Microarray Analysis and Barcoded Pyrosequencing Provide Consistent Microbial Profiles Depending on the Source of Human Intestinal Samples
Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of th...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 77; no. 6; pp. 2071 - 2080 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.03.2011
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
ISSN | 0099-2240 1098-5336 1098-5336 1098-6596 |
DOI | 10.1128/AEM.02477-10 |
Cover
Abstract | Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice. |
---|---|
AbstractList | Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice. Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice. Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: AEM Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice. [PUBLICATION ABSTRACT] Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice.Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice. Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice |
Author | van den Bogert, Bartholomeus de Vos, Willem M Zoetendal, Erwin G Kleerebezem, Michiel |
AuthorAffiliation | TI Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, Netherlands, 1 Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands, 2 Department of Basic Veterinary Medicine, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland, 3 NIZO food research B.V., P.O. Box 20, 6710 BA Ede, Netherlands 4 |
AuthorAffiliation_xml | – name: TI Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, Netherlands, 1 Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands, 2 Department of Basic Veterinary Medicine, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland, 3 NIZO food research B.V., P.O. Box 20, 6710 BA Ede, Netherlands 4 |
Author_xml | – sequence: 1 fullname: van den Bogert, Bartholomeus – sequence: 2 fullname: de Vos, Willem M – sequence: 3 fullname: Zoetendal, Erwin G – sequence: 4 fullname: Kleerebezem, Michiel |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23960586$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21257804$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURD_gxhkMEoIDW8Z2PhwOSGUptFIrKpWeLcc72XWV2IudbbU_gX_NpFsqqAScLNnP-3remdnNtnzwmGVPOexzLtS7g8PTfRB5VU04PMh2ONRqUkhZbmU7AHU9ESKH7Ww3pUsAyKFUj7JtwUVRKch3sh-nzsZgYjRrduBNt04uMeNn7KOJNsxwxs7WMST8vkJvnZ-zsxiu3AzZNHhCB_QDu7FonOnGx9Z1mNgnXKKfjXzwbFggOw-raJGFlh2teuPZsR8wDY5-ZOemX5LmcfawNV3CJ7fnXnbx-fDb9Ghy8vXL8fTgZGJLmQ-TOhdcgWisrAtZNcYC2lmjKtlYrJoS6wKxqFtTAFgOqqhR5q2QQhWoECsj97L3G99rM0dPJaLXnsK6pINxunNNNHGtr1dR-248lqsm6RwKqAWJP2zEdNnjzFL8aDq9jK4fRaPBny_eLfQ8XGkJZUVFkMHrW4MYqKdp0L1LFrvOeAyrpOkPQWMq4L-kKsqKYitJ5Jt_kjwXwHlNAQh9eQ-9pMHQFEY_xfM8L8eQz34PeZfu19YQ8OoWMMmaro3Gj-2742RdQqFK4t5uONqPlCK2dwgHPS6vpuXVN8tLN4SLe7h1gxlcGFvpur-JXmxECzdfXLuI2qReG-w1vZdaQMWJeb5hWhO0mUeq9eKceiKBuiJAKfkT7VYIkA |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2021_129817 crossref_primary_10_1371_journal_pone_0130030 crossref_primary_10_1016_j_marpolbul_2020_111102 crossref_primary_10_1111_lam_12137 crossref_primary_10_1111_1574_6941_12127 crossref_primary_10_1038_ajg_2013_386 