Microarray Analysis and Barcoded Pyrosequencing Provide Consistent Microbial Profiles Depending on the Source of Human Intestinal Samples

Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of th...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 77; no. 6; pp. 2071 - 2080
Main Authors van den Bogert, Bartholomeus, de Vos, Willem M, Zoetendal, Erwin G, Kleerebezem, Michiel
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.03.2011
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text
ISSN0099-2240
1098-5336
1098-5336
1098-6596
DOI10.1128/AEM.02477-10

Cover

Abstract Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice.
AbstractList Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice.
Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice.
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice. [PUBLICATION ABSTRACT]
Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice.Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice.
Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice
Author van den Bogert, Bartholomeus
de Vos, Willem M
Zoetendal, Erwin G
Kleerebezem, Michiel
AuthorAffiliation TI Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, Netherlands, 1 Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands, 2 Department of Basic Veterinary Medicine, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland, 3 NIZO food research B.V., P.O. Box 20, 6710 BA Ede, Netherlands 4
AuthorAffiliation_xml – name: TI Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, Netherlands, 1 Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands, 2 Department of Basic Veterinary Medicine, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland, 3 NIZO food research B.V., P.O. Box 20, 6710 BA Ede, Netherlands 4
Author_xml – sequence: 1
  fullname: van den Bogert, Bartholomeus
– sequence: 2
  fullname: de Vos, Willem M
– sequence: 3
  fullname: Zoetendal, Erwin G
– sequence: 4
  fullname: Kleerebezem, Michiel
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23960586$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21257804$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gxhkMEoIDW8Z2PhwOSGUptFIrKpWeLcc72XWV2IudbbU_gX_NpFsqqAScLNnP-3remdnNtnzwmGVPOexzLtS7g8PTfRB5VU04PMh2ONRqUkhZbmU7AHU9ESKH7Ww3pUsAyKFUj7JtwUVRKch3sh-nzsZgYjRrduBNt04uMeNn7KOJNsxwxs7WMST8vkJvnZ-zsxiu3AzZNHhCB_QDu7FonOnGx9Z1mNgnXKKfjXzwbFggOw-raJGFlh2teuPZsR8wDY5-ZOemX5LmcfawNV3CJ7fnXnbx-fDb9Ghy8vXL8fTgZGJLmQ-TOhdcgWisrAtZNcYC2lmjKtlYrJoS6wKxqFtTAFgOqqhR5q2QQhWoECsj97L3G99rM0dPJaLXnsK6pINxunNNNHGtr1dR-248lqsm6RwKqAWJP2zEdNnjzFL8aDq9jK4fRaPBny_eLfQ8XGkJZUVFkMHrW4MYqKdp0L1LFrvOeAyrpOkPQWMq4L-kKsqKYitJ5Jt_kjwXwHlNAQh9eQ-9pMHQFEY_xfM8L8eQz34PeZfu19YQ8OoWMMmaro3Gj-2742RdQqFK4t5uONqPlCK2dwgHPS6vpuXVN8tLN4SLe7h1gxlcGFvpur-JXmxECzdfXLuI2qReG-w1vZdaQMWJeb5hWhO0mUeq9eKceiKBuiJAKfkT7VYIkA
CODEN AEMIDF
CitedBy_id crossref_primary_10_1016_j_chemosphere_2021_129817
crossref_primary_10_1371_journal_pone_0130030
crossref_primary_10_1016_j_marpolbul_2020_111102
crossref_primary_10_1111_lam_12137
