Caveolin-1 function at the plasma membrane and in intracellular compartments in cancer

Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understo...

Full description

Saved in:
Bibliographic Details
Published inCancer and metastasis reviews Vol. 39; no. 2; pp. 435 - 453
Main Authors Simón, L., Campos, A., Leyton, L., Quest, A. F. G.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0167-7659
1573-7233
1573-7233
DOI10.1007/s10555-020-09890-x

Cover

Abstract Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.
AbstractList Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.
Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.
Audience Academic
Author Leyton, L.
Campos, A.
Simón, L.
Quest, A. F. G.
Author_xml – sequence: 1
  givenname: L.
  surname: Simón
  fullname: Simón, L.
  organization: Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Advanced Center for Chronic Diseases (ACCDIS)
– sequence: 2
  givenname: A.
  surname: Campos
  fullname: Campos, A.
  organization: Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Advanced Center for Chronic Diseases (ACCDIS)
– sequence: 3
  givenname: L.
  surname: Leyton
  fullname: Leyton, L.
  organization: Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Advanced Center for Chronic Diseases (ACCDIS)
– sequence: 4
  givenname: A. F. G.
  surname: Quest
  fullname: Quest, A. F. G.
  email: aquest@med.uchile.cl
  organization: Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Advanced Center for Chronic Diseases (ACCDIS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32458269$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1q3DAUhUVJaSZpX6CLYtpNN071Y9nSphCGpi0Eumm7FbJ8PVGwpYlkh_Tte51J2kkIwQaD73cOukfniByEGICQt4yeMEqbT5lRKWVJOS2pVpqWNy_IislGlA0X4oCsKKubsqmlPiRHOV9SFIlGvyKHgldS8VqvyO-1vYY4-FCyop-Dm3wMhZ2K6QKK7WDzaIsRxjbZAIUNXeEDvlOyDoZhHmwqXBy3Nk0jhCkvU2eDg_SavOztkOHN3feY_Dr78nP9rTz_8fX7-vS8dLWoplJpJ5yyWipWy0or2fCut61wAB2TjjrgLRU4UrptbU3BdW3bSwWq7qnmVhyTzzvf7dyO0DlYzjaYbfKjTX9MtN48nAR_YTbx2jSCsUpLNPh4Z5Di1Qx5MqPPy3K4cJyz4RVmxjA1huiHR-hlnFPA9ZBiNRWKsj1qYwcwPvRxSWsxNacN47rG4BVS75-g3NZfmX3o5AkInw5G77ALvcf_D1zf7afxL4b760ZA7QCXYs4JeuP8ZJc7R2c_GEbN0iyza5bBZpnbZpkblPJH0nv3Z0ViJ8oIhw2k_5E9o_oLbmXfeQ
CitedBy_id crossref_primary_10_3390_cancers13123038
crossref_primary_10_4236_ojpathology_2022_123010
crossref_primary_10_7554_eLife_81288
crossref_primary_10_3389_fonc_2021_701933
crossref_primary_10_7717_peerj_16121
crossref_primary_10_3389_fonc_2021_632956
crossref_primary_10_1016_j_biopha_2024_116841
crossref_primary_10_1007_s00232_022_00236_y
crossref_primary_10_3390_ijms231911755
crossref_primary_10_3389_fcell_2021_828673
crossref_primary_10_1080_15321819_2024_2342825
crossref_primary_10_1038_s12276_023_01109_7
crossref_primary_10_1016_j_bioactmat_2024_09_021
crossref_primary_10_1038_s41598_024_57365_8
crossref_primary_10_3389_fcell_2022_946678
crossref_primary_10_1016_j_cellsig_2022_110399
crossref_primary_10_3390_cells14010044
crossref_primary_10_52547_rbmb_11_4_532
crossref_primary_10_3389_fimmu_2022_997726
crossref_primary_10_1007_s00232_020_00160_z
crossref_primary_10_2147_JIR_S439974
crossref_primary_10_1002_jbt_23785
crossref_primary_10_1016_j_tranon_2022_101464
crossref_primary_10_3390_ijms232213732
crossref_primary_10_1186_s12929_024_01099_2
crossref_primary_10_1016_j_bbagen_2024_130660
crossref_primary_10_1016_j_ejpb_2024_114412
crossref_primary_10_3390_biom12111698
crossref_primary_10_3390_biom15040456
crossref_primary_10_1002_advs_202306535
crossref_primary_10_1007_s00432_021_03793_2
crossref_primary_10_1002_jex2_70017
crossref_primary_10_1016_j_intimp_2021_108077
crossref_primary_10_1039_D4SC04825C
crossref_primary_10_3389_fonc_2021_606122
crossref_primary_10_1002_ctm2_381
crossref_primary_10_1096_fj_202100121RRR
crossref_primary_10_1371_journal_pone_0305222
crossref_primary_10_1016_j_intimp_2023_110284
crossref_primary_10_2174_1874467214666211130155902
crossref_primary_10_1016_j_mcpro_2024_100746
crossref_primary_10_1111_acel_14501
crossref_primary_10_3390_ijms22126236
crossref_primary_10_3389_fcell_2021_613336
crossref_primary_10_1016_j_jpba_2023_115729
crossref_primary_10_3390_ijms24076035
crossref_primary_10_1080_15548627_2020_1820787
crossref_primary_10_1007_s00232_020_00143_0
crossref_primary_10_3390_cancers14122862
crossref_primary_10_2174_1871527321666220909150406
crossref_primary_10_1038_s41388_024_03124_y
crossref_primary_10_3390_biom14020184
crossref_primary_10_3389_fphys_2025_1550647
crossref_primary_10_1186_s12943_022_01501_3
crossref_primary_10_3390_ph15080925
crossref_primary_10_1007_s10549_023_06919_x
crossref_primary_10_1016_j_cellsig_2024_111573
crossref_primary_10_1186_s12934_022_01944_9
crossref_primary_10_3390_molecules28237909
Cites_doi 10.1083/jcb.200903053
10.1007/s00005-016-0453-3
10.3892/ijo.2019.4774
10.1016/j.bbamcr.2018.02.004
10.1016/j.radonc.2009.07.004
10.1074/jbc.M111240200
10.7554/eLife.29854
10.1038/onc.2011.288
10.1016/j.semcdb.2019.05.015
10.1085/jgp.8.6.519
10.1016/j.cub.2011.03.030
10.1158/1541-7786.MCR-19-0856
10.1016/j.cmet.2012.01.004
10.1016/j.tcb.2015.10.010
10.1074/jbc.273.10.5419
10.1096/fj.201800985R
10.1038/ncomms11371
10.1038/s41418-018-0197-1
10.1083/jcb.200302028
10.3892/ijo_00000418
10.1096/fj.12-215798
10.3390/cells8101118
10.1146/annurev-cellbio-100617-062737
10.1038/nrm.2017.125
10.1172/JCI36843
10.1155/2014/960803
10.1016/j.gene.2016.01.029
10.1097/CMR.0000000000000046
10.1371/journal.pone.0033085
10.1242/jcs.076570
10.1002/jbt.22202
10.1111/acel.12606
10.1074/jbc.M117.815902
10.1091/mbc.E17-05-0278
10.1038/srep27351
10.1371/journal.pone.0044879
10.1242/jcs.062919
10.1242/jcs.141689
10.3390/molecules23081941
10.1091/mbc.E15-11-0756
10.1016/S0002-9440
10.1371/journal.pone.0043041
10.1128/mcb.23.15.5409-5420.2003
10.4161/cc.9.10.11601
10.1074/jbc.M111.304022
10.1016/s1535-6108
10.1186/s12943-016-0558-7
10.1111/jcmm.12030
10.1091/mbc.e07-12-1287
10.1002/ijc.24451
10.3892/ol.2019.10310
10.1242/jcs.01420
10.1074/jbc.M109.041152
10.1091/mbc.6.7.911
10.1096/fj.14-252320
10.1007/s00268-017-4065-9
10.1007/s12032-012-0396-4
10.1158/0008-5472.CAN-12-0448
10.1074/jbc.M005448200
10.18632/oncotarget.7583
10.1042/bj3380769
10.1242/jcs.102178
10.1083/jcb.201305142
10.1186/s12863-015-0231-y
10.1038/s41598-018-31323-7
10.1016/j.cell.2010.06.007
10.1083/jcb.200811059
10.18632/oncotarget.7675
10.1093/carcin/bgv081
10.1002/pros.20557
10.1016/j.cell.2012.06.042
10.1016/j.clinre.2015.06.017
10.1002/cphy.c160013
10.1038/ncb975
10.1016/j.biochi.2014.09.010
10.1016/j.chemphyslip.2017.11.010
10.1242/jcs.02894
10.1371/journal.pone.0133072
10.1097/00000478-200207000-00012
10.1080/15384101.2019.1618118
10.1016/j.ebiom.2019.01.058
10.1111/febs.12343
10.3390/biom9080314
10.2174/156652413804810745
10.1371/journal.pone.0005219
10.1007/s10585-011-9405-9
10.4161/cc.10.1.14243
10.1128/mcb.23.24.9389-9404.2003
10.1152/physrev.1997.77.3.759
10.1111/j.1600-0854.2009.01023.x
10.1083/jcb.200506103
10.1038/ncb1380
10.1016/j.devcel.2012.06.012
10.1038/s41556-018-0250-9
10.1016/j.bbapap.2019.02.005
10.1074/jbc.M212031200
10.1038/cr.2008.315
10.1083/jcb.201007152
10.1083/jcb.200603034
10.1007/978-3-319-26974-0_7
10.1083/jcb.201307055
10.7314/apjcp.2014.15.2.989
10.1101/cshperspect.a016758
10.1042/BST20190386
10.2174/1566524014666140128112827
10.2337/diabetes.54.3.679
10.1016/j.ejcb.2010.06.004
10.1007/s00109-013-1020-6
10.1007/s00018-017-2595-9
10.1016/j.cell.2007.11.042
10.1038/cddis.2017.469
10.1152/ajpcell.00470.2008
10.1016/j.canlet.2018.02.021
10.1039/b820820b
10.18632/oncotarget.2403
10.1186/s12951-020-0573-0
10.1016/s0962-8924
10.3892/ijo.2015.3091
10.1091/mbc.e08-09-0939
10.1042/BSR20180764
10.1016/j.canlet.2018.09.028
10.1242/jcs.084319
10.1074/jbc.M302301200
10.1074/jbc.M704069200
10.1038/nature21375
10.2217/nnm-2018-0094
10.1124/pr.54.3.431
10.1007/s10549-009-0594-8
10.1016/0014-5793
10.1126/science.280.5370.1763
10.1091/mbc.E11-09-0787
10.1152/ajpcell.00185.2008
10.1038/s41598-018-20161-2
10.1038/nrc.2016.89
10.1002/mc.22882
10.1038/onc.2016.168
10.1038/14067
10.4161/cc.8.23.10238
10.3892/ijo.2011.963
10.1128/MCB.01991-06
10.1186/s13045-015-0144-2
10.1016/j.semcancer.2014.01.005
10.1091/mbc.E13-03-0163
10.1038/nrd3802
10.18632/oncotarget.9738
10.1002/hep.23460
10.1091/mbc.e13-02-0095
10.1158/0008-5472.CAN-08-0343
10.4161/cc.11.6.19530
10.1016/j.canlet.2016.11.020
10.1126/science.1160809
10.1016/0300-9084
10.1016/j.cell.2011.02.013
10.1111/j.1600-0854.2009.00994.x
10.1242/jcs.086264
10.18632/oncotarget.22955
10.3892/ol.2018.8533
10.1111/j.1582-4934.2008.00331.x
10.1158/0008-5472.CAN-17-0604
10.1074/jbc.270.26.15693
10.1074/jbc.271.20.11930
10.1146/annurev.pharmtox.48.121506.124841
10.1038/nrc3915
10.1080/15548627.2015.1034411
10.1136/jclinpath-2017-204495
10.1074/jbc.M115.644336
10.4161/cam.26345
10.1152/ajpcell.2000.278.2.C423
10.7860/JCDR/2017/25303.9727
10.1038/ncomms7867
10.1038/onc.2013.192
10.1101/cshperspect.a016949
10.1111/pcmr.12085
10.1002/ijc.23142
10.1016/j.arcmed.2016.10.005
10.1016/j.cell.2010.12.031
10.1074/jbc.M002020200
10.1016/j.bbamcr.2012.04.013
10.1242/jcs.114.7.1397
10.1038/10100
10.1016/j.phymed.2010.08.006
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 Springer
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 Springer
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TO
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
8FQ
8FV
ABUWG
AFKRA
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
M3G
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s10555-020-09890-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database
Canadian Business & Current Affairs Database (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
CBCA Reference & Current Events
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
CBCA Complete (Alumni Edition)
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
CBCA Complete
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
CBCA Reference & Current Events
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Oncogenes and Growth Factors Abstracts

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1573-7233
EndPage 453
ExternalDocumentID PMC7311495
A712965828
32458269
10_1007_s10555_020_09890_x
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-4W
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67Z
6J9
6NX
78A
7X7
88E
8AO
8C1
8FI
8FJ
8FQ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJJC
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
ICQ
IH2
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LLZTM
M1P
M3G
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z82
Z87
Z8O
Z8V
Z91
ZGI
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
AEIIB
PMFND
7TO
7XB
8FK
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c634t-89c3c8a958165498572dfab3ceed15c0ce2b0365489bba60ecdbbf58e86f092a3
IEDL.DBID C6C
ISSN 0167-7659
1573-7233
IngestDate Thu Aug 21 13:23:15 EDT 2025
Thu Sep 04 15:13:25 EDT 2025
Sat Aug 23 14:54:25 EDT 2025
Tue Jun 17 21:36:09 EDT 2025
Tue Jun 10 15:36:05 EDT 2025
Tue Jun 10 20:35:53 EDT 2025
Mon Jul 21 05:41:02 EDT 2025
Tue Jul 01 04:03:41 EDT 2025
Thu Apr 24 22:58:36 EDT 2025
Fri Feb 21 02:41:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Caveolin-1
Metastasis
Localization
Organelles
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-89c3c8a958165498572dfab3ceed15c0ce2b0365489bba60ecdbbf58e86f092a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://doi.org/10.1007/s10555-020-09890-x
PMID 32458269
PQID 2416038011
PQPubID 36268
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311495
proquest_miscellaneous_2407313791
proquest_journals_2416038011
gale_infotracmisc_A712965828
gale_infotraccpiq_712965828
gale_infotracacademiconefile_A712965828
pubmed_primary_32458269
crossref_citationtrail_10_1007_s10555_020_09890_x
crossref_primary_10_1007_s10555_020_09890_x
springer_journals_10_1007_s10555_020_09890_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Netherlands
– name: Dordrecht
PublicationTitle Cancer and metastasis reviews
PublicationTitleAbbrev Cancer Metastasis Rev
PublicationTitleAlternate Cancer Metastasis Rev
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Sengupta, A., Mateo-Lozano, S., Tirado, O. M., & Notario, V. (2011). Auto-stimulatory action of secreted caveolin-1 on the proliferation of Ewing’s sarcoma cells. International Journal of Oncology, 38(5), 1259–1265 https://doi.org/10.3892/ijo.2011.963.