crossref_primary_10_1186_2049_2618_2_13 crossref_primary_10_1101_gr_151803_112 crossref_primary_10_1111_j_1462_2920_2011_02574_x crossref_primary_10_1039_C5FO01276G crossref_primary_10_1097_MOG_0000000000000040 crossref_primary_10_1186_s40168_017_0309_z crossref_primary_10_1021_acs_jafc_8b05408 crossref_primary_10_1111_cea_12522 crossref_primary_10_1017_S0007114515004043 crossref_primary_10_1007_s10811_019_01847_0 crossref_primary_10_7717_peerj_6610 crossref_primary_10_1007_s00284_019_01713_9 crossref_primary_10_1016_j_ijhydene_2018_09_040 crossref_primary_10_3390_genes11091041 crossref_primary_10_1099_jmm_0_001934 crossref_primary_10_3390_genes8110314 crossref_primary_10_1007_s11356_015_5344_3 crossref_primary_10_4103_sjg_sjg_131_22 crossref_primary_10_1111_j_1462_2920_2011_02533_x crossref_primary_10_2217_fmb_15_87 crossref_primary_10_1038_s41396_018_0064_6 crossref_primary_10_1126_science_aad8852 crossref_primary_10_1038_ismej_2015_213 crossref_primary_10_1017_S0007114512002279 crossref_primary_10_1053_j_gastro_2012_06_031 crossref_primary_10_1021_pr3006364 crossref_primary_10_1111_apt_13399 crossref_primary_10_1371_journal_pone_0134615 crossref_primary_10_1111_j_1751_7915_2011_00315_x crossref_primary_10_1007_s00253_016_8010_x crossref_primary_10_3389_fgene_2014_00406 crossref_primary_10_1099_ijs_0_045823_0 crossref_primary_10_1074_mcp_M112_019315 crossref_primary_10_1007_s00253_014_5535_8 crossref_primary_10_1093_femsec_fiy017 crossref_primary_10_1093_femsec_fiz108 crossref_primary_10_1371_journal_pone_0023035 crossref_primary_10_1038_s41390_019_0326_7 crossref_primary_10_1038_srep18206 crossref_primary_10_1016_j_tibtech_2012_08_001 crossref_primary_10_2337_db12_0526 crossref_primary_10_1016_j_scitotenv_2020_137795 crossref_primary_10_1186_1471_2164_14_788 crossref_primary_10_1038_ajg_2012_287 crossref_primary_10_1111_j_1574_6941_2011_01222_x crossref_primary_10_1371_journal_pone_0094863 crossref_primary_10_3389_fmicb_2022_1054061 crossref_primary_10_3390_nu14050974 crossref_primary_10_1371_journal_pone_0103641 crossref_primary_10_1073_pnas_1101405108 crossref_primary_10_1371_journal_pone_0062544 crossref_primary_10_3390_cancers13215450 crossref_primary_10_1038_s41598_020_73827_1 crossref_primary_10_1111_j_1462_2920_2011_02559_x crossref_primary_10_3389_fmicb_2018_00092 crossref_primary_10_1007_s00248_013_0345_6 crossref_primary_10_3389_fimmu_2017_00154 crossref_primary_10_1016_j_scitotenv_2014_05_073 crossref_primary_10_1038_s41598_017_11446_z crossref_primary_10_1016_j_anaerobe_2012_04_013 crossref_primary_10_1016_j_bcdf_2013_09_008 crossref_primary_10_1002_mnfr_201600149 crossref_primary_10_1371_journal_pone_0194066 crossref_primary_10_1007_s12263_011_0229_7 crossref_primary_10_1371_journal_pone_0060042 crossref_primary_10_1097_MPG_0000000000000752 crossref_primary_10_1038_ismej_2012_146 crossref_primary_10_1586_ers_11_76 crossref_primary_10_1093_jac_dku092 crossref_primary_10_1111_j_1751_7915_2011_00290_x crossref_primary_10_1111_jam_13111 crossref_primary_10_1038_ismej_2017_44 crossref_primary_10_1128_genomeA_01013_13 