crossref_primary_10_1111_1574_6941_12127
crossref_primary_10_1038_ajg_2013_386
crossref_primary_10_1186_2049_2618_2_13
crossref_primary_10_1101_gr_151803_112
crossref_primary_10_1111_j_1462_2920_2011_02574_x
crossref_primary_10_1039_C5FO01276G
crossref_primary_10_1097_MOG_0000000000000040
crossref_primary_10_1186_s40168_017_0309_z
crossref_primary_10_1021_acs_jafc_8b05408
crossref_primary_10_1111_cea_12522
crossref_primary_10_1017_S0007114515004043
crossref_primary_10_1007_s10811_019_01847_0
crossref_primary_10_7717_peerj_6610
crossref_primary_10_1007_s00284_019_01713_9
crossref_primary_10_1016_j_ijhydene_2018_09_040
crossref_primary_10_3390_genes11091041
crossref_primary_10_1099_jmm_0_001934
crossref_primary_10_3390_genes8110314
crossref_primary_10_1007_s11356_015_5344_3
crossref_primary_10_4103_sjg_sjg_131_22
crossref_primary_10_1111_j_1462_2920_2011_02533_x
crossref_primary_10_2217_fmb_15_87
crossref_primary_10_1038_s41396_018_0064_6
crossref_primary_10_1126_science_aad8852
crossref_primary_10_1038_ismej_2015_213
crossref_primary_10_1017_S0007114512002279
crossref_primary_10_1053_j_gastro_2012_06_031
crossref_primary_10_1021_pr3006364
crossref_primary_10_1111_apt_13399
crossref_primary_10_1371_journal_pone_0134615
crossref_primary_10_1111_j_1751_7915_2011_00315_x
crossref_primary_10_1007_s00253_016_8010_x
crossref_primary_10_3389_fgene_2014_00406
crossref_primary_10_1099_ijs_0_045823_0
crossref_primary_10_1074_mcp_M112_019315
crossref_primary_10_1007_s00253_014_5535_8
crossref_primary_10_1093_femsec_fiy017
crossref_primary_10_1093_femsec_fiz108
crossref_primary_10_1371_journal_pone_0023035
crossref_primary_10_1038_s41390_019_0326_7
crossref_primary_10_1038_srep18206
crossref_primary_10_1016_j_tibtech_2012_08_001
crossref_primary_10_2337_db12_0526
crossref_primary_10_1016_j_scitotenv_2020_137795
crossref_primary_10_1186_1471_2164_14_788
crossref_primary_10_1038_ajg_2012_287
crossref_primary_10_1111_j_1574_6941_2011_01222_x
crossref_primary_10_1371_journal_pone_0094863
crossref_primary_10_3389_fmicb_2022_1054061
crossref_primary_10_3390_nu14050974
crossref_primary_10_1371_journal_pone_0103641
crossref_primary_10_1073_pnas_1101405108
crossref_primary_10_1371_journal_pone_0062544
crossref_primary_10_3390_cancers13215450
crossref_primary_10_1038_s41598_020_73827_1
crossref_primary_10_1111_j_1462_2920_2011_02559_x
crossref_primary_10_3389_fmicb_2018_00092
crossref_primary_10_1007_s00248_013_0345_6
crossref_primary_10_3389_fimmu_2017_00154
crossref_primary_10_1016_j_scitotenv_2014_05_073
crossref_primary_10_1038_s41598_017_11446_z
crossref_primary_10_1016_j_anaerobe_2012_04_013
crossref_primary_10_1016_j_bcdf_2013_09_008
crossref_primary_10_1002_mnfr_201600149
crossref_primary_10_1371_journal_pone_0194066
crossref_primary_10_1007_s12263_011_0229_7
crossref_primary_10_1371_journal_pone_0060042
crossref_primary_10_1097_MPG_0000000000000752
crossref_primary_10_1038_ismej_2012_146
crossref_primary_10_1586_ers_11_76
crossref_primary_10_1093_jac_dku092
crossref_primary_10_1111_j_1751_7915_2011_00290_x
