Shape-driven deep neural networks for fast acquisition of aortic 3D pressure and velocity flow fields

Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high co...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 19; no. 4; p. e1011055
Main Authors Pajaziti, Endrit, Montalt-Tordera, Javier, Capelli, Claudio, Sivera, Raphaël, Sauvage, Emilie, Quail, Michael, Schievano, Silvia, Muthurangu, Vivek
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1011055

Cover

Abstract Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy.
AbstractList Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ~0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy.
Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy.Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy.
Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy. In the clinical management of pediatric disease (namely congenital heart defects), the indications for ‘when’ and ‘how’ to intervene are often unclear. It has been found that haemodynamic modelling tools such as computational fluid dynamics (CFD) simulations are useful in assisting clinicians and surgeons to better understand patient conditions and establish any potential risk factors. While this tool remains useful in a research capacity, its separation from clinical settings is an ongoing hindrance which prevents the full adoption of CFD in healthcare. The translation of CFD towards clinics is a continuous challenge, due to large time, computational and human resource requirements for running simulations. The application of machine learning (ML) for exploring potential methods to transform conventional CFD into clinically-suitable models is a recent phenomenon which is gaining significant momentum.
Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy.
Audience Academic
Author Quail, Michael
Sauvage, Emilie
Montalt-Tordera, Javier
Schievano, Silvia
Muthurangu, Vivek
Sivera, Raphaël
Capelli, Claudio
Pajaziti, Endrit
AuthorAffiliation 1 University College London, Institution of Cardiovascular Science, London, United Kingdom
University of Michigan, UNITED STATES
2 Great Ormond Street Hospital, Cardiac Unit, London, United Kingdom
AuthorAffiliation_xml – name: 2 Great Ormond Street Hospital, Cardiac Unit, London, United Kingdom
– name: University of Michigan, UNITED STATES
– name: 1 University College London, Institution of Cardiovascular Science, London, United Kingdom
Author_xml – sequence: 1
  givenname: Endrit
  orcidid: 0000-0003-1185-2973
  surname: Pajaziti
  fullname: Pajaziti, Endrit
– sequence: 2
  givenname: Javier
  surname: Montalt-Tordera
  fullname: Montalt-Tordera, Javier
– sequence: 3
  givenname: Claudio
  surname: Capelli
  fullname: Capelli, Claudio
– sequence: 4
  givenname: Raphaël
  surname: Sivera
  fullname: Sivera, Raphaël
– sequence: 5
  givenname: Emilie
  surname: Sauvage
  fullname: Sauvage, Emilie
– sequence: 6
  givenname: Michael
  surname: Quail
  fullname: Quail, Michael
– sequence: 7
  givenname: Silvia
  surname: Schievano
  fullname: Schievano, Silvia
– sequence: 8
  givenname: Vivek
  surname: Muthurangu