Geletu, M., Mohan, R., Arulanandam, R., Berger-Becvar, A., Nabi, I. R., Gunning, P. T., & Raptis, L. (2018). Reciprocal regulation of the cadherin-11/Stat3 axis by caveolin-1 in mouse fibroblasts and lung carcinoma cells. Biochimica Et Biophysica Acta. Molecular Cell Research, 1865(5), 794–802 https://doi.org/10.1016/j.bbamcr.2018.02.004.
Bravo-Sagua, R., Parra, V., Ortiz-Sandoval, C., Navarro-Marquez, M., Rodríguez, A. E., Diaz-Valdivia, N., Sanhueza, C., Lopez-Crisosto, C., Tahbaz, N., Rothermel, B. A., Hill, J. A., Cifuentes, M., Simmen, T., Quest, A. F. G., & Lavandero, S. (2019). Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress. Cell Death and Differentiation, 26(7), 1195–1212 https://doi.org/10.1038/s41418-018-0197-1.
Galbiati, F., Volonte, D., Brown, A. M., Weinstein, D. E., Ben-Ze’ev, A., Pestell, R. G., & Lisanti, M. P. (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. The Journal of Biological Chemistry, 275(30), 23368–23377 https://doi.org/10.1074/jbc.M002020200.
Torrejón, B., Cristóbal, I., Rojo, F., & García-Foncillas, J. (2017). Caveolin-1 is markedly downregulated in patients with early-stage colorectal cancer. World Journal of Surgery, 41(10), 2625–2630 https://doi.org/10.1007/s00268-017-4065-9.
Pfeiler, S., Thakur, M., Grünauer, P., Megens, R. T. A., Joshi, U., Coletti, R., Samara, V., Müller-Stoy, G., Ishikawa-Ankerhold, H., Stark, K., Klingl, A., Fröhlich, T., Arnold, G. J., Wörmann, S., Bruns, C. J., Algül, H., Weber, C., Massberg, S., & Engelmann, B. (2019). CD36-triggered cell invasion and persistent tissue colonization by tumor microvesicles during metastasis. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 33(2), 1860–1872 https://doi.org/10.1096/fj.201800985R.
Bosch, M., Marí, M., Herms, A., Fernández, A., Fajardo, A., Kassan, A., Giralt, A., Colell, A., Balgoma, D., Barbero, E., González-Moreno, E., Matias, N., Tebar, F., Balsinde, J., Camps, M., Enrich, C., Gross, S. P., García-Ruiz, C., Pérez-Navarro, E., et al. (2011). Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Current Biology: CB, 21(8), 681–686 https://doi.org/10.1016/j.cub.2011.03.030.
Li, J., Gu, D., Lee, S. S.-Y., Song, B., Bandyopadhyay, S., Chen, S., Konieczny, S. F., Ratliff, T. L., Liu, X., Xie, J., & Cheng, J.-X. (2016). Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene, 35(50), 6378–6388 https://doi.org/10.1038/onc.2016.168.
Miotti, S., Tomassetti, A., Facetti, I., Sanna, E., Berno, V., & Canevari, S. (2005). Simultaneous expression of caveolin-1 and E-cadherin in ovarian carcinoma cells stabilizes adherens junctions through inhibition of Src-related kinases. The American Journal of Pathology, 167(5), 1411–1427 https://doi.org/10.1016/S0002-9440(10)61228-X.
Nethe, M., Anthony, E. C., Fernandez-Borja, M., Dee, R., Geerts, D., Hensbergen, P. J., Deelder, A. M., Schmidt, G., & Hordijk, P. L. (2010). Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. Journal of Cell Science, 123(Pt 11), 1948–1958 https://doi.org/10.1242/jcs.062919.
Le, P. U., Guay, G., Altschuler, Y., & Nabi, I. R. (2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. The Journal of Biological Chemistry, 277(5), 3371–3379 https://doi.org/10.1074/jbc.M111240200.
Lobos-Gonzalez, L., Aguilar-Guzmán, L., Fernandez, J. G., Muñoz, N., Hossain, M., Bieneck, S., Silva, V., Burzio, V., Sviderskaya, E. V., Bennett, D. C., Leyton, L., & Quest, A. F. G. (2014). Caveolin-1 is a risk factor for postsurgery metastasis in preclinical melanoma models. Melanoma Research, 24(2), 108–119 https://doi.org/10.1097/CMR.0000000000000046.
Campos, A., Salomon, C., Bustos, R., Díaz, J., Martínez, S., Silva, V., Reyes, C., Díaz-Valdivia, N., Varas-Godoy, M., Lobos-González, L., & Quest, A. F. (2018). Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine (London, England), 13(20), 2597–2609 https://doi.org/10.2217/nnm-2018-0094.
Bastiani, M., Liu, L., Hill, M. M., Jedrychowski, M. P., Nixon, S. J., Lo, H. P., Abankwa, D., Luetterforst, R., Fernandez-Rojo, M., Breen, M. R., Gygi, S. P., Vinten, J., Walser, P. J., North, K. N., Hancock, J. F., Pilch, P. F., & Parton, R. G. (2009). MURC/cavin-4 and cavin family members form tissue-specific caveolar complexes. The Journal of Cell Biology, 185(7), 1259–1273 https://doi.org/10.1083/jcb.200903053.
Pedersen, J. I., & Gustafsson, J. (1980). Conversion of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid into cholic acid by rat liver peroxisomes. FEBS Letters, 121(2), 345–348 https://doi.org/10.1016/0014-5793(80)80377-2.
Indira Chandran, V., Månsson, A.-S., Barbachowska, M., Cerezo-Magaña, M., Nodin, B., Joshi, B., Koppada, N., Saad, O. M., Gluz, O., Isaksson, K., Borgquist, S., Jirström, K., Nabi, I. R., Jernström, H., & Belting, M. (2020). Hypoxia attenuates trastuzumab uptake and trastuzumab-emtansine (T-DM1) cytotoxicity through redistribution of phosphorylated caveolin-1. Molecular Cancer Research, 18(4), 644–656 https://doi.org/10.1158/1541-7786.MCR-19-0856.
Capiod, T. (2016). Extracellular calcium has multiple targets to control cell proliferation. Advances in Experimental Medicine and Biology, 898, 133–156 https://doi.org/10.1007/978-3-319-26974-0_7.
Joshi, B., Strugnell, S. S., Goetz, J. G., Kojic, L. D., Cox, M. E., Griffith, O. L., Chan, S. K., Jones, S. J., Leung, S.-P., Masoudi, H., Leung, S., Wiseman, S. M., & Nabi, I. R. (2008). Phosphorylated caveolin-1 regulates rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Research, 68(20), 8210–8220 https://doi.org/10.1158/0008-5472.CAN-08-0343.
Gao, Y., Li, L., Li, T., Ma, L., Yuan, M., Sun, W., Cheng, H. L., Niu, L., Du, Z., Quan, Z., Fan, Y., Fan, J., Luo, C., & Wu, X. (2019). Simvastatin delays castration-resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin-1. International Journal of Oncology, 54(6), 2054–2068 https://doi.org/10.3892/ijo.2019.4774.
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674 https://doi.org/10.1016/j.cell.2011.02.013.
Byrne, D. P., Dart, C., & Rigden, D. J. (2012). Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS One, 7(9), e44879 https://doi.org/10.1371/journal.pone.0044879.
Chatterjee, M., Ben-Josef, E., Robb, R., Vedaie, M., Seum, S., Thirumoorthy, K., Palanichamy, K., Harbrecht, M., Chakravarti, A., & Williams, T. M. (2017). Caveolae-mediated endocytosis is critical for albumin cellular uptake and response to albumin-bound chemotherapy. Cancer Research, 77(21), 5925–5937 https://doi.org/10.1158/0008-5472.CAN-17-0604.
Sonveaux, P., Végran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O., & Dewhirst, M. W. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of Clinical Investigation, 118(12), 3930–3942 https://doi.org/10.1172/JCI36843.
Petan, T., Jarc, E., & Jusović, M. (2018). Lipid droplets in cancer: guardians of fat in a stressful world. Molecules (Basel, Switzerland), 23(8) https://doi.org/10.3390/molecules23081941.
Volonte, D., Vyas, A. R., Chen, C., Dacic, S., Stabile, L. P., Kurland, B. F., Abberbock, S. R., Burns, T. F., Herman, J. G., Di, Y. P., & Galbiati, F. (2018). Caveolin-1 promotes the tumor suppressor properties of oncogene-induced cellular senescence. The Journal of Biological Chemistry, 293(5), 1794–1809 https://doi.org/10.1074/jbc.M117.815902.
He, M., Qin, H., Poon, T. C. W., Sze, S.-C., Ding, X., Co, N. N., Ngai, S.-M., Chan, T.-F., & Wong, N. (2015). Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis, 36(9), 1008–1018 https://doi.org/10.1093/carcin/bgv081.
Morén, B., Shah, C., Howes, M. T., Schieber, N. L., McMahon, H. T., Parton, R. G., Daumke, O., & Lundmark, R. (2012). EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Molecular Biology of the Cell, 23(7), 1316–1329 https://doi.org/10.1091/mbc.E11-09-0787.
Overmiller, A. M., McGuinn, K. P., Roberts, B. J., Cooper, F., Brennan-Crispi, D. M., Deguchi, T., Peltonen, S., Wahl, J. K., & Mahoney, M. G. (2016). c-Src/Cav1-dependent activation of the EGFR by Dsg2. Oncotarget, 7(25), 37536–37555. https://doi.org/10.18632/oncotarget.7675.
Bonuccelli, G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., Witkiewicz, A. K., Vander Heiden, M. G., Migneco, G., Chiavarina, B., Frank, P. G., Capozza, F., Flomenberg, N., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2010). The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle (Georgetown, Texas), 9(10), 1960–1971 https://doi.org/10.4161/cc.9.10.11601.
Lara, P., Palma-Florez, S., Salas-Huenuleo, E., Polakovicova, I., Guerrero, S., Lobos-Gonzalez, L., Campos, A., Muñoz, L., Jorquera-Cordero, C., Varas-Godoy, M., Cancino, J., Arias, E., Villegas, J., Cruz, L. J., Albericio, F., Araya, E., Corvalan, A. H., Quest, A. F. G., & Kogan, M. J. (2020). Gold nanoparti
9890_CR19
9890_CR142
9890_CR141
9890_CR140
9890_CR146
9890_CR145
9890_CR144
9890_CR143
9890_CR149
9890_CR148
9890_CR147
9890_CR20
9890_CR21
9890_CR26
9890_CR27
9890_CR28
9890_CR29
9890_CR22
9890_CR23
9890_CR24
9890_CR25
9890_CR153
9890_CR152
9890_CR151
9890_CR150
9890_CR157
9890_CR156
9890_CR155
9890_CR154
9890_CR159
9890_CR158
9890_CR30
9890_CR31
9890_CR32
9890_CR37
9890_CR38
9890_CR39
9890_CR33
9890_CR34
9890_CR35
9890_CR36
9890_CR160
9890_CR164
9890_CR163
9890_CR162
9890_CR161
9890_CR168
9890_CR167
9890_CR166
9890_CR165
9890_CR169
9890_CR40
9890_CR41
9890_CR42
9890_CR43
9890_CR48
9890_CR49
9890_CR44
9890_CR45
9890_CR46
9890_CR47
9890_CR171
9890_CR170
9890_CR175
9890_CR174
9890_CR173
9890_CR172
9890_CR179
9890_CR178
9890_CR177
9890_CR176
9890_CR51
9890_CR52
9890_CR53
9890_CR54
9890_CR50
9890_CR59
9890_CR55
9890_CR56
9890_CR57
9890_CR58
9890_CR182
9890_CR181
9890_CR180
9890_CR186
9890_CR185
9890_CR184
9890_CR183
9890_CR102
9890_CR101
9890_CR100
9890_CR187
9890_CR106
9890_CR105
9890_CR104
9890_CR103
9890_CR62
9890_CR63
9890_CR64
9890_CR65
9890_CR60
9890_CR61
9890_CR66
9890_CR67
9890_CR68
9890_CR69
9890_CR113
9890_CR112
9890_CR111
9890_CR110
9890_CR117
9890_CR116
9890_CR115
9890_CR114
9890_CR73
9890_CR74
9890_CR109
9890_CR75
9890_CR108
9890_CR76
9890_CR107
9890_CR70
9890_CR71
9890_CR72
9890_CR77
9890_CR78
9890_CR79
9890_CR120
9890_CR4
9890_CR124
9890_CR5
9890_CR123
9890_CR6
9890_CR122
9890_CR7
9890_CR121
9890_CR128
9890_CR1
9890_CR127
9890_CR2
9890_CR126
9890_CR3
9890_CR125
9890_CR84
9890_CR85
9890_CR86
9890_CR119
9890_CR87
9890_CR118
9890_CR80
9890_CR81
9890_CR82
9890_CR83
9890_CR88
9890_CR89
9890_CR131
9890_CR130
9890_CR135
9890_CR134
9890_CR133
9890_CR90
9890_CR132
9890_CR139
9890_CR138
9890_CR137
9890_CR136
9890_CR95
9890_CR96
9890_CR97
9890_CR10
9890_CR98
9890_CR129
9890_CR8
9890_CR91
9890_CR9
9890_CR92
9890_CR93
9890_CR94
9890_CR15
9890_CR16
9890_CR17
9890_CR18
9890_CR11
9890_CR99
9890_CR12
9890_CR13
9890_CR14
References_xml – reference: Kojic, L. D., Joshi, B., Lajoie, P., Le, P. U., Cox, M. E., Turbin, D. A., Wiseman, S. M., & Nabi, I. R. (2007). Raft-dependent endocytosis of autocrine motility factor is phosphatidylinositol 3-kinase-dependent in breast carcinoma cells. The Journal of Biological Chemistry, 282(40), 29305–29313 https://doi.org/10.1074/jbc.M704069200.