crossref_primary_10_1111_jam_13111
crossref_primary_10_1038_ismej_2017_44
crossref_primary_10_1128_genomeA_01013_13
crossref_primary_10_1016_j_jaci_2011_06_044
crossref_primary_10_1002_pmic_201500179
crossref_primary_10_1016_j_gastrohep_2015_01_004
crossref_primary_10_1111_1574_6976_12075
crossref_primary_10_1371_journal_pone_0114277
crossref_primary_10_1007_s00284_013_0336_3
crossref_primary_10_1016_j_bbrc_2018_10_136
crossref_primary_10_1186_1471_2164_14_530
crossref_primary_10_1128_JCM_00473_13
crossref_primary_10_1016_j_jbiosc_2013_02_010
crossref_primary_10_1016_S1473_3099_13_70107_5
crossref_primary_10_1186_s40748_021_00131_9
crossref_primary_10_1007_s00284_013_0491_6
crossref_primary_10_1038_ismej_2012_158
crossref_primary_10_1128_genomeA_00977_13
crossref_primary_10_2337_db11_0227
crossref_primary_10_4161_19490976_2014_972228
crossref_primary_10_1371_journal_pone_0229887
crossref_primary_10_3945_jn_112_169672
crossref_primary_10_1007_s11306_014_0645_y
crossref_primary_10_1111_j_1753_4887_2012_00505_x
crossref_primary_10_1038_ncomms7342
crossref_primary_10_1371_journal_pone_0083418
crossref_primary_10_1038_srep17284
crossref_primary_10_1371_journal_pone_0081352
crossref_primary_10_1080_10408398_2023_2180478
crossref_primary_10_1371_journal_pone_0210970
crossref_primary_10_1016_j_anaerobe_2017_07_006
crossref_primary_10_3390_ijms21176044
crossref_primary_10_1371_journal_pone_0100040
crossref_primary_10_3920_BM2014_0016
crossref_primary_10_1128_aem_01739_23
crossref_primary_10_1371_journal_pone_0090981
crossref_primary_10_3390_nu12123751
crossref_primary_10_1016_j_arr_2011_03_004
crossref_primary_10_1016_j_soilbio_2015_08_042
crossref_primary_10_3920_BM2014_0087
crossref_primary_10_3109_00365521_2013_799220
crossref_primary_10_1099_ijsem_0_001323
crossref_primary_10_1186_s13068_018_1012_4
crossref_primary_10_1111_1751_7915_13784
crossref_primary_10_1007_s10126_017_9766_4
crossref_primary_10_1371_journal_pone_0103959
crossref_primary_10_1053_j_gastro_2015_03_045
crossref_primary_10_3389_fimmu_2017_00754
crossref_primary_10_1007_s12275_021_1165_x
crossref_primary_10_1016_j_archoralbio_2015_09_015
Cites_doi 10.1038/ismej.2009.153
10.1111/j.1574-6941.2007.00281.x
10.1093/nar/gkq873
10.1186/1471-2105-11-187
10.1371/journal.pone.0006669
10.1016/j.mimet.2003.08.009
10.1038/nature07540
10.1128/AEM.71.8.4679-4689.2005
10.1038/nmeth0909-636
10.1016/S0003-9969(03)00043-8
10.1128/AEM.66.11.4605-4614.2000
10.1371/journal.pone.0002836
10.1093/nar/gkh293
10.1128/AEM.02272-07
10.1111/j.1348-0421.2004.tb03481.x
10.2217/17460913.2.3.285
10.1038/nature03959
10.1111/j.1462-2920.2010.02294.x
10.1101/gr.085464.108
10.1093/nar/gkm864
10.1038/nprot.2006.142
10.1136/gut.2007.133603
10.1128/AEM.71.7.4144-4148.2005
10.1128/JCM.40.12.4423-4427.2002
10.1093/nar/gkp285
10.1128/AEM.68.11.5445-5451.2002
10.1111/j.1462-2920.2007.01369.x
10.1016/j.ijfoodmicro.2004.04.020
10.1128/AEM.00556-06
10.1128/AEM.68.6.2982-2990.2002
10.1128/AEM.00062-07
10.1093/jn/134.2.465
10.1111/j.1365-2672.2004.02409.x