  fullname: Muthurangu, Vivek
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37093855$$D View this record in MEDLINE/PubMed
BookMark eNqVUtluEzEUHaEiusAfILDECzwkeJnFwwuqyhapAonCs3XjuU5dJuOpPZPSv-eGJKipEBJjjbydc-x7fI6zgy50mGVPBZ8KVYnXV2GMHbTT3s79VHAheFE8yI5EUahJpQp9cGd8mB2ndMU5DevyUXaoKl4rXRRHGV5cQo-TJvoVdqxB7FmHY4SWuuEmxB-JuRCZgzQwsNejT37woWPBMQhx8Japd6yPmNIYkUHXsBW2wfrhlrk23DDnsW3S4-yhgzbhk21_kn3_8P7b2afJ-ZePs7PT84ktVT5MyqqswTYSuQYBeW4BGw7aQiHmiHOBJS_nci7rppYKK6SZ1vTXVspKWq1Osucb3b4NyWwdSkZqkdPHFSfEbINoAlyZPvolxFsTwJvfCyEuDKzLatFoLSV3BZZWu1zZUguoncZGKaFQyZy03m5PG-dLbCx2Axm3J7q_0_lLswgrQ69V1CpXpPByqxDD9YhpMEufLLYtdBjG9cXpUUWpipKgL-5B_17edINaAFXgOxfoYEutwaW3FCDnaf20ynUlda4kEV7tEQgz4M9hAWNKZnbx9T-wn_exz-5688eUXfII8GYDsDGkFNEZCg2ss0U39i15ZNYx31Vp1jE325gTOb9H3un_k_YLaQMC2A
CitedBy_id crossref_primary_10_1016_j_jacc_2023_10_025
crossref_primary_10_1098_rsif_2023_0281
crossref_primary_10_1080_10255842_2024_2423883
crossref_primary_10_1007_s10334_024_01180_9
crossref_primary_10_34133_icomputing_0093
crossref_primary_10_1109_TPS_2023_3326829
crossref_primary_10_1371_journal_pcbi_1012231
crossref_primary_10_1016_j_jbiomech_2023_111759
crossref_primary_10_1016_j_procs_2024_11_019
crossref_primary_10_3389_fcvm_2023_1221541
crossref_primary_10_1002_cnm_3778
crossref_primary_10_3389_fbioe_2024_1360330
Cites_doi 10.1016/j.jbiomech.2019.109544
10.1007/s11517-008-0359-2
10.1016/j.jocs.2017.07.006
10.1016/j.jbiomech.2012.10.012
10.1186/s12968-022-00891-z
10.1016/j.media.2016.01.005
10.1080/10255842.2022.2128672
10.1186/s12880-016-0142-z
10.1115/1.4037857
10.1098/rsif.2017.0632
10.1007/978-3-030-01219-9_43
10.1136/heartjnl-2015-308044
10.1007/s10439-010-9949-x
10.1161/STROKEAHA.107.510644
10.1186/s12938-018-0497-1
10.1016/j.jbiomech.2013.04.028
10.1002/cnm.3134
10.1016/j.neucom.2015.08.104
10.1186/s12880-020-00511-1
10.1007/s11517-008-0420-1
10.1080/00401706.1987.10488205
10.1007/s10439-012-0715-0
10.1007/s002469910014
10.1093/ejcts/ezs388
10.1016/j.jbiomech.2017.06.005
10.1007/978-3-030-04747-4_1
10.1109/TMI.2021.3057496
10.1016/j.ejvs.2022.05.027
10.1117/12.57955
10.2218/marine2021.6838
10.1007/s13239-013-0146-6
10.1145/3197517.3201325
10.1109/TMI.2009.2021652
10.1002/jmri.25773
10.1109/MSP.2017.2765202
10.1038/s41598-020-66225-0
ContentType Journal Article
Copyright Copyright: © 2023 Pajaziti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Pajaziti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Pajaziti et al 2023 Pajaziti et al
Copyright_xml – notice: Copyright: © 2023 Pajaziti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Pajaziti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Pajaziti et al 2023 Pajaziti et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1011055
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


CrossRef

MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Deep neural networks for fast aortic 3D pressure and velocity flow fields
EISSN 1553-7358
ExternalDocumentID 2814444030
oai_doaj_org_article_88220f5e6c8f43c681a9f8ed3313e324
PMC10159343
A748728432
37093855
10_1371_journal_pcbi_1011055
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