– reference: Bender, F. C., Reymond, M. A., Bron, C., & Quest, A. F. (2000). Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Research, 60(20), 5870–5878.
– reference: Joshi, B., Strugnell, S. S., Goetz, J. G., Kojic, L. D., Cox, M. E., Griffith, O. L., Chan, S. K., Jones, S. J., Leung, S.-P., Masoudi, H., Leung, S., Wiseman, S. M., & Nabi, I. R. (2008). Phosphorylated caveolin-1 regulates rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Research, 68(20), 8210–8220 https://doi.org/10.1158/0008-5472.CAN-08-0343.
– reference: Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabrò, L., Spada, M., Perdicchio, M., Marino, M. L., Federici, C., Iessi, E., Brambilla, D., Venturi, G., Lozupone, F., Santinami, M., Huber, V., Maio, M., Rivoltini, L., & Fais, S. (2009). High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One, 4(4), e5219 https://doi.org/10.1371/journal.pone.0005219.
– reference: Tagawa, A., Mezzacasa, A., Hayer, A., Longatti, A., Pelkmans, L., & Helenius, A. (2005). Assembly and trafficking of caveolar domains in the cell. The Journal of Cell Biology, 170(5), 769–779 https://doi.org/10.1083/jcb.200506103.
– reference: Núñez-Wehinger, S., Ortiz, R. J., Díaz, N., Díaz, J., Lobos-González, L., & Quest, A. F. G. (2014). Caveolin-1 in cell migration and metastasis. Current Molecular Medicine, 14(2), 255–274 https://doi.org/10.2174/1566524014666140128112827.
– reference: Campos, A., Salomon, C., Bustos, R., Díaz, J., Martínez, S., Silva, V., Reyes, C., Díaz-Valdivia, N., Varas-Godoy, M., Lobos-González, L., & Quest, A. F. (2018). Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine (London, England), 13(20), 2597–2609 https://doi.org/10.2217/nnm-2018-0094.
– reference: Ortiz, R., Díaz, J., Díaz, N., Lobos-Gonzalez, L., Cárdenas, A., Contreras, P., Díaz, M. I., Otte, E., Cooper-White, J., Torres, V., Leyton, L., & Quest, A. F. G. (2016). Extracellular matrix-specific caveolin-1 phosphorylation on tyrosine 14 is linked to augmented melanoma metastasis but not tumorigenesis. Oncotarget, 7(26), 40571–40593. https://doi.org/10.18632/oncotarget.9738.
– reference: Shi, Y., Tan, S.-H., Ng, S., Zhou, J., Yang, N.-D., Koo, G.-B., McMahon, K.-A., Parton, R. G., Hill, M. M., Del Pozo, M. A., Kim, Y.-S., & Shen, H.-M. (2015). Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy, 11(5), 769–784 https://doi.org/10.1080/15548627.2015.1034411.
– reference: Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674 https://doi.org/10.1016/j.cell.2011.02.013.
– reference: Li, X., & Gould, S. J. (2003). The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. The Journal of Biological Chemistry, 278(19), 17012–17020 https://doi.org/10.1074/jbc.M212031200.
– reference: Lara, P., Palma-Florez, S., Salas-Huenuleo, E., Polakovicova, I., Guerrero, S., Lobos-Gonzalez, L., Campos, A., Muñoz, L., Jorquera-Cordero, C., Varas-Godoy, M., Cancino, J., Arias, E., Villegas, J., Cruz, L. J., Albericio, F., Araya, E., Corvalan, A. H., Quest, A. F. G., & Kogan, M. J. (2020). Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors. Journal of Nanobiotechnology, 18(1), 20 https://doi.org/10.1186/s12951-020-0573-0.
– reference: Torres, V. A., Tapia, J. C., Rodríguez, D. A., Párraga, M., Lisboa, P., Montoya, M., Leyton, L., & Quest, A. F. G. (2006). Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. Journal of Cell Science, 119(Pt 9), 1812–1823 https://doi.org/10.1242/jcs.02894.
– reference: Witkiewicz, A. K., Whitaker-Menezes, D., Dasgupta, A., Philp, N. J., Lin, Z., Gandara, R., Sneddon, S., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2012). Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle (Georgetown, Texas), 11(6), 1108–1117 https://doi.org/10.4161/cc.11.6.19530.
– reference: Pedersen, J. I., & Gustafsson, J. (1980). Conversion of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid into cholic acid by rat liver peroxisomes. FEBS Letters, 121(2), 345–348 https://doi.org/10.1016/0014-5793(80)80377-2.
– reference: Parton, R. G. (2018). Caveolae: structure, function, and relationship to disease. Annual Review of Cell and Developmental Biology, 34, 111–136 https://doi.org/10.1146/annurev-cellbio-100617-062737.
– reference: Meng, F., Saxena, S., Liu, Y., Joshi, B., Wong, T. H., Shankar, J., Foster, L. J., Bernatchez, P., & Nabi, I. R. (2017). The phospho-caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration. Molecular Biology of the Cell, 28(16), 2190–2201 https://doi.org/10.1091/mbc.E17-05-0278.
– reference: Mayor, S., Parton, R. G., & Donaldson, J. G. (2014). Clathrin-independent pathways of endocytoss. Cold Spring Harbor Perspectives in Biology, 6(6) https://doi.org/10.1101/cshperspect.a016758.
– reference: Choudhury, A., Marks, D. L., Proctor, K. M., Gould, G. W., & Pagano, R. E. (2006). Regulation of caveolar endocytosis by syntaxin 6-dependent delivery of membrane components to the cell surface. Nature Cell Biology, 8(4), 317–328 https://doi.org/10.1038/ncb1380.
– reference: Díaz, J., Mendoza, P., Ortiz, R., Díaz, N., Leyton, L., Stupack, D., Quest, A. F. G., & Torres, V. A. (2014). Rab5 is required in metastatic cancer cells for caveolin-1-enhanced Rac1 activation, migration and invasion. Journal of Cell Science, 127(Pt 11), 2401–2406 https://doi.org/10.1242/jcs.141689.
– reference: Gaus, K., Le Lay, S., Balasubramanian, N., & Schwartz, M. A. (2006). Integrin-mediated adhesion regulates membrane order. Journal of Cell Biology, 174(5), 725–734 https://doi.org/10.1083/jcb.200603034.
– reference: Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. The Journal of General Physiology, 8(6), 519–530 https://doi.org/10.1085/jgp.8.6.519.
– reference: Li, M., Yang, X., Zhang, J., Shi, H., Hang, Q., Huang, X., Liu, G., Zhu, J., He, S., & Wang, H. (2013). Effects of EHD2 interference on migration of esophageal squamous cell carcinoma. Medical Oncology (Northwood, London, England), 30(1), 396 https://doi.org/10.1007/s12032-012-0396-4.
– reference: Shim, S. H., Sur, S., Steele, R., Albert, C. J., Huang, C., Ford, D. A., & Ray, R. B. (2018). Disrupting cholesterol esterification by bitter melon suppresses triple-negative breast cancer cell growth. Molecular Carcinogenesis, 57(11), 1599–1607 https://doi.org/10.1002/mc.22882.
– reference: Boscher, C., & Nabi, I. R. (2013). Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Molecular Biology of the Cell, 24(13), 2134–2145 https://doi.org/10.1091/mbc.e13-02-0095.
– reference: Kassan, A., Herms, A., Fernández-Vidal, A., Bosch, M., Schieber, N. L., Reddy, B. J. N., Fajardo, A., Gelabert-Baldrich, M., Tebar, F., Enrich, C., Gross, S. P., Parton, R. G., & Pol, A. (2013). Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. The Journal of Cell Biology, 203(6), 985–1001 https://doi.org/10.1083/jcb.201305142.
– reference: Kahlert, C., & Kalluri, R. (2013). Exosomes in tumor microenvironment influence cancer progression and metastasis. Journal of Molecular Medicine (Berlin, Germany), 91(4), 431–437 https://doi.org/10.1007/s00109-013-1020-6.
– reference: Ingelmo-Torres, M., Gonza’lez-Moreno, E., Kassan, A., Hanzal-Bayer, M., Tebar, F., Herms, A., Grewal, T., Hancock, J. F., Enrich, C., Bosch, M., Gross, S. P., Parton, R. G., & Pol, A. (2009). Hydrophobic and basic domains target proteins to lipid droplets. Traffic, 10(12), 1785–1801 https://doi.org/10.1111/j.1600-0854.2009.00994.x.
– reference: Petan, T., Jarc, E., & Jusović, M. (2018). Lipid droplets in cancer: guardians of fat in a stressful world. Molecules (Basel, Switzerland), 23(8) https://doi.org/10.3390/molecules23081941.
– reference: Rimessi, A., Pedriali, G., Vezzani, B., Tarocco, A., Marchi, S., Wieckowski, M. R., Giorgi, C., & Pinton, P. (2020). Interorganellar calcium signaling in the regulation of cell metabolism: a cancer perspective. Seminars in Cell & Developmental Biology, 98, 167–180 https://doi.org/10.1016/j.semcdb.2019.05.015.
– reference: Walser, P. J., Ariotti, N., Howes, M., Ferguson, C., Webb, R., Schwudke, D., Leneva, N., Cho, K.-J., Cooper, L., Rae, J., Floetenmeyer, M., Oorschot, V. M. J., Skoglund, U., Simons, K., Hancock, J. F., & Parton, R. G. (2012). Constitutive formation of caveolae in a bacterium. Cell, 150(4), 752–763 https://doi.org/10.1016/j.cell.2012.06.042.
– reference: Li, Y., Che, Q., Bian, Y., Zhou, Q., Jiang, F., Tong, H., Ke, J., Wang, K., & Wan, X.-P. (2015). Autocrine motility factor promotes epithelial-mesenchymal transition in endometrial cancer via MAPK signaling pathway. International Journal of Oncology, 47(3), 1017–1024 https://doi.org/10.3892/ijo.2015.3091.
– reference: Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., De Milito, A., Coscia, C., Iessi, E., Logozzi, M., Molinari, A., Colone, M., Tatti, M., Sargiacomo, M., & Fais, S. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. The Journal of Biological Chemistry, 284(49), 34211–34222 https://doi.org/10.1074/jbc.M109.041152.
– reference: Monier, S., Parton, R. G., Vogel, F., Behlke, J., Henske, A., & Kurzchalia, T. V. (1995). VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Molecular Biology of the Cell, 6(7), 911–927 https://doi.org/10.1091/mbc.6.7.911.
– reference: Zoeller, R. A., Lake, A. C., Nagan, N., Gaposchkin, D. P., Legner, M. A., & Lieberthal, W. (1999). Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. The Biochemical Journal, 338(Pt 3), 769–776.
– reference: Raja, S., Shah, S., Tariq, A., Bibi, N., Sughra, K., Yousuf, A., Khawaja, A., Nawaz, M., Mehmood, A., Khan, M., & Hussain, A. (2019). Caveolin-1 and dynamin-2 overexpression is associated with the progression of bladder cancer. Oncology Letters. https://doi.org/10.3892/ol.2019.10310.
– reference: Okamoto, T., Schlegel, A., Scherer, P. E., & Lisanti, M. P. (1998). Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. The Journal of Biological Chemistry, 273(10), 5419–5422 https://doi.org/10.1074/jbc.273.10.5419.
– reference: Sonveaux, P., Végran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O., & Dewhirst, M. W. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of Clinical Investigation, 118(12), 3930–3942 https://doi.org/10.1172/JCI36843.
– reference: Anand, S., Samuel, M., Kumar, S., & Mathivanan, S. (2019). Ticket to a bubble ride: cargo sorting into exosomes and extracellular vesicles. Biochimica et Biophysica Acta. Proteins and Proteomics, 1867(12), 140203 https://doi.org/10.1016/j.bbapap.2019.02.005.
– reference: Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4(6), 499–515 https://doi.org/10.1016/s1535-6108(03)00304-0.
– reference: Torrejón, B., Cristóbal, I., Rojo, F., & García-Foncillas, J. (2017). Caveolin-1 is markedly downregulated in patients with early-stage colorectal cancer. World Journal of Surgery, 41(10), 2625–2630 https://doi.org/10.1007/s00268-017-4065-9.
– reference: Czernek, L., & Düchler, M. (2017). Functions of cancer-derived extracellular vesicles in immunosuppression. Archivum Immunologiae et Therapiae Experimentalis, 65(4), 311–323 https://doi.org/10.1007/s00005-016-0453-3.
– reference: Bastiani, M., Liu, L., Hill, M. M., Jedrychowski, M. P., Nixon, S. J., Lo, H. P., Abankwa, D., Luetterforst, R., Fernandez-Rojo, M., Breen, M. R., Gygi, S. P., Vinten, J., Walser, P. J., North, K. N., Hancock, J. F., Pilch, P. F., & Parton, R. G. (2009). MURC/cavin-4 and cavin family members form tissue-specific caveolar complexes. The Journal of Cell Biology, 185(7), 1259–1273 https://doi.org/10.1083/jcb.200903053.
– reference: Volonte, D., Vyas, A. R., Chen, C., Dacic, S., Stabile, L. P., Kurland, B. F., Abberbock, S. R., Burns, T. F., Herman, J. G., Di, Y. P., & Galbiati, F. (2018). Caveolin-1 promotes the tumor suppressor properties of oncogene-induced cellular senescence. The Journal of Biological Chemistry, 293(5), 1794–1809 https://doi.org/10.1074/jbc.M117.815902.
– reference: Seemann, E., Sun, M., Krueger, S., Tröger, J., Hou, W., Haag, N., Schüler, S., Westermann, M., Huebner, C. A., Romeike, B., Kessels, M. M., & Qualmann, B. (2017). Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. eLife, 6 https://doi.org/10.7554/eLife.29854.
– reference: Gottlieb-Abraham, E., Shvartsman, D. E., Donaldson, J. C., Ehrlich, M., Gutman, O., Martin, G. S., & Henis, Y. I. (2013). Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Molecular Biology of the Cell, 24(24), 3881–3895 https://doi.org/10.1091/mbc.E13-03-0163.
– reference: Mathieu, M., Martin-Jaular, L., Lavieu, G., & Théry, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 21(1), 9–17 https://doi.org/10.1038/s41556-018-0250-9.
– reference: Chatterjee, M., Ben-Josef, E., Robb, R., Vedaie, M., Seum, S., Thirumoorthy, K., Palanichamy, K., Harbrecht, M., Chakravarti, A., & Williams, T. M. (2017). Caveolae-mediated endocytosis is critical for albumin cellular uptake and response to albumin-bound chemotherapy. Cancer Research, 77(21), 5925–5937 https://doi.org/10.1158/0008-5472.CAN-17-0604.
– reference: Antalis, C. J., Uchida, A., Buhman, K. K., & Siddiqui, R. A. (2011). Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clinical & Experimental Metastasis, 28(8), 733–741 https://doi.org/10.1007/s10585-011-9405-9.
– reference: Han, T., Kang, D., Ji, D., Wang, X., Zhan, W., Fu, M., Xin, H.-B., & Wang, J.-B. (2013). How does cancer cell metabolism affect tumor migration and invasion? Cell Adhesion & Migration, 7(5), 395–403 https://doi.org/10.4161/cam.26345.
– reference: Okada, S., Raja, S. A., Okerblom, J., Boddu, A., Horikawa, Y., Ray, S., Okada, H., Kawamura, I., Murofushi, Y., Murray, F., & Patel, H. H. (2019). Deletion of caveolin scaffolding domain alters cancer cell migration. Cell Cycle (Georgetown, Texas), 18(11), 1268–1280 https://doi.org/10.1080/15384101.2019.1618118.
– reference: Liu, S., Xiong, X., Zhao, X., Yang, X., & Wang, H. (2015). F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases. Journal of Hematology & Oncology, 8, 47://doi.org/10.1186/s13045-015-0144-2.
– reference: Raturi, A., & Simmen, T. (2013). Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochimica et Biophysica Acta, 1833(1), 213–224 https://doi.org/10.1016/j.bbamcr.2012.04.013.
– reference: Rizzuto, R. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 280(5370), 1763–1766 https://doi.org/10.1126/science.280.5370.1763.
– reference: Huertas-Martínez, J., Rello-Varona, S., Herrero-Martín, D., Barrau, I., García-Monclús, S., Sáinz-Jaspeado, M., Lagares-Tena, L., Núñez-Álvarez, Y., Mateo-Lozano, S., Mora, J., Roma, J., Toran, N., Moran, S., López-Alemany, R., Gallego, S., Esteller, M., Peinado, M. A., Del Muro, X. G., & Tirado, O. M. (2014). Caveolin-1 is down-regulated in alveolar rhabdomyosarcomas and negatively regulates tumor growth. Oncotarget, 5(20), 9744–9755. https://doi.org/10.18632/oncotarget.2403.
– reference: van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews. Molecular Cell Biology, 19(4), 213–228 https://doi.org/10.1038/nrm.2017.125.
– reference: Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2015). Caveolae and signalling in cancer. Nature Reviews. Cancer, 15(4), 225–237 https://doi.org/10.1038/nrc3915.
– reference: Chen, Y.-G. (2009). Endocytic regulation of TGF-beta signaling. Cell Research, 19(1), 58–70 https://doi.org/10.1038/cr.2008.315.
– reference: Bravo-Sagua, R., Parra, V., Ortiz-Sandoval, C., Navarro-Marquez, M., Rodríguez, A. E., Diaz-Valdivia, N., Sanhueza, C., Lopez-Crisosto, C., Tahbaz, N., Rothermel, B. A., Hill, J. A., Cifuentes, M., Simmen, T., Quest, A. F. G., & Lavandero, S. (2019). Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress. Cell Death and Differentiation, 26(7), 1195–1212 https://doi.org/10.1038/s41418-018-0197-1.
– reference: Yu, D.-M., Jung, S. H., An, H.-T., Lee, S., Hong, J., Park, J. S., Lee, H., Lee, H., Bahn, M.-S., Lee, H. C., Han, N.-K., Ko, J., Lee, J.-S., & Ko, Y.-G. (2017). Caveolin-1 deficiency induces premature senescence with mitochondrial dysfunction. Aging Cell, 16(4), 773–784 https://doi.org/10.1111/acel.12606.
– reference: Otera, H., Wang, C., Cleland, M. M., Setoguchi, K., Yokota, S., Youle, R. J., & Mihara, K. (2010). Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. The Journal of Cell Biology, 191(6), 1141–1158 https://doi.org/10.1083/jcb.201007152.
– reference: Quest, A. F. G., Gutierrez-Pajares, J. L., & Torres, V. A. (2008). Caveolin-1: an ambiguous partner in cell signalling and cancer. Journal of Cellular and Molecular Medicine, 12(4), 1130–1150 https://doi.org/10.1111/j.1582-4934.2008.00331.x.
– reference: Zhou, M., Chinnaiyan, A. M., Kleer, C. G., Lucas, P. C., & Rubin, M. A. (2002). Alpha-methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. The American Journal of Surgical Pathology, 26(7), 926–931 https://doi.org/10.1097/00000478-200207000-00012.
– reference: Hayer, A., Stoeber, M., Bissig, C., & Helenius, A. (2010). Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic, 11(3), 361–382 https://doi.org/10.1111/j.1600-0854.2009.01023.x.
– reference: Fridolfsson, H. N., Roth, D. M., Insel, P. A., & Patel, H. H. (2014). Regulation of intracellular signaling and function by caveolin. The FASEB Journal, 28(9), 3823–3831 https://doi.org/10.1096/fj.14-252320.
– reference: Collins, B. M., Davis, M. J., Hancock, J. F., & Parton, R. G. (2012). Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Developmental Cell, 23(1), 11–20 https://doi.org/10.1016/j.devcel.2012.06.012.
– reference: Shajahan, A. N., Dobbin, Z. C., Hickman, F. E., Dakshanamurthy, S., & Clarke, R. (2012). Tyrosine-phosphorylated caveolin-1 (Tyr-14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal kinase (JNK). The Journal of Biological Chemistry, 287(21), 17682–17692 https://doi.org/10.1074/jbc.M111.304022.
– reference: Torres, V. A., Tapia, J. C., Rodriguez, D. A., Lladser, A., Arredondo, C., Leyton, L., & Quest, A. F. G. (2007). E-cadherin is required for caveolin-1-mediated down-regulation of the inhibitor of apoptosis protein survivin via reduced beta-catenin-Tcf/Lef-dependent transcription. Molecular and Cellular Biology, 27(21), 7703–7717 https://doi.org/10.1128/MCB.01991-06.
– reference: Meng, H., Tian, L., Zhou, J., Li, Z., Jiao, X., Li, W. W., Plomann, M., Xu, Z., Lisanti, M. P., Wang, C., & Pestell, R. G. (2011). PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b. Cell Cycle (Georgetown, Texas), 10(1), 73–81 https://doi.org/10.4161/cc.10.1.14243.
– reference: Guruswamy, S., & Rao, C. V. (2009). Synergistic effects of lovastatin and celecoxib on caveolin-1 and its down-stream signaling molecules: implications for colon cancer prevention. International Journal of Oncology, 35(5), 1037–1043 https://doi.org/10.3892/ijo_00000418.
– reference: Razani, B., Woodman, S. E., & Lisanti, M. P. (2002). Caveolae: from cell biology to animal physiology. Pharmacological Reviews, 54(3), 431–467 https://doi.org/10.1124/pr.54.3.431.
– reference: Tahir, S. A., Yang, G., Ebara, S., Timme, T. L., Satoh, T., Li, L., Goltsov, A., Ittmann, M., Morrisett, J. D., & Thompson, T. C. (2001). Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Research, 61(10), 3882–3885.
– reference: He, M., Qin, H., Poon, T. C. W., Sze, S.-C., Ding, X., Co, N. N., Ngai, S.-M., Chan, T.-F., & Wong, N. (2015). Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis, 36(9), 1008–1018 https://doi.org/10.1093/carcin/bgv081.
– reference: Quest, A. F. G., Lobos-González, L., Nuñez, S., Sanhueza, C., Fernández, J.-G., Aguirre, A., Rodríguez, D., Leyton, L., & Torres, V. (2013). The caveolin-1 connection to cell death and survival. Current Molecular Medicine, 13(2), 266–281 https://doi.org/10.2174/156652413804810745.
– reference: Cai, M., Sun, X., Wang, W., Lian, Z., Wu, P., Han, S., Chen, H., & Zhang, P. (2018). Disruption of peroxisome function leads to metabolic stress, mTOR inhibition, and lethality in liver cancer cells. Cancer Letters, 421, 82–93 https://doi.org/10.1016/j.canlet.2018.02.021.
– reference: Nwosu, Z. C., Ebert, M. P., Dooley, S., & Meyer, C. (2016). Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Molecular Cancer, 15(1), 71 https://doi.org/10.1186/s12943-016-0558-7.
– reference: Hill, M. M., Daud, N. H., Aung, C. S., Loo, D., Martin, S., Murphy, S., Black, D. M., Barry, R., Simpson, F., Liu, L., Pilch, P. F., Hancock, J. F., Parat, M.-O., & Parton, R. G. (2012). Co-regulation of cell polarization and migration by caveolar proteins PTRF/cavin-1 and caveolin-1. PLoS One, 7(8), e43041 https://doi.org/10.1371/journal.pone.0043041.
– reference: Schlegel, A., Arvan, P., & Lisanti, M. P. (2001). Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. The Journal of Biological Chemistry, 276(6), 4398–4408 https://doi.org/10.1074/jbc.M005448200.
– reference: Karam, J. A., Lotan, Y., Roehrborn, C. G., Ashfaq, R., Karakiewicz, P. I., & Shariat, S. F. (2007). Caveolin-1 overexpression is associated with aggressive prostate cancer recurrence. The Prostate, 67(6), 614–622 https://doi.org/10.1002/pros.20557.
– reference: Felicetti, F., Parolini, I., Bottero, L., Fecchi, K., Errico, M. C., Raggi, C., Biffoni, M., Spadaro, F., Lisanti, M. P., Sargiacomo, M., & Carè, A. (2009). Caveolin-1 tumor-promoting role in human melanoma. International Journal of Cancer, 125(7), 1514–1522 https://doi.org/10.1002/ijc.24451.
– reference: Sengupta, A., Mateo-Lozano, S., Tirado, O. M., & Notario, V. (2011). Auto-stimulatory action of secreted caveolin-1 on the proliferation of Ewing’s sarcoma cells. International Journal of Oncology, 38(5), 1259–1265 https://doi.org/10.3892/ijo.2011.963.
– reference: Hill, M. M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S. J., Walser, P., Abankwa, D., Oorschot, V. M. J., Martin, S., Hancock, J. F., & Parton, R. G. (2008). PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 132(1), 113–124 https://doi.org/10.1016/j.cell.2007.11.042.
– reference: Wang, B., Xu, X., Yang, Z., Zhang, L., Liu, Y., Ma, A., Xu, G., Tang, M., Jing, T., Wu, L., & Liu, Y. (2019). POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1. EBioMedicine, 41, 320–332 https://doi.org/10.1016/j.ebiom.2019.01.058.
– reference: Ariotti, N., Fernández-Rojo, M. A., Zhou, Y., Hill, M. M., Rodkey, T. L., Inder, K. L., Tanner, L. B., Wenk, M. R., Hancock, J. F., & Parton, R. G. (2014). Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. The Journal of Cell Biology, 204(5), 777–792 https://doi.org/10.1083/jcb.201307055.
– reference: Rodriguez, D. A., Tapia, J. C., Fernandez, J. G., Torres, V. A., Muñoz, N., Galleguillos, D., Leyton, L., & Quest, A. F. G. (2009). Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Molecular Biology of the Cell, 20(8), 2297–2310 https://doi.org/10.1091/mbc.e08-09-0939.
– reference: Wang, K., Zhu, X., Mei, D., & Ding, Z. (2018). Caveolin-1 contributes to anoikis resistance in human gastric cancer SGC-7901 cells via regulating Src-dependent EGFR-ITGB1 signaling. Journal of Biochemical and Molecular Toxicology, 32(10), e22202 https://doi.org/10.1002/jbt.22202.
– reference: Campos, A., Burgos-Ravanal, R., González, M. F., Huilcaman, R., Lobos González, L., & Quest, A. F. G. (2019). Cell intrinsic and extrinsic mechanisms of caveolin-1-enhanced metastasis. Biomolecules, 9(8) https://doi.org/10.3390/biom9080314.
– reference: Cohen, A. W., Schubert, W., Brasaemle, D. L., Scherer, P. E., & Lisanti, M. P. (2005). Caveolin-1 expression is essential for proper nonshivering thermogenesis in brown adipose tissue. Diabetes, 54(3), 679–686 https://doi.org/10.2337/diabetes.54.3.679.
– reference: Shukla, N., Adhya, A. K., & Rath, J. (2017). Expression of alpha-methylacyl-coenzyme A racemase (AMACR) in colorectal neoplasia. Journal of Clinical and Diagnostic Research: JCDR, 11(4), EC35–EC38 https://doi.org/10.7860/JCDR/2017/25303.9727.
– reference: Bosch, M., Marí, M., Herms, A., Fernández, A., Fajardo, A., Kassan, A., Giralt, A., Colell, A., Balgoma, D., Barbero, E., González-Moreno, E., Matias, N., Tebar, F., Balsinde, J., Camps, M., Enrich, C., Gross, S. P., García-Ruiz, C., Pérez-Navarro, E., et al. (2011). Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Current Biology: CB, 21(8), 681–686 https://doi.org/10.1016/j.cub.2011.03.030.
– reference: Ha, T.-K., Her, N.-G., Lee, M.-G., Ryu, B.-K., Lee, J.-H., Han, J., Jeong, S.-I., Kang, M.-J., Kim, N.-H., Kim, H.-J., & Chi, S.-G. (2012). Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Research, 72(16), 4097–4109 https://doi.org/10.1158/0008-5472.CAN-12-0448.
– reference: Rubinsztein, D. C., Codogno, P., & Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews. Drug Discovery, 11(9), 709–730 https://doi.org/10.1038/nrd3802.
– reference: Liu, W.-R., Jin, L., Tian, M.-X., Jiang, X.-F., Yang, L.-X., Ding, Z.-B., Shen, Y.-H., Peng, Y.-F., Gao, D.-M., Zhou, J., Qiu, S.-J., Dai, Z., Fan, J., & Shi, Y.-H. (2016). Caveolin-1 promotes tumor growth and metastasis via autophagy inhibition in hepatocellular carcinoma. Clinics and Research in Hepatology and Gastroenterology, 40(2), 169–178 https://doi.org/10.1016/j.clinre.2015.06.017.
– reference: Guo, Y.-L., Zhu, T.-N., Guo, W., Dong, Z.-M., Zhou, Z., Cui, Y.-J., & Zhao, R.-J. (2016). Aberrant CpG island shore region methylation of CAV1 is associated with tumor progression and poor prognosis in gastric cardia adenocarcinoma. Archives of Medical Research, 47(6), 460–470 https://doi.org/10.1016/j.arcmed.2016.10.005.
– reference: Le, P. U., Guay, G., Altschuler, Y., & Nabi, I. R. (2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. The Journal of Biological Chemistry, 277(5), 3371–3379 https://doi.org/10.1074/jbc.M111240200.
– reference: Tsutsumi, S., Hogan, V., Nabi, I. R., & Raz, A. (2003). Overexpression of the autocrine motility factor/phosphoglucose isomerase induces transformation and survival of NIH-3T3 fibroblasts. Cancer Research, 63(1), 242–249.
– reference: Aung, C. S., Hill, M. M., Bastiani, M., Parton, R. G., & Parat, M.-O. (2011). PTRF–cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. European Journal of Cell Biology, 90(2–3), 136–142 https://doi.org/10.1016/j.ejcb.2010.06.004.
– reference: Lajoie, P., Goetz, J. G., Dennis, J. W., & Nabi, I. R. (2009). Lattices, rafts, and scaffolds: Domain regulation of receptor signaling at the plasma membrane. The Journal of Cell Biology, 185(3), 381–385 https://doi.org/10.1083/jcb.200811059.
– reference: Morén, B., Shah, C., Howes, M. T., Schieber, N. L., McMahon, H. T., Parton, R. G., Daumke, O., & Lundmark, R. (2012). EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Molecular Biology of the Cell, 23(7), 1316–1329 https://doi.org/10.1091/mbc.E11-09-0787.
– reference: Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., Casimiro, M. C., Wang, C., Fortina, P., Addya, S., Pestell, R. G., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2009). The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle (Georgetown, Texas), 8(23), 3984–4001 https://doi.org/10.4161/cc.8.23.10238.
– reference: Nabi, I. R., & Le, P. U. (2003). Caveolae/raft-dependent endocytosis. The Journal of Cell Biology, 161(4), 673–677 https://doi.org/10.1083/jcb.200302028.
– reference: Geletu, M., Mohan, R., Arulanandam, R., Berger-Becvar, A., Nabi, I. R., Gunning, P. T., & Raptis, L. (2018). Reciprocal regulation of the cadherin-11/Stat3 axis by caveolin-1 in mouse fibroblasts and lung carcinoma cells. Biochimica Et Biophysica Acta. Molecular Cell Research, 1865(5), 794–802 https://doi.org/10.1016/j.bbamcr.2018.02.004.
– reference: Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J. E., Hansen, S. H., Nishimoto, I., & Lisanti, M. P. (1995). Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. The Journal of Biological Chemistry, 270(26), 15693–15701 https://doi.org/10.1074/jbc.270.26.15693.
– reference: Mukherjee, S., Ghosh, R. N., & Maxfield, F. R. (1997). Endocytosis. Physiological Reviews, 77(3), 759–803 https://doi.org/10.1152/physrev.1997.77.3.759.
– reference: Woudenberg, J., Rembacz, K. P., van den Heuvel, F. A. J., Woudenberg-Vrenken, T. E., Buist-Homan, M., Geuken, M., Hoekstra, M., Deelman, L. E., Enrich, C., Henning, R. H., Moshage, H., & Faber, K. N. (2010). Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes. Hepatology (Baltimore, Md.), 51(5), 1744–1753 https://doi.org/10.1002/hep.23460.
– reference: Urra, H., Torres, V. A., Ortiz, R. J., Lobos, L., Díaz, M. I., Díaz, N., Härtel, S., Leyton, L., & Quest, A. F. G. (2012). Caveolin-1-enhanced motility and focal adhesion turnover require tyrosine-14 but not accumulation to the rear in metastatic cancer cells. PLoS One, 7(4), e33085 https://doi.org/10.1371/journal.pone.0033085.
– reference: Li, W. P., Liu, P., Pilcher, B. K., & Anderson, R. G. (2001). Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. Journal of Cell Science, 114(Pt 7), 1397–1408.
– reference: Territo, P. R., Mootha, V. K., French, S. A., & Balaban, R. S. (2000). Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. American Journal of Physiology. Cell Physiology, 278(2), C423–C435 https://doi.org/10.1152/ajpcell.2000.278.2.C423.
– reference: Sundivakkam, P. C., Kwiatek, A. M., Sharma, T. T., Minshall, R. D., Malik, A. B., & Tiruppathi, C. (2009). Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. American Journal of Physiology. Cell Physiology, 296(3), C403–C413 https://doi.org/10.1152/ajpcell.00470.2008.
– reference: Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences: CMLS, 75(2), 193–208 https://doi.org/10.1007/s00018-017-2595-9.
– reference: Mellman, I., & Yarden, Y. (2013). Endocytosis and cancer. Cold Spring Harbor Perspectives in Biology, 5(12), a016949 https://doi.org/10.1101/cshperspect.a016949.
– reference: Bourseau-Guilmain, E., Menard, J. A., Lindqvist, E., Indira Chandran, V., Christianson, H. C., Cerezo Magaña, M., Lidfeldt, J., Marko-Varga, G., Welinder, C., & Belting, M. (2016). Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nature Communications, 7, 11371 https://doi.org/10.1038/ncomms11371.
– reference: Wiechen, K., Sers, C., Agoulnik, A., Arlt, K., Dietel, M., Schlag, P. M., & Schneider, U. (2001). Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. The American Journal of Pathology, 158(3), 833–839 https://doi.org/10.1016/S0002-9440(10)64031-X.
– reference: van Deurs, B., Roepstorff, K., Hommelgaard, A. M., & Sandvig, K. (2003). Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends in Cell Biology, 13(2), 92–100 https://doi.org/10.1016/s0962-8924(02)00039-9.
– reference: van den Bosch, H., Schrakamp, G., Hardeman, D., Zomer, A. W., Wanders, R. J., & Schutgens, R. B. (1993). Ether lipid synthesis and its deficiency in peroxisomal disorders. Biochimie, 75(3–4), 183–189 https://doi.org/10.1016/0300-9084(93)90076-5.
– reference: Senju, Y., Itoh, Y., Takano, K., Hamada, S., & Suetsugu, S. (2011). Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. Journal of Cell Science, 124(Pt 12), 2032–2040 https://doi.org/10.1242/jcs.086264.
– reference: Hehlgans, S., Eke, I., Storch, K., Haase, M., Baretton, G. B., & Cordes, N. (2009). Caveolin-1 mediated radioresistance of 3D grown pancreatic cancer cells. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 92(3), 362–370 https://doi.org/10.1016/j.radonc.2009.07.004.
– reference: Chung, Y.-C., Kuo, J.-F., Wei, W.-C., Chang, K.-J., & Chao, W.-T. (2015). Caveolin-1 dependent endocytosis enhances the chemosensitivity of HER-2 positive breast cancer cells to trastuzumab emtansine (T-DM1). PLoS One, 10(7), e0133072 https://doi.org/10.1371/journal.pone.0133072.
– reference: Filippin, L., Magalhães, P. J., Di Benedetto, G., Colella, M., & Pozzan, T. (2003). Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. Journal of Biological Chemistry, 278(40), 39224–39234 https://doi.org/10.1074/jbc.M302301200.
– reference: Frank, P. G., Pavlides, S., Cheung, M. W.-C., Daumer, K., & Lisanti, M. P. (2008). Role of caveolin-1 in the regulation of lipoprotein metabolism. American Journal of Physiology. Cell Physiology, 295(1), C242–C248 https://doi.org/10.1152/ajpcell.00185.2008.
– reference: Hansen, C. G., Howard, G., & Nichols, B. J. (2011). Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. Journal of Cell Science, 124(Pt 16), 2777–2785 https://doi.org/10.1242/jcs.084319.
– reference: Llorente, A., de Marco, M. C., & Alonso, M. A. (2004). Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line. Journal of Cell Science, 117(Pt 22), 5343–5351 https://doi.org/10.1242/jcs.01420.
– reference: Huertas-Martínez, J., Court, F., Rello-Varona, S., Herrero-Martín, D., Almacellas-Rabaiget, O., Sáinz-Jaspeado, M., Garcia-Monclús, S., Lagares-Tena, L., Buj, R., Hontecillas-Prieto, L., Sastre, A., Azorin, D., Sanjuan, X., López-Alemany, R., Moran, S., Roma, J., Gallego, S., Mora, J., García Del Muro, X., et al. (2017). DNA methylation profiling identifies PTRF/cavin-1 as a novel tumor suppressor in Ewing sarcoma when co-expressed with caveolin-1. Cancer Letters, 386, 196–207 https://doi.org/10.1016/j.canlet.2016.11.020.
– reference: Senetta, R., Stella, G., Pozzi, E., Sturli, N., Massi, D., & Cassoni, P. (2013). Caveolin-1 as a promoter of tumour spreading: when, how, where and why. Journal of Cellular and Molecular Medicine, 17(3), 325–336 https://doi.org/10.1111/jcmm.12030.
– reference: Koch, J., & Brocard, C. (2012). PEX11 proteins attract Mff and human Fis1 to coordinate peroxisomal fission. Journal of Cell Science, 125(Pt 16), 3813–3826 https://doi.org/10.1242/jcs.102178.
– reference: Pfeiler, S., Thakur, M., Grünauer, P., Megens, R. T. A., Joshi, U., Coletti, R., Samara, V., Müller-Stoy, G., Ishikawa-Ankerhold, H., Stark, K., Klingl, A., Fröhlich, T., Arnold, G. J., Wörmann, S., Bruns, C. J., Algül, H., Weber, C., Massberg, S., & Engelmann, B. (2019). CD36-triggered cell invasion and persistent tissue colonization by tumor microvesicles during metastasis. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 33(2), 1860–1872 https://doi.org/10.1096/fj.201800985R.
– reference: Shu, S. L., Yang, Y., Allen, C. L., Maguire, O., Minderman, H., Sen, A., Ciesielski, M. J., Collins, K. A., Bush, P. J., Singh, P., Wang, X., Morgan, M., Qu, J., Bankert, R. B., Whiteside, T. L., Wu, Y., & Ernstoff, M. S. (2018). Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Scientific Reports, 8(1), 12905 https://doi.org/10.1038/s41598-018-31323-7.
– reference: Lobos-González, L., Aguilar, L., Diaz, J., Diaz, N., Urra, H., Torres, V. A., Silva, V., Fitzpatrick, C., Lladser, A., Hoek, K. S., Leyton, L., & Quest, A. F. G. (2013). E-cadherin determines caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells. Pigment Cell & Melanoma Research, 26(4), 555–570 https://doi.org/10.1111/pcmr.12085.
– reference: Indira Chandran, V., Månsson, A.-S., Barbachowska, M., Cerezo-Magaña, M., Nodin, B., Joshi, B., Koppada, N., Saad, O. M., Gluz, O., Isaksson, K., Borgquist, S., Jirström, K., Nabi, I. R., Jernström, H., & Belting, M. (2020). Hypoxia attenuates trastuzumab uptake and trastuzumab-emtansine (T-DM1) cytotoxicity through redistribution of phosphorylated caveolin-1. Molecular Cancer Research, 18(4), 644–656 https://doi.org/10.1158/1541-7786.MCR-19-0856.
– reference: Boucrot, E., Howes, M. T., Kirchhausen, T., & Parton, R. G. (2011). Redistribution of caveolae during mitosis. Journal of Cell Science, 124(Pt 12), 1965–1972 https://doi.org/10.1242/jcs.076570.
– reference: Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033 https://doi.org/10.1126/science.1160809.
– reference: Díaz-Valdivia, N. I., Calderón, C. C., Díaz, J. E., Lobos-González, L., Sepulveda, H., Ortíz, R. J., Martinez, S., Silva, V., Maldonado, H. J., Silva, P., Wehinger, S., Burzio, V. A., Torres, V. A., Montecino, M., Leyton, L., & Quest, A. F. G. (2017). Anti-neoplastic drugs increase caveolin-1-dependent migration, invasion and metastasis of cancer cells. Oncotarget, 8(67), 111943–111965. https://doi.org/10.18632/oncotarget.22955.
– reference: Fridolfsson, H. N., Kawaraguchi, Y., Ali, S. S., Panneerselvam, M., Niesman, I. R., Finley, J. C., Kellerhals, S. E., Migita, M. Y., Okada, H., Moreno, A. L., Jennings, M., Kidd, M. W., Bonds, J. A., Balijepalli, R. C., Ross, R. S., Patel, P. M., Miyanohara, A., Chen, Q., Lesnefsky, E. J., et al. (2012). Mitochondria-localized caveolin in adaptation to cellular stress and injury. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 26(11), 4637–4649 https://doi.org/10.1096/fj.12-215798.
– reference: Gandre-Babbe, S., & van der Bliek, A. M. (2008). The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Molecular Biology of the Cell, 19(6), 2402–2412 https://doi.org/10.1091/mbc.e07-12-1287.
– reference: Asterholm, I. W., Mundy, D. I., Weng, J., Anderson, R. G. W., & Scherer, P. E. (2012). Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metabolism, 15(2), 171–185 https://doi.org/10.1016/j.cmet.2012.01.004.
– reference: Gupta, V. K., Sharma, N. S., Kesh, K., Dauer, P., Nomura, A., Giri, B., Dudeja, V., Banerjee, S., Bhattacharya, S., Saluja, A., & Banerjee, S. (2018). Metastasis and chemoresistance in CD133 expressing pancreatic cancer cells are dependent on their lipid raft integrity. Cancer Letters, 439, 101–112 https://doi.org/10.1016/j.canlet.2018.09.028.
– reference: Gao, Y., Li, L., Li, T., Ma, L., Yuan, M., Sun, W., Cheng, H. L., Niu, L., Du, Z., Quan, Z., Fan, Y., Fan, J., Luo, C., & Wu, X. (2019). Simvastatin delays castration-resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin-1. International Journal of Oncology, 54(6), 2054–2068 https://doi.org/10.3892/ijo.2019.4774.
– reference: Barth, J. M. I., & Köhler, K. (2014). How to take autophagy and endocytosis up a notch. BioMed Research International, 2014, 960803 https://doi.org/10.1155/2014/960803.
– reference: Mineo, C., James, G. L., Smart, E. J., & Anderson, R. G. (1996). Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. The Journal of Biological Chemistry, 271(20), 11930–11935 https://doi.org/10.1074/jbc.271.20.11930.
– reference: Yoon, Y., Krueger, E. W., Oswald, B. J., & McNiven, M. A. (2003). The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Molecular and Cellular Biology, 23(15), 5409–5420 https://doi.org/10.1128/mcb.23.15.5409-5420.2003.
– reference: Fairbank, M., St-Pierre, P., & Nabi, I. R. (2009). The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase. Molecular BioSystems, 5(8), 793–801 https://doi.org/10.1039/b820820b.
– reference: Liang, Y.-N., Liu, Y., Wang, L., Yao, G., Li, X., Meng, X., Wang, F., Li, M., Tong, D., & Geng, J. (2018). Combined caveolin-1 and epidermal growth factor receptor expression as a prognostic marker for breast cancer. Oncology Letters, 15(6), 9271–9282 https://doi.org/10.3892/ol.2018.8533.
– reference: Huang, Z., Zhang, N., Zha, L., Mao, H.-C., Chen, X., Xiang, J.-F., Zhang, H., & Wang, Z.-W. (2014). Aberrant expression of the autocrine motility factor receptor correlates with poor prognosis and promotes metastasis in gastric carcinoma. Asian Pacific Journal of Cancer Prevention : APJCP, 15(2), 989–997 https://doi.org/10.7314/apjcp.2014.15.2.989.
– reference: Li, J., Gu, D., Lee, S. S.-Y., Song, B., Bandyopadhyay, S., Chen, S., Konieczny, S. F., Ratliff, T. L., Liu, X., Xie, J., & Cheng, J.-X. (2016). Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene, 35(50), 6378–6388 https://doi.org/10.1038/onc.2016.168.
– reference: Yeong, J., Thike, A. A., Ikeda, M., Lim, J. C. T., Lee, B., Nakamura, S., Iqbal, J., & Tan, P. H. (2018). Caveolin-1 expression as a prognostic marker in triple negative breast cancers of Asian women. Journal of Clinical Pathology, 71(2), 161–167 https://doi.org/10.1136/jclinpath-2017-204495.
– reference: Yang, H., Guan, L., Li, S., Jiang, Y., Xiong, N., Li, L., Wu, C., Zeng, H., & Liu, Y. (2016). Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget, 7(13), 16227–16247. https://doi.org/10.18632/oncotarget.7583.
– reference: Bonuccelli, G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., Witkiewicz, A. K., Vander Heiden, M. G., Migneco, G., Chiavarina, B., Frank, P. G., Capozza, F., Flomenberg, N., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2010). The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle (Georgetown, Texas), 9(10), 1960–1971 https://doi.org/10.4161/cc.9.10.11601.
– reference: Miotti, S., Tomassetti, A., Facetti, I., Sanna, E., Berno, V., & Canevari, S. (2005). Simultaneous expression of caveolin-1 and E-cadherin in ovarian carcinoma cells stabilizes adherens junctions through inhibition of Src-related kinases. The American Journal of Pathology, 167(5), 1411–1427 https://doi.org/10.1016/S0002-9440(10)61228-X.
– reference: Sugiura, A., Mattie, S., Prudent, J., & McBride, H. M. (2017). Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature, 542(7640), 251–254 https://doi.org/10.1038/nature21375.
– reference: Cárdenas, C., Miller, R. A., Smith, I., Bui, T., Molgó, J., Müller, M., Vais, H., Cheung, K.-H., Yang, J., Parker, I., Thompson, C. B., Birnbaum, M. J., Hallows, K. R., & Foskett, J. K. (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell, 142(2), 270–283 https://doi.org/10.1016/j.cell.2010.06.007.
– reference: Ariotti, N., Rae, J., Leneva, N., Ferguson, C., Loo, D., Okano, S., Hill, M. M., Walser, P., Collins, B. M., & Parton, R. G. (2015). Molecular characterization of caveolin-induced membrane curvature. Journal of Biological Chemistry, 290(41), 24875–24890 https://doi.org/10.1074/jbc.M115.644336.
– reference: Li, L., Ren, C. H., Tahir, S. A., Ren, C., & Thompson, T. C. (2003). Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Molecular and Cellular Biology, 23(24), 9389–9404 https://doi.org/10.1128/mcb.23.24.9389-9404.2003.
– reference: Lobos-Gonzalez, L., Aguilar-Guzmán, L., Fernandez, J. G., Muñoz, N., Hossain, M., Bieneck, S., Silva, V., Burzio, V., Sviderskaya, E. V., Bennett, D. C., Leyton, L., & Quest, A. F. G. (2014). Caveolin-1 is a risk factor for postsurgery metastasis in preclinical melanoma models. Melanoma Research, 24(2), 108–119 https://doi.org/10.1097/CMR.0000000000000046.
– reference: Zimnicka, A. M., Husain, Y. S., Shajahan, A. N., Sverdlov, M., Chaga, O., Chen, Z., Toth, P. T., Klomp, J., Karginov, A. V., Tiruppathi, C., Malik, A. B., & Minshall, R. D. (2016). Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Molecular Biology of the Cell, 27(13), 2090–2106 https://doi.org/10.1091/mbc.E15-11-0756.
– reference: Antalis, C. J., Arnold, T., Rasool, T., Lee, B., Buhman, K. K., & Siddiqui, R. A. (2010). High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Research and Treatment, 122(3), 661–670 https://doi.org/10.1007/s10549-009-0594-8.
– reference: Quan, A., & Robinson, P. J. (2013). Syndapin—a membrane remodelling and endocytic F-BAR protein. The FEBS Journal, 280(21), 5198–5212 https://doi.org/10.1111/febs.12343.
– reference: Patel, H. H., Murray, F., & Insel, P. A. (2008). Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annual Review of Pharmacology and Toxicology, 48, 359–391 https://doi.org/10.1146/annurev.pharmtox.48.121506.124841.
– reference: Rimessi, A., Marchi, S., Patergnani, S., & Pinton, P. (2014). H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene, 33(18), 2329–2340 https://doi.org/10.1038/onc.2013.192.
– reference: Byrne, D. P., Dart, C., & Rigden, D. J. (2012). Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS One, 7(9), e44879 https://doi.org/10.1371/journal.pone.0044879.
– reference: Hubert, M., Larsson, E., & Lundmark, R. (2020). Keeping in touch with the membrane; protein- and lipid-mediated confinement of caveolae to the cell surface. Biochemical Society Transactions, 48(1), 155–163 https://doi.org/10.1042/BST20190386.
– reference: Pellinen, T., Blom, S., Sánchez, S., Välimäki, K., Mpindi, J.-P., Azegrouz, H., Strippoli, R., Nieto, R., Vitón, M., Palacios, I., Turkki, R., Wang, Y., Sánchez-Alvarez, M., Nordling, S., Bützow, A., Mirtti, T., Rannikko, A., Montoya, M. C., Kallioniemi, O., & Del Pozo, M. A. (2018). ITGB1-dependent upregulation of caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer. Scientific Reports, 8(1), 2338 https://doi.org/10.1038/s41598-018-20161-2.
– reference: Galbiati, F., Volonte, D., Brown, A. M., Weinstein, D. E., Ben-Ze’ev, A., Pestell, R. G., & Lisanti, M. P. (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. The Journal of Biological Chemistry, 275(30), 23368–23377 https://doi.org/10.1074/jbc.M002020200.
– reference: Overmiller, A. M., McGuinn, K. P., Roberts, B. J., Cooper, F., Brennan-Crispi, D. M., Deguchi, T., Peltonen, S., Wahl, J. K., & Mahoney, M. G. (2016). c-Src/Cav1-dependent activation of the EGFR by Dsg2. Oncotarget, 7(25), 37536–37555. https://doi.org/10.18632/oncotarget.7675.
– reference: Arpaia, E., Blaser, H., Quintela-Fandino, M., Duncan, G., Leong, H. S., Ablack, A., Nambiar, S. C., Lind, E. F., Silvester, J., Fleming, C. K., Rufini, A., Tusche, M. W., Brüstle, A., Ohashi, P. S., Lewis, J. D., & Mak, T. W. (2012). The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene, 31(7), 884–896 https://doi.org/10.1038/onc.2011.288.
– reference: Shyu, P., Wong, X. F. A., Crasta, K., & Thibault, G. (2018). Dropping in on lipid droplets: insights into cellular stress and cancer. Bioscience Reports, 38(5) https://doi.org/10.1042/BSR20180764.
– reference: Bravo-Sagua, R., Parra, V., López-Crisosto, C., Díaz, P., Quest, A. F. G., & Lavandero, S. (2017). Calcium transport and signaling in mitochondria. Comprehensive physiology 7(2), 623–634 https://doi.org/10.1002/cphy.c160013.
– reference: Deb, M., Sengupta, D., Kar, S., Rath, S. K., Roy, S., Das, G., & Patra, S. K. (2016). Epigenetic drift towards histone modifications regulates CAV1 gene expression in colon cancer. Gene, 581(1), 75–84 https://doi.org/10.1016/j.gene.2016.01.029.
– reference: Gupta, R., Toufaily, C., & Annabi, B. (2014). Caveolin and cavin family members: dual roles in cancer. Biochimie, 107(Pt B), 188–202 https://doi.org/10.1016/j.biochi.2014.09.010.
– reference: Loh, C.-Y., Chai, J. Y., Tang, T. F., Wong, W. F., Sethi, G., Shanmugam, M. K., Chong, P. P., & Looi, C. Y. (2019). The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells, 8(10) https://doi.org/10.3390/cells8101118.
– reference: Pezeshkian, W., Chevrot, G., & Khandelia, H. (2018). The role of caveolin-1 in lipid droplets and their biogenesis. Chemistry and Physics of Lipids, 211, 93–99 https://doi.org/10.1016/j.chemphyslip.2017.11.010.
– reference: Scheel, J., Srinivasan, J., Honnert, U., Henske, A., & Kurzchalia, T. V. (1999). Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nature Cell Biology, 1(2), 127–129 https://doi.org/10.1038/10100.
– reference: Nethe, M., Anthony, E. C., Fernandez-Borja, M., Dee, R., Geerts, D., Hensbergen, P. J., Deelder, A. M., Schmidt, G., & Hordijk, P. L. (2010). Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. Journal of Cell Science, 123(Pt 11), 1948–1958 https://doi.org/10.1242/jcs.062919.
– reference: Röhrig, F., & Schulze, A. (2016). The multifaceted roles of fatty acid synthesis in cancer. Nature Reviews. Cancer, 16(11), 732–749. https://doi.org/10.1038/nrc.2016.89.
– reference: Bartz, R., Zhou, J., Hsieh, J.-T., Ying, Y., Li, W., & Liu, P. (2008). Caveolin-1 secreting LNCaP cells induce tumor growth of caveolin-1 negative LNCaP cells in vivo. International Journal of Cancer, 122(3), 520–525 https://doi.org/10.1002/ijc.23142.
– reference: Martinez-Outschoorn, U. E., Lisanti, M. P., & Sotgia, F. (2014). Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor gro. Seminars in Cancer Biology, 25, 47–60 https://doi.org/10.1016/j.semcancer.2014.01.005.
– reference: Cheng, J. P. X., & Nichols, B. J. (2016). Caveolae: one function or many? Trends in Cell Biology, 26(3), 177–189 https://doi.org/10.1016/j.tcb.2015.10.010.
– reference: Capiod, T. (2016). Extracellular calcium has multiple targets to control cell proliferation. Advances in Experimental Medicine and Biology, 898, 133–156 https://doi.org/10.1007/978-3-319-26974-0_7.
– reference: Cai, J., Zhao, X.-L., Liu, A.-W., Nian, H., & Zhang, S.-H. (2011). Apigenin inhibits hepatoma cell growth through alteration of gene expression patterns. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 18(5), 366–373 https://doi.org/10.1016/j.phymed.2010.08.006.
– reference: Moreno-Cáceres, J., Caballero-Díaz, D., Nwosu, Z. C., Meyer, C., López-Luque, J., Malfettone, A., Lastra, R., Serrano, T., Ramos, E., Dooley, S., & Fabregat, I. (2017). The level of caveolin-1 expression determines response to TGF-β as a tumour suppressor in hepatocellular carcinoma cells. Cell Death & Disease, 8(10), e3098 https://doi.org/10.1038/cddis.2017.469.
– reference: Liu, P., Li, W. P., Machleidt, T., & Anderson, R. G. (1999). Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nature Cell Biology, 1(6), 369–375 https://doi.org/10.1038/14067.
– reference: Low, J.-Y., & Nicholson, H. D. (2015). Epigenetic modifications of caveolae associated proteins in health and disease. BMC Genetics, 16, 71 https://doi.org/10.1186/s12863-015-0231-y.
– reference: Shvets, E., Bitsikas, V., Howard, G., Hansen, C. G., & Nichols, B. J. (2015). Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nature Communications, 6(1) https://doi.org/10.1038/ncomms7867.
– reference: Sinha, B., Köster, D., Ruez, R., Gonnord, P., Bastiani, M., Abankwa, D., Stan, R. V., Butler-Browne, G., Vedie, B., Johannes, L., Morone, N., Parton, R. G., Raposo, G., Sens, P., Lamaze, C., & Nassoy, P. (2011). Cells respond to mechanical stress by rapid disassembly of caveolae. Cell, 144(3), 402–413 https://doi.org/10.1016/j.cell.2010.12.031.
– reference: Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nature Cell Biology, 5(5), 410–421 https://doi.org/10.1038/ncb975.
– reference: Sala-Vila, A., Navarro-Lérida, I., Sánchez-Alvarez, M., Bosch, M., Calvo, C., López, J. A., Calvo, E., Ferguson, C., Giacomello, M., Serafini, A., Scorrano, L., Enriquez, J. A., Balsinde, J., Parton, R. G., Vázquez, J., Pol, A., & Del Pozo, M. A. (2016). Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Scientific Reports, 6, 27351 https://doi.org/10.1038/srep27351.
– ident: 9890_CR11
  doi: 10.1083/jcb.200903053
– ident: 9890_CR34
  doi: 10.1007/s00005-016-0453-3
– ident: 9890_CR47
  doi: 10.3892/ijo.2019.4774
– ident: 9890_CR49
  doi: 10.1016/j.bbamcr.2018.02.004
– ident: 9890_CR61
  doi: 10.1016/j.radonc.2009.07.004
– ident: 9890_CR80
  doi: 10.1074/jbc.M111240200
– ident: 9890_CR146
  doi: 10.7554/eLife.29854
– ident: 9890_CR6
  doi: 10.1038/onc.2011.288
– ident: 9890_CR138
  doi: 10.1016/j.semcdb.2019.05.015
– ident: 9890_CR177
  doi: 10.1085/jgp.8.6.519
– ident: 9890_CR14
  doi: 10.1016/j.cub.2011.03.030
– ident: 9890_CR69
  doi: 10.1158/1541-7786.MCR-19-0856
– ident: 9890_CR7
  doi: 10.1016/j.cmet.2012.01.004
– ident: 9890_CR29
  doi: 10.1016/j.tcb.2015.10.010
– ident: 9890_CR118
  doi: 10.1074/jbc.273.10.5419
– ident: 9890_CR130
  doi: 10.1096/fj.201800985R
– ident: 9890_CR12
– ident: 9890_CR17
  doi: 10.1038/ncomms11371
– ident: 9890_CR19
  doi: 10.1038/s41418-018-0197-1
– ident: 9890_CR113
  doi: 10.1083/jcb.200302028
– ident: 9890_CR54
  doi: 10.3892/ijo_00000418
– ident: 9890_CR43
  doi: 10.1096/fj.12-215798
– ident: 9890_CR97
  doi: 10.3390/cells8101118
– ident: 9890_CR123
  doi: 10.1146/annurev-cellbio-100617-062737
– ident: 9890_CR171
  doi: 10.1038/nrm.2017.125
– ident: 9890_CR158
  doi: 10.1172/JCI36843
– ident: 9890_CR9
  doi: 10.1155/2014/960803
– ident: 9890_CR35
  doi: 10.1016/j.gene.2016.01.029
– ident: 9890_CR95
  doi: 10.1097/CMR.0000000000000046
– ident: 9890_CR168
  doi: 10.1371/journal.pone.0033085
– ident: 9890_CR16
  doi: 10.1242/jcs.076570
– ident: 9890_CR176
  doi: 10.1002/jbt.22202
– ident: 9890_CR184
  doi: 10.1111/acel.12606
– ident: 9890_CR173
  doi: 10.1074/jbc.M117.815902
– ident: 9890_CR105
  doi: 10.1091/mbc.E17-05-0278
– ident: 9890_CR143
  doi: 10.1038/srep27351
– ident: 9890_CR20
  doi: 10.1371/journal.pone.0044879
– ident: 9890_CR114
  doi: 10.1242/jcs.062919
– ident: 9890_CR37
  doi: 10.1242/jcs.141689
– ident: 9890_CR128
  doi: 10.3390/molecules23081941
– ident: 9890_CR186
  doi: 10.1091/mbc.E15-11-0756
– ident: 9890_CR108
  doi: 10.1016/S0002-9440
– ident: 9890_CR64
  doi: 10.1371/journal.pone.0043041
– ident: 9890_CR183
  doi: 10.1128/mcb.23.15.5409-5420.2003
– ident: 9890_CR13
  doi: 10.4161/cc.9.10.11601
– ident: 9890_CR150
  doi: 10.1074/jbc.M111.304022
– ident: 9890_CR99
  doi: 10.1016/s1535-6108
– ident: 9890_CR116
  doi: 10.1186/s12943-016-0558-7
– ident: 9890_CR147
  doi: 10.1111/jcmm.12030
– ident: 9890_CR46
  doi: 10.1091/mbc.e07-12-1287
– ident: 9890_CR40
  doi: 10.1002/ijc.24451
– ident: 9890_CR134
  doi: 10.3892/ol.2019.10310
– ident: 9890_CR93
  doi: 10.1242/jcs.01420
– ident: 9890_CR122
  doi: 10.1074/jbc.M109.041152
– ident: 9890_CR109
  doi: 10.1091/mbc.6.7.911
– ident: 9890_CR44
  doi: 10.1096/fj.14-252320
– ident: 9890_CR164
  doi: 10.1007/s00268-017-4065-9
– ident: 9890_CR84
  doi: 10.1007/s12032-012-0396-4
– ident: 9890_CR55
  doi: 10.1158/0008-5472.CAN-12-0448
– ident: 9890_CR145
  doi: 10.1074/jbc.M005448200
– ident: 9890_CR181
  doi: 10.18632/oncotarget.7583
– ident: 9890_CR187
  doi: 10.1042/bj3380769
– ident: 9890_CR75
  doi: 10.1242/jcs.102178
– ident: 9890_CR74
  doi: 10.1083/jcb.201305142
– ident: 9890_CR98
  doi: 10.1186/s12863-015-0231-y
– ident: 9890_CR153
  doi: 10.1038/s41598-018-31323-7
– ident: 9890_CR26
  doi: 10.1016/j.cell.2010.06.007
– ident: 9890_CR77
  doi: 10.1083/jcb.200811059
– ident: 9890_CR121
  doi: 10.18632/oncotarget.7675
– ident: 9890_CR60
  doi: 10.1093/carcin/bgv081
– ident: 9890_CR73
  doi: 10.1002/pros.20557
– ident: 9890_CR174
  doi: 10.1016/j.cell.2012.06.042
– ident: 9890_CR92
  doi: 10.1016/j.clinre.2015.06.017
– ident: 9890_CR18
  doi: 10.1002/cphy.c160013
– ident: 9890_CR36
  doi: 10.1038/ncb975
– ident: 9890_CR52
  doi: 10.1016/j.biochi.2014.09.010
– ident: 9890_CR129
  doi: 10.1016/j.chemphyslip.2017.11.010
– ident: 9890_CR165
  doi: 10.1242/jcs.02894
– ident: 9890_CR31
  doi: 10.1371/journal.pone.0133072
– ident: 9890_CR185
  doi: 10.1097/00000478-200207000-00012
– ident: 9890_CR117
  doi: 10.1080/15384101.2019.1618118
– ident: 9890_CR175
  doi: 10.1016/j.ebiom.2019.01.058
– ident: 9890_CR131
  doi: 10.1111/febs.12343
– ident: 9890_CR24
  doi: 10.3390/biom9080314
– ident: 9890_CR133
  doi: 10.2174/156652413804810745
– ident: 9890_CR96
  doi: 10.1371/journal.pone.0005219
– ident: 9890_CR3
  doi: 10.1007/s10585-011-9405-9
– ident: 9890_CR106
  doi: 10.4161/cc.10.1.14243
– ident: 9890_CR83
  doi: 10.1128/mcb.23.24.9389-9404.2003
– ident: 9890_CR112
  doi: 10.1152/physrev.1997.77.3.759
– ident: 9890_CR59
  doi: 10.1111/j.1600-0854.2009.01023.x
– ident: 9890_CR161
  doi: 10.1083/jcb.200506103
– ident: 9890_CR30
  doi: 10.1038/ncb1380
– ident: 9890_CR33
  doi: 10.1016/j.devcel.2012.06.012
– ident: 9890_CR102
  doi: 10.1038/s41556-018-0250-9
– ident: 9890_CR78
  doi: 10.1083/jcb.200811059
– ident: 9890_CR1
  doi: 10.1016/j.bbapap.2019.02.005
– ident: 9890_CR87
  doi: 10.1074/jbc.M212031200
– ident: 9890_CR28
  doi: 10.1038/cr.2008.315
– ident: 9890_CR120
  doi: 10.1083/jcb.201007152
– ident: 9890_CR48
  doi: 10.1083/jcb.200603034
– ident: 9890_CR25
  doi: 10.1007/978-3-319-26974-0_7
– ident: 9890_CR4
  doi: 10.1083/jcb.201307055
– ident: 9890_CR167
– ident: 9890_CR65
  doi: 10.7314/apjcp.2014.15.2.989
– ident: 9890_CR103
  doi: 10.1101/cshperspect.a016758
– ident: 9890_CR66
  doi: 10.1042/BST20190386
– ident: 9890_CR115
  doi: 10.2174/1566524014666140128112827
– ident: 9890_CR32
  doi: 10.2337/diabetes.54.3.679
– ident: 9890_CR8
  doi: 10.1016/j.ejcb.2010.06.004
– ident: 9890_CR72
  doi: 10.1007/s00109-013-1020-6
– ident: 9890_CR62
  doi: 10.1007/s00018-017-2595-9
– ident: 9890_CR63
  doi: 10.1016/j.cell.2007.11.042
– ident: 9890_CR111
  doi: 10.1038/cddis.2017.469
– ident: 9890_CR160
  doi: 10.1152/ajpcell.00470.2008
– ident: 9890_CR22
  doi: 10.1016/j.canlet.2018.02.021
– ident: 9890_CR39
  doi: 10.1039/b820820b
– ident: 9890_CR67
  doi: 10.18632/oncotarget.2403
– ident: 9890_CR79
  doi: 10.1186/s12951-020-0573-0
– ident: 9890_CR170
  doi: 10.1016/s0962-8924
– ident: 9890_CR88
  doi: 10.3892/ijo.2015.3091
– ident: 9890_CR140
  doi: 10.1091/mbc.e08-09-0939
– ident: 9890_CR156
  doi: 10.1042/BSR20180764
– ident: 9890_CR53
  doi: 10.1016/j.canlet.2018.09.028
– ident: 9890_CR58
  doi: 10.1242/jcs.084319
– ident: 9890_CR41
  doi: 10.1074/jbc.M302301200
– ident: 9890_CR76
  doi: 10.1074/jbc.M704069200
– ident: 9890_CR159
  doi: 10.1038/nature21375
– ident: 9890_CR23
  doi: 10.2217/nnm-2018-0094
– ident: 9890_CR136
  doi: 10.1124/pr.54.3.431
– ident: 9890_CR2
  doi: 10.1007/s10549-009-0594-8
– ident: 9890_CR126
  doi: 10.1016/0014-5793
– ident: 9890_CR139
  doi: 10.1126/science.280.5370.1763
– ident: 9890_CR110
  doi: 10.1091/mbc.E11-09-0787
– ident: 9890_CR162
– ident: 9890_CR42
  doi: 10.1152/ajpcell.00185.2008
– ident: 9890_CR127
  doi: 10.1038/s41598-018-20161-2
– ident: 9890_CR141
  doi: 10.1038/nrc.2016.89
– ident: 9890_CR152
  doi: 10.1002/mc.22882
– ident: 9890_CR82
  doi: 10.1038/onc.2016.168
– ident: 9890_CR178
  doi: 10.1016/S0002-9440
– ident: 9890_CR90
  doi: 10.1038/14067
– ident: 9890_CR125
  doi: 10.4161/cc.8.23.10238
– ident: 9890_CR148
  doi: 10.3892/ijo.2011.963
– ident: 9890_CR166
  doi: 10.1128/MCB.01991-06
– ident: 9890_CR91
  doi: 10.1186/s13045-015-0144-2
– ident: 9890_CR100
  doi: 10.1016/j.semcancer.2014.01.005
– ident: 9890_CR50
  doi: 10.1091/mbc.E13-03-0163
– ident: 9890_CR142
  doi: 10.1038/nrd3802
– ident: 9890_CR119
  doi: 10.18632/oncotarget.9738
– ident: 9890_CR180
  doi: 10.1002/hep.23460
– ident: 9890_CR15
  doi: 10.1091/mbc.e13-02-0095
– ident: 9890_CR71
  doi: 10.1158/0008-5472.CAN-08-0343
– ident: 9890_CR179
  doi: 10.4161/cc.11.6.19530
– ident: 9890_CR68
  doi: 10.1016/j.canlet.2016.11.020
– ident: 9890_CR172
  doi: 10.1126/science.1160809
– ident: 9890_CR169
  doi: 10.1016/0300-9084
– ident: 9890_CR57
  doi: 10.1016/j.cell.2011.02.013
– ident: 9890_CR70
  doi: 10.1111/j.1600-0854.2009.00994.x
– ident: 9890_CR149
  doi: 10.1242/jcs.086264
– ident: 9890_CR38
  doi: 10.18632/oncotarget.22955
– ident: 9890_CR89
  doi: 10.3892/ol.2018.8533
– ident: 9890_CR132
  doi: 10.1111/j.1582-4934.2008.00331.x
– ident: 9890_CR27
  doi: 10.1158/0008-5472.CAN-17-0604
– ident: 9890_CR85
  doi: 10.1074/jbc.270.26.15693
– ident: 9890_CR107
  doi: 10.1074/jbc.271.20.11930
– ident: 9890_CR124
  doi: 10.1146/annurev.pharmtox.48.121506.124841
– ident: 9890_CR101
  doi: 10.1038/nrc3915
– ident: 9890_CR151
  doi: 10.1080/15548627.2015.1034411
– ident: 9890_CR182
  doi: 10.1136/jclinpath-2017-204495
– ident: 9890_CR5
  doi: 10.1074/jbc.M115.644336
– ident: 9890_CR56
  doi: 10.4161/cam.26345
– ident: 9890_CR163
  doi: 10.1152/ajpcell.2000.278.2.C423
– ident: 9890_CR154
  doi: 10.7860/JCDR/2017/25303.9727
– ident: 9890_CR155
  doi: 10.1038/ncomms7867
– ident: 9890_CR81
  doi: 10.1074/jbc.M111240200
– ident: 9890_CR137
  doi: 10.1038/onc.2013.192
– ident: 9890_CR104
  doi: 10.1101/cshperspect.a016949
– ident: 9890_CR94
  doi: 10.1111/pcmr.12085
– ident: 9890_CR10
  doi: 10.1002/ijc.23142
– ident: 9890_CR51
  doi: 10.1016/j.arcmed.2016.10.005
– ident: 9890_CR157
  doi: 10.1016/j.cell.2010.12.031
– ident: 9890_CR45
  doi: 10.1074/jbc.M002020200
– ident: 9890_CR135
  doi: 10.1016/j.bbamcr.2012.04.013
– ident: 9890_CR86
  doi: 10.1242/jcs.114.7.1397
– ident: 9890_CR144
  doi: 10.1038/10100
– ident: 9890_CR21
  doi: 10.1016/j.phymed.2010.08.006
SSID ssj0007379
Score 2.5440872
SecondaryResourceType review_article
Snippet Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 435
SubjectTerms Animals
Biomedical and Life Sciences
Biomedicine
Cancer
Cancer Research
Caveolae
Caveolin
Caveolin 1 - metabolism
Caveolin-1
Cell Communication - physiology
Cell interactions
Cell Membrane - metabolism
Cell membranes
Cell surface
Exosomes
Humans
Intracellular
Intracellular signalling
Intracellular Space
Metastases
Metastasis
Neoplasms - metabolism
Neoplasms - pathology
Oncology
Organelles
Organelles - metabolism
Tumor suppressor genes
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2DsZeRtd9uc2KBoM9bGJ2FNnS0yilpRS6p3XkTejLLLA4aZOO_vm7sxWnDqzgt5P8cf5Jd5LufgfwSdba2Rgkn6C7yicxKm5dTkSQuRC6DKVoqZSufpQX15PLqZymDbdVCqvczIntRB0WnvbIv6Glwe44nxbflzecqkbR6WoqofEUnhXoqhCqq2m_4EL0dlx7xO1dlVKnpJmUOicl5SbnPNdK5_x-YJh2p-cH9mk3dnLnALW1S-f78DI5lOykQ8AreBKbA3h-lY7MX8OvU_s3UmUeXjAyYvQjmF0zdPzYEl3nuWXzOMc1cxOZbQKbNXjhM2lHn0JUWRel3gajr0jqCSe3b-D6_Ozn6QVPxRS4L8VkzZX2wiurpaL8Ja1kNQ61dYKMZCF97uPYoTXDBYx2zpZ59MG5WqqoyjrXYyvewl6zaOJ7YDI6HZwoAnHL2EJY6ZRwUdahjuSfZFBsNGl8Yhqnghd_zJYjmbRvUPum1b65z-BL32fZ8Ww82voz_SBDg5A0YlMuAb4f0VmZkwrdmJJOBDM4GrT0y9mNeSAdDaQ4tPyg82gDAJOG9spsgZjBx15MPSlcrYmLO2qD2CsQfdjmXYeX_qvQg8V7lzqDaoCkvgERfg8lzex3S_yN96QFbQZfN5jbvtb_lXX4-FccwYtxOwxoZ2kEe-vbu_gBHa21O25H0z_OWCM5
  priority: 102
  providerName: ProQuest
Title Caveolin-1 function at the plasma membrane and in intracellular compartments in cancer
URI https://link.springer.com/article/10.1007/s10555-020-09890-x
https://www.ncbi.nlm.nih.gov/pubmed/32458269
https://www.proquest.com/docview/2416038011
https://www.proquest.com/docview/2407313791
https://pubmed.ncbi.nlm.nih.gov/PMC7311495
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7233
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007379
  issn: 0167-7659
  databaseCode: AFBBN
  dateStart: 19970601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7233
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007379
  issn: 0167-7659
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7233
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007379
  issn: 0167-7659
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0DsQX8dt66xJB8EELbbNJk8fdsuuh3CLiyvoUkjTFBbe33u2Jf74z3W7vuqgglPZhJmk7nclMmplfAF6JSjsbShGPMFyNRyGo2LqEgCATzrUsJW-glM7m8nQxer8UyxYmh2phDtbvqcRNCKohTuJEK53EGC8eCxx4KX2vkEU36uYtrh7heOdS6LZA5s999JzQ4VB8wxcd5kkeLJY2Pmh2H-61wSMb7772A7gV6odw56xdHn8EXwr7M9AuPHHKyGGR0JndMgzy2AbD5LVl67DG-XEdmK1LtqrxwHvS33tKR2W7jPQm8fySqJ504uIxLGbTz8Vp3G6cEHvJR9tYac-9slooqlXSSuRZWVnHySGmwic-ZA49F05WtHNWJsGXzlVCBSWrRGeWP4Gj-rwOz4CJ4HTpeFoSjoxNuRVOcRdEVVaBYpEI0r0kjW9RxWlzi-_mGg-ZpG9Q-qaRvvkVwZuuzWaHqfFP7tf0gQwZHEnEtnUD-HwEXWXGOYYsklb_IjjpcfrN6oe5QR30qGhGvtd4sFcA05rxpcHwBnUWnXgawcuOTC0pNa0O51fEg7qXovYhz9OdvnRvhdEq9i11BHlPkzoGAvfuU-rVtwbkG_ukyWsEb_c6d_1YfxfW8_9jP4G7WWMW9FdpAEfbi6vwAoOsrRvC7XyZ41kV6RCOx7PJZE7Xd18_TPE6mc4_fho2FojnRTb-DSijI_I
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIcFeEN-EFTASiAeISOI4iR8QmgZTx9Y9bahvxnYcUWlNu7WD8U_xN3KXry6V2Nukvt3ZTc735fjuZ4A3opBGu1z4Maarfuxc5msTEBBkwLlM8oRXUEqjo2R4En8bi_EG_G17YaissvWJlaPOZ5a-kX_ESIPD0Z-Gn-dnPt0aRaer7RUatVocuD-_ccu2-LT_Bdf3bRTtfT3eHfrNrQK-TXi89DNpuc20FBk18shMpFFeaMMpWoTCBtZFBt06ZvLSGJ0EzubGFCJzWVIEMtIc570Ft2MexITVn467DR5aS43tR1jiaSJk06TTtOoJQb3QgR_ITAb-ZS8QroeDK_FwvVZz7cC2ioN79-Fek8CynVrjHsCGKx_CnVFzRP8Ivu_qX45uAvJDRkGTFp7pJcNEk80xVZ9qNnVT3KOXjukyZ5MSf_ifdIJAJbGsroqvit8XRLWkl-eP4eRGxPwENstZ6Z4BE87I3PAwJywbHXItTMaNE0VeOMqHPAhbSSrbIJvTBRunaoXJTNJXKH1VSV9devC-GzOvcT2u5X5HC6TI6EkiuuldwOcj-Cy1k2LalNAJpAfbPU47n5ypK9RBj4qmbHuDB60CqMaVLNRK8T143ZFpJJXHlW52QTyoeyFqH_I8rfWleyvMmHHuRHqQ9jSpYyCA8T6lnPysgMZxTtpAe_Ch1bnVY_1fWM-vf4tXcHd4PDpUh_tHB9uwFVUmQV-1BrC5PL9wLzDJW5qXlWUx-HHTpvwPgpxhGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO-mXcBIIA4QNYnjJD4gVLWsWkorDhTtzdiOI1bqZrfdLZS_xq9jJq9tVqK3Srl57CSTeTme-QbgtSik0S4Xfozhqh87l_naBAQEGXAukzzhFZTS8UlycBp_HonRGvxta2EorbK1iZWhzqeW_pHvoKfB6WhPw52iSYv4uj_8ODv3qYMUnbS27TRqETlyf37j9m3-4XAfv_WbKBp--rZ34DcdBnyb8HjhZ9Jym2kpMirqkZlIo7zQhpPnCIUNrIsMmniM6qUxOgmczY0pROaypAhkpDmuewfupjzmlE6WjrrNHmpOjfNHuOJpImRTsNOU7QlBddGBH8hMBv5VzymuuoZrvnE1b3Pl8LbyicMHcL8JZtluLX0PYc2Vj2DjuDmufwzf9_QvR12B_JCRAyUhYHrBMOhkMwzbJ5pN3AT366VjuszZuMQL70mnCZQey-oM-SoRfk6jlmT04gmc3gqbn8J6OS3dJjDhjMwND3PCtdEh18Jk3DhR5IWj2MiDsOWksg3KOTXbOFNLfGbivkLuq4r76sqDd92cWY3xcSP1W_pAigwAcUQ3dQz4fASlpXZTDKESOo30YLtHaWfjc3VtdNAbRbW2vcmDVgBUY1bmaqkEHrzqhmkmpcqVbnpJNCh7IUof0jyr5aV7K4yece1EepD2JKkjILDx_kg5_lmBjuOatJn24H0rc8vH-j-ztm5-i5ewgUqsvhyeHG3DvajSCPrBNYD1xcWle47x3sK8qBSLwY_b1uR_NddlVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caveolin-1+function+at+the+plasma+membrane+and+in+intracellular+compartments+in+cancer&rft.jtitle=Cancer+and+metastasis+reviews&rft.au=Sim%C3%B3n%2C+L&rft.au=Campos%2C+A&rft.au=Leyton%2C+L&rft.au=Quest%2C+A.+F.+G&rft.date=2020-06-01&rft.pub=Springer&rft.issn=0167-7659&rft.volume=39&rft.issue=2&rft.spage=435&rft_id=info:doi/10.1007%2Fs10555-020-09890-x&rft.externalDocID=A712965828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7659&client=summon