10.1126/science.1110591
10.1099/00207713-44-4-812
10.1111/j.1462-2920.2009.01941.x
10.1128/AEM.02764-08
10.1111/j.1574-6941.2008.00611.x
10.1016/j.mimet.2010.02.007
10.1111/j.1462-2920.2009.01900.x
10.1186/gb-2007-8-7-r143
10.1093/nar/gkn879
10.1073/pnas.1000080107
10.1073/pnas.0904847106
10.1093/nar/gnj007
10.1128/AEM.67.10.4399-4406.2001
10.1016/j.mam.2005.12.007
10.1128/AEM.66.1.375-382.2000
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Society for Microbiology Mar 2011
Copyright © 2011, American Society for Microbiology 2011
Wageningen University & Research
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Society for Microbiology Mar 2011
– notice: Copyright © 2011, American Society for Microbiology 2011
– notice: Wageningen University & Research
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
5PM
QVL
DOI 10.1128/AEM.02477-10
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA

MEDLINE

Virology and AIDS Abstracts
MEDLINE - Academic

Biotechnology Research Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1098-5336
1098-6596
EndPage 2080
ExternalDocumentID oai_library_wur_nl_wurpubs_405092
PMC3067328
2299571421
21257804
23960586
10_1128_AEM_02477_10
aem_77_6_2071
US201301952088
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAZTW
ABOGM
ABPPZ
ABTAH
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
FBQ
GX1
H13
HYE
HZ~
H~9
K-O
KQ8
L7B
MVM
NEJ
O9-
OHT
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XJT
YV5
ZCG
ZGI
ZXP
ZY4
~02
~KM
AAGFI
AAYXX
CITATION
ADXHL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
OK1
PKN
RHF
UCJ
Z5M
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
FRP
HH5
LSO
W2D
~A~
5PM
-
02
08R
0R
55
AAPBV
ABFLS
ABPTK
ACCKP
ACVYA
ADACO
ADBIT
AFMIJ
B4K
BXI
F20
GJ
HZ
KM
O0-
PQEST
QVL
X
XFK
XHC
ZA5
ID FETCH-LOGICAL-c634t-9421802bc39537bac0ecdb873bce7b6e95ee59fa500c10859e34f23285e8ee7a3
ISSN 0099-2240
1098-5336
IngestDate Tue Jan 05 18:09:57 EST 2021
Thu Aug 21 18:22:35 EDT 2025
Fri Sep 05 10:24:56 EDT 2025
Fri Sep 05 14:10:11 EDT 2025
Thu Sep 04 20:35:37 EDT 2025
Mon Jun 30 08:51:25 EDT 2025
Wed Feb 19 01:49:53 EST 2025
Mon Jul 21 09:17:10 EDT 2025
Tue Jul 01 02:19:16 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Wed May 18 15:29:05 EDT 2016
Thu Apr 03 09:45:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Human
Microorganism
Microarray
Sample
Gut
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c634t-9421802bc39537bac0ecdb873bce7b6e95ee59fa500c10859e34f23285e8ee7a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
OpenAccessLink http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F405092
PMID 21257804
PQID 858144462
PQPubID 42251
PageCount 10
ParticipantIDs highwire_asm_aem_77_6_2071
crossref_citationtrail_10_1128_AEM_02477_10
pubmed_primary_21257804
proquest_journals_858144462
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3067328
crossref_primary_10_1128_AEM_02477_10
proquest_miscellaneous_1420119509
wageningen_narcis_oai_library_wur_nl_wurpubs_405092
pascalfrancis_primary_23960586