United States--US
GeographicLocations_xml – name: United Kingdom
– name: United States--US
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/16/99/32572
– fundername: Medical Research Council
  grantid: MR/S032290/1
– fundername: British Heart Foundation
  grantid: PG/17/6/32797
– fundername: ;
  grantid: ERC-2017-StG-757923
– fundername: ;
  grantid: NH/18/1/33511
– fundername: ;
  grantid: RG2661/17/20
– fundername: ;
  grantid: GN2572
– fundername: ;
  grantid: EP/N02124X/1
– fundername: ;
  grantid: MR/S032290/1
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
PMFND
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
AAPBV
ABPTK
M~E
N95
ID FETCH-LOGICAL-c634t-6769acd2e08a1a44caed0a8ca51beeb1e606b2b29d923e7e06b886b89c2272c83
IEDL.DBID DOA
ISSN 1553-7358
1553-734X
IngestDate Sun Jun 04 06:37:57 EDT 2023
Wed Aug 27 01:18:52 EDT 2025
Tue Sep 30 17:13:50 EDT 2025
Fri Sep 05 10:42:09 EDT 2025
Fri Jul 25 10:41:29 EDT 2025
Tue Jun 10 21:27:44 EDT 2025
Fri Jun 27 06:05:13 EDT 2025
Fri Jun 27 05:10:58 EDT 2025
Mon Jul 21 06:06:59 EDT 2025
Wed Oct 01 02:23:04 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright: © 2023 Pajaziti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-6769acd2e08a1a44caed0a8ca51beeb1e606b2b29d923e7e06b886b89c2272c83
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0003-1185-2973
OpenAccessLink https://doaj.org/article/88220f5e6c8f43c681a9f8ed3313e324
PMID 37093855
PQID 2814444030
PQPubID 1436340
PageCount e1011055
ParticipantIDs plos_journals_2814444030
doaj_primary_oai_doaj_org_article_88220f5e6c8f43c681a9f8ed3313e324
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10159343
proquest_miscellaneous_2805516356
proquest_journals_2814444030
gale_infotracacademiconefile_A748728432
gale_incontextgauss_ISR_A748728432
gale_incontextgauss_ISN_A748728432
pubmed_primary_37093855
crossref_citationtrail_10_1371_journal_pcbi_1011055
crossref_primary_10_1371_journal_pcbi_1011055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Bonfanti (pcbi.1011055.ref022) 2017; 14
JL Bruse (pcbi.1011055.ref016) 2016; 16
PD Morris (pcbi.1011055.ref001) 2016; 102
Y Wang (pcbi.1011055.ref028) 2016; 184
AD Caballero (pcbi.1011055.ref038) 2013; 4
MJMM Hoeijmakers (pcbi.1011055.ref012) 2020; 36
A Creswell (pcbi.1011055.ref026) 2018; 35
B Thamsen (pcbi.1011055.ref042) 2021; 40
B Feiger (pcbi.1011055.ref010) 2020; 10
J Garcia (pcbi.1011055.ref020) 2018; 47
S Pirola (pcbi.1011055.ref047) 2017; 60
pcbi.1011055.ref031
L Itu (pcbi.1011055.ref005) 2013; 41
pcbi.1011055.ref034
J Lantz (pcbi.1011055.ref039) 2013; 46
U Morbiducci (pcbi.1011055.ref041) 2013; 46
MR Avendi (pcbi.1011055.ref008) 2016; 30
M Piccinelli (pcbi.1011055.ref018) 2009; 28
A Powell (pcbi.1011055.ref021) 2000; 21
P Youssefi (pcbi.1011055.ref040) 2018; 140
JF LaDisa (pcbi.1011055.ref004) 2011
GP Diller (pcbi.1011055.ref029) 2020; 20
S Madhavan (pcbi.1011055.ref046) 2018; 17
Y Zhu (pcbi.1011055.ref003) 2018; 17
W Huberts (pcbi.1011055.ref007) 2018; 24
L Antiga (pcbi.1011055.ref014) 2008; 46
J Montalt-Tordera (pcbi.1011055.ref035) 2022; 24
RM Romarowski (pcbi.1011055.ref044) 2018; 34
