular - cytology
Endothelium, Vascular - metabolism
extracellular matrix
focal adhesions
Focal Adhesions - metabolism
Humans
Hydrogels - chemistry
integrins
intercellular junctions
Intercellular Junctions - metabolism
Magnetic twisting cytometry
Mechanotransduction
Mechanotransduction, Cellular
Micropatterned substrates
receptors
shear stress
Stress, Mechanical
VE-cadherin
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhz4OpU1f2xcq9OquJdnSmtJDCQmhkJ6akpuQrRHdsrGXrJfSS357Zizb7LIpbOlxvRqMNOOZT2i-T4x9QMCmjAouEZDRBmXmEzcLeWIgQKVCqbQmNvL5N312kX29zC8P2PHAhaG2yj73x5zeZev-ybRfzelyPp9SW5IsSAALgzRLFZH4sszQLQYfb8Y2D1KPkbGNUSY0ehAe7Xq8iOLu2uhqavMynZYnsWnvLlK7IHS3l_L-ul66P7_dYrFRqE4fs0c9wuRf4iSesAOoj9jDDd3BI3bvvD9Rf8oayhydQi3Hjz0Eynzc1Z7_OEkq5zt2IL8C4gc3SUuFzUe9WV41uG-d12TZNvw63mkPHGpPpK4FTpZjiOPOGUE9j6oUiPifsYvTk-_HZ0l_CUNSaZW1SQFFEUTISgPeeQUV5ggx82kVpDGlnDlfAkgHZRqEniG4El5rWTnndC48OPWcHdZNDS8Z93mhRPCAoKdE3OKdhtzLoipN7rRR-YQVw6rbqlcop4syFnZoRftlNz1myWOW-vJEOmFqtF1GnY69rD4NzrUDExVzp8Vyspe1ucsaVn0aWFlhV9KmdidUJ-zzaLkV7Xu_-f0QiRbTAZ3xuBqaNb6RileBlUP8fYzszn9xn5xN2IsYveOaSSIMmdTg3LbiehxAcuTb_9Tzn50sOQJ_owzOLRu_gH9wxav_XJLX7AH9iu1_b9hhe72Gt4gX2_JdlxBuASuscLY
  priority: 102
  providerName: Elsevier
Title Substrate stiffness and VE-cadherin mechano-transduction coordinate to regulate endothelial monolayer integrity
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961217304039
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961217304039
https://dx.doi.org/10.1016/j.biomaterials.2017.06.010
https://www.ncbi.nlm.nih.gov/pubmed/28624707
https://www.proquest.com/docview/1911198871
https://www.proquest.com/docview/2000431644
https://pubmed.ncbi.nlm.nih.gov/PMC5757379
https://www.ncbi.nlm.nih.gov/pmc/articles/5757379
UnpaywallVersion submittedVersion
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 1878-5905
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 1878-5905
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 1878-5905
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 1878-5905
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 1878-5905
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tthKPA49lgfKojMQ1JY4TOxHiUKFdFdBWCFG0nCLHdqCQJtU2FYIDv51xnFRddpG6HKNkZDkez3wjf_MZ4DkCNiZYLj1qQlugxNqTcR55wuRGsTxjnNtu5JMpn8zCt6fR6R7QrhemIe2rbD4qi8WonH9tuJXLhXrR8cSwgo8EE8k-9HmE8LsH_dn0_fizoyoGXsLdCWeM1VGU-FEnNNpwumxLu6zd0lpal2i0O2337OVJ6SLovMidvL4ul_LnD1kUW4np-DZ86Kbk-CjfR-s6G6lff6k9XmnOd-BWC1PJ2L26C3umPICbW-KFB3DtpD2WvweVDT-NzC3BiJHnNnwSWWry6chTUjcthmRhbJNx5dU2O2onWktUhcXvvLSWdUXOzBd7m5ghptS2M6zAP0hwn2D5jZUBcdIWWDYcwuz46OPridfe5OApzsLaS0yS5DQPM2G01MwoDDQ01r7KAyGyIJY6MyaQJvNzymNEaFRzHigpJY-oNpLdh15ZleYhEB0ljObaIHLKEPxoyU2kg0RlIpJcsGgASbeUqWplzu1tG0Xa8dm-pdtukFo3SC25j_oDYBvbpRP72MnqZecxadfOigE4xZy0k7W4zNqs2liySmm6ClK_oeEF1rspBuXQZ8kAXm0sW7jkYNDOIz_r3DvFmGIPimRpqjWOaDNggumH_vuboDlExmI7HMADtyU2_yywXUfCFzi3c5tl84HVND__Bt2-0TZvPX0A4WZbXWEpHv2f2WO4YZ8cdfAJ9OqztXmKWLPOhrA_-k2H0B-_eTeZDttY8wfO5oiu
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKkSgcEJTX8jQS17CxndiJEAdUtVqg21OLerOc2FYXLcmqmxXiwm9nJk6iXW2RFnFNPIo8M5mH_M1nQt5BwSaU8CZiLsEGJbORyXwaKeddKXwhpMRp5OmZnFwkXy7Tyz1y1M_CIKyyi_0hprfRunsy7rQ5XsxmY4Ql8RwJsMBJk1jkt8jtJOUKO7D3vwecB9LH8IBj5BEu75lHW5AXzribJtgacV6qJfPEcdqbs9R2FboNpjxYVQvz66eZz9cy1ckDcr8rMemnsIuHZM9Vh-TeGvHgIbkz7Y7UH5EaQ0dLUUvhb_ceQx81laXfjqPS2HY8kP5wOCBcRw1mNhsIZ2lZQ-M6q1Cyqel1uNTeUVdZnOqaw2Yp-Di0zlDV00BLASX_Y3Jxcnx-NIm6WxiiUoqkiXKX5575pFDOGitcCUGCZTYuPei64JmxhXPcuCL2TGZQXTErJS-NMTJl1hnxhOxXdeWeEWrTXDBvHVQ9BRQu1kiXWp6XhUqNVCIdkbzXui47inK8KWOueyzad71uMY0W0wjMY_GIiEF2EYg6dpL60BtX96OoEDw15JOdpNVN0m7ZxYGlZnrJday3fHVEPg6SG-6-85ff9p6oIR7gIY-pXL2CL2L2yiF1sL-v4e0BMDTKyYg8Dd476IzjxJCKFextw6-HBchHvvmmml21vORQ-SuhYG_J8Af8gyme_6dK3pCDyfn0VJ9-Pvv6gtzFNwEL-JLsN9cr9wqKx6Z43QaHP6VZc9k
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7rLHh58LLexhsRfO3YNE3SID4ssssi7CLiyPoU0lx0tNMOOx1Ef70nTTvMuivM-ljaQ0hzcs53yHe-IPQKABsV1OuEuDwUKIVNdOFZIpx3hvqSch66kY9P-NE0f3_KTncQGXphOtK-KWeTuppP6tm3jlu5mJvXA08MKngmqJDX0C5nAL9HaHd68mH_S6QqZonk8YSzgOqIyZQNQqMdpyu0tOs2Lm2gdYlOuzN0z16elC6CzovcyRureqF__dRVtZGYDu-gj8OUIh_lx2TVlhPz-y-1xyvN-S663cNUvB9f3UM7rt5DtzbEC_fQ9eP-WP4-akL46WRuMUQM70P4xLq2-PNBYrTtWgzx3IUm4yZpQ3a0UbQWmwaK31kdLNsGn7mv4TYxh11tQ2dYBX8Qwz6B8hsqAxylLaBseICmhwef3h0l_U0OieE0bxPppPTE56VwVlvqDAQaUtjU-EyIMiu0LZ3LtCtTT3gBCI1YzjOjteaMWKfpQzSqm9o9RtgySYm3DpBTCeDHau6YzaQpBdNcUDZGclhKZXqZ83DbRqUGPtt3tekGKriBCuQ-ko4RXdsuotjHVlZvBo9RQzsrBGAFOWkra3GZtVv2sWSpiFpmKu1oeFnwbgJBOU-pHKO3a8seLkUYtPXILwf3VhBTwkGRrl2zghFDBpSQfsi_v8m6Q2QotvMxehS3xPqfZaHrSKQC5nZus6w_CJrm59-A23fa5r2nj1G-3lZXWIon_2f2FN0MT5E6-AyN2rOVew5Ysy1f9NHlD2xEhiI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Substrate+stiffness+and+VE-cadherin+mechano-transduction+coordinate+to+regulate+endothelial+monolayer+integrity&rft.jtitle=Biomaterials&rft.au=Andresen+Eguiluz%2C+Roberto+C&rft.au=Kaylan%2C+Kerim+B&rft.au=Underhill%2C+Gregory+H&rft.au=Leckband%2C+Deborah+E&rft.date=2017-09-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=140&rft.spage=45&rft_id=info:doi/10.1016%2Fj.biomaterials.2017.06.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2Fcov200h.gif