proquest_miscellaneous_856787383
proquest_miscellaneous_923200450
fao_agris_US201301952088
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2011
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
(e_1_3_3_18_2) 2004
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
(e_1_3_3_48_2) 2000; 1
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
19363078 - Appl Environ Microbiol. 2009 Jun;75(11):3572-9
14747690 - J Nutr. 2004 Feb;134(2):465-72
17659080 - Genome Biol. 2007;8(7):R143
14734852 - Microbiol Immunol. 2004;48(1):1-6
15831718 - Science. 2005 Jun 10;308(5728):1635-8
19043404 - Nature. 2009 Jan 22;457(7228):480-4
15546407 - J Appl Microbiol. 2004;97(6):1166-77
19417062 - Nucleic Acids Res. 2009 Jun;37(10):e76
19805153 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17187-92
16000836 - Appl Environ Microbiol. 2005 Jul;71(7):4144-8
16407321 - Nucleic Acids Res. 2006;34(1):e5
20534432 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22
19508560 - Environ Microbiol. 2009 Jul;11(7):1736-51
12454130 - J Clin Microbiol. 2002 Dec;40(12):4423-7
18296538 - Appl Environ Microbiol. 2008 Apr;74(8):2461-70
10618251 - Appl Environ Microbiol. 2000 Jan;66(1):375-82
20388221 - BMC Bioinformatics. 2010;11:187
20626454 - Environ Microbiol. 2010 Dec;12(12):3213-27
11055900 - Appl Environ Microbiol. 2000 Nov;66(11):4605-14
7981107 - Int J Syst Bacteriol. 1994 Oct;44(4):812-26
14607398 - J Microbiol Methods. 2003 Dec;55(3):541-55
15541806 - Int J Food Microbiol. 2004 Dec 15;97(2):197-207
17661703 - Future Microbiol. 2007 Jun;2(3):285-95
11709849 - Curr Issues Intest Microbiol. 2000 Mar;1(1):1-12
16460794 - Mol Aspects Med. 2006 Apr-Jun;27(2-3):95-125
19049656 - FEMS Microbiol Ecol. 2008 Dec;66(3):620-9
12406736 - Appl Environ Microbiol. 2002 Nov;68(11):5445-51
11571135 - Appl Environ Microbiol. 2001 Oct;67(10):4399-406
19693277 - PLoS One. 2009;4(8):e6669
20171997 - J Microbiol Methods. 2010 May;81(2):127-34
17406319 - Nat Protoc. 2006;1(2):870-3
16085863 - Appl Environ Microbiol. 2005 Aug;71(8):4679-89
17313661 - FEMS Microbiol Ecol. 2007 Apr;60(1):126-35
16957188 - Appl Environ Microbiol. 2006 Sep;72(9):5734-41
14985472 - Nucleic Acids Res. 2004;32(4):1363-71
20880993 - Nucleic Acids Res. 2010 Dec;38(22):e200
17947321 - Nucleic Acids Res. 2007;35(21):7188-96
19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5
16056220 - Nature. 2005 Sep 15;437(7057):376-80
17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7
17686012 - Environ Microbiol. 2007 Sep;9(9):2125-36
19718016 - Nat Methods. 2009 Sep;6(9):636-7
19737302 - Environ Microbiol. 2009 Sep;11(9):2194-206
12039758 - Appl Environ Microbiol. 2002 Jun;68(6):2982-90
18941009 - Gut. 2008 Nov;57(11):1605-15
19383763 - Genome Res. 2009 Jul;19(7):1141-52
20090784 - ISME J. 2010 May;4(5):642-7
12798151 - Arch Oral Biol. 2003 Jul;48(7):475-93
18665274 - PLoS One. 2008;3(7):e2836
References_xml – ident: e_1_3_3_15_2
  doi: 10.1038/ismej.2009.153
– ident: e_1_3_3_14_2
  doi: 10.1111/j.1574-6941.2007.00281.x
– ident: e_1_3_3_10_2
  doi: 10.1093/nar/gkq873