crossref_primary_10_1016_j_jaci_2011_06_044 crossref_primary_10_1002_pmic_201500179 crossref_primary_10_1016_j_gastrohep_2015_01_004 crossref_primary_10_1111_1574_6976_12075 crossref_primary_10_1371_journal_pone_0114277 crossref_primary_10_1007_s00284_013_0336_3 crossref_primary_10_1016_j_bbrc_2018_10_136 crossref_primary_10_1186_1471_2164_14_530 crossref_primary_10_1128_JCM_00473_13 crossref_primary_10_1016_j_jbiosc_2013_02_010 crossref_primary_10_1016_S1473_3099_13_70107_5 crossref_primary_10_1186_s40748_021_00131_9 crossref_primary_10_1007_s00284_013_0491_6 crossref_primary_10_1038_ismej_2012_158 crossref_primary_10_1128_genomeA_00977_13 crossref_primary_10_2337_db11_0227 crossref_primary_10_4161_19490976_2014_972228 crossref_primary_10_1371_journal_pone_0229887 crossref_primary_10_3945_jn_112_169672 crossref_primary_10_1007_s11306_014_0645_y crossref_primary_10_1111_j_1753_4887_2012_00505_x crossref_primary_10_1038_ncomms7342 crossref_primary_10_1371_journal_pone_0083418 crossref_primary_10_1038_srep17284 crossref_primary_10_1371_journal_pone_0081352 crossref_primary_10_1080_10408398_2023_2180478 crossref_primary_10_1371_journal_pone_0210970 crossref_primary_10_1016_j_anaerobe_2017_07_006 crossref_primary_10_3390_ijms21176044 crossref_primary_10_1371_journal_pone_0100040 crossref_primary_10_3920_BM2014_0016 crossref_primary_10_1128_aem_01739_23 crossref_primary_10_1371_journal_pone_0090981 crossref_primary_10_3390_nu12123751 crossref_primary_10_1016_j_arr_2011_03_004 crossref_primary_10_1016_j_soilbio_2015_08_042 crossref_primary_10_3920_BM2014_0087 crossref_primary_10_3109_00365521_2013_799220 crossref_primary_10_1099_ijsem_0_001323 crossref_primary_10_1186_s13068_018_1012_4 crossref_primary_10_1111_1751_7915_13784 crossref_primary_10_1007_s10126_017_9766_4 crossref_primary_10_1371_journal_pone_0103959 crossref_primary_10_1053_j_gastro_2015_03_045 crossref_primary_10_3389_fimmu_2017_00754 crossref_primary_10_1007_s12275_021_1165_x crossref_primary_10_1016_j_archoralbio_2015_09_015 |
Cites_doi | 10.1038/ismej.2009.153 10.1111/j.1574-6941.2007.00281.x 10.1093/nar/gkq873 10.1186/1471-2105-11-187 10.1371/journal.pone.0006669 10.1016/j.mimet.2003.08.009 10.1038/nature07540 10.1128/AEM.71.8.4679-4689.2005 10.1038/nmeth0909-636 10.1016/S0003-9969(03)00043-8 10.1128/AEM.66.11.4605-4614.2000 10.1371/journal.pone.0002836 10.1093/nar/gkh293 10.1128/AEM.02272-07 10.1111/j.1348-0421.2004.tb03481.x 10.2217/17460913.2.3.285 10.1038/nature03959 10.1111/j.1462-2920.2010.02294.x 10.1101/gr.085464.108 10.1093/nar/gkm864 10.1038/nprot.2006.142 10.1136/gut.2007.133603 10.1128/AEM.71.7.4144-4148.2005 10.1128/JCM.40.12.4423-4427.2002 10.1093/nar/gkp285 10.1128/AEM.68.11.5445-5451.2002 10.1111/j.1462-2920.2007.01369.x 10.1016/j.ijfoodmicro.2004.04.020 10.1128/AEM.00556-06 10.1128/AEM.68.6.2982-2990.2002 10.1128/AEM.00062-07 10.1093/jn/134.2.465 10.1111/j.1365-2672.2004.02409.x 10.1126/science.1110591 10.1099/00207713-44-4-812 10.1111/j.1462-2920.2009.01941.x 10.1128/AEM.02764-08 10.1111/j.1574-6941.2008.00611.x 10.1016/j.mimet.2010.02.007 