PJ Besl (pcbi.1011055.ref015) 1992
L Liang (pcbi.1011055.ref011) 2020; 99
T Eiter (pcbi.1011055.ref025) 1994
CR Qi (pcbi.1011055.ref032) 2016
N Umetani (pcbi.1011055.ref033) 2018; 37
N Westerhof (pcbi.1011055.ref043) 2009; 47
SW Lee (pcbi.1011055.ref013) 2008; 39
pcbi.1011055.ref027
P Yevtushenko (pcbi.1011055.ref009) 2021
AS Les (pcbi.1011055.ref045) 2010; 38
pcbi.1011055.ref023
G Biglino (pcbi.1011055.ref002) 2015; 3
J Bergstra (pcbi.1011055.ref024) 2011; 24
H Wiputra (pcbi.1011055.ref037) 2022
Y Qiu (pcbi.1011055.ref006) 2022; 64
S Hang (pcbi.1011055.ref019) 2015; 41
M Stein (pcbi.1011055.ref030) 1987; 29
A Bône (pcbi.1011055.ref017) 2018
KM Tse (pcbi.1011055.ref036) 2013; 43
References_xml – ident: pcbi.1011055.ref023
– volume: 99
  year: 2020
  ident: pcbi.1011055.ref011
  article-title: A feasibility study of deep learning for predicting hemodynamics of human thoracic aorta
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2019.109544
– volume: 47
  start-page: 131
  issue: 2
  year: 2009
  ident: pcbi.1011055.ref043
  article-title: The arterial windkessel
  publication-title: Medical & biological engineering & computing
  doi: 10.1007/s11517-008-0359-2
– volume: 24
  start-page: 68
  year: 2018
  ident: pcbi.1011055.ref007
  article-title: What is needed to make cardiovascular models suitable for clinical decision support? A viewpoint paper
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2017.07.006
– volume: 46
  start-page: 102
  issue: 1
  year: 2013
  ident: pcbi.1011055.ref041
  article-title: Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta
  publication-title: Journal of biomechanics
  doi: 10.1016/j.jbiomech.2012.10.012
– year: 2011
  ident: pcbi.1011055.ref004
  article-title: Computational simulations for aortic coarctation: representative results from a sampling of patients
  publication-title: Journal of Biomedical Engineering
– volume: 24
  start-page: 1
  issue: 1
  year: 2022
  ident: pcbi.1011055.ref035
  article-title: Automatic segmentation of the great arteries for computational hemodynamic assessment
  publication-title: Journal of Cardiovascular Magnetic Resonance
  doi: 10.1186/s12968-022-00891-z
– volume: 3
  start-page: 1
  issue: December
  year: 2015
  ident: pcbi.1011055.ref002
  article-title: Using 4D Cardiovascular Magnetic Resonance Imaging to Validate Computational Fluid Dynamics: A Case Study
  publication-title: Frontiers in Pediatrics
– volume: 17
  start-page: 1
  issue: 1
  year: 2018
  ident: pcbi.1011055.ref003
  article-title: Clinical validation and assessment of aortic hemodynamics using computational fluid dynamics simulations from computed tomography angiography
  publication-title: BioMedical Engineering Online
– volume: 30
  start-page: 108
  year: 2016
  ident: pcbi.1011055.ref008
  article-title: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
  publication-title: Medical image analysis
  doi: 10.1016/j.media.2016.01.005
– start-page: 1
  year: 2022
  ident: pcbi.1011055.ref037
  article-title: Statistical shape representation of the thoracic aorta: accounting for major branches of the aortic arch
  publication-title: Computer methods in biomechanics and biomedical engineering
  doi: 10.1080/10255842.2022.2128672
– volume: 16
  start-page: 1
  issue: 1
  year: 2016
  ident: pcbi.1011055.ref016
  article-title: A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta
  publication-title: BMC medical imaging
  doi: 10.1186/s12880-016-0142-z
– volume: 140
  issue: 1
  year: 2018
  ident: pcbi.1011055.ref040
  article-title: Impact of patient-specific inflow velocity profile on hemodynamics of the thoracic aorta
  publication-title: Journal of biomechanical engineering
  doi: 10.1115/1.4037857
– volume: 14
  start-page: 20170632
  issue: 136
  year: 2017
  ident: pcbi.1011055.ref022
  article-title: Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data
  publication-title: Journal of The Royal Society Interface
  doi: 10.1098/rsif.2017.0632
– ident: pcbi.1011055.ref027
  doi: 10.1007/978-3-030-01219-9_43
– volume: 102
  start-page: 18
  issue: 1
  year: 2016
  ident: pcbi.1011055.ref001
  article-title: Computational fluid dynamics modelling in cardiovascular medicine
  publication-title: Heart
  doi: 10.1136/heartjnl-2015-308044
– year: 1994
  ident: pcbi.1011055.ref025
  article-title: Computing discrete Fréchet distance
  publication-title: Technical Report CD-TR 94/64
– volume: 38
  start-page: 1288
  issue: 4
  year: 2010
  ident: pcbi.1011055.ref045
  article-title: Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics
  publication-title: Annals of biomedical engineering
  doi: 10.1007/s10439-010-9949-x
– volume: 39
  start-page: 2341
  issue: 8
  year: 2008
  ident: pcbi.1011055.ref013
  article-title: Geometry of the carotid bifurcation predicts its exposure to disturbed flow
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.510644
– volume: 17
  start-page: 1
  issue: 1
  year: 2018
  ident: pcbi.1011055.ref046
  article-title: The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow
  publication-title: Biomedical engineering online
  doi: 10.1186/s12938-018-0497-1
– volume: 46
  start-page: 1851
  issue: 11
  year: 2013
  ident: pcbi.1011055.ref039
  article-title: Numerical and experimental assessment of turbulent kinetic energy in an aortic coarctation
  publication-title: Journal of biomechanics
  doi: 10.1016/j.jbiomech.2013.04.028
– volume: 34
  start-page: e3134
  issue: 11
  year: 2018
  ident: pcbi.1011055.ref044
  article-title: Patient-specific CFD modelling in the thoracic aorta with PC-MRI–based boundary conditions: A least-square three-element Windkessel approach
  publication-title: International journal for numerical methods in biomedical engineering
  doi: 10.1002/cnm.3134
– volume: 184
  start-page: 232
  year: 2016
  ident: pcbi.1011055.ref028
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: pcbi.1011055.ref029
  article-title: Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease
  publication-title: BMC Medical Imaging
  doi: 10.1186/s12880-020-00511-1
– volume: 41
  start-page: 11
  issue: 2
  year: 2015
  ident: pcbi.1011055.ref019
  article-title: TetGen, a Delaunay-based quality tetrahedral mesh generator
  publication-title: ACM Trans Math Softw
– volume: 46
  start-page: 1097
  issue: 11
  year: 2008
  ident: pcbi.1011055.ref014
  article-title: An image-based modeling framework for patient-specific computational hemodynamics
  publication-title: Medical & biological engineering & computing
  doi: 10.1007/s11517-008-0420-1
– year: 2021
  ident: pcbi.1011055.ref009
  article-title: Deep Learning Based Centerline-Aggregated Aortic Hemodynamics: An Efficient Alternative to Numerical Modelling of Hemodynamics
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 29
  start-page: 143
  issue: 2
  year: 1987
  ident: pcbi.1011055.ref030
  article-title: Large sample properties of simulations using Latin hypercube sampling
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– volume: 41
  start-page: 669
  issue: 4
  year: 2013
  ident: pcbi.1011055.ref005
  article-title: Non-invasive hemodynamic assessment of aortic coarctation: validation with in vivo measurements
  publication-title: Annals of biomedical engineering
  doi: 10.1007/s10439-012-0715-0
– volume: 21
  start-page: 104
  issue: 2
  year: 2000
  ident: pcbi.1011055.ref021
  article-title: Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation
  publication-title: Pediatric cardiology
  doi: 10.1007/s002469910014
– volume: 43
  start-page: 829
  issue: 4
  year: 2013
  ident: pcbi.1011055.ref036
  article-title: A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics
  publication-title: European Journal of Cardio-Thoracic Surgery
  doi: 10.1093/ejcts/ezs388
– volume: 60
  start-page: 15
  year: 2017
  ident: pcbi.1011055.ref047
  article-title: On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics
  publication-title: Journal of biomechanics
  doi: 10.1016/j.jbiomech.2017.06.005
– start-page: 3
  volume-title: International Workshop on Shape in Medical Imaging
  year: 2018
  ident: pcbi.1011055.ref017
  doi: 10.1007/978-3-030-04747-4_1
– ident: pcbi.1011055.ref034
– volume: 40
  start-page: 1438
  issue: 5
  year: 2021
  ident: pcbi.1011055.ref042
  article-title: Synthetic Database of Aortic Morphometry and Hemodynamics: Overcoming Medical Imaging Data Availability
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2021.3057496
– volume: 64
  start-page: 155
  issue: 2–3
  year: 2022
  ident: pcbi.1011055.ref006
  article-title: Association between blood flow pattern and rupture risk of abdominal aortic aneurysm based on computational fluid dynamics
  publication-title: European Journal of Vascular and Endovascular Surgery
  doi: 10.1016/j.ejvs.2022.05.027
– start-page: 586
  volume-title: Sensor fusion IV: control paradigms and data structures
  year: 1992
  ident: pcbi.1011055.ref015
  doi: 10.1117/12.57955
– ident: pcbi.1011055.ref031
  doi: 10.2218/marine2021.6838
– volume: 4
  start-page: 103
  issue: 2
  year: 2013
  ident: pcbi.1011055.ref038
  article-title: A review on computational fluid dynamics modelling in human thoracic aorta
  publication-title: Cardiovascular Engineering and Technology
  doi: 10.1007/s13239-013-0146-6
– volume: 37
  issue: 4
  year: 2018
  ident: pcbi.1011055.ref033
  article-title: Learning Three-Dimensional Flow for Interactive Aerodynamic Design regression prediction for new shape
  publication-title: ACM Trans Graph
  doi: 10.1145/3197517.3201325
– volume: 28
  start-page: 1141
  issue: 8
  year: 2009
  ident: pcbi.1011055.ref018
  article-title: A framework for geometric analysis of vascular structures: application to cerebral aneurysms
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2009.2021652
– volume: 47
  start-page: 487
  issue: 2
  year: 2018
  ident: pcbi.1011055.ref020
  article-title: Distribution of blood flow velocity in the normal aorta: effect of age and gender
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.25773
– volume: 35
  start-page: 53
  issue: 1
  year: 2018
  ident: pcbi.1011055.ref026
  article-title: Generative adversarial networks: An overview
  publication-title: IEEE signal processing magazine
  doi: 10.1109/MSP.2017.2765202
– volume: 24
  year: 2011
  ident: pcbi.1011055.ref024
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Advances in neural information processing systems
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: pcbi.1011055.ref010
  article-title: Accelerating massively parallel hemodynamic models of coarctation of the aorta using neural networks
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-66225-0
– year: 2016
  ident: pcbi.1011055.ref032
  article-title: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
  publication-title: CVPR 2017 Open Access
– volume: 36
  start-page: 1
  issue: 10
  year: 2020
  ident: pcbi.1011055.ref012
  article-title: Combining statistical shape modeling, CFD, and meta-modeling to approximate the patient-specific pressure-drop across the aortic valve in real-time
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
SSID ssj0035896
Score 2.4850173
Snippet Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1011055
SubjectTerms Aorta
Aortic valve
Artificial neural networks
Biology and Life Sciences
Blood Flow Velocity
Computational fluid dynamics
Computer applications
Computer Simulation
Coronary vessels
Correspondence
Decomposition
Fluid dynamics
Fluid flow
Hemodynamics
Humans
Hydrodynamics
Machine learning
Mathematical models
Mechanical properties
Medicine and Health Sciences
Model testing
Models, Cardiovascular
Neural networks
Neural Networks, Computer
Patients
Physical Sciences
Regression analysis
Regression models
Research and Analysis Methods
Simulation
Standard deviation
Statistical analysis
Three dimensional flow
Velocity
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXVJ4NLcggJE6hie0kzgmVx1KQ6IFSaW-WYzvtSqsk3WyE-PfMJE4gqMBhD1lPonhmMg_78wwhLxMTO3DrOjQpz0KR4kJTKcAYluA-Egsj_TnuL6fpybn4vEpWfsGt9bDK0Sb2htrWBtfIj5iE0F8I0Mk3zVWIXaNwd9W30LhJbsUMNAlPii8_jpaYJ7Lvz4WtccKMi5U_Osez-MhL6nVjijVmsNgncuaa-gr-k51eNJu6vS4I_RNL-ZtzWu6Ruz6qpMeDGtwjN1x1n9we-kz-eEDc2aVuXGi3aNqoda6hWMcS7qgGFHhLIXalpW53VJurbj0AuWhdUl3jMyl_T3vEbLd1VFeWItLIQABPy039nfYwuPYhOV9--PbuJPT9FVAwYhciulUby1wkdayFMNrZSEujk7hwYMMdJDcFK1huIQp0mYMrKeGXG8YyZiR_RBZVXbl9QguXZ9xioUMIF2QRaZZpiAQhGyqj3CRlQPjIWmV88XHsgbFR_Y5aBknIwCmFAlFeIAEJp7uaofjGf-jfotQmWiyd3f9Rby-U_xIVpBQsKhOXGlBKblIZ67yUznKOC8JMBOQFylxhcYwK0TcXumtb9ensVB3jhMCfc_ZXoq8zoleeqKxhskb7Ew_AMiy6NaPcRwUbJ9WqX9oekMNR6a4ffj4Ng2HA3R5dubpDmgg3QXmSBuTxoKMTY3gW5Vwiw-RMe2ecm49U68u--DiwOsm54E_-_V4H5A6DcHDAOB2SxW7buacQvu2KZ_03-hN5qkNL
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBbplkIvoe-4TYtaCj052JJsy4dS0kdIC8mh6cLejCxLycJiO_aaNv--M_KDumzopYc9eDUy6JvRPKzRDCFvIx0aMOvK1zFPfBHjhyYrQBlaMB9RASPuHvfZeXy6FN9W0WqPjD1bBwDbnaEd9pNaNpujX9c3H2DDv3ddG5JwnHRU63yN0Sj2fLxD7oJtYijnZ2I6V-CRdB27sFmOn3CxGi7T3faWmbFyNf0nzb2oN1W7yy39O7vyD3N18oDsD34mPe4F4yHZM-Ujcq_vPHnzmJiLK1Ubv2hQ2dHCmJpiZUuYUfZ54S0Fb5Za1W6p0tfduk_topWlqsJ3Uv6ZuhzarjFUlQXF3CMNLj21m-ondYlx7ROyPPny49OpP3RcQFaJrY_5rkoXzARShUoIrUwRKKlVFOYGtLqBcCdnOUsL8AtNYuBJSvilmrGEacmfkkVZleaA0NykCS-w9CE4EDIPFEsU-IYQH9kg1ZH1CB-hzfRQjhy7Ymwyd8aWQFjSI5UhQ7KBIR7xp1l1X47jH_QfkWsTLRbTdn9UzWU27M0MggwW2MjEGsSU61iGKrXSFJzjJ2ImPPIGeZ5huYwS83EuVde22deL8-wYFwQWnrNbib7PiN4NRLaCxWo13IEAyLAM14zyAAVsXFSbMQmhrxCgkz1yOArd7uHX0zCoCjz_UaWpOqQJ8FiUR7FHnvUyOgHDkyDlEgGTM-mdITcfKddXrhw5QB2lXPDn_wPrF-Q-Azeyz406JItt05mX4PZt81duJ_8GjklV1Q
  priority: 102
  providerName: Scholars Portal
Title Shape-driven deep neural networks for fast acquisition of aortic 3D pressure and velocity flow fields
URI https://www.ncbi.nlm.nih.gov/pubmed/37093855
https://www.proquest.com/docview/2814444030
https://www.proquest.com/docview/2805516356
https://pubmed.ncbi.nlm.nih.gov/PMC10159343
https://doaj.org/article/88220f5e6c8f43c681a9f8ed3313e324
http://dx.doi.org/10.1371/journal.pcbi.1011055
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegCIkXxPcCozIIiaewxHZi57FlKwNpFdqY1LfIcZytUpWEphHiv-cuTqMFDe2Fh6ZKfInku8t9xOffEfIhMqEFt659E3Ppixg_NBUCjGEB7iPKYaTbx322jE8vxbdVtLrR6gtrwhw8sGPcEUSALCgiGxt4BjexCnVSKJtzjt_vWIcECm5sn0w5G8wj1XXmwqY4vuRi1W-a4zI86mX0qTbZGnNX7BA5ckoddv9goSf1pmpuCz__rqK84ZYWT8jjPp6kMzePp-SeLZ-Rh67D5O_nxF5c69r6-RaNGs2trSkiWMIdpav_bihErbTQzY5q87NduxIuWhVUV_hMyo9pVyvbbi3VZU6xxshA6E6LTfWLdgVwzQtyuTj58fnU7zsroEjEzse6Vm1yZgOlQy2E0TYPtDI6CjML1ttCWpOxjCU5xH9WWjhTCn6JYUwyo_hLMimr0h4QmtlE8hwhDiFQUFmgmdQQA0IeVASJiQqP8D1rU9PDjmP3i03araVJSD8cp1IUSNoLxCP-cFftYDfuoJ-j1AZaBM3uLoAqpb0qpXepkkfeo8xThMUose7mSrdNk369WKYznBB4cs7-SXQ-IvrYExUVTNbofq8DsAzhtkaUB6hg-0k1KVOQ4goBttcjh3ulu3343TAMJgHXeXRpqxZpAlz-5FHskVdORwfGcBkkXCHD1Eh7R5wbj5Tr6w52HFgdJVzw1_-D12_IIwbhoquBOiST3ba1byG822VTcl-uJBzV4suUPJjNj-cL-J-fLL-fT7u3HI5nQv0BVnlRBw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgQXxLsLBQwCcQpNbCdxDggVSrVL2z3QVtqbcRynXWmVpJuNqv4pfiMzeUFQgVMPOSSeRPHMePyNPZ4h5I1vPAvTunZMwENHBLjQlAowhilMH34CLfU57sNZMDkRX-f-fIP86M7CYFhlZxNrQ53kBtfIt5kE6C8E6OTH4tzBqlG4u9qV0GjUYt9eXoDLVn6Y7oJ83zK29-X488Rpqwrg74i1gzGd2iTMulJ7WgijbeJqabTvxRYslwVIH7OYRQlgHxtauJMSrsgwFjIjOXz3BrkpuCswV3847x087su6HhiW4nFCLubtUT0eetutZrwvTLxAjxnrUg6mwrpiQD8vjIplXl4Fev-M3fxtMty7R-62KJbuNGp3n2zY7AG51dS1vHxI7NGZLqyTrNCU0sTagmLeTHgja6LOSwpYmaa6XFNtzqtFEzhG85TqHL9J-S6tI3SrlaU6SyhGNhlwGGi6zC9oHXZXPiIn18L5x2SU5ZndJDS2UcgTTKwI8ETGrmahBuQJ3lfqRsZPx4R3rFWmTXaONTeWqt7BC8HpaTilUCCqFciYOP1bRZPs4z_0n1BqPS2m6q4f5KtT1Y58BS4Mc1PfBgYGATeB9HSUSptwjgvQTIzJa5S5wmQcGUb7nOqqLNX0aKZ2sEOAHzj7K9G3AdG7lijNobNGtycsgGWY