– ident: e_1_3_3_32_2
  doi: 10.1186/1471-2105-11-187
– ident: e_1_3_3_9_2
  doi: 10.1371/journal.pone.0006669
– ident: e_1_3_3_4_2
  doi: 10.1016/j.mimet.2003.08.009
– ident: e_1_3_3_46_2
  doi: 10.1038/nature07540
– ident: e_1_3_3_5_2
  doi: 10.1128/AEM.71.8.4679-4689.2005
– ident: e_1_3_3_38_2
  doi: 10.1038/nmeth0909-636
– ident: e_1_3_3_40_2
  doi: 10.1016/S0003-9969(03)00043-8
– ident: e_1_3_3_45_2
  doi: 10.1128/AEM.66.11.4605-4614.2000
– ident: e_1_3_3_2_2
  doi: 10.1371/journal.pone.0002836
– ident: e_1_3_3_28_2
  doi: 10.1093/nar/gkh293
– ident: e_1_3_3_16_2
  doi: 10.1128/AEM.02272-07
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1348-0421.2004.tb03481.x
– ident: e_1_3_3_7_2
  doi: 10.2217/17460913.2.3.285
– ident: e_1_3_3_29_2
  doi: 10.1038/nature03959
– ident: e_1_3_3_6_2
  doi: 10.1111/j.1462-2920.2010.02294.x
– ident: e_1_3_3_19_2
  doi: 10.1101/gr.085464.108
– ident: e_1_3_3_35_2
  doi: 10.1093/nar/gkm864
– ident: e_1_3_3_51_2
  doi: 10.1038/nprot.2006.142
– ident: e_1_3_3_52_2
  doi: 10.1136/gut.2007.133603
– ident: e_1_3_3_43_2
  doi: 10.1128/AEM.71.7.4144-4148.2005
– start-page: 401
  year: 2004
  ident: e_1_3_3_18_2
  publication-title: Taxonomic outline of the prokaryotes
– ident: e_1_3_3_24_2
  doi: 10.1128/JCM.40.12.4423-4427.2002
– ident: e_1_3_3_44_2
  doi: 10.1093/nar/gkp285
– ident: e_1_3_3_30_2
  doi: 10.1128/AEM.68.11.5445-5451.2002
– ident: e_1_3_3_37_2
  doi: 10.1111/j.1462-2920.2007.01369.x
– ident: e_1_3_3_17_2
  doi: 10.1016/j.ijfoodmicro.2004.04.020
– ident: e_1_3_3_3_2
  doi: 10.1128/AEM.00556-06
– ident: e_1_3_3_20_2
  doi: 10.1128/AEM.68.6.2982-2990.2002
– ident: e_1_3_3_49_2
  doi: 10.1128/AEM.00062-07
– ident: e_1_3_3_50_2
  doi: 10.1093/jn/134.2.465
– ident: e_1_3_3_39_2
  doi: 10.1111/j.1365-2672.2004.02409.x
– volume: 1
  start-page: 1
  year: 2000
  ident: e_1_3_3_48_2
  publication-title: Curr. Issues Intest. Microbiol.
– ident: e_1_3_3_13_2
  doi: 10.1126/science.1110591
– ident: e_1_3_3_47_2
– ident: e_1_3_3_12_2
  doi: 10.1099/00207713-44-4-812
– ident: e_1_3_3_27_2
  doi: 10.1111/j.1462-2920.2009.01941.x
– ident: e_1_3_3_33_2
  doi: 10.1128/AEM.02764-08
– ident: e_1_3_3_31_2
  doi: 10.1111/j.1574-6941.2008.00611.x
– ident: e_1_3_3_41_2
  doi: 10.1016/j.mimet.2010.02.007
– ident: e_1_3_3_36_2
  doi: 10.1111/j.1462-2920.2009.01900.x
– ident: e_1_3_3_25_2
  doi: 10.1186/gb-2007-8-7-r143
– ident: e_1_3_3_11_2
  doi: 10.1093/nar/gkn879
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.1000080107
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.0904847106
– ident: e_1_3_3_34_2
  doi: 10.1093/nar/gnj007
– ident: e_1_3_3_23_2
  doi: 10.1128/AEM.67.10.4399-4406.2001
– ident: e_1_3_3_26_2
  doi: 10.1016/j.mam.2005.12.007
– ident: e_1_3_3_42_2
  doi: 10.1128/AEM.66.1.375-382.2000
– reference: 19049656 - FEMS Microbiol Ecol. 2008 Dec;66(3):620-9
– reference: 15541806 - Int J Food Microbiol. 2004 Dec 15;97(2):197-207
– reference: 15831718 - Science. 2005 Jun 10;308(5728):1635-8
– reference: 17686012 - Environ Microbiol. 2007 Sep;9(9):2125-36