10.1111/j.1462-2920.2009.01900.x 10.1186/gb-2007-8-7-r143 10.1093/nar/gkn879 10.1073/pnas.1000080107 10.1073/pnas.0904847106 10.1093/nar/gnj007 10.1128/AEM.67.10.4399-4406.2001 10.1016/j.mam.2005.12.007 10.1128/AEM.66.1.375-382.2000 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Society for Microbiology Mar 2011 Copyright © 2011, American Society for Microbiology 2011 Wageningen University & Research |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Society for Microbiology Mar 2011 – notice: Copyright © 2011, American Society for Microbiology 2011 – notice: Wageningen University & Research |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM QVL |
DOI | 10.1128/AEM.02477-10 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Virology and AIDS Abstracts MEDLINE - Academic Biotechnology Research Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1098-5336 1098-6596 |
EndPage | 2080 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_405092 PMC3067328 2299571421 21257804 23960586 10_1128_AEM_02477_10 aem_77_6_2071 US201301952088 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 85S AAZTW ABOGM ABPPZ ABTAH ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFFNX AFRAH AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CS3 D0L DIK E.- E3Z EBS EJD F5P FBQ GX1 H13 HYE HZ~ H~9 K-O KQ8 L7B MVM NEJ O9- OHT P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB VH1 W8F WH7 WHG WOQ X6Y X7M XJT YV5 ZCG ZGI ZXP ZY4 ~02 ~KM AAGFI AAYXX CITATION ADXHL IQODW CGR CUY CVF ECM EIF NPM OK1 PKN RHF UCJ Z5M 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 FRP HH5 LSO W2D ~A~ 5PM - 02 08R 0R 55 AAPBV ABFLS ABPTK ACCKP ACVYA ADACO ADBIT AFMIJ B4K BXI F20 GJ HZ KM O0- PQEST QVL X XFK XHC ZA5 |
ID | FETCH-LOGICAL-c634t-9421802bc39537bac0ecdb873bce7b6e95ee59fa500c10859e34f23285e8ee7a3 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Tue Jan 05 18:09:57 EST 2021 Thu Aug 21 18:22:35 EDT 2025 Fri Sep 05 10:24:56 EDT 2025 Fri Sep 05 14:10:11 EDT 2025 Thu Sep 04 20:35:37 EDT 2025 Mon Jun 30 08:51:25 EDT 2025 Wed Feb 19 01:49:53 EST 2025 Mon Jul 21 09:17:10 EDT 2025 Tue Jul 01 02:19:16 EDT 2025 Thu Apr 24 22:54:18 EDT 2025 Wed May 18 15:29:05 EDT 2016 Thu Apr 03 09:45:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Human Microorganism Microarray Sample Gut |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c634t-9421802bc39537bac0ecdb873bce7b6e95ee59fa500c10859e34f23285e8ee7a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
OpenAccessLink | http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F405092 |
PMID | 21257804 |
PQID | 858144462 |
PQPubID | 42251 |
PageCount | 10 |
ParticipantIDs | highwire_asm_aem_77_6_2071 crossref_citationtrail_10_1128_AEM_02477_10 pubmed_primary_21257804 proquest_journals_858144462 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3067328 crossref_primary_10_1128_AEM_02477_10 proquest_miscellaneous_1420119509 wageningen_narcis_oai_library_wur_nl_wurpubs_405092 pascalfrancis_primary_23960586 proquest_miscellaneous_856787383 proquest_miscellaneous_923200450 fao_agris_US201301952088 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2011 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 (e_1_3_3_18_2) 2004 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 (e_1_3_3_48_2) 2000; 1 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 19363078 - Appl Environ Microbiol. 2009 Jun;75(11):3572-9 14747690 - J Nutr. 2004 Feb;134(2):465-72 17659080 - Genome Biol. 2007;8(7):R143 14734852 - Microbiol Immunol. 2004;48(1):1-6 15831718 - Science. 2005 Jun 10;308(5728):1635-8 19043404 - Nature. 2009 Jan 22;457(7228):480-4 15546407 - J Appl Microbiol. 2004;97(6):1166-77 19417062 - Nucleic Acids Res. 2009 Jun;37(10):e76 19805153 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17187-92 16000836 - Appl Environ Microbiol. 2005 Jul;71(7):4144-8 16407321 - Nucleic Acids Res. 2006;34(1):e5 20534432 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 19508560 - Environ Microbiol. 2009 Jul;11(7):1736-51 12454130 - J Clin Microbiol. 2002 Dec;40(12):4423-7 18296538 - Appl Environ Microbiol. 2008 Apr;74(8):2461-70 10618251 - Appl Environ Microbiol. 2000 Jan;66(1):375-82 20388221 - BMC Bioinformatics. 2010;11:187 20626454 - Environ Microbiol. 2010 Dec;12(12):3213-27 11055900 - Appl Environ Microbiol. 2000 Nov;66(11):4605-14 7981107 - Int J Syst Bacteriol. 1994 Oct;44(4):812-26 14607398 - J Microbiol Methods. 2003 Dec;55(3):541-55 15541806 - Int J Food Microbiol. 2004 Dec 15;97(2):197-207 17661703 - Future Microbiol. 2007 Jun;2(3):285-95 11709849 - Curr Issues Intest Microbiol. 2000 Mar;1(1):1-12 16460794 - Mol Aspects Med. 2006 Apr-Jun;27(2-3):95-125 19049656 - FEMS Microbiol Ecol. 2008 Dec;66(3):620-9 12406736 - Appl Environ Microbiol. 2002 Nov;68(11):5445-51 11571135 - Appl Environ Microbiol. 2001 Oct;67(10):4399-406 19693277 - PLoS One. 2009;4(8):e6669 20171997 - J Microbiol Methods. 2010 May;81(2):127-34 17406319 - Nat Protoc. 2006;1(2):870-3 16085863 - Appl Environ Microbiol. 2005 Aug;71(8):4679-89 17313661 - FEMS Microbiol Ecol. 2007 Apr;60(1):126-35 16957188 - Appl Environ Microbiol. 2006 Sep;72(9):5734-41 14985472 - Nucleic Acids Res. 2004;32(4):1363-71 20880993 - Nucleic Acids Res. 2010 Dec;38(22):e200 17947321 - Nucleic Acids Res. 2007;35(21):7188-96 19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 16056220 - Nature. 2005 Sep 15;437(7057):376-80 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7 17686012 - Environ Microbiol. 2007 Sep;9(9):2125-36 19718016 - Nat Methods. 2009 Sep;6(9):636-7 19737302 - Environ Microbiol. 2009 Sep;11(9):2194-206 12039758 - Appl Environ Microbiol. 2002 Jun;68(6):2982-90 18941009 - Gut. 2008 Nov;57(11):1605-15 19383763 - Genome Res. 2009 Jul;19(7):1141-52 20090784 - ISME J. 2010 May;4(5):642-7 12798151 - Arch Oral Biol. 2003 Jul;48(7):475-93 18665274 - PLoS One. 2008;3(7):e2836 |
References_xml | – ident: e_1_3_3_15_2 doi: 10.1038/ismej.2009.153 – ident: e_1_3_3_14_2 doi: 10.1111/j.1574-6941.2007.00281.x – ident: e_1_3_3_10_2 doi: 10.1093/nar/gkq873 – ident: e_1_3_3_32_2 doi: 10.1186/1471-2105-11-187 – ident: e_1_3_3_9_2 doi: 10.1371/journal.pone.0006669 – ident: e_1_3_3_4_2 doi: 10.1016/j.mimet.2003.08.009 – ident: e_1_3_3_46_2 doi: 10.1038/nature07540 – ident: e_1_3_3_5_2 doi: 10.1128/AEM.71.8.4679-4689.2005 – ident: e_1_3_3_38_2 doi: 10.1038/nmeth0909-636 – ident: e_1_3_3_40_2 doi: 10.1016/S0003-9969(03)00043-8 – ident: e_1_3_3_45_2 doi: 10.1128/AEM.66.11.4605-4614.2000 – ident: e_1_3_3_2_2 doi: 10.1371/journal.pone.0002836 – ident: e_1_3_3_28_2 doi: 10.1093/nar/gkh293 – ident: e_1_3_3_16_2 doi: 10.1128/AEM.02272-07 – ident: e_1_3_3_22_2 doi: 10.1111/j.1348-0421.2004.tb03481.x – ident: e_1_3_3_7_2 doi: 10.2217/17460913.2.3.285 – ident: e_1_3_3_29_2 doi: 10.1038/nature03959 – ident: e_1_3_3_6_2 doi: 10.1111/j.1462-2920.2010.02294.x – ident: e_1_3_3_19_2 doi: 10.1101/gr.085464.108 – ident: e_1_3_3_35_2 doi: 10.1093/nar/gkm864 – ident: e_1_3_3_51_2 doi: 10.1038/nprot.2006.142 – ident: e_1_3_3_52_2 doi: 10.1136/gut.2007.133603 – ident: e_1_3_3_43_2 doi: 10.1128/AEM.71.7.4144-4148.2005 – start-page: 401 year: 2004 ident: e_1_3_3_18_2 publication-title: Taxonomic outline of the prokaryotes – ident: e_1_3_3_24_2 doi: 10.1128/JCM.40.12.4423-4427.2002 – ident: e_1_3_3_44_2 doi: 10.1093/nar/gkp285 – ident: e_1_3_3_30_2 doi: 10.1128/AEM.68.11.5445-5451.2002 – ident: e_1_3_3_37_2 doi: 10.1111/j.1462-2920.2007.01369.x – ident: e_1_3_3_17_2 doi: 10.1016/j.ijfoodmicro.2004.04.020 – ident: e_1_3_3_3_2 doi: 10.1128/AEM.00556-06 – ident: e_1_3_3_20_2 doi: 10.1128/AEM.68.6.2982-2990.2002 – ident: e_1_3_3_49_2 doi: 10.1128/AEM.00062-07 – ident: e_1_3_3_50_2 doi: 10.1093/jn/134.2.465 – ident: e_1_3_3_39_2 doi: 10.1111/j.1365-2672.2004.02409.x – volume: 1 start-page: 1 year: 2000 ident: e_1_3_3_48_2 publication-title: Curr. Issues Intest. Microbiol. – ident: e_1_3_3_13_2 doi: 10.1126/science.1110591 – ident: e_1_3_3_47_2 – ident: e_1_3_3_12_2 doi: 10.1099/00207713-44-4-812 – ident: e_1_3_3_27_2 doi: 10.1111/j.1462-2920.2009.01941.x – ident: e_1_3_3_33_2 doi: 10.1128/AEM.02764-08 – ident: e_1_3_3_31_2 doi: 10.1111/j.1574-6941.2008.00611.x – ident: e_1_3_3_41_2 doi: 10.1016/j.mimet.2010.02.007 – ident: e_1_3_3_36_2 doi: 10.1111/j.1462-2920.2009.01900.x – ident: e_1_3_3_25_2 doi: 10.1186/gb-2007-8-7-r143 – ident: e_1_3_3_11_2 doi: 10.1093/nar/gkn879 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.1000080107 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.0904847106 – ident: e_1_3_3_34_2 doi: 10.1093/nar/gnj007 – ident: e_1_3_3_23_2 doi: 10.1128/AEM.67.10.4399-4406.2001 – ident: e_1_3_3_26_2 doi: 10.1016/j.mam.2005.12.007 – ident: e_1_3_3_42_2 doi: 10.1128/AEM.66.1.375-382.2000 – reference: 19049656 - FEMS Microbiol Ecol. 2008 Dec;66(3):620-9 – reference: 15541806 - Int J Food Microbiol. 2004 Dec 15;97(2):197-207 – reference: 15831718 - Science. 2005 Jun 10;308(5728):1635-8 – reference: 17686012 - Environ Microbiol. 2007 Sep;9(9):2125-36 – reference: 17661703 - Future Microbiol. 2007 Jun;2(3):285-95 – reference: 20534432 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 – reference: 18665274 - PLoS One. 2008;3(7):e2836 – reference: 11055900 - Appl Environ Microbiol. 2000 Nov;66(11):4605-14 – reference: 14734852 - Microbiol Immunol. 2004;48(1):1-6 – reference: 20090784 - ISME J. 2010 May;4(5):642-7 – reference: 16460794 - Mol Aspects Med. 2006 Apr-Jun;27(2-3):95-125 – reference: 20388221 - BMC Bioinformatics. 2010;11:187 – reference: 16957188 - Appl Environ Microbiol. 2006 Sep;72(9):5734-41 – reference: 19383763 - Genome Res. 2009 Jul;19(7):1141-52 – reference: 20626454 - Environ Microbiol. 2010 Dec;12(12):3213-27 – reference: 20171997 - J Microbiol Methods. 2010 May;81(2):127-34 – reference: 17947321 - Nucleic Acids Res. 2007;35(21):7188-96 – reference: 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7 – reference: 11571135 - Appl Environ Microbiol. 2001 Oct;67(10):4399-406 – reference: 19508560 - Environ Microbiol. 2009 Jul;11(7):1736-51 – reference: 7981107 - Int J Syst Bacteriol. 1994 Oct;44(4):812-26 – reference: 17313661 - FEMS Microbiol Ecol. 2007 Apr;60(1):126-35 – reference: 16407321 - Nucleic Acids Res. 2006;34(1):e5 – reference: 14607398 - J Microbiol Methods. 2003 Dec;55(3):541-55 – reference: 19363078 - Appl Environ Microbiol. 2009 Jun;75(11):3572-9 – reference: 19417062 - Nucleic Acids Res. 2009 Jun;37(10):e76 – reference: 16056220 - Nature. 2005 Sep 15;437(7057):376-80 – reference: 10618251 - Appl Environ Microbiol. 2000 Jan;66(1):375-82 – reference: 12406736 - Appl Environ Microbiol. 2002 Nov;68(11):5445-51 – reference: 16000836 - Appl Environ Microbiol. 2005 Jul;71(7):4144-8 – reference: 11709849 - Curr Issues Intest Microbiol. 2000 Mar;1(1):1-12 – reference: 19693277 - PLoS One. 2009;4(8):e6669 – reference: 12454130 - J Clin Microbiol. 2002 Dec;40(12):4423-7 – reference: 12798151 - Arch Oral Biol. 2003 Jul;48(7):475-93 – reference: 20880993 - Nucleic Acids Res. 2010 Dec;38(22):e200 – reference: 17406319 - Nat Protoc. 2006;1(2):870-3 – reference: 19718016 - Nat Methods. 2009 Sep;6(9):636-7 – reference: 16085863 - Appl Environ Microbiol. 2005 Aug;71(8):4679-89 – reference: 14985472 - Nucleic Acids Res. 2004;32(4):1363-71 – reference: 18296538 - Appl Environ Microbiol. 2008 Apr;74(8):2461-70 – reference: 17659080 - Genome Biol. 2007;8(7):R143 – reference: 19043404 - Nature. 2009 Jan 22;457(7228):480-4 – reference: 12039758 - Appl Environ Microbiol. 2002 Jun;68(6):2982-90 – reference: 19737302 - Environ Microbiol. 2009 Sep;11(9):2194-206 – reference: 19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 – reference: 19805153 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17187-92 – reference: 15546407 - J Appl Microbiol. 2004;97(6):1166-77 – reference: 14747690 - J Nutr. 2004 Feb;134(2):465-72 – reference: 18941009 - Gut. 2008 Nov;57(11):1605-15 |
SSID | ssj0004068 ssj0006590 |
Score | 2.409021 |
Snippet | Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as... Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit... |
SourceID | wageningen pubmedcentral proquest pubmed pascalfrancis crossref highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2071 |
SubjectTerms | Actinobacteria Bacteria bacterial community Biological and medical sciences Cloning Comparative analysis DNA DNA Barcoding, Taxonomic - methods DNA sequencing effluents extensive set fecal samples feces composition Fundamental and applied biological sciences. Psychology gastrointestinal-tract microbiota genes gut microbiome Human subjects Humans intestinal microorganisms Intestines - microbiology Metagenome - genetics Methods microarray technology Microbial activity microbial communities Microbiology Molecular Sequence Data nucleotide sequences Oligonucleotide Array Sequence Analysis - methods phylogenetic microarray Phylogenetics phylogeny Polymerase chain reaction quantitative-analysis real-time pcr ribosomal RNA ribosomal-rna genes RNA, Ribosomal, 16S - genetics Sample preparation sequence data Small intestine Species diversity Species richness Studies Veillonella |
Title | Microarray Analysis and Barcoded Pyrosequencing Provide Consistent Microbial Profiles Depending on the Source of Human Intestinal Samples |
URI | http://aem.asm.org/content/77/6/2071.abstract https://www.ncbi.nlm.nih.gov/pubmed/21257804 https://www.proquest.com/docview/858144462 https://www.proquest.com/docview/1420119509 https://www.proquest.com/docview/856787383 https://www.proquest.com/docview/923200450 https://pubmed.ncbi.nlm.nih.gov/PMC3067328 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F405092 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9tAEF4BVVX6ULX0wNCirdQ-RQbH62P9GIpbeiQgCAjxslo76zYSsas4EaL_oH-0v6MzXl_hUI8XO7LX9jrzefbb2TkIeTPyXNePo8BUgTsygRFLkyuY88S2SrqJHXlOES7WH3j7J86nM_dsaelXy2tpPou24x-3xpX8j1ThGMgVo2T_QbL1TeEA_Ab5whYkDNu_knEfvenkdCqvmuQiaAjfBfRmI6CSh1cwCGpnaTQJHOqwO12lE8SbzjrFLYqokUNdvTsHFYR1cQtvaO0DeVwY-BuTP1oRQTMgjz2WmF04b1PcitdiR1phdBilMm6yPlWCPu0NOnvhoLN78CE8GpYrIGiqzSZq3hS9DzunB4WTIdqH1KSx4Z4fhMNwsNf7opX65ThtqoUB-Q6Pwt3wPOxXEQLjMkJg1Bhu2YLPSLWA1fZm7V_vd6nlg8BEqtLW8mWxmPFNlW3pGjDl8G9burLUzaHFxnCJXtjfBlrj-2bpjbuQwfvayFr7O9oswOVnb5ncs33geEjeP35u4nctj1fZUrHfVYCGzXfaz1ugTsuJzFpJrdGnV-bwWSe6HsttE6abfr-rl_DKaRHF12JVw8fkUTkdoj2N7SdkSaVr5L4ukHq1Rh5UcfP5GnnYSp35lPxssE8r7FOAHK2wTxexT0vs0wb7tMY-rbBPa-zTLKWAfaqxT7OEFtinDfZpif1n5OR9OHy3b5ZlRczYY87MDBwb0x5GMQtc5kcytlQ8irjPolj5kQdKSyk3SLBUSIyxOYFiTgITD-4qrpQv2XOykmapWifU5XGSSD7iTAEzZ06E_JdZSdeR0vJi2yCdSmIiLnPuY-mXC1HMvW0uQL6ikC8cMcjbuvV3nWvmjnbrIHwhvwINECfHNjofdAMXkMsNslEhQsh8IqSaCLjGE4hyg2wtYKR-SAVPg2xWoBGlmssFd3nXcRwPXuZ1fRbGIFxYlKnK5rnoOrauJx0YhN7RhrtAi33G2d1NYK6J2t2FF3yhgdr0sIvUwnIM4i9AuG6AWfIXz6Tjb0W2fLSJgPAMwhqwixQLteXFVaW1XFzOpyK9wB3cJxcOJsayN_70l22S1UZZvSQrs-lcvYJpyizaKr7x38J8Q78 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microarray+Analysis+and+Barcoded+Pyrosequencing+Provide+Consistent+Microbial+Profiles+Depending+on+the+Source+of+Human+Intestinal+Samples&rft.jtitle=Applied+and+environmental+microbiology&rft.au=VAN+DEN+BOGERT%2C+Bartholomeus&rft.au=DE+VOS%2C+Willem+M&rft.au=ZOETENDAL%2C+Erwin+G&rft.au=KLEEREBEZEM%2C+Michiel&rft.date=2011-03-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.volume=77&rft.issue=6&rft.spage=2071&rft.epage=2080&rft_id=info:doi/10.1128%2FAEM.02477-10&rft.externalDBID=n%2Fa&rft.externalDocID=23960586 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |