Caveolin-1 function at the plasma membrane and in intracellular compartments in cancer
Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understo...
Saved in:
Published in | Cancer and metastasis reviews Vol. 39; no. 2; pp. 435 - 453 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0167-7659 1573-7233 1573-7233 |
DOI | 10.1007/s10555-020-09890-x |
Cover
Abstract | Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer. |
---|---|
AbstractList | Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer. Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer. |
Audience | Academic |
Author | Leyton, L. Campos, A. Simón, L. Quest, A. F. G. |
Author_xml | – sequence: 1 givenname: L. surname: Simón fullname: Simón, L. organization: Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Advanced Center for Chronic Diseases (ACCDIS) – sequence: 2 givenname: A. surname: Campos fullname: Campos, A. organization: Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Advanced Center for Chronic Diseases (ACCDIS) – sequence: 3 givenname: L. surname: Leyton fullname: Leyton, L. organization: Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Advanced Center for Chronic Diseases (ACCDIS) – sequence: 4 givenname: A. F. G. surname: Quest fullname: Quest, A. F. G. email: aquest@med.uchile.cl organization: Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Advanced Center for Chronic Diseases (ACCDIS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32458269$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1q3DAUhUVJaSZpX6CLYtpNN071Y9nSphCGpi0Eumm7FbJ8PVGwpYlkh_Tte51J2kkIwQaD73cOukfniByEGICQt4yeMEqbT5lRKWVJOS2pVpqWNy_IislGlA0X4oCsKKubsqmlPiRHOV9SFIlGvyKHgldS8VqvyO-1vYY4-FCyop-Dm3wMhZ2K6QKK7WDzaIsRxjbZAIUNXeEDvlOyDoZhHmwqXBy3Nk0jhCkvU2eDg_SavOztkOHN3feY_Dr78nP9rTz_8fX7-vS8dLWoplJpJ5yyWipWy0or2fCut61wAB2TjjrgLRU4UrptbU3BdW3bSwWq7qnmVhyTzzvf7dyO0DlYzjaYbfKjTX9MtN48nAR_YTbx2jSCsUpLNPh4Z5Di1Qx5MqPPy3K4cJyz4RVmxjA1huiHR-hlnFPA9ZBiNRWKsj1qYwcwPvRxSWsxNacN47rG4BVS75-g3NZfmX3o5AkInw5G77ALvcf_D1zf7afxL4b760ZA7QCXYs4JeuP8ZJc7R2c_GEbN0iyza5bBZpnbZpkblPJH0nv3Z0ViJ8oIhw2k_5E9o_oLbmXfeQ |
CitedBy_id | crossref_primary_10_3390_cancers13123038 crossref_primary_10_4236_ojpathology_2022_123010 crossref_primary_10_7554_eLife_81288 crossref_primary_10_3389_fonc_2021_701933 crossref_primary_10_7717_peerj_16121 crossref_primary_10_3389_fonc_2021_632956 crossref_primary_10_1016_j_biopha_2024_116841 crossref_primary_10_1007_s00232_022_00236_y crossref_primary_10_3390_ijms231911755 crossref_primary_10_3389_fcell_2021_828673 crossref_primary_10_1080_15321819_2024_2342825 crossref_primary_10_1038_s12276_023_01109_7 crossref_primary_10_1016_j_bioactmat_2024_09_021 crossref_primary_10_1038_s41598_024_57365_8 crossref_primary_10_3389_fcell_2022_946678 crossref_primary_10_1016_j_cellsig_2022_110399 crossref_primary_10_3390_cells14010044 crossref_primary_10_52547_rbmb_11_4_532 crossref_primary_10_3389_fimmu_2022_997726 crossref_primary_10_1007_s00232_020_00160_z crossref_primary_10_2147_JIR_S439974 crossref_primary_10_1002_jbt_23785 crossref_primary_10_1016_j_tranon_2022_101464 crossref_primary_10_3390_ijms232213732 crossref_primary_10_1186_s12929_024_01099_2 crossref_primary_10_1016_j_bbagen_2024_130660 crossref_primary_10_1016_j_ejpb_2024_114412 crossref_primary_10_3390_biom12111698 crossref_primary_10_3390_biom15040456 crossref_primary_10_1002_advs_202306535 crossref_primary_10_1007_s00432_021_03793_2 crossref_primary_10_1002_jex2_70017 crossref_primary_10_1016_j_intimp_2021_108077 crossref_primary_10_1039_D4SC04825C crossref_primary_10_3389_fonc_2021_606122 crossref_primary_10_1002_ctm2_381 crossref_primary_10_1096_fj_202100121RRR crossref_primary_10_1371_journal_pone_0305222 crossref_primary_10_1016_j_intimp_2023_110284 crossref_primary_10_2174_1874467214666211130155902 crossref_primary_10_1016_j_mcpro_2024_100746 crossref_primary_10_1111_acel_14501 crossref_primary_10_3390_ijms22126236 crossref_primary_10_3389_fcell_2021_613336 crossref_primary_10_1016_j_jpba_2023_115729 crossref_primary_10_3390_ijms24076035 crossref_primary_10_1080_15548627_2020_1820787 crossref_primary_10_1007_s00232_020_00143_0 crossref_primary_10_3390_cancers14122862 crossref_primary_10_2174_1871527321666220909150406 crossref_primary_10_1038_s41388_024_03124_y crossref_primary_10_3390_biom14020184 crossref_primary_10_3389_fphys_2025_1550647 crossref_primary_10_1186_s12943_022_01501_3 crossref_primary_10_3390_ph15080925 crossref_primary_10_1007_s10549_023_06919_x crossref_primary_10_1016_j_cellsig_2024_111573 crossref_primary_10_1186_s12934_022_01944_9 crossref_primary_10_3390_molecules28237909 |
Cites_doi | 10.1083/jcb.200903053 10.1007/s00005-016-0453-3 10.3892/ijo.2019.4774 10.1016/j.bbamcr.2018.02.004 10.1016/j.radonc.2009.07.004 10.1074/jbc.M111240200 10.7554/eLife.29854 10.1038/onc.2011.288 10.1016/j.semcdb.2019.05.015 10.1085/jgp.8.6.519 10.1016/j.cub.2011.03.030 10.1158/1541-7786.MCR-19-0856 10.1016/j.cmet.2012.01.004 10.1016/j.tcb.2015.10.010 10.1074/jbc.273.10.5419 10.1096/fj.201800985R 10.1038/ncomms11371 10.1038/s41418-018-0197-1 10.1083/jcb.200302028 10.3892/ijo_00000418 10.1096/fj.12-215798 10.3390/cells8101118 10.1146/annurev-cellbio-100617-062737 10.1038/nrm.2017.125 10.1172/JCI36843 10.1155/2014/960803 10.1016/j.gene.2016.01.029 10.1097/CMR.0000000000000046 10.1371/journal.pone.0033085 10.1242/jcs.076570 10.1002/jbt.22202 10.1111/acel.12606 10.1074/jbc.M117.815902 10.1091/mbc.E17-05-0278 10.1038/srep27351 10.1371/journal.pone.0044879 10.1242/jcs.062919 10.1242/jcs.141689 10.3390/molecules23081941 10.1091/mbc.E15-11-0756 10.1016/S0002-9440 10.1371/journal.pone.0043041 10.1128/mcb.23.15.5409-5420.2003 10.4161/cc.9.10.11601 10.1074/jbc.M111.304022 10.1016/s1535-6108 10.1186/s12943-016-0558-7 10.1111/jcmm.12030 10.1091/mbc.e07-12-1287 10.1002/ijc.24451 10.3892/ol.2019.10310 10.1242/jcs.01420 10.1074/jbc.M109.041152 10.1091/mbc.6.7.911 10.1096/fj.14-252320 10.1007/s00268-017-4065-9 10.1007/s12032-012-0396-4 10.1158/0008-5472.CAN-12-0448 10.1074/jbc.M005448200 10.18632/oncotarget.7583 10.1042/bj3380769 10.1242/jcs.102178 10.1083/jcb.201305142 10.1186/s12863-015-0231-y 10.1038/s41598-018-31323-7 10.1016/j.cell.2010.06.007 10.1083/jcb.200811059 10.18632/oncotarget.7675 10.1093/carcin/bgv081 10.1002/pros.20557 10.1016/j.cell.2012.06.042 10.1016/j.clinre.2015.06.017 10.1002/cphy.c160013 10.1038/ncb975 10.1016/j.biochi.2014.09.010 10.1016/j.chemphyslip.2017.11.010 10.1242/jcs.02894 10.1371/journal.pone.0133072 10.1097/00000478-200207000-00012 10.1080/15384101.2019.1618118 10.1016/j.ebiom.2019.01.058 10.1111/febs.12343 10.3390/biom9080314 10.2174/156652413804810745 10.1371/journal.pone.0005219 10.1007/s10585-011-9405-9 10.4161/cc.10.1.14243 10.1128/mcb.23.24.9389-9404.2003 10.1152/physrev.1997.77.3.759 10.1111/j.1600-0854.2009.01023.x 10.1083/jcb.200506103 10.1038/ncb1380 10.1016/j.devcel.2012.06.012 10.1038/s41556-018-0250-9 10.1016/j.bbapap.2019.02.005 10.1074/jbc.M212031200 10.1038/cr.2008.315 10.1083/jcb.201007152 10.1083/jcb.200603034 10.1007/978-3-319-26974-0_7 10.1083/jcb.201307055 10.7314/apjcp.2014.15.2.989 10.1101/cshperspect.a016758 10.1042/BST20190386 10.2174/1566524014666140128112827 10.2337/diabetes.54.3.679 10.1016/j.ejcb.2010.06.004 10.1007/s00109-013-1020-6 10.1007/s00018-017-2595-9 10.1016/j.cell.2007.11.042 10.1038/cddis.2017.469 10.1152/ajpcell.00470.2008 10.1016/j.canlet.2018.02.021 10.1039/b820820b 10.18632/oncotarget.2403 10.1186/s12951-020-0573-0 10.1016/s0962-8924 10.3892/ijo.2015.3091 10.1091/mbc.e08-09-0939 10.1042/BSR20180764 10.1016/j.canlet.2018.09.028 10.1242/jcs.084319 10.1074/jbc.M302301200 10.1074/jbc.M704069200 10.1038/nature21375 10.2217/nnm-2018-0094 10.1124/pr.54.3.431 10.1007/s10549-009-0594-8 10.1016/0014-5793 10.1126/science.280.5370.1763 10.1091/mbc.E11-09-0787 10.1152/ajpcell.00185.2008 10.1038/s41598-018-20161-2 10.1038/nrc.2016.89 10.1002/mc.22882 10.1038/onc.2016.168 10.1038/14067 10.4161/cc.8.23.10238 10.3892/ijo.2011.963 10.1128/MCB.01991-06 10.1186/s13045-015-0144-2 10.1016/j.semcancer.2014.01.005 10.1091/mbc.E13-03-0163 10.1038/nrd3802 10.18632/oncotarget.9738 10.1002/hep.23460 10.1091/mbc.e13-02-0095 10.1158/0008-5472.CAN-08-0343 10.4161/cc.11.6.19530 10.1016/j.canlet.2016.11.020 10.1126/science.1160809 10.1016/0300-9084 10.1016/j.cell.2011.02.013 10.1111/j.1600-0854.2009.00994.x 10.1242/jcs.086264 10.18632/oncotarget.22955 10.3892/ol.2018.8533 10.1111/j.1582-4934.2008.00331.x 10.1158/0008-5472.CAN-17-0604 10.1074/jbc.270.26.15693 10.1074/jbc.271.20.11930 10.1146/annurev.pharmtox.48.121506.124841 10.1038/nrc3915 10.1080/15548627.2015.1034411 10.1136/jclinpath-2017-204495 10.1074/jbc.M115.644336 10.4161/cam.26345 10.1152/ajpcell.2000.278.2.C423 10.7860/JCDR/2017/25303.9727 10.1038/ncomms7867 10.1038/onc.2013.192 10.1101/cshperspect.a016949 10.1111/pcmr.12085 10.1002/ijc.23142 10.1016/j.arcmed.2016.10.005 10.1016/j.cell.2010.12.031 10.1074/jbc.M002020200 10.1016/j.bbamcr.2012.04.013 10.1242/jcs.114.7.1397 10.1038/10100 10.1016/j.phymed.2010.08.006 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2020 Springer The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 Springer – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TO 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK 8FQ 8FV ABUWG AFKRA BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P M3G PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s10555-020-09890-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Canadian Business & Current Affairs Database Canadian Business & Current Affairs Database (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database CBCA Reference & Current Events ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central CBCA Complete (Alumni Edition) ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts CBCA Complete ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition CBCA Reference & Current Events ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Oncogenes and Growth Factors Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1573-7233 |
EndPage | 453 |
ExternalDocumentID | PMC7311495 A712965828 32458269 10_1007_s10555_020_09890_x |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -4W -5E -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67Z 6J9 6NX 78A 7X7 88E 8AO 8C1 8FI 8FJ 8FQ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJJC AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO ICQ IH2 IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LLZTM M1P M3G M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S37 S3B SAP SBY SCLPG SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7U Z82 Z87 Z8O Z8V Z91 ZGI ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY AEIIB PMFND 7TO 7XB 8FK H94 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c634t-89c3c8a958165498572dfab3ceed15c0ce2b0365489bba60ecdbbf58e86f092a3 |
IEDL.DBID | C6C |
ISSN | 0167-7659 1573-7233 |
IngestDate | Thu Aug 21 13:23:15 EDT 2025 Thu Sep 04 15:13:25 EDT 2025 Sat Aug 23 14:54:25 EDT 2025 Tue Jun 17 21:36:09 EDT 2025 Tue Jun 10 15:36:05 EDT 2025 Tue Jun 10 20:35:53 EDT 2025 Mon Jul 21 05:41:02 EDT 2025 Tue Jul 01 04:03:41 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 Fri Feb 21 02:41:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Caveolin-1 Metastasis Localization Organelles |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c634t-89c3c8a958165498572dfab3ceed15c0ce2b0365489bba60ecdbbf58e86f092a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s10555-020-09890-x |
PMID | 32458269 |
PQID | 2416038011 |
PQPubID | 36268 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311495 proquest_miscellaneous_2407313791 proquest_journals_2416038011 gale_infotracmisc_A712965828 gale_infotraccpiq_712965828 gale_infotracacademiconefile_A712965828 pubmed_primary_32458269 crossref_citationtrail_10_1007_s10555_020_09890_x crossref_primary_10_1007_s10555_020_09890_x springer_journals_10_1007_s10555_020_09890_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Netherlands – name: Dordrecht |
PublicationTitle | Cancer and metastasis reviews |
PublicationTitleAbbrev | Cancer Metastasis Rev |
PublicationTitleAlternate | Cancer Metastasis Rev |
PublicationYear | 2020 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Sengupta, A., Mateo-Lozano, S., Tirado, O. M., & Notario, V. (2011). Auto-stimulatory action of secreted caveolin-1 on the proliferation of Ewing’s sarcoma cells. International Journal of Oncology, 38(5), 1259–1265 https://doi.org/10.3892/ijo.2011.963. Geletu, M., Mohan, R., Arulanandam, R., Berger-Becvar, A., Nabi, I. R., Gunning, P. T., & Raptis, L. (2018). Reciprocal regulation of the cadherin-11/Stat3 axis by caveolin-1 in mouse fibroblasts and lung carcinoma cells. Biochimica Et Biophysica Acta. Molecular Cell Research, 1865(5), 794–802 https://doi.org/10.1016/j.bbamcr.2018.02.004. Bravo-Sagua, R., Parra, V., Ortiz-Sandoval, C., Navarro-Marquez, M., Rodríguez, A. E., Diaz-Valdivia, N., Sanhueza, C., Lopez-Crisosto, C., Tahbaz, N., Rothermel, B. A., Hill, J. A., Cifuentes, M., Simmen, T., Quest, A. F. G., & Lavandero, S. (2019). Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress. Cell Death and Differentiation, 26(7), 1195–1212 https://doi.org/10.1038/s41418-018-0197-1. Galbiati, F., Volonte, D., Brown, A. M., Weinstein, D. E., Ben-Ze’ev, A., Pestell, R. G., & Lisanti, M. P. (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. The Journal of Biological Chemistry, 275(30), 23368–23377 https://doi.org/10.1074/jbc.M002020200. Torrejón, B., Cristóbal, I., Rojo, F., & García-Foncillas, J. (2017). Caveolin-1 is markedly downregulated in patients with early-stage colorectal cancer. World Journal of Surgery, 41(10), 2625–2630 https://doi.org/10.1007/s00268-017-4065-9. Pfeiler, S., Thakur, M., Grünauer, P., Megens, R. T. A., Joshi, U., Coletti, R., Samara, V., Müller-Stoy, G., Ishikawa-Ankerhold, H., Stark, K., Klingl, A., Fröhlich, T., Arnold, G. J., Wörmann, S., Bruns, C. J., Algül, H., Weber, C., Massberg, S., & Engelmann, B. (2019). CD36-triggered cell invasion and persistent tissue colonization by tumor microvesicles during metastasis. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 33(2), 1860–1872 https://doi.org/10.1096/fj.201800985R. Bosch, M., Marí, M., Herms, A., Fernández, A., Fajardo, A., Kassan, A., Giralt, A., Colell, A., Balgoma, D., Barbero, E., González-Moreno, E., Matias, N., Tebar, F., Balsinde, J., Camps, M., Enrich, C., Gross, S. P., García-Ruiz, C., Pérez-Navarro, E., et al. (2011). Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Current Biology: CB, 21(8), 681–686 https://doi.org/10.1016/j.cub.2011.03.030. Li, J., Gu, D., Lee, S. S.-Y., Song, B., Bandyopadhyay, S., Chen, S., Konieczny, S. F., Ratliff, T. L., Liu, X., Xie, J., & Cheng, J.-X. (2016). Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene, 35(50), 6378–6388 https://doi.org/10.1038/onc.2016.168. Miotti, S., Tomassetti, A., Facetti, I., Sanna, E., Berno, V., & Canevari, S. (2005). Simultaneous expression of caveolin-1 and E-cadherin in ovarian carcinoma cells stabilizes adherens junctions through inhibition of Src-related kinases. The American Journal of Pathology, 167(5), 1411–1427 https://doi.org/10.1016/S0002-9440(10)61228-X. Nethe, M., Anthony, E. C., Fernandez-Borja, M., Dee, R., Geerts, D., Hensbergen, P. J., Deelder, A. M., Schmidt, G., & Hordijk, P. L. (2010). Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. Journal of Cell Science, 123(Pt 11), 1948–1958 https://doi.org/10.1242/jcs.062919. Le, P. U., Guay, G., Altschuler, Y., & Nabi, I. R. (2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. The Journal of Biological Chemistry, 277(5), 3371–3379 https://doi.org/10.1074/jbc.M111240200. Lobos-Gonzalez, L., Aguilar-Guzmán, L., Fernandez, J. G., Muñoz, N., Hossain, M., Bieneck, S., Silva, V., Burzio, V., Sviderskaya, E. V., Bennett, D. C., Leyton, L., & Quest, A. F. G. (2014). Caveolin-1 is a risk factor for postsurgery metastasis in preclinical melanoma models. Melanoma Research, 24(2), 108–119 https://doi.org/10.1097/CMR.0000000000000046. Campos, A., Salomon, C., Bustos, R., Díaz, J., Martínez, S., Silva, V., Reyes, C., Díaz-Valdivia, N., Varas-Godoy, M., Lobos-González, L., & Quest, A. F. (2018). Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine (London, England), 13(20), 2597–2609 https://doi.org/10.2217/nnm-2018-0094. Bastiani, M., Liu, L., Hill, M. M., Jedrychowski, M. P., Nixon, S. J., Lo, H. P., Abankwa, D., Luetterforst, R., Fernandez-Rojo, M., Breen, M. R., Gygi, S. P., Vinten, J., Walser, P. J., North, K. N., Hancock, J. F., Pilch, P. F., & Parton, R. G. (2009). MURC/cavin-4 and cavin family members form tissue-specific caveolar complexes. The Journal of Cell Biology, 185(7), 1259–1273 https://doi.org/10.1083/jcb.200903053. Pedersen, J. I., & Gustafsson, J. (1980). Conversion of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid into cholic acid by rat liver peroxisomes. FEBS Letters, 121(2), 345–348 https://doi.org/10.1016/0014-5793(80)80377-2. Indira Chandran, V., Månsson, A.-S., Barbachowska, M., Cerezo-Magaña, M., Nodin, B., Joshi, B., Koppada, N., Saad, O. M., Gluz, O., Isaksson, K., Borgquist, S., Jirström, K., Nabi, I. R., Jernström, H., & Belting, M. (2020). Hypoxia attenuates trastuzumab uptake and trastuzumab-emtansine (T-DM1) cytotoxicity through redistribution of phosphorylated caveolin-1. Molecular Cancer Research, 18(4), 644–656 https://doi.org/10.1158/1541-7786.MCR-19-0856. Capiod, T. (2016). Extracellular calcium has multiple targets to control cell proliferation. Advances in Experimental Medicine and Biology, 898, 133–156 https://doi.org/10.1007/978-3-319-26974-0_7. Joshi, B., Strugnell, S. S., Goetz, J. G., Kojic, L. D., Cox, M. E., Griffith, O. L., Chan, S. K., Jones, S. J., Leung, S.-P., Masoudi, H., Leung, S., Wiseman, S. M., & Nabi, I. R. (2008). Phosphorylated caveolin-1 regulates rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Research, 68(20), 8210–8220 https://doi.org/10.1158/0008-5472.CAN-08-0343. Gao, Y., Li, L., Li, T., Ma, L., Yuan, M., Sun, W., Cheng, H. L., Niu, L., Du, Z., Quan, Z., Fan, Y., Fan, J., Luo, C., & Wu, X. (2019). Simvastatin delays castration-resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin-1. International Journal of Oncology, 54(6), 2054–2068 https://doi.org/10.3892/ijo.2019.4774. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674 https://doi.org/10.1016/j.cell.2011.02.013. Byrne, D. P., Dart, C., & Rigden, D. J. (2012). Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS One, 7(9), e44879 https://doi.org/10.1371/journal.pone.0044879. Chatterjee, M., Ben-Josef, E., Robb, R., Vedaie, M., Seum, S., Thirumoorthy, K., Palanichamy, K., Harbrecht, M., Chakravarti, A., & Williams, T. M. (2017). Caveolae-mediated endocytosis is critical for albumin cellular uptake and response to albumin-bound chemotherapy. Cancer Research, 77(21), 5925–5937 https://doi.org/10.1158/0008-5472.CAN-17-0604. Sonveaux, P., Végran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O., & Dewhirst, M. W. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of Clinical Investigation, 118(12), 3930–3942 https://doi.org/10.1172/JCI36843. Petan, T., Jarc, E., & Jusović, M. (2018). Lipid droplets in cancer: guardians of fat in a stressful world. Molecules (Basel, Switzerland), 23(8) https://doi.org/10.3390/molecules23081941. Volonte, D., Vyas, A. R., Chen, C., Dacic, S., Stabile, L. P., Kurland, B. F., Abberbock, S. R., Burns, T. F., Herman, J. G., Di, Y. P., & Galbiati, F. (2018). Caveolin-1 promotes the tumor suppressor properties of oncogene-induced cellular senescence. The Journal of Biological Chemistry, 293(5), 1794–1809 https://doi.org/10.1074/jbc.M117.815902. He, M., Qin, H., Poon, T. C. W., Sze, S.-C., Ding, X., Co, N. N., Ngai, S.-M., Chan, T.-F., & Wong, N. (2015). Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis, 36(9), 1008–1018 https://doi.org/10.1093/carcin/bgv081. Morén, B., Shah, C., Howes, M. T., Schieber, N. L., McMahon, H. T., Parton, R. G., Daumke, O., & Lundmark, R. (2012). EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Molecular Biology of the Cell, 23(7), 1316–1329 https://doi.org/10.1091/mbc.E11-09-0787. Overmiller, A. M., McGuinn, K. P., Roberts, B. J., Cooper, F., Brennan-Crispi, D. M., Deguchi, T., Peltonen, S., Wahl, J. K., & Mahoney, M. G. (2016). c-Src/Cav1-dependent activation of the EGFR by Dsg2. Oncotarget, 7(25), 37536–37555. https://doi.org/10.18632/oncotarget.7675. Bonuccelli, G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., Witkiewicz, A. K., Vander Heiden, M. G., Migneco, G., Chiavarina, B., Frank, P. G., Capozza, F., Flomenberg, N., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2010). The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle (Georgetown, Texas), 9(10), 1960–1971 https://doi.org/10.4161/cc.9.10.11601. Lara, P., Palma-Florez, S., Salas-Huenuleo, E., Polakovicova, I., Guerrero, S., Lobos-Gonzalez, L., Campos, A., Muñoz, L., Jorquera-Cordero, C., Varas-Godoy, M., Cancino, J., Arias, E., Villegas, J., Cruz, L. J., Albericio, F., Araya, E., Corvalan, A. H., Quest, A. F. G., & Kogan, M. J. (2020). Gold nanoparti 9890_CR19 9890_CR142 9890_CR141 9890_CR140 9890_CR146 9890_CR145 9890_CR144 9890_CR143 9890_CR149 9890_CR148 9890_CR147 9890_CR20 9890_CR21 9890_CR26 9890_CR27 9890_CR28 9890_CR29 9890_CR22 9890_CR23 9890_CR24 9890_CR25 9890_CR153 9890_CR152 9890_CR151 9890_CR150 9890_CR157 9890_CR156 9890_CR155 9890_CR154 9890_CR159 9890_CR158 9890_CR30 9890_CR31 9890_CR32 9890_CR37 9890_CR38 9890_CR39 9890_CR33 9890_CR34 9890_CR35 9890_CR36 9890_CR160 9890_CR164 9890_CR163 9890_CR162 9890_CR161 9890_CR168 9890_CR167 9890_CR166 9890_CR165 9890_CR169 9890_CR40 9890_CR41 9890_CR42 9890_CR43 9890_CR48 9890_CR49 9890_CR44 9890_CR45 9890_CR46 9890_CR47 9890_CR171 9890_CR170 9890_CR175 9890_CR174 9890_CR173 9890_CR172 9890_CR179 9890_CR178 9890_CR177 9890_CR176 9890_CR51 9890_CR52 9890_CR53 9890_CR54 9890_CR50 9890_CR59 9890_CR55 9890_CR56 9890_CR57 9890_CR58 9890_CR182 9890_CR181 9890_CR180 9890_CR186 9890_CR185 9890_CR184 9890_CR183 9890_CR102 9890_CR101 9890_CR100 9890_CR187 9890_CR106 9890_CR105 9890_CR104 9890_CR103 9890_CR62 9890_CR63 9890_CR64 9890_CR65 9890_CR60 9890_CR61 9890_CR66 9890_CR67 9890_CR68 9890_CR69 9890_CR113 9890_CR112 9890_CR111 9890_CR110 9890_CR117 9890_CR116 9890_CR115 9890_CR114 9890_CR73 9890_CR74 9890_CR109 9890_CR75 9890_CR108 9890_CR76 9890_CR107 9890_CR70 9890_CR71 9890_CR72 9890_CR77 9890_CR78 9890_CR79 9890_CR120 9890_CR4 9890_CR124 9890_CR5 9890_CR123 9890_CR6 9890_CR122 9890_CR7 9890_CR121 9890_CR128 9890_CR1 9890_CR127 9890_CR2 9890_CR126 9890_CR3 9890_CR125 9890_CR84 9890_CR85 9890_CR86 9890_CR119 9890_CR87 9890_CR118 9890_CR80 9890_CR81 9890_CR82 9890_CR83 9890_CR88 9890_CR89 9890_CR131 9890_CR130 9890_CR135 9890_CR134 9890_CR133 9890_CR90 9890_CR132 9890_CR139 9890_CR138 9890_CR137 9890_CR136 9890_CR95 9890_CR96 9890_CR97 9890_CR10 9890_CR98 9890_CR129 9890_CR8 9890_CR91 9890_CR9 9890_CR92 9890_CR93 9890_CR94 9890_CR15 9890_CR16 9890_CR17 9890_CR18 9890_CR11 9890_CR99 9890_CR12 9890_CR13 9890_CR14 |
References_xml | – reference: Kojic, L. D., Joshi, B., Lajoie, P., Le, P. U., Cox, M. E., Turbin, D. A., Wiseman, S. M., & Nabi, I. R. (2007). Raft-dependent endocytosis of autocrine motility factor is phosphatidylinositol 3-kinase-dependent in breast carcinoma cells. The Journal of Biological Chemistry, 282(40), 29305–29313 https://doi.org/10.1074/jbc.M704069200. – reference: Bender, F. C., Reymond, M. A., Bron, C., & Quest, A. F. (2000). Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Research, 60(20), 5870–5878. – reference: Joshi, B., Strugnell, S. S., Goetz, J. G., Kojic, L. D., Cox, M. E., Griffith, O. L., Chan, S. K., Jones, S. J., Leung, S.-P., Masoudi, H., Leung, S., Wiseman, S. M., & Nabi, I. R. (2008). Phosphorylated caveolin-1 regulates rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Research, 68(20), 8210–8220 https://doi.org/10.1158/0008-5472.CAN-08-0343. – reference: Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabrò, L., Spada, M., Perdicchio, M., Marino, M. L., Federici, C., Iessi, E., Brambilla, D., Venturi, G., Lozupone, F., Santinami, M., Huber, V., Maio, M., Rivoltini, L., & Fais, S. (2009). High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One, 4(4), e5219 https://doi.org/10.1371/journal.pone.0005219. – reference: Tagawa, A., Mezzacasa, A., Hayer, A., Longatti, A., Pelkmans, L., & Helenius, A. (2005). Assembly and trafficking of caveolar domains in the cell. The Journal of Cell Biology, 170(5), 769–779 https://doi.org/10.1083/jcb.200506103. – reference: Núñez-Wehinger, S., Ortiz, R. J., Díaz, N., Díaz, J., Lobos-González, L., & Quest, A. F. G. (2014). Caveolin-1 in cell migration and metastasis. Current Molecular Medicine, 14(2), 255–274 https://doi.org/10.2174/1566524014666140128112827. – reference: Campos, A., Salomon, C., Bustos, R., Díaz, J., Martínez, S., Silva, V., Reyes, C., Díaz-Valdivia, N., Varas-Godoy, M., Lobos-González, L., & Quest, A. F. (2018). Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine (London, England), 13(20), 2597–2609 https://doi.org/10.2217/nnm-2018-0094. – reference: Ortiz, R., Díaz, J., Díaz, N., Lobos-Gonzalez, L., Cárdenas, A., Contreras, P., Díaz, M. I., Otte, E., Cooper-White, J., Torres, V., Leyton, L., & Quest, A. F. G. (2016). Extracellular matrix-specific caveolin-1 phosphorylation on tyrosine 14 is linked to augmented melanoma metastasis but not tumorigenesis. Oncotarget, 7(26), 40571–40593. https://doi.org/10.18632/oncotarget.9738. – reference: Shi, Y., Tan, S.-H., Ng, S., Zhou, J., Yang, N.-D., Koo, G.-B., McMahon, K.-A., Parton, R. G., Hill, M. M., Del Pozo, M. A., Kim, Y.-S., & Shen, H.-M. (2015). Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy, 11(5), 769–784 https://doi.org/10.1080/15548627.2015.1034411. – reference: Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674 https://doi.org/10.1016/j.cell.2011.02.013. – reference: Li, X., & Gould, S. J. (2003). The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. The Journal of Biological Chemistry, 278(19), 17012–17020 https://doi.org/10.1074/jbc.M212031200. – reference: Lara, P., Palma-Florez, S., Salas-Huenuleo, E., Polakovicova, I., Guerrero, S., Lobos-Gonzalez, L., Campos, A., Muñoz, L., Jorquera-Cordero, C., Varas-Godoy, M., Cancino, J., Arias, E., Villegas, J., Cruz, L. J., Albericio, F., Araya, E., Corvalan, A. H., Quest, A. F. G., & Kogan, M. J. (2020). Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors. Journal of Nanobiotechnology, 18(1), 20 https://doi.org/10.1186/s12951-020-0573-0. – reference: Torres, V. A., Tapia, J. C., Rodríguez, D. A., Párraga, M., Lisboa, P., Montoya, M., Leyton, L., & Quest, A. F. G. (2006). Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. Journal of Cell Science, 119(Pt 9), 1812–1823 https://doi.org/10.1242/jcs.02894. – reference: Witkiewicz, A. K., Whitaker-Menezes, D., Dasgupta, A., Philp, N. J., Lin, Z., Gandara, R., Sneddon, S., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2012). Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle (Georgetown, Texas), 11(6), 1108–1117 https://doi.org/10.4161/cc.11.6.19530. – reference: Pedersen, J. I., & Gustafsson, J. (1980). Conversion of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid into cholic acid by rat liver peroxisomes. FEBS Letters, 121(2), 345–348 https://doi.org/10.1016/0014-5793(80)80377-2. – reference: Parton, R. G. (2018). Caveolae: structure, function, and relationship to disease. Annual Review of Cell and Developmental Biology, 34, 111–136 https://doi.org/10.1146/annurev-cellbio-100617-062737. – reference: Meng, F., Saxena, S., Liu, Y., Joshi, B., Wong, T. H., Shankar, J., Foster, L. J., Bernatchez, P., & Nabi, I. R. (2017). The phospho-caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration. Molecular Biology of the Cell, 28(16), 2190–2201 https://doi.org/10.1091/mbc.E17-05-0278. – reference: Mayor, S., Parton, R. G., & Donaldson, J. G. (2014). Clathrin-independent pathways of endocytoss. Cold Spring Harbor Perspectives in Biology, 6(6) https://doi.org/10.1101/cshperspect.a016758. – reference: Choudhury, A., Marks, D. L., Proctor, K. M., Gould, G. W., & Pagano, R. E. (2006). Regulation of caveolar endocytosis by syntaxin 6-dependent delivery of membrane components to the cell surface. Nature Cell Biology, 8(4), 317–328 https://doi.org/10.1038/ncb1380. – reference: Díaz, J., Mendoza, P., Ortiz, R., Díaz, N., Leyton, L., Stupack, D., Quest, A. F. G., & Torres, V. A. (2014). Rab5 is required in metastatic cancer cells for caveolin-1-enhanced Rac1 activation, migration and invasion. Journal of Cell Science, 127(Pt 11), 2401–2406 https://doi.org/10.1242/jcs.141689. – reference: Gaus, K., Le Lay, S., Balasubramanian, N., & Schwartz, M. A. (2006). Integrin-mediated adhesion regulates membrane order. Journal of Cell Biology, 174(5), 725–734 https://doi.org/10.1083/jcb.200603034. – reference: Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. The Journal of General Physiology, 8(6), 519–530 https://doi.org/10.1085/jgp.8.6.519. – reference: Li, M., Yang, X., Zhang, J., Shi, H., Hang, Q., Huang, X., Liu, G., Zhu, J., He, S., & Wang, H. (2013). Effects of EHD2 interference on migration of esophageal squamous cell carcinoma. Medical Oncology (Northwood, London, England), 30(1), 396 https://doi.org/10.1007/s12032-012-0396-4. – reference: Shim, S. H., Sur, S., Steele, R., Albert, C. J., Huang, C., Ford, D. A., & Ray, R. B. (2018). Disrupting cholesterol esterification by bitter melon suppresses triple-negative breast cancer cell growth. Molecular Carcinogenesis, 57(11), 1599–1607 https://doi.org/10.1002/mc.22882. – reference: Boscher, C., & Nabi, I. R. (2013). Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Molecular Biology of the Cell, 24(13), 2134–2145 https://doi.org/10.1091/mbc.e13-02-0095. – reference: Kassan, A., Herms, A., Fernández-Vidal, A., Bosch, M., Schieber, N. L., Reddy, B. J. N., Fajardo, A., Gelabert-Baldrich, M., Tebar, F., Enrich, C., Gross, S. P., Parton, R. G., & Pol, A. (2013). Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. The Journal of Cell Biology, 203(6), 985–1001 https://doi.org/10.1083/jcb.201305142. – reference: Kahlert, C., & Kalluri, R. (2013). Exosomes in tumor microenvironment influence cancer progression and metastasis. Journal of Molecular Medicine (Berlin, Germany), 91(4), 431–437 https://doi.org/10.1007/s00109-013-1020-6. – reference: Ingelmo-Torres, M., Gonza’lez-Moreno, E., Kassan, A., Hanzal-Bayer, M., Tebar, F., Herms, A., Grewal, T., Hancock, J. F., Enrich, C., Bosch, M., Gross, S. P., Parton, R. G., & Pol, A. (2009). Hydrophobic and basic domains target proteins to lipid droplets. Traffic, 10(12), 1785–1801 https://doi.org/10.1111/j.1600-0854.2009.00994.x. – reference: Petan, T., Jarc, E., & Jusović, M. (2018). Lipid droplets in cancer: guardians of fat in a stressful world. Molecules (Basel, Switzerland), 23(8) https://doi.org/10.3390/molecules23081941. – reference: Rimessi, A., Pedriali, G., Vezzani, B., Tarocco, A., Marchi, S., Wieckowski, M. R., Giorgi, C., & Pinton, P. (2020). Interorganellar calcium signaling in the regulation of cell metabolism: a cancer perspective. Seminars in Cell & Developmental Biology, 98, 167–180 https://doi.org/10.1016/j.semcdb.2019.05.015. – reference: Walser, P. J., Ariotti, N., Howes, M., Ferguson, C., Webb, R., Schwudke, D., Leneva, N., Cho, K.-J., Cooper, L., Rae, J., Floetenmeyer, M., Oorschot, V. M. J., Skoglund, U., Simons, K., Hancock, J. F., & Parton, R. G. (2012). Constitutive formation of caveolae in a bacterium. Cell, 150(4), 752–763 https://doi.org/10.1016/j.cell.2012.06.042. – reference: Li, Y., Che, Q., Bian, Y., Zhou, Q., Jiang, F., Tong, H., Ke, J., Wang, K., & Wan, X.-P. (2015). Autocrine motility factor promotes epithelial-mesenchymal transition in endometrial cancer via MAPK signaling pathway. International Journal of Oncology, 47(3), 1017–1024 https://doi.org/10.3892/ijo.2015.3091. – reference: Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., De Milito, A., Coscia, C., Iessi, E., Logozzi, M., Molinari, A., Colone, M., Tatti, M., Sargiacomo, M., & Fais, S. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. The Journal of Biological Chemistry, 284(49), 34211–34222 https://doi.org/10.1074/jbc.M109.041152. – reference: Monier, S., Parton, R. G., Vogel, F., Behlke, J., Henske, A., & Kurzchalia, T. V. (1995). VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Molecular Biology of the Cell, 6(7), 911–927 https://doi.org/10.1091/mbc.6.7.911. – reference: Zoeller, R. A., Lake, A. C., Nagan, N., Gaposchkin, D. P., Legner, M. A., & Lieberthal, W. (1999). Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. The Biochemical Journal, 338(Pt 3), 769–776. – reference: Raja, S., Shah, S., Tariq, A., Bibi, N., Sughra, K., Yousuf, A., Khawaja, A., Nawaz, M., Mehmood, A., Khan, M., & Hussain, A. (2019). Caveolin-1 and dynamin-2 overexpression is associated with the progression of bladder cancer. Oncology Letters. https://doi.org/10.3892/ol.2019.10310. – reference: Okamoto, T., Schlegel, A., Scherer, P. E., & Lisanti, M. P. (1998). Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. The Journal of Biological Chemistry, 273(10), 5419–5422 https://doi.org/10.1074/jbc.273.10.5419. – reference: Sonveaux, P., Végran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O., & Dewhirst, M. W. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of Clinical Investigation, 118(12), 3930–3942 https://doi.org/10.1172/JCI36843. – reference: Anand, S., Samuel, M., Kumar, S., & Mathivanan, S. (2019). Ticket to a bubble ride: cargo sorting into exosomes and extracellular vesicles. Biochimica et Biophysica Acta. Proteins and Proteomics, 1867(12), 140203 https://doi.org/10.1016/j.bbapap.2019.02.005. – reference: Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4(6), 499–515 https://doi.org/10.1016/s1535-6108(03)00304-0. – reference: Torrejón, B., Cristóbal, I., Rojo, F., & García-Foncillas, J. (2017). Caveolin-1 is markedly downregulated in patients with early-stage colorectal cancer. World Journal of Surgery, 41(10), 2625–2630 https://doi.org/10.1007/s00268-017-4065-9. – reference: Czernek, L., & Düchler, M. (2017). Functions of cancer-derived extracellular vesicles in immunosuppression. Archivum Immunologiae et Therapiae Experimentalis, 65(4), 311–323 https://doi.org/10.1007/s00005-016-0453-3. – reference: Bastiani, M., Liu, L., Hill, M. M., Jedrychowski, M. P., Nixon, S. J., Lo, H. P., Abankwa, D., Luetterforst, R., Fernandez-Rojo, M., Breen, M. R., Gygi, S. P., Vinten, J., Walser, P. J., North, K. N., Hancock, J. F., Pilch, P. F., & Parton, R. G. (2009). MURC/cavin-4 and cavin family members form tissue-specific caveolar complexes. The Journal of Cell Biology, 185(7), 1259–1273 https://doi.org/10.1083/jcb.200903053. – reference: Volonte, D., Vyas, A. R., Chen, C., Dacic, S., Stabile, L. P., Kurland, B. F., Abberbock, S. R., Burns, T. F., Herman, J. G., Di, Y. P., & Galbiati, F. (2018). Caveolin-1 promotes the tumor suppressor properties of oncogene-induced cellular senescence. The Journal of Biological Chemistry, 293(5), 1794–1809 https://doi.org/10.1074/jbc.M117.815902. – reference: Seemann, E., Sun, M., Krueger, S., Tröger, J., Hou, W., Haag, N., Schüler, S., Westermann, M., Huebner, C. A., Romeike, B., Kessels, M. M., & Qualmann, B. (2017). Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. eLife, 6 https://doi.org/10.7554/eLife.29854. – reference: Gottlieb-Abraham, E., Shvartsman, D. E., Donaldson, J. C., Ehrlich, M., Gutman, O., Martin, G. S., & Henis, Y. I. (2013). Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Molecular Biology of the Cell, 24(24), 3881–3895 https://doi.org/10.1091/mbc.E13-03-0163. – reference: Mathieu, M., Martin-Jaular, L., Lavieu, G., & Théry, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 21(1), 9–17 https://doi.org/10.1038/s41556-018-0250-9. – reference: Chatterjee, M., Ben-Josef, E., Robb, R., Vedaie, M., Seum, S., Thirumoorthy, K., Palanichamy, K., Harbrecht, M., Chakravarti, A., & Williams, T. M. (2017). Caveolae-mediated endocytosis is critical for albumin cellular uptake and response to albumin-bound chemotherapy. Cancer Research, 77(21), 5925–5937 https://doi.org/10.1158/0008-5472.CAN-17-0604. – reference: Antalis, C. J., Uchida, A., Buhman, K. K., & Siddiqui, R. A. (2011). Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clinical & Experimental Metastasis, 28(8), 733–741 https://doi.org/10.1007/s10585-011-9405-9. – reference: Han, T., Kang, D., Ji, D., Wang, X., Zhan, W., Fu, M., Xin, H.-B., & Wang, J.-B. (2013). How does cancer cell metabolism affect tumor migration and invasion? Cell Adhesion & Migration, 7(5), 395–403 https://doi.org/10.4161/cam.26345. – reference: Okada, S., Raja, S. A., Okerblom, J., Boddu, A., Horikawa, Y., Ray, S., Okada, H., Kawamura, I., Murofushi, Y., Murray, F., & Patel, H. H. (2019). Deletion of caveolin scaffolding domain alters cancer cell migration. Cell Cycle (Georgetown, Texas), 18(11), 1268–1280 https://doi.org/10.1080/15384101.2019.1618118. – reference: Liu, S., Xiong, X., Zhao, X., Yang, X., & Wang, H. (2015). F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases. Journal of Hematology & Oncology, 8, 47://doi.org/10.1186/s13045-015-0144-2. – reference: Raturi, A., & Simmen, T. (2013). Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochimica et Biophysica Acta, 1833(1), 213–224 https://doi.org/10.1016/j.bbamcr.2012.04.013. – reference: Rizzuto, R. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 280(5370), 1763–1766 https://doi.org/10.1126/science.280.5370.1763. – reference: Huertas-Martínez, J., Rello-Varona, S., Herrero-Martín, D., Barrau, I., García-Monclús, S., Sáinz-Jaspeado, M., Lagares-Tena, L., Núñez-Álvarez, Y., Mateo-Lozano, S., Mora, J., Roma, J., Toran, N., Moran, S., López-Alemany, R., Gallego, S., Esteller, M., Peinado, M. A., Del Muro, X. G., & Tirado, O. M. (2014). Caveolin-1 is down-regulated in alveolar rhabdomyosarcomas and negatively regulates tumor growth. Oncotarget, 5(20), 9744–9755. https://doi.org/10.18632/oncotarget.2403. – reference: van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews. Molecular Cell Biology, 19(4), 213–228 https://doi.org/10.1038/nrm.2017.125. – reference: Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2015). Caveolae and signalling in cancer. Nature Reviews. Cancer, 15(4), 225–237 https://doi.org/10.1038/nrc3915. – reference: Chen, Y.-G. (2009). Endocytic regulation of TGF-beta signaling. Cell Research, 19(1), 58–70 https://doi.org/10.1038/cr.2008.315. – reference: Bravo-Sagua, R., Parra, V., Ortiz-Sandoval, C., Navarro-Marquez, M., Rodríguez, A. E., Diaz-Valdivia, N., Sanhueza, C., Lopez-Crisosto, C., Tahbaz, N., Rothermel, B. A., Hill, J. A., Cifuentes, M., Simmen, T., Quest, A. F. G., & Lavandero, S. (2019). Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress. Cell Death and Differentiation, 26(7), 1195–1212 https://doi.org/10.1038/s41418-018-0197-1. – reference: Yu, D.-M., Jung, S. H., An, H.-T., Lee, S., Hong, J., Park, J. S., Lee, H., Lee, H., Bahn, M.-S., Lee, H. C., Han, N.-K., Ko, J., Lee, J.-S., & Ko, Y.-G. (2017). Caveolin-1 deficiency induces premature senescence with mitochondrial dysfunction. Aging Cell, 16(4), 773–784 https://doi.org/10.1111/acel.12606. – reference: Otera, H., Wang, C., Cleland, M. M., Setoguchi, K., Yokota, S., Youle, R. J., & Mihara, K. (2010). Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. The Journal of Cell Biology, 191(6), 1141–1158 https://doi.org/10.1083/jcb.201007152. – reference: Quest, A. F. G., Gutierrez-Pajares, J. L., & Torres, V. A. (2008). Caveolin-1: an ambiguous partner in cell signalling and cancer. Journal of Cellular and Molecular Medicine, 12(4), 1130–1150 https://doi.org/10.1111/j.1582-4934.2008.00331.x. – reference: Zhou, M., Chinnaiyan, A. M., Kleer, C. G., Lucas, P. C., & Rubin, M. A. (2002). Alpha-methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. The American Journal of Surgical Pathology, 26(7), 926–931 https://doi.org/10.1097/00000478-200207000-00012. – reference: Hayer, A., Stoeber, M., Bissig, C., & Helenius, A. (2010). Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic, 11(3), 361–382 https://doi.org/10.1111/j.1600-0854.2009.01023.x. – reference: Fridolfsson, H. N., Roth, D. M., Insel, P. A., & Patel, H. H. (2014). Regulation of intracellular signaling and function by caveolin. The FASEB Journal, 28(9), 3823–3831 https://doi.org/10.1096/fj.14-252320. – reference: Collins, B. M., Davis, M. J., Hancock, J. F., & Parton, R. G. (2012). Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Developmental Cell, 23(1), 11–20 https://doi.org/10.1016/j.devcel.2012.06.012. – reference: Shajahan, A. N., Dobbin, Z. C., Hickman, F. E., Dakshanamurthy, S., & Clarke, R. (2012). Tyrosine-phosphorylated caveolin-1 (Tyr-14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal kinase (JNK). The Journal of Biological Chemistry, 287(21), 17682–17692 https://doi.org/10.1074/jbc.M111.304022. – reference: Torres, V. A., Tapia, J. C., Rodriguez, D. A., Lladser, A., Arredondo, C., Leyton, L., & Quest, A. F. G. (2007). E-cadherin is required for caveolin-1-mediated down-regulation of the inhibitor of apoptosis protein survivin via reduced beta-catenin-Tcf/Lef-dependent transcription. Molecular and Cellular Biology, 27(21), 7703–7717 https://doi.org/10.1128/MCB.01991-06. – reference: Meng, H., Tian, L., Zhou, J., Li, Z., Jiao, X., Li, W. W., Plomann, M., Xu, Z., Lisanti, M. P., Wang, C., & Pestell, R. G. (2011). PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b. Cell Cycle (Georgetown, Texas), 10(1), 73–81 https://doi.org/10.4161/cc.10.1.14243. – reference: Guruswamy, S., & Rao, C. V. (2009). Synergistic effects of lovastatin and celecoxib on caveolin-1 and its down-stream signaling molecules: implications for colon cancer prevention. International Journal of Oncology, 35(5), 1037–1043 https://doi.org/10.3892/ijo_00000418. – reference: Razani, B., Woodman, S. E., & Lisanti, M. P. (2002). Caveolae: from cell biology to animal physiology. Pharmacological Reviews, 54(3), 431–467 https://doi.org/10.1124/pr.54.3.431. – reference: Tahir, S. A., Yang, G., Ebara, S., Timme, T. L., Satoh, T., Li, L., Goltsov, A., Ittmann, M., Morrisett, J. D., & Thompson, T. C. (2001). Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Research, 61(10), 3882–3885. – reference: He, M., Qin, H., Poon, T. C. W., Sze, S.-C., Ding, X., Co, N. N., Ngai, S.-M., Chan, T.-F., & Wong, N. (2015). Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis, 36(9), 1008–1018 https://doi.org/10.1093/carcin/bgv081. – reference: Quest, A. F. G., Lobos-González, L., Nuñez, S., Sanhueza, C., Fernández, J.-G., Aguirre, A., Rodríguez, D., Leyton, L., & Torres, V. (2013). The caveolin-1 connection to cell death and survival. Current Molecular Medicine, 13(2), 266–281 https://doi.org/10.2174/156652413804810745. – reference: Cai, M., Sun, X., Wang, W., Lian, Z., Wu, P., Han, S., Chen, H., & Zhang, P. (2018). Disruption of peroxisome function leads to metabolic stress, mTOR inhibition, and lethality in liver cancer cells. Cancer Letters, 421, 82–93 https://doi.org/10.1016/j.canlet.2018.02.021. – reference: Nwosu, Z. C., Ebert, M. P., Dooley, S., & Meyer, C. (2016). Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Molecular Cancer, 15(1), 71 https://doi.org/10.1186/s12943-016-0558-7. – reference: Hill, M. M., Daud, N. H., Aung, C. S., Loo, D., Martin, S., Murphy, S., Black, D. M., Barry, R., Simpson, F., Liu, L., Pilch, P. F., Hancock, J. F., Parat, M.-O., & Parton, R. G. (2012). Co-regulation of cell polarization and migration by caveolar proteins PTRF/cavin-1 and caveolin-1. PLoS One, 7(8), e43041 https://doi.org/10.1371/journal.pone.0043041. – reference: Schlegel, A., Arvan, P., & Lisanti, M. P. (2001). Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. The Journal of Biological Chemistry, 276(6), 4398–4408 https://doi.org/10.1074/jbc.M005448200. – reference: Karam, J. A., Lotan, Y., Roehrborn, C. G., Ashfaq, R., Karakiewicz, P. I., & Shariat, S. F. (2007). Caveolin-1 overexpression is associated with aggressive prostate cancer recurrence. The Prostate, 67(6), 614–622 https://doi.org/10.1002/pros.20557. – reference: Felicetti, F., Parolini, I., Bottero, L., Fecchi, K., Errico, M. C., Raggi, C., Biffoni, M., Spadaro, F., Lisanti, M. P., Sargiacomo, M., & Carè, A. (2009). Caveolin-1 tumor-promoting role in human melanoma. International Journal of Cancer, 125(7), 1514–1522 https://doi.org/10.1002/ijc.24451. – reference: Sengupta, A., Mateo-Lozano, S., Tirado, O. M., & Notario, V. (2011). Auto-stimulatory action of secreted caveolin-1 on the proliferation of Ewing’s sarcoma cells. International Journal of Oncology, 38(5), 1259–1265 https://doi.org/10.3892/ijo.2011.963. – reference: Hill, M. M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S. J., Walser, P., Abankwa, D., Oorschot, V. M. J., Martin, S., Hancock, J. F., & Parton, R. G. (2008). PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 132(1), 113–124 https://doi.org/10.1016/j.cell.2007.11.042. – reference: Wang, B., Xu, X., Yang, Z., Zhang, L., Liu, Y., Ma, A., Xu, G., Tang, M., Jing, T., Wu, L., & Liu, Y. (2019). POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1. EBioMedicine, 41, 320–332 https://doi.org/10.1016/j.ebiom.2019.01.058. – reference: Ariotti, N., Fernández-Rojo, M. A., Zhou, Y., Hill, M. M., Rodkey, T. L., Inder, K. L., Tanner, L. B., Wenk, M. R., Hancock, J. F., & Parton, R. G. (2014). Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. The Journal of Cell Biology, 204(5), 777–792 https://doi.org/10.1083/jcb.201307055. – reference: Rodriguez, D. A., Tapia, J. C., Fernandez, J. G., Torres, V. A., Muñoz, N., Galleguillos, D., Leyton, L., & Quest, A. F. G. (2009). Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Molecular Biology of the Cell, 20(8), 2297–2310 https://doi.org/10.1091/mbc.e08-09-0939. – reference: Wang, K., Zhu, X., Mei, D., & Ding, Z. (2018). Caveolin-1 contributes to anoikis resistance in human gastric cancer SGC-7901 cells via regulating Src-dependent EGFR-ITGB1 signaling. Journal of Biochemical and Molecular Toxicology, 32(10), e22202 https://doi.org/10.1002/jbt.22202. – reference: Campos, A., Burgos-Ravanal, R., González, M. F., Huilcaman, R., Lobos González, L., & Quest, A. F. G. (2019). Cell intrinsic and extrinsic mechanisms of caveolin-1-enhanced metastasis. Biomolecules, 9(8) https://doi.org/10.3390/biom9080314. – reference: Cohen, A. W., Schubert, W., Brasaemle, D. L., Scherer, P. E., & Lisanti, M. P. (2005). Caveolin-1 expression is essential for proper nonshivering thermogenesis in brown adipose tissue. Diabetes, 54(3), 679–686 https://doi.org/10.2337/diabetes.54.3.679. – reference: Shukla, N., Adhya, A. K., & Rath, J. (2017). Expression of alpha-methylacyl-coenzyme A racemase (AMACR) in colorectal neoplasia. Journal of Clinical and Diagnostic Research: JCDR, 11(4), EC35–EC38 https://doi.org/10.7860/JCDR/2017/25303.9727. – reference: Bosch, M., Marí, M., Herms, A., Fernández, A., Fajardo, A., Kassan, A., Giralt, A., Colell, A., Balgoma, D., Barbero, E., González-Moreno, E., Matias, N., Tebar, F., Balsinde, J., Camps, M., Enrich, C., Gross, S. P., García-Ruiz, C., Pérez-Navarro, E., et al. (2011). Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Current Biology: CB, 21(8), 681–686 https://doi.org/10.1016/j.cub.2011.03.030. – reference: Ha, T.-K., Her, N.-G., Lee, M.-G., Ryu, B.-K., Lee, J.-H., Han, J., Jeong, S.-I., Kang, M.-J., Kim, N.-H., Kim, H.-J., & Chi, S.-G. (2012). Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Research, 72(16), 4097–4109 https://doi.org/10.1158/0008-5472.CAN-12-0448. – reference: Rubinsztein, D. C., Codogno, P., & Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews. Drug Discovery, 11(9), 709–730 https://doi.org/10.1038/nrd3802. – reference: Liu, W.-R., Jin, L., Tian, M.-X., Jiang, X.-F., Yang, L.-X., Ding, Z.-B., Shen, Y.-H., Peng, Y.-F., Gao, D.-M., Zhou, J., Qiu, S.-J., Dai, Z., Fan, J., & Shi, Y.-H. (2016). Caveolin-1 promotes tumor growth and metastasis via autophagy inhibition in hepatocellular carcinoma. Clinics and Research in Hepatology and Gastroenterology, 40(2), 169–178 https://doi.org/10.1016/j.clinre.2015.06.017. – reference: Guo, Y.-L., Zhu, T.-N., Guo, W., Dong, Z.-M., Zhou, Z., Cui, Y.-J., & Zhao, R.-J. (2016). Aberrant CpG island shore region methylation of CAV1 is associated with tumor progression and poor prognosis in gastric cardia adenocarcinoma. Archives of Medical Research, 47(6), 460–470 https://doi.org/10.1016/j.arcmed.2016.10.005. – reference: Le, P. U., Guay, G., Altschuler, Y., & Nabi, I. R. (2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. The Journal of Biological Chemistry, 277(5), 3371–3379 https://doi.org/10.1074/jbc.M111240200. – reference: Tsutsumi, S., Hogan, V., Nabi, I. R., & Raz, A. (2003). Overexpression of the autocrine motility factor/phosphoglucose isomerase induces transformation and survival of NIH-3T3 fibroblasts. Cancer Research, 63(1), 242–249. – reference: Aung, C. S., Hill, M. M., Bastiani, M., Parton, R. G., & Parat, M.-O. (2011). PTRF–cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. European Journal of Cell Biology, 90(2–3), 136–142 https://doi.org/10.1016/j.ejcb.2010.06.004. – reference: Lajoie, P., Goetz, J. G., Dennis, J. W., & Nabi, I. R. (2009). Lattices, rafts, and scaffolds: Domain regulation of receptor signaling at the plasma membrane. The Journal of Cell Biology, 185(3), 381–385 https://doi.org/10.1083/jcb.200811059. – reference: Morén, B., Shah, C., Howes, M. T., Schieber, N. L., McMahon, H. T., Parton, R. G., Daumke, O., & Lundmark, R. (2012). EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Molecular Biology of the Cell, 23(7), 1316–1329 https://doi.org/10.1091/mbc.E11-09-0787. – reference: Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., Casimiro, M. C., Wang, C., Fortina, P., Addya, S., Pestell, R. G., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2009). The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle (Georgetown, Texas), 8(23), 3984–4001 https://doi.org/10.4161/cc.8.23.10238. – reference: Nabi, I. R., & Le, P. U. (2003). Caveolae/raft-dependent endocytosis. The Journal of Cell Biology, 161(4), 673–677 https://doi.org/10.1083/jcb.200302028. – reference: Geletu, M., Mohan, R., Arulanandam, R., Berger-Becvar, A., Nabi, I. R., Gunning, P. T., & Raptis, L. (2018). Reciprocal regulation of the cadherin-11/Stat3 axis by caveolin-1 in mouse fibroblasts and lung carcinoma cells. Biochimica Et Biophysica Acta. Molecular Cell Research, 1865(5), 794–802 https://doi.org/10.1016/j.bbamcr.2018.02.004. – reference: Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J. E., Hansen, S. H., Nishimoto, I., & Lisanti, M. P. (1995). Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. The Journal of Biological Chemistry, 270(26), 15693–15701 https://doi.org/10.1074/jbc.270.26.15693. – reference: Mukherjee, S., Ghosh, R. N., & Maxfield, F. R. (1997). Endocytosis. Physiological Reviews, 77(3), 759–803 https://doi.org/10.1152/physrev.1997.77.3.759. – reference: Woudenberg, J., Rembacz, K. P., van den Heuvel, F. A. J., Woudenberg-Vrenken, T. E., Buist-Homan, M., Geuken, M., Hoekstra, M., Deelman, L. E., Enrich, C., Henning, R. H., Moshage, H., & Faber, K. N. (2010). Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes. Hepatology (Baltimore, Md.), 51(5), 1744–1753 https://doi.org/10.1002/hep.23460. – reference: Urra, H., Torres, V. A., Ortiz, R. J., Lobos, L., Díaz, M. I., Díaz, N., Härtel, S., Leyton, L., & Quest, A. F. G. (2012). Caveolin-1-enhanced motility and focal adhesion turnover require tyrosine-14 but not accumulation to the rear in metastatic cancer cells. PLoS One, 7(4), e33085 https://doi.org/10.1371/journal.pone.0033085. – reference: Li, W. P., Liu, P., Pilcher, B. K., & Anderson, R. G. (2001). Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. Journal of Cell Science, 114(Pt 7), 1397–1408. – reference: Territo, P. R., Mootha, V. K., French, S. A., & Balaban, R. S. (2000). Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. American Journal of Physiology. Cell Physiology, 278(2), C423–C435 https://doi.org/10.1152/ajpcell.2000.278.2.C423. – reference: Sundivakkam, P. C., Kwiatek, A. M., Sharma, T. T., Minshall, R. D., Malik, A. B., & Tiruppathi, C. (2009). Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. American Journal of Physiology. Cell Physiology, 296(3), C403–C413 https://doi.org/10.1152/ajpcell.00470.2008. – reference: Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences: CMLS, 75(2), 193–208 https://doi.org/10.1007/s00018-017-2595-9. – reference: Mellman, I., & Yarden, Y. (2013). Endocytosis and cancer. Cold Spring Harbor Perspectives in Biology, 5(12), a016949 https://doi.org/10.1101/cshperspect.a016949. – reference: Bourseau-Guilmain, E., Menard, J. A., Lindqvist, E., Indira Chandran, V., Christianson, H. C., Cerezo Magaña, M., Lidfeldt, J., Marko-Varga, G., Welinder, C., & Belting, M. (2016). Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nature Communications, 7, 11371 https://doi.org/10.1038/ncomms11371. – reference: Wiechen, K., Sers, C., Agoulnik, A., Arlt, K., Dietel, M., Schlag, P. M., & Schneider, U. (2001). Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. The American Journal of Pathology, 158(3), 833–839 https://doi.org/10.1016/S0002-9440(10)64031-X. – reference: van Deurs, B., Roepstorff, K., Hommelgaard, A. M., & Sandvig, K. (2003). Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends in Cell Biology, 13(2), 92–100 https://doi.org/10.1016/s0962-8924(02)00039-9. – reference: van den Bosch, H., Schrakamp, G., Hardeman, D., Zomer, A. W., Wanders, R. J., & Schutgens, R. B. (1993). Ether lipid synthesis and its deficiency in peroxisomal disorders. Biochimie, 75(3–4), 183–189 https://doi.org/10.1016/0300-9084(93)90076-5. – reference: Senju, Y., Itoh, Y., Takano, K., Hamada, S., & Suetsugu, S. (2011). Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. Journal of Cell Science, 124(Pt 12), 2032–2040 https://doi.org/10.1242/jcs.086264. – reference: Hehlgans, S., Eke, I., Storch, K., Haase, M., Baretton, G. B., & Cordes, N. (2009). Caveolin-1 mediated radioresistance of 3D grown pancreatic cancer cells. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 92(3), 362–370 https://doi.org/10.1016/j.radonc.2009.07.004. – reference: Chung, Y.-C., Kuo, J.-F., Wei, W.-C., Chang, K.-J., & Chao, W.-T. (2015). Caveolin-1 dependent endocytosis enhances the chemosensitivity of HER-2 positive breast cancer cells to trastuzumab emtansine (T-DM1). PLoS One, 10(7), e0133072 https://doi.org/10.1371/journal.pone.0133072. – reference: Filippin, L., Magalhães, P. J., Di Benedetto, G., Colella, M., & Pozzan, T. (2003). Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. Journal of Biological Chemistry, 278(40), 39224–39234 https://doi.org/10.1074/jbc.M302301200. – reference: Frank, P. G., Pavlides, S., Cheung, M. W.-C., Daumer, K., & Lisanti, M. P. (2008). Role of caveolin-1 in the regulation of lipoprotein metabolism. American Journal of Physiology. Cell Physiology, 295(1), C242–C248 https://doi.org/10.1152/ajpcell.00185.2008. – reference: Hansen, C. G., Howard, G., & Nichols, B. J. (2011). Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. Journal of Cell Science, 124(Pt 16), 2777–2785 https://doi.org/10.1242/jcs.084319. – reference: Llorente, A., de Marco, M. C., & Alonso, M. A. (2004). Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line. Journal of Cell Science, 117(Pt 22), 5343–5351 https://doi.org/10.1242/jcs.01420. – reference: Huertas-Martínez, J., Court, F., Rello-Varona, S., Herrero-Martín, D., Almacellas-Rabaiget, O., Sáinz-Jaspeado, M., Garcia-Monclús, S., Lagares-Tena, L., Buj, R., Hontecillas-Prieto, L., Sastre, A., Azorin, D., Sanjuan, X., López-Alemany, R., Moran, S., Roma, J., Gallego, S., Mora, J., García Del Muro, X., et al. (2017). DNA methylation profiling identifies PTRF/cavin-1 as a novel tumor suppressor in Ewing sarcoma when co-expressed with caveolin-1. Cancer Letters, 386, 196–207 https://doi.org/10.1016/j.canlet.2016.11.020. – reference: Senetta, R., Stella, G., Pozzi, E., Sturli, N., Massi, D., & Cassoni, P. (2013). Caveolin-1 as a promoter of tumour spreading: when, how, where and why. Journal of Cellular and Molecular Medicine, 17(3), 325–336 https://doi.org/10.1111/jcmm.12030. – reference: Koch, J., & Brocard, C. (2012). PEX11 proteins attract Mff and human Fis1 to coordinate peroxisomal fission. Journal of Cell Science, 125(Pt 16), 3813–3826 https://doi.org/10.1242/jcs.102178. – reference: Pfeiler, S., Thakur, M., Grünauer, P., Megens, R. T. A., Joshi, U., Coletti, R., Samara, V., Müller-Stoy, G., Ishikawa-Ankerhold, H., Stark, K., Klingl, A., Fröhlich, T., Arnold, G. J., Wörmann, S., Bruns, C. J., Algül, H., Weber, C., Massberg, S., & Engelmann, B. (2019). CD36-triggered cell invasion and persistent tissue colonization by tumor microvesicles during metastasis. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 33(2), 1860–1872 https://doi.org/10.1096/fj.201800985R. – reference: Shu, S. L., Yang, Y., Allen, C. L., Maguire, O., Minderman, H., Sen, A., Ciesielski, M. J., Collins, K. A., Bush, P. J., Singh, P., Wang, X., Morgan, M., Qu, J., Bankert, R. B., Whiteside, T. L., Wu, Y., & Ernstoff, M. S. (2018). Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Scientific Reports, 8(1), 12905 https://doi.org/10.1038/s41598-018-31323-7. – reference: Lobos-González, L., Aguilar, L., Diaz, J., Diaz, N., Urra, H., Torres, V. A., Silva, V., Fitzpatrick, C., Lladser, A., Hoek, K. S., Leyton, L., & Quest, A. F. G. (2013). E-cadherin determines caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells. Pigment Cell & Melanoma Research, 26(4), 555–570 https://doi.org/10.1111/pcmr.12085. – reference: Indira Chandran, V., Månsson, A.-S., Barbachowska, M., Cerezo-Magaña, M., Nodin, B., Joshi, B., Koppada, N., Saad, O. M., Gluz, O., Isaksson, K., Borgquist, S., Jirström, K., Nabi, I. R., Jernström, H., & Belting, M. (2020). Hypoxia attenuates trastuzumab uptake and trastuzumab-emtansine (T-DM1) cytotoxicity through redistribution of phosphorylated caveolin-1. Molecular Cancer Research, 18(4), 644–656 https://doi.org/10.1158/1541-7786.MCR-19-0856. – reference: Boucrot, E., Howes, M. T., Kirchhausen, T., & Parton, R. G. (2011). Redistribution of caveolae during mitosis. Journal of Cell Science, 124(Pt 12), 1965–1972 https://doi.org/10.1242/jcs.076570. – reference: Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033 https://doi.org/10.1126/science.1160809. – reference: Díaz-Valdivia, N. I., Calderón, C. C., Díaz, J. E., Lobos-González, L., Sepulveda, H., Ortíz, R. J., Martinez, S., Silva, V., Maldonado, H. J., Silva, P., Wehinger, S., Burzio, V. A., Torres, V. A., Montecino, M., Leyton, L., & Quest, A. F. G. (2017). Anti-neoplastic drugs increase caveolin-1-dependent migration, invasion and metastasis of cancer cells. Oncotarget, 8(67), 111943–111965. https://doi.org/10.18632/oncotarget.22955. – reference: Fridolfsson, H. N., Kawaraguchi, Y., Ali, S. S., Panneerselvam, M., Niesman, I. R., Finley, J. C., Kellerhals, S. E., Migita, M. Y., Okada, H., Moreno, A. L., Jennings, M., Kidd, M. W., Bonds, J. A., Balijepalli, R. C., Ross, R. S., Patel, P. M., Miyanohara, A., Chen, Q., Lesnefsky, E. J., et al. (2012). Mitochondria-localized caveolin in adaptation to cellular stress and injury. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 26(11), 4637–4649 https://doi.org/10.1096/fj.12-215798. – reference: Gandre-Babbe, S., & van der Bliek, A. M. (2008). The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Molecular Biology of the Cell, 19(6), 2402–2412 https://doi.org/10.1091/mbc.e07-12-1287. – reference: Asterholm, I. W., Mundy, D. I., Weng, J., Anderson, R. G. W., & Scherer, P. E. (2012). Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metabolism, 15(2), 171–185 https://doi.org/10.1016/j.cmet.2012.01.004. – reference: Gupta, V. K., Sharma, N. S., Kesh, K., Dauer, P., Nomura, A., Giri, B., Dudeja, V., Banerjee, S., Bhattacharya, S., Saluja, A., & Banerjee, S. (2018). Metastasis and chemoresistance in CD133 expressing pancreatic cancer cells are dependent on their lipid raft integrity. Cancer Letters, 439, 101–112 https://doi.org/10.1016/j.canlet.2018.09.028. – reference: Gao, Y., Li, L., Li, T., Ma, L., Yuan, M., Sun, W., Cheng, H. L., Niu, L., Du, Z., Quan, Z., Fan, Y., Fan, J., Luo, C., & Wu, X. (2019). Simvastatin delays castration-resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin-1. International Journal of Oncology, 54(6), 2054–2068 https://doi.org/10.3892/ijo.2019.4774. – reference: Barth, J. M. I., & Köhler, K. (2014). How to take autophagy and endocytosis up a notch. BioMed Research International, 2014, 960803 https://doi.org/10.1155/2014/960803. – reference: Mineo, C., James, G. L., Smart, E. J., & Anderson, R. G. (1996). Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. The Journal of Biological Chemistry, 271(20), 11930–11935 https://doi.org/10.1074/jbc.271.20.11930. – reference: Yoon, Y., Krueger, E. W., Oswald, B. J., & McNiven, M. A. (2003). The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Molecular and Cellular Biology, 23(15), 5409–5420 https://doi.org/10.1128/mcb.23.15.5409-5420.2003. – reference: Fairbank, M., St-Pierre, P., & Nabi, I. R. (2009). The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase. Molecular BioSystems, 5(8), 793–801 https://doi.org/10.1039/b820820b. – reference: Liang, Y.-N., Liu, Y., Wang, L., Yao, G., Li, X., Meng, X., Wang, F., Li, M., Tong, D., & Geng, J. (2018). Combined caveolin-1 and epidermal growth factor receptor expression as a prognostic marker for breast cancer. Oncology Letters, 15(6), 9271–9282 https://doi.org/10.3892/ol.2018.8533. – reference: Huang, Z., Zhang, N., Zha, L., Mao, H.-C., Chen, X., Xiang, J.-F., Zhang, H., & Wang, Z.-W. (2014). Aberrant expression of the autocrine motility factor receptor correlates with poor prognosis and promotes metastasis in gastric carcinoma. Asian Pacific Journal of Cancer Prevention : APJCP, 15(2), 989–997 https://doi.org/10.7314/apjcp.2014.15.2.989. – reference: Li, J., Gu, D., Lee, S. S.-Y., Song, B., Bandyopadhyay, S., Chen, S., Konieczny, S. F., Ratliff, T. L., Liu, X., Xie, J., & Cheng, J.-X. (2016). Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene, 35(50), 6378–6388 https://doi.org/10.1038/onc.2016.168. – reference: Yeong, J., Thike, A. A., Ikeda, M., Lim, J. C. T., Lee, B., Nakamura, S., Iqbal, J., & Tan, P. H. (2018). Caveolin-1 expression as a prognostic marker in triple negative breast cancers of Asian women. Journal of Clinical Pathology, 71(2), 161–167 https://doi.org/10.1136/jclinpath-2017-204495. – reference: Yang, H., Guan, L., Li, S., Jiang, Y., Xiong, N., Li, L., Wu, C., Zeng, H., & Liu, Y. (2016). Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget, 7(13), 16227–16247. https://doi.org/10.18632/oncotarget.7583. – reference: Bonuccelli, G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., Witkiewicz, A. K., Vander Heiden, M. G., Migneco, G., Chiavarina, B., Frank, P. G., Capozza, F., Flomenberg, N., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2010). The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle (Georgetown, Texas), 9(10), 1960–1971 https://doi.org/10.4161/cc.9.10.11601. – reference: Miotti, S., Tomassetti, A., Facetti, I., Sanna, E., Berno, V., & Canevari, S. (2005). Simultaneous expression of caveolin-1 and E-cadherin in ovarian carcinoma cells stabilizes adherens junctions through inhibition of Src-related kinases. The American Journal of Pathology, 167(5), 1411–1427 https://doi.org/10.1016/S0002-9440(10)61228-X. – reference: Sugiura, A., Mattie, S., Prudent, J., & McBride, H. M. (2017). Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature, 542(7640), 251–254 https://doi.org/10.1038/nature21375. – reference: Cárdenas, C., Miller, R. A., Smith, I., Bui, T., Molgó, J., Müller, M., Vais, H., Cheung, K.-H., Yang, J., Parker, I., Thompson, C. B., Birnbaum, M. J., Hallows, K. R., & Foskett, J. K. (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell, 142(2), 270–283 https://doi.org/10.1016/j.cell.2010.06.007. – reference: Ariotti, N., Rae, J., Leneva, N., Ferguson, C., Loo, D., Okano, S., Hill, M. M., Walser, P., Collins, B. M., & Parton, R. G. (2015). Molecular characterization of caveolin-induced membrane curvature. Journal of Biological Chemistry, 290(41), 24875–24890 https://doi.org/10.1074/jbc.M115.644336. – reference: Li, L., Ren, C. H., Tahir, S. A., Ren, C., & Thompson, T. C. (2003). Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Molecular and Cellular Biology, 23(24), 9389–9404 https://doi.org/10.1128/mcb.23.24.9389-9404.2003. – reference: Lobos-Gonzalez, L., Aguilar-Guzmán, L., Fernandez, J. G., Muñoz, N., Hossain, M., Bieneck, S., Silva, V., Burzio, V., Sviderskaya, E. V., Bennett, D. C., Leyton, L., & Quest, A. F. G. (2014). Caveolin-1 is a risk factor for postsurgery metastasis in preclinical melanoma models. Melanoma Research, 24(2), 108–119 https://doi.org/10.1097/CMR.0000000000000046. – reference: Zimnicka, A. M., Husain, Y. S., Shajahan, A. N., Sverdlov, M., Chaga, O., Chen, Z., Toth, P. T., Klomp, J., Karginov, A. V., Tiruppathi, C., Malik, A. B., & Minshall, R. D. (2016). Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Molecular Biology of the Cell, 27(13), 2090–2106 https://doi.org/10.1091/mbc.E15-11-0756. – reference: Antalis, C. J., Arnold, T., Rasool, T., Lee, B., Buhman, K. K., & Siddiqui, R. A. (2010). High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Research and Treatment, 122(3), 661–670 https://doi.org/10.1007/s10549-009-0594-8. – reference: Quan, A., & Robinson, P. J. (2013). Syndapin—a membrane remodelling and endocytic F-BAR protein. The FEBS Journal, 280(21), 5198–5212 https://doi.org/10.1111/febs.12343. – reference: Patel, H. H., Murray, F., & Insel, P. A. (2008). Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annual Review of Pharmacology and Toxicology, 48, 359–391 https://doi.org/10.1146/annurev.pharmtox.48.121506.124841. – reference: Rimessi, A., Marchi, S., Patergnani, S., & Pinton, P. (2014). H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene, 33(18), 2329–2340 https://doi.org/10.1038/onc.2013.192. – reference: Byrne, D. P., Dart, C., & Rigden, D. J. (2012). Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS One, 7(9), e44879 https://doi.org/10.1371/journal.pone.0044879. – reference: Hubert, M., Larsson, E., & Lundmark, R. (2020). Keeping in touch with the membrane; protein- and lipid-mediated confinement of caveolae to the cell surface. Biochemical Society Transactions, 48(1), 155–163 https://doi.org/10.1042/BST20190386. – reference: Pellinen, T., Blom, S., Sánchez, S., Välimäki, K., Mpindi, J.-P., Azegrouz, H., Strippoli, R., Nieto, R., Vitón, M., Palacios, I., Turkki, R., Wang, Y., Sánchez-Alvarez, M., Nordling, S., Bützow, A., Mirtti, T., Rannikko, A., Montoya, M. C., Kallioniemi, O., & Del Pozo, M. A. (2018). ITGB1-dependent upregulation of caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer. Scientific Reports, 8(1), 2338 https://doi.org/10.1038/s41598-018-20161-2. – reference: Galbiati, F., Volonte, D., Brown, A. M., Weinstein, D. E., Ben-Ze’ev, A., Pestell, R. G., & Lisanti, M. P. (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. The Journal of Biological Chemistry, 275(30), 23368–23377 https://doi.org/10.1074/jbc.M002020200. – reference: Overmiller, A. M., McGuinn, K. P., Roberts, B. J., Cooper, F., Brennan-Crispi, D. M., Deguchi, T., Peltonen, S., Wahl, J. K., & Mahoney, M. G. (2016). c-Src/Cav1-dependent activation of the EGFR by Dsg2. Oncotarget, 7(25), 37536–37555. https://doi.org/10.18632/oncotarget.7675. – reference: Arpaia, E., Blaser, H., Quintela-Fandino, M., Duncan, G., Leong, H. S., Ablack, A., Nambiar, S. C., Lind, E. F., Silvester, J., Fleming, C. K., Rufini, A., Tusche, M. W., Brüstle, A., Ohashi, P. S., Lewis, J. D., & Mak, T. W. (2012). The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene, 31(7), 884–896 https://doi.org/10.1038/onc.2011.288. – reference: Shyu, P., Wong, X. F. A., Crasta, K., & Thibault, G. (2018). Dropping in on lipid droplets: insights into cellular stress and cancer. Bioscience Reports, 38(5) https://doi.org/10.1042/BSR20180764. – reference: Bravo-Sagua, R., Parra, V., López-Crisosto, C., Díaz, P., Quest, A. F. G., & Lavandero, S. (2017). Calcium transport and signaling in mitochondria. Comprehensive physiology 7(2), 623–634 https://doi.org/10.1002/cphy.c160013. – reference: Deb, M., Sengupta, D., Kar, S., Rath, S. K., Roy, S., Das, G., & Patra, S. K. (2016). Epigenetic drift towards histone modifications regulates CAV1 gene expression in colon cancer. Gene, 581(1), 75–84 https://doi.org/10.1016/j.gene.2016.01.029. – reference: Gupta, R., Toufaily, C., & Annabi, B. (2014). Caveolin and cavin family members: dual roles in cancer. Biochimie, 107(Pt B), 188–202 https://doi.org/10.1016/j.biochi.2014.09.010. – reference: Loh, C.-Y., Chai, J. Y., Tang, T. F., Wong, W. F., Sethi, G., Shanmugam, M. K., Chong, P. P., & Looi, C. Y. (2019). The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells, 8(10) https://doi.org/10.3390/cells8101118. – reference: Pezeshkian, W., Chevrot, G., & Khandelia, H. (2018). The role of caveolin-1 in lipid droplets and their biogenesis. Chemistry and Physics of Lipids, 211, 93–99 https://doi.org/10.1016/j.chemphyslip.2017.11.010. – reference: Scheel, J., Srinivasan, J., Honnert, U., Henske, A., & Kurzchalia, T. V. (1999). Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nature Cell Biology, 1(2), 127–129 https://doi.org/10.1038/10100. – reference: Nethe, M., Anthony, E. C., Fernandez-Borja, M., Dee, R., Geerts, D., Hensbergen, P. J., Deelder, A. M., Schmidt, G., & Hordijk, P. L. (2010). Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. Journal of Cell Science, 123(Pt 11), 1948–1958 https://doi.org/10.1242/jcs.062919. – reference: Röhrig, F., & Schulze, A. (2016). The multifaceted roles of fatty acid synthesis in cancer. Nature Reviews. Cancer, 16(11), 732–749. https://doi.org/10.1038/nrc.2016.89. – reference: Bartz, R., Zhou, J., Hsieh, J.-T., Ying, Y., Li, W., & Liu, P. (2008). Caveolin-1 secreting LNCaP cells induce tumor growth of caveolin-1 negative LNCaP cells in vivo. International Journal of Cancer, 122(3), 520–525 https://doi.org/10.1002/ijc.23142. – reference: Martinez-Outschoorn, U. E., Lisanti, M. P., & Sotgia, F. (2014). Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor gro. Seminars in Cancer Biology, 25, 47–60 https://doi.org/10.1016/j.semcancer.2014.01.005. – reference: Cheng, J. P. X., & Nichols, B. J. (2016). Caveolae: one function or many? Trends in Cell Biology, 26(3), 177–189 https://doi.org/10.1016/j.tcb.2015.10.010. – reference: Capiod, T. (2016). Extracellular calcium has multiple targets to control cell proliferation. Advances in Experimental Medicine and Biology, 898, 133–156 https://doi.org/10.1007/978-3-319-26974-0_7. – reference: Cai, J., Zhao, X.-L., Liu, A.-W., Nian, H., & Zhang, S.-H. (2011). Apigenin inhibits hepatoma cell growth through alteration of gene expression patterns. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 18(5), 366–373 https://doi.org/10.1016/j.phymed.2010.08.006. – reference: Moreno-Cáceres, J., Caballero-Díaz, D., Nwosu, Z. C., Meyer, C., López-Luque, J., Malfettone, A., Lastra, R., Serrano, T., Ramos, E., Dooley, S., & Fabregat, I. (2017). The level of caveolin-1 expression determines response to TGF-β as a tumour suppressor in hepatocellular carcinoma cells. Cell Death & Disease, 8(10), e3098 https://doi.org/10.1038/cddis.2017.469. – reference: Liu, P., Li, W. P., Machleidt, T., & Anderson, R. G. (1999). Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nature Cell Biology, 1(6), 369–375 https://doi.org/10.1038/14067. – reference: Low, J.-Y., & Nicholson, H. D. (2015). Epigenetic modifications of caveolae associated proteins in health and disease. BMC Genetics, 16, 71 https://doi.org/10.1186/s12863-015-0231-y. – reference: Shvets, E., Bitsikas, V., Howard, G., Hansen, C. G., & Nichols, B. J. (2015). Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nature Communications, 6(1) https://doi.org/10.1038/ncomms7867. – reference: Sinha, B., Köster, D., Ruez, R., Gonnord, P., Bastiani, M., Abankwa, D., Stan, R. V., Butler-Browne, G., Vedie, B., Johannes, L., Morone, N., Parton, R. G., Raposo, G., Sens, P., Lamaze, C., & Nassoy, P. (2011). Cells respond to mechanical stress by rapid disassembly of caveolae. Cell, 144(3), 402–413 https://doi.org/10.1016/j.cell.2010.12.031. – reference: Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nature Cell Biology, 5(5), 410–421 https://doi.org/10.1038/ncb975. – reference: Sala-Vila, A., Navarro-Lérida, I., Sánchez-Alvarez, M., Bosch, M., Calvo, C., López, J. A., Calvo, E., Ferguson, C., Giacomello, M., Serafini, A., Scorrano, L., Enriquez, J. A., Balsinde, J., Parton, R. G., Vázquez, J., Pol, A., & Del Pozo, M. A. (2016). Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Scientific Reports, 6, 27351 https://doi.org/10.1038/srep27351. – ident: 9890_CR11 doi: 10.1083/jcb.200903053 – ident: 9890_CR34 doi: 10.1007/s00005-016-0453-3 – ident: 9890_CR47 doi: 10.3892/ijo.2019.4774 – ident: 9890_CR49 doi: 10.1016/j.bbamcr.2018.02.004 – ident: 9890_CR61 doi: 10.1016/j.radonc.2009.07.004 – ident: 9890_CR80 doi: 10.1074/jbc.M111240200 – ident: 9890_CR146 doi: 10.7554/eLife.29854 – ident: 9890_CR6 doi: 10.1038/onc.2011.288 – ident: 9890_CR138 doi: 10.1016/j.semcdb.2019.05.015 – ident: 9890_CR177 doi: 10.1085/jgp.8.6.519 – ident: 9890_CR14 doi: 10.1016/j.cub.2011.03.030 – ident: 9890_CR69 doi: 10.1158/1541-7786.MCR-19-0856 – ident: 9890_CR7 doi: 10.1016/j.cmet.2012.01.004 – ident: 9890_CR29 doi: 10.1016/j.tcb.2015.10.010 – ident: 9890_CR118 doi: 10.1074/jbc.273.10.5419 – ident: 9890_CR130 doi: 10.1096/fj.201800985R – ident: 9890_CR12 – ident: 9890_CR17 doi: 10.1038/ncomms11371 – ident: 9890_CR19 doi: 10.1038/s41418-018-0197-1 – ident: 9890_CR113 doi: 10.1083/jcb.200302028 – ident: 9890_CR54 doi: 10.3892/ijo_00000418 – ident: 9890_CR43 doi: 10.1096/fj.12-215798 – ident: 9890_CR97 doi: 10.3390/cells8101118 – ident: 9890_CR123 doi: 10.1146/annurev-cellbio-100617-062737 – ident: 9890_CR171 doi: 10.1038/nrm.2017.125 – ident: 9890_CR158 doi: 10.1172/JCI36843 – ident: 9890_CR9 doi: 10.1155/2014/960803 – ident: 9890_CR35 doi: 10.1016/j.gene.2016.01.029 – ident: 9890_CR95 doi: 10.1097/CMR.0000000000000046 – ident: 9890_CR168 doi: 10.1371/journal.pone.0033085 – ident: 9890_CR16 doi: 10.1242/jcs.076570 – ident: 9890_CR176 doi: 10.1002/jbt.22202 – ident: 9890_CR184 doi: 10.1111/acel.12606 – ident: 9890_CR173 doi: 10.1074/jbc.M117.815902 – ident: 9890_CR105 doi: 10.1091/mbc.E17-05-0278 – ident: 9890_CR143 doi: 10.1038/srep27351 – ident: 9890_CR20 doi: 10.1371/journal.pone.0044879 – ident: 9890_CR114 doi: 10.1242/jcs.062919 – ident: 9890_CR37 doi: 10.1242/jcs.141689 – ident: 9890_CR128 doi: 10.3390/molecules23081941 – ident: 9890_CR186 doi: 10.1091/mbc.E15-11-0756 – ident: 9890_CR108 doi: 10.1016/S0002-9440 – ident: 9890_CR64 doi: 10.1371/journal.pone.0043041 – ident: 9890_CR183 doi: 10.1128/mcb.23.15.5409-5420.2003 – ident: 9890_CR13 doi: 10.4161/cc.9.10.11601 – ident: 9890_CR150 doi: 10.1074/jbc.M111.304022 – ident: 9890_CR99 doi: 10.1016/s1535-6108 – ident: 9890_CR116 doi: 10.1186/s12943-016-0558-7 – ident: 9890_CR147 doi: 10.1111/jcmm.12030 – ident: 9890_CR46 doi: 10.1091/mbc.e07-12-1287 – ident: 9890_CR40 doi: 10.1002/ijc.24451 – ident: 9890_CR134 doi: 10.3892/ol.2019.10310 – ident: 9890_CR93 doi: 10.1242/jcs.01420 – ident: 9890_CR122 doi: 10.1074/jbc.M109.041152 – ident: 9890_CR109 doi: 10.1091/mbc.6.7.911 – ident: 9890_CR44 doi: 10.1096/fj.14-252320 – ident: 9890_CR164 doi: 10.1007/s00268-017-4065-9 – ident: 9890_CR84 doi: 10.1007/s12032-012-0396-4 – ident: 9890_CR55 doi: 10.1158/0008-5472.CAN-12-0448 – ident: 9890_CR145 doi: 10.1074/jbc.M005448200 – ident: 9890_CR181 doi: 10.18632/oncotarget.7583 – ident: 9890_CR187 doi: 10.1042/bj3380769 – ident: 9890_CR75 doi: 10.1242/jcs.102178 – ident: 9890_CR74 doi: 10.1083/jcb.201305142 – ident: 9890_CR98 doi: 10.1186/s12863-015-0231-y – ident: 9890_CR153 doi: 10.1038/s41598-018-31323-7 – ident: 9890_CR26 doi: 10.1016/j.cell.2010.06.007 – ident: 9890_CR77 doi: 10.1083/jcb.200811059 – ident: 9890_CR121 doi: 10.18632/oncotarget.7675 – ident: 9890_CR60 doi: 10.1093/carcin/bgv081 – ident: 9890_CR73 doi: 10.1002/pros.20557 – ident: 9890_CR174 doi: 10.1016/j.cell.2012.06.042 – ident: 9890_CR92 doi: 10.1016/j.clinre.2015.06.017 – ident: 9890_CR18 doi: 10.1002/cphy.c160013 – ident: 9890_CR36 doi: 10.1038/ncb975 – ident: 9890_CR52 doi: 10.1016/j.biochi.2014.09.010 – ident: 9890_CR129 doi: 10.1016/j.chemphyslip.2017.11.010 – ident: 9890_CR165 doi: 10.1242/jcs.02894 – ident: 9890_CR31 doi: 10.1371/journal.pone.0133072 – ident: 9890_CR185 doi: 10.1097/00000478-200207000-00012 – ident: 9890_CR117 doi: 10.1080/15384101.2019.1618118 – ident: 9890_CR175 doi: 10.1016/j.ebiom.2019.01.058 – ident: 9890_CR131 doi: 10.1111/febs.12343 – ident: 9890_CR24 doi: 10.3390/biom9080314 – ident: 9890_CR133 doi: 10.2174/156652413804810745 – ident: 9890_CR96 doi: 10.1371/journal.pone.0005219 – ident: 9890_CR3 doi: 10.1007/s10585-011-9405-9 – ident: 9890_CR106 doi: 10.4161/cc.10.1.14243 – ident: 9890_CR83 doi: 10.1128/mcb.23.24.9389-9404.2003 – ident: 9890_CR112 doi: 10.1152/physrev.1997.77.3.759 – ident: 9890_CR59 doi: 10.1111/j.1600-0854.2009.01023.x – ident: 9890_CR161 doi: 10.1083/jcb.200506103 – ident: 9890_CR30 doi: 10.1038/ncb1380 – ident: 9890_CR33 doi: 10.1016/j.devcel.2012.06.012 – ident: 9890_CR102 doi: 10.1038/s41556-018-0250-9 – ident: 9890_CR78 doi: 10.1083/jcb.200811059 – ident: 9890_CR1 doi: 10.1016/j.bbapap.2019.02.005 – ident: 9890_CR87 doi: 10.1074/jbc.M212031200 – ident: 9890_CR28 doi: 10.1038/cr.2008.315 – ident: 9890_CR120 doi: 10.1083/jcb.201007152 – ident: 9890_CR48 doi: 10.1083/jcb.200603034 – ident: 9890_CR25 doi: 10.1007/978-3-319-26974-0_7 – ident: 9890_CR4 doi: 10.1083/jcb.201307055 – ident: 9890_CR167 – ident: 9890_CR65 doi: 10.7314/apjcp.2014.15.2.989 – ident: 9890_CR103 doi: 10.1101/cshperspect.a016758 – ident: 9890_CR66 doi: 10.1042/BST20190386 – ident: 9890_CR115 doi: 10.2174/1566524014666140128112827 – ident: 9890_CR32 doi: 10.2337/diabetes.54.3.679 – ident: 9890_CR8 doi: 10.1016/j.ejcb.2010.06.004 – ident: 9890_CR72 doi: 10.1007/s00109-013-1020-6 – ident: 9890_CR62 doi: 10.1007/s00018-017-2595-9 – ident: 9890_CR63 doi: 10.1016/j.cell.2007.11.042 – ident: 9890_CR111 doi: 10.1038/cddis.2017.469 – ident: 9890_CR160 doi: 10.1152/ajpcell.00470.2008 – ident: 9890_CR22 doi: 10.1016/j.canlet.2018.02.021 – ident: 9890_CR39 doi: 10.1039/b820820b – ident: 9890_CR67 doi: 10.18632/oncotarget.2403 – ident: 9890_CR79 doi: 10.1186/s12951-020-0573-0 – ident: 9890_CR170 doi: 10.1016/s0962-8924 – ident: 9890_CR88 doi: 10.3892/ijo.2015.3091 – ident: 9890_CR140 doi: 10.1091/mbc.e08-09-0939 – ident: 9890_CR156 doi: 10.1042/BSR20180764 – ident: 9890_CR53 doi: 10.1016/j.canlet.2018.09.028 – ident: 9890_CR58 doi: 10.1242/jcs.084319 – ident: 9890_CR41 doi: 10.1074/jbc.M302301200 – ident: 9890_CR76 doi: 10.1074/jbc.M704069200 – ident: 9890_CR159 doi: 10.1038/nature21375 – ident: 9890_CR23 doi: 10.2217/nnm-2018-0094 – ident: 9890_CR136 doi: 10.1124/pr.54.3.431 – ident: 9890_CR2 doi: 10.1007/s10549-009-0594-8 – ident: 9890_CR126 doi: 10.1016/0014-5793 – ident: 9890_CR139 doi: 10.1126/science.280.5370.1763 – ident: 9890_CR110 doi: 10.1091/mbc.E11-09-0787 – ident: 9890_CR162 – ident: 9890_CR42 doi: 10.1152/ajpcell.00185.2008 – ident: 9890_CR127 doi: 10.1038/s41598-018-20161-2 – ident: 9890_CR141 doi: 10.1038/nrc.2016.89 – ident: 9890_CR152 doi: 10.1002/mc.22882 – ident: 9890_CR82 doi: 10.1038/onc.2016.168 – ident: 9890_CR178 doi: 10.1016/S0002-9440 – ident: 9890_CR90 doi: 10.1038/14067 – ident: 9890_CR125 doi: 10.4161/cc.8.23.10238 – ident: 9890_CR148 doi: 10.3892/ijo.2011.963 – ident: 9890_CR166 doi: 10.1128/MCB.01991-06 – ident: 9890_CR91 doi: 10.1186/s13045-015-0144-2 – ident: 9890_CR100 doi: 10.1016/j.semcancer.2014.01.005 – ident: 9890_CR50 doi: 10.1091/mbc.E13-03-0163 – ident: 9890_CR142 doi: 10.1038/nrd3802 – ident: 9890_CR119 doi: 10.18632/oncotarget.9738 – ident: 9890_CR180 doi: 10.1002/hep.23460 – ident: 9890_CR15 doi: 10.1091/mbc.e13-02-0095 – ident: 9890_CR71 doi: 10.1158/0008-5472.CAN-08-0343 – ident: 9890_CR179 doi: 10.4161/cc.11.6.19530 – ident: 9890_CR68 doi: 10.1016/j.canlet.2016.11.020 – ident: 9890_CR172 doi: 10.1126/science.1160809 – ident: 9890_CR169 doi: 10.1016/0300-9084 – ident: 9890_CR57 doi: 10.1016/j.cell.2011.02.013 – ident: 9890_CR70 doi: 10.1111/j.1600-0854.2009.00994.x – ident: 9890_CR149 doi: 10.1242/jcs.086264 – ident: 9890_CR38 doi: 10.18632/oncotarget.22955 – ident: 9890_CR89 doi: 10.3892/ol.2018.8533 – ident: 9890_CR132 doi: 10.1111/j.1582-4934.2008.00331.x – ident: 9890_CR27 doi: 10.1158/0008-5472.CAN-17-0604 – ident: 9890_CR85 doi: 10.1074/jbc.270.26.15693 – ident: 9890_CR107 doi: 10.1074/jbc.271.20.11930 – ident: 9890_CR124 doi: 10.1146/annurev.pharmtox.48.121506.124841 – ident: 9890_CR101 doi: 10.1038/nrc3915 – ident: 9890_CR151 doi: 10.1080/15548627.2015.1034411 – ident: 9890_CR182 doi: 10.1136/jclinpath-2017-204495 – ident: 9890_CR5 doi: 10.1074/jbc.M115.644336 – ident: 9890_CR56 doi: 10.4161/cam.26345 – ident: 9890_CR163 doi: 10.1152/ajpcell.2000.278.2.C423 – ident: 9890_CR154 doi: 10.7860/JCDR/2017/25303.9727 – ident: 9890_CR155 doi: 10.1038/ncomms7867 – ident: 9890_CR81 doi: 10.1074/jbc.M111240200 – ident: 9890_CR137 doi: 10.1038/onc.2013.192 – ident: 9890_CR104 doi: 10.1101/cshperspect.a016949 – ident: 9890_CR94 doi: 10.1111/pcmr.12085 – ident: 9890_CR10 doi: 10.1002/ijc.23142 – ident: 9890_CR51 doi: 10.1016/j.arcmed.2016.10.005 – ident: 9890_CR157 doi: 10.1016/j.cell.2010.12.031 – ident: 9890_CR45 doi: 10.1074/jbc.M002020200 – ident: 9890_CR135 doi: 10.1016/j.bbamcr.2012.04.013 – ident: 9890_CR86 doi: 10.1242/jcs.114.7.1397 – ident: 9890_CR144 doi: 10.1038/10100 – ident: 9890_CR21 doi: 10.1016/j.phymed.2010.08.006 |
SSID | ssj0007379 |
Score | 2.5440872 |
SecondaryResourceType | review_article |
Snippet | Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 435 |
SubjectTerms | Animals Biomedical and Life Sciences Biomedicine Cancer Cancer Research Caveolae Caveolin Caveolin 1 - metabolism Caveolin-1 Cell Communication - physiology Cell interactions Cell Membrane - metabolism Cell membranes Cell surface Exosomes Humans Intracellular Intracellular signalling Intracellular Space Metastases Metastasis Neoplasms - metabolism Neoplasms - pathology Oncology Organelles Organelles - metabolism Tumor suppressor genes |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2DsZeRtd9uc2KBoM9bGJ2FNnS0yilpRS6p3XkTejLLLA4aZOO_vm7sxWnDqzgt5P8cf5Jd5LufgfwSdba2Rgkn6C7yicxKm5dTkSQuRC6DKVoqZSufpQX15PLqZymDbdVCqvczIntRB0WnvbIv6Glwe44nxbflzecqkbR6WoqofEUnhXoqhCqq2m_4EL0dlx7xO1dlVKnpJmUOicl5SbnPNdK5_x-YJh2p-cH9mk3dnLnALW1S-f78DI5lOykQ8AreBKbA3h-lY7MX8OvU_s3UmUeXjAyYvQjmF0zdPzYEl3nuWXzOMc1cxOZbQKbNXjhM2lHn0JUWRel3gajr0jqCSe3b-D6_Ozn6QVPxRS4L8VkzZX2wiurpaL8Ja1kNQ61dYKMZCF97uPYoTXDBYx2zpZ59MG5WqqoyjrXYyvewl6zaOJ7YDI6HZwoAnHL2EJY6ZRwUdahjuSfZFBsNGl8Yhqnghd_zJYjmbRvUPum1b65z-BL32fZ8Ww82voz_SBDg5A0YlMuAb4f0VmZkwrdmJJOBDM4GrT0y9mNeSAdDaQ4tPyg82gDAJOG9spsgZjBx15MPSlcrYmLO2qD2CsQfdjmXYeX_qvQg8V7lzqDaoCkvgERfg8lzex3S_yN96QFbQZfN5jbvtb_lXX4-FccwYtxOwxoZ2kEe-vbu_gBHa21O25H0z_OWCM5 priority: 102 providerName: ProQuest |
Title | Caveolin-1 function at the plasma membrane and in intracellular compartments in cancer |
URI | https://link.springer.com/article/10.1007/s10555-020-09890-x https://www.ncbi.nlm.nih.gov/pubmed/32458269 https://www.proquest.com/docview/2416038011 https://www.proquest.com/docview/2407313791 https://pubmed.ncbi.nlm.nih.gov/PMC7311495 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7233 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007379 issn: 0167-7659 databaseCode: AFBBN dateStart: 19970601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7233 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007379 issn: 0167-7659 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7233 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007379 issn: 0167-7659 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0DsQX8dt66xJB8EELbbNJk8fdsuuh3CLiyvoUkjTFBbe33u2Jf74z3W7vuqgglPZhJmk7nclMmplfAF6JSjsbShGPMFyNRyGo2LqEgCATzrUsJW-glM7m8nQxer8UyxYmh2phDtbvqcRNCKohTuJEK53EGC8eCxx4KX2vkEU36uYtrh7heOdS6LZA5s999JzQ4VB8wxcd5kkeLJY2Pmh2H-61wSMb7772A7gV6odw56xdHn8EXwr7M9AuPHHKyGGR0JndMgzy2AbD5LVl67DG-XEdmK1LtqrxwHvS33tKR2W7jPQm8fySqJ504uIxLGbTz8Vp3G6cEHvJR9tYac-9slooqlXSSuRZWVnHySGmwic-ZA49F05WtHNWJsGXzlVCBSWrRGeWP4Gj-rwOz4CJ4HTpeFoSjoxNuRVOcRdEVVaBYpEI0r0kjW9RxWlzi-_mGg-ZpG9Q-qaRvvkVwZuuzWaHqfFP7tf0gQwZHEnEtnUD-HwEXWXGOYYsklb_IjjpcfrN6oe5QR30qGhGvtd4sFcA05rxpcHwBnUWnXgawcuOTC0pNa0O51fEg7qXovYhz9OdvnRvhdEq9i11BHlPkzoGAvfuU-rVtwbkG_ukyWsEb_c6d_1YfxfW8_9jP4G7WWMW9FdpAEfbi6vwAoOsrRvC7XyZ41kV6RCOx7PJZE7Xd18_TPE6mc4_fho2FojnRTb-DSijI_I |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIcFeEN-EFTASiAeISOI4iR8QmgZTx9Y9bahvxnYcUWlNu7WD8U_xN3KXry6V2Nukvt3ZTc735fjuZ4A3opBGu1z4Maarfuxc5msTEBBkwLlM8oRXUEqjo2R4En8bi_EG_G17YaissvWJlaPOZ5a-kX_ESIPD0Z-Gn-dnPt0aRaer7RUatVocuD-_ccu2-LT_Bdf3bRTtfT3eHfrNrQK-TXi89DNpuc20FBk18shMpFFeaMMpWoTCBtZFBt06ZvLSGJ0EzubGFCJzWVIEMtIc570Ft2MexITVn467DR5aS43tR1jiaSJk06TTtOoJQb3QgR_ITAb-ZS8QroeDK_FwvVZz7cC2ioN79-Fek8CynVrjHsCGKx_CnVFzRP8Ivu_qX45uAvJDRkGTFp7pJcNEk80xVZ9qNnVT3KOXjukyZ5MSf_ifdIJAJbGsroqvit8XRLWkl-eP4eRGxPwENstZ6Z4BE87I3PAwJywbHXItTMaNE0VeOMqHPAhbSSrbIJvTBRunaoXJTNJXKH1VSV9devC-GzOvcT2u5X5HC6TI6EkiuuldwOcj-Cy1k2LalNAJpAfbPU47n5ypK9RBj4qmbHuDB60CqMaVLNRK8T143ZFpJJXHlW52QTyoeyFqH_I8rfWleyvMmHHuRHqQ9jSpYyCA8T6lnPysgMZxTtpAe_Ch1bnVY_1fWM-vf4tXcHd4PDpUh_tHB9uwFVUmQV-1BrC5PL9wLzDJW5qXlWUx-HHTpvwPgpxhGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO-mXcBIIA4QNYnjJD4gVLWsWkorDhTtzdiOI1bqZrfdLZS_xq9jJq9tVqK3Srl57CSTeTme-QbgtSik0S4Xfozhqh87l_naBAQEGXAukzzhFZTS8UlycBp_HonRGvxta2EorbK1iZWhzqeW_pHvoKfB6WhPw52iSYv4uj_8ODv3qYMUnbS27TRqETlyf37j9m3-4XAfv_WbKBp--rZ34DcdBnyb8HjhZ9Jym2kpMirqkZlIo7zQhpPnCIUNrIsMmniM6qUxOgmczY0pROaypAhkpDmuewfupjzmlE6WjrrNHmpOjfNHuOJpImRTsNOU7QlBddGBH8hMBv5VzymuuoZrvnE1b3Pl8LbyicMHcL8JZtluLX0PYc2Vj2DjuDmufwzf9_QvR12B_JCRAyUhYHrBMOhkMwzbJ5pN3AT366VjuszZuMQL70mnCZQey-oM-SoRfk6jlmT04gmc3gqbn8J6OS3dJjDhjMwND3PCtdEh18Jk3DhR5IWj2MiDsOWksg3KOTXbOFNLfGbivkLuq4r76sqDd92cWY3xcSP1W_pAigwAcUQ3dQz4fASlpXZTDKESOo30YLtHaWfjc3VtdNAbRbW2vcmDVgBUY1bmaqkEHrzqhmkmpcqVbnpJNCh7IUof0jyr5aV7K4yece1EepD2JKkjILDx_kg5_lmBjuOatJn24H0rc8vH-j-ztm5-i5ewgUqsvhyeHG3DvajSCPrBNYD1xcWle47x3sK8qBSLwY_b1uR_NddlVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caveolin-1+function+at+the+plasma+membrane+and+in+intracellular+compartments+in+cancer&rft.jtitle=Cancer+and+metastasis+reviews&rft.au=Sim%C3%B3n%2C+L&rft.au=Campos%2C+A&rft.au=Leyton%2C+L&rft.au=Quest%2C+A.+F.+G&rft.date=2020-06-01&rft.pub=Springer&rft.issn=0167-7659&rft.volume=39&rft.issue=2&rft.spage=435&rft_id=info:doi/10.1007%2Fs10555-020-09890-x&rft.externalDocID=A712965828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7659&client=summon |