– reference: 17661703 - Future Microbiol. 2007 Jun;2(3):285-95
– reference: 20534432 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22
– reference: 18665274 - PLoS One. 2008;3(7):e2836
– reference: 11055900 - Appl Environ Microbiol. 2000 Nov;66(11):4605-14
– reference: 14734852 - Microbiol Immunol. 2004;48(1):1-6
– reference: 20090784 - ISME J. 2010 May;4(5):642-7
– reference: 16460794 - Mol Aspects Med. 2006 Apr-Jun;27(2-3):95-125
– reference: 20388221 - BMC Bioinformatics. 2010;11:187
– reference: 16957188 - Appl Environ Microbiol. 2006 Sep;72(9):5734-41
– reference: 19383763 - Genome Res. 2009 Jul;19(7):1141-52
– reference: 20626454 - Environ Microbiol. 2010 Dec;12(12):3213-27
– reference: 20171997 - J Microbiol Methods. 2010 May;81(2):127-34
– reference: 17947321 - Nucleic Acids Res. 2007;35(21):7188-96
– reference: 17586664 - Appl Environ Microbiol. 2007 Aug;73(16):5261-7
– reference: 11571135 - Appl Environ Microbiol. 2001 Oct;67(10):4399-406
– reference: 19508560 - Environ Microbiol. 2009 Jul;11(7):1736-51
– reference: 7981107 - Int J Syst Bacteriol. 1994 Oct;44(4):812-26
– reference: 17313661 - FEMS Microbiol Ecol. 2007 Apr;60(1):126-35
– reference: 16407321 - Nucleic Acids Res. 2006;34(1):e5
– reference: 14607398 - J Microbiol Methods. 2003 Dec;55(3):541-55
– reference: 19363078 - Appl Environ Microbiol. 2009 Jun;75(11):3572-9
– reference: 19417062 - Nucleic Acids Res. 2009 Jun;37(10):e76
– reference: 16056220 - Nature. 2005 Sep 15;437(7057):376-80
– reference: 10618251 - Appl Environ Microbiol. 2000 Jan;66(1):375-82
– reference: 12406736 - Appl Environ Microbiol. 2002 Nov;68(11):5445-51
– reference: 16000836 - Appl Environ Microbiol. 2005 Jul;71(7):4144-8
– reference: 11709849 - Curr Issues Intest Microbiol. 2000 Mar;1(1):1-12
– reference: 19693277 - PLoS One. 2009;4(8):e6669
– reference: 12454130 - J Clin Microbiol. 2002 Dec;40(12):4423-7
– reference: 12798151 - Arch Oral Biol. 2003 Jul;48(7):475-93
– reference: 20880993 - Nucleic Acids Res. 2010 Dec;38(22):e200
– reference: 17406319 - Nat Protoc. 2006;1(2):870-3
– reference: 19718016 - Nat Methods. 2009 Sep;6(9):636-7
– reference: 16085863 - Appl Environ Microbiol. 2005 Aug;71(8):4679-89
– reference: 14985472 - Nucleic Acids Res. 2004;32(4):1363-71
– reference: 18296538 - Appl Environ Microbiol. 2008 Apr;74(8):2461-70
– reference: 17659080 - Genome Biol. 2007;8(7):R143
– reference: 19043404 - Nature. 2009 Jan 22;457(7228):480-4
– reference: 12039758 - Appl Environ Microbiol. 2002 Jun;68(6):2982-90
– reference: 19737302 - Environ Microbiol. 2009 Sep;11(9):2194-206
– reference: 19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5
– reference: 19805153 - Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17187-92
– reference: 15546407 - J Appl Microbiol. 2004;97(6):1166-77
– reference: 14747690 - J Nutr. 2004 Feb;134(2):465-72
– reference: 18941009 - Gut. 2008 Nov;57(11):1605-15
SSID ssj0004068
ssj0006590
Score 2.409021
Snippet Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as...
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
SourceID wageningen
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2071
SubjectTerms Actinobacteria
Bacteria
bacterial community
Biological and medical sciences
Cloning
Comparative analysis
DNA
DNA Barcoding, Taxonomic - methods
DNA sequencing
effluents
extensive set
fecal samples
feces composition
Fundamental and applied biological sciences. Psychology
gastrointestinal-tract microbiota
genes
gut microbiome
Human subjects
Humans
intestinal microorganisms
Intestines - microbiology
Metagenome - genetics
Methods
microarray technology
Microbial activity
microbial communities
Microbiology
Molecular Sequence Data
nucleotide sequences
Oligonucleotide Array Sequence Analysis - methods
phylogenetic microarray
Phylogenetics
phylogeny
Polymerase chain reaction
quantitative-analysis
real-time pcr
ribosomal RNA
ribosomal-rna genes
RNA, Ribosomal, 16S - genetics
Sample preparation
sequence data
Small intestine
Species diversity
Species richness
Studies
Veillonella
Title Microarray Analysis and Barcoded Pyrosequencing Provide Consistent Microbial Profiles Depending on the Source of Human Intestinal Samples
URI http://aem.asm.org/content/77/6/2071.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21257804
https://www.proquest.com/docview/858144462
https://www.proquest.com/docview/1420119509
https://www.proquest.com/docview/856787383
https://www.proquest.com/docview/923200450
https://pubmed.ncbi.nlm.nih.gov/PMC3067328
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F405092
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9tAEF4BVVX6ULX0wNCirdQ-RQbH62P9GIpbeiQgCAjxslo76zYSsas4EaL_oH-0v6MzXl_hUI8XO7LX9jrzefbb2TkIeTPyXNePo8BUgTsygRFLkyuY88S2SrqJHXlOES7WH3j7J86nM_dsaelXy2tpPou24x-3xpX8j1ThGMgVo2T_QbL1TeEA_Ab5whYkDNu_knEfvenkdCqvmuQiaAjfBfRmI6CSh1cwCGpnaTQJHOqwO12lE8SbzjrFLYqokUNdvTsHFYR1cQtvaO0DeVwY-BuTP1oRQTMgjz2WmF04b1PcitdiR1phdBilMm6yPlWCPu0NOnvhoLN78CE8GpYrIGiqzSZq3hS9DzunB4WTIdqH1KSx4Z4fhMNwsNf7opX65ThtqoUB-Q6Pwt3wPOxXEQLjMkJg1Bhu2YLPSLWA1fZm7V_vd6nlg8BEqtLW8mWxmPFNlW3pGjDl8G9burLUzaHFxnCJXtjfBlrj-2bpjbuQwfvayFr7O9oswOVnb5ncs33geEjeP35u4nctj1fZUrHfVYCGzXfaz1ugTsuJzFpJrdGnV-bwWSe6HsttE6abfr-rl_DKaRHF12JVw8fkUTkdoj2N7SdkSaVr5L4ukHq1Rh5UcfP5GnnYSp35lPxssE8r7FOAHK2wTxexT0vs0wb7tMY-rbBPa-zTLKWAfaqxT7OEFtinDfZpif1n5OR9OHy3b5ZlRczYY87MDBwb0x5GMQtc5kcytlQ8irjPolj5kQdKSyk3SLBUSIyxOYFiTgITD-4qrpQv2XOykmapWifU5XGSSD7iTAEzZ06E_JdZSdeR0vJi2yCdSmIiLnPuY-mXC1HMvW0uQL6ikC8cMcjbuvV3nWvmjnbrIHwhvwINECfHNjofdAMXkMsNslEhQsh8IqSaCLjGE4hyg2wtYKR-SAVPg2xWoBGlmssFd3nXcRwPXuZ1fRbGIFxYlKnK5rnoOrauJx0YhN7RhrtAi33G2d1NYK6J2t2FF3yhgdr0sIvUwnIM4i9AuG6AWfIXz6Tjb0W2fLSJgPAMwhqwixQLteXFVaW1XFzOpyK9wB3cJxcOJsayN_70l22S1UZZvSQrs-lcvYJpyizaKr7x38J8Q78
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microarray+Analysis+and+Barcoded+Pyrosequencing+Provide+Consistent+Microbial+Profiles+Depending+on+the+Source+of+Human+Intestinal+Samples&rft.jtitle=Applied+and+environmental+microbiology&rft.au=VAN+DEN+BOGERT%2C+Bartholomeus&rft.au=DE+VOS%2C+Willem+M&rft.au=ZOETENDAL%2C+Erwin+G&rft.au=KLEEREBEZEM%2C+Michiel&rft.date=2011-03-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.volume=77&rft.issue=6&rft.spage=2071&rft.epage=2080&rft_id=info:doi/10.1128%2FAEM.02477-10&rft.externalDBID=n%2Fa&rft.externalDocID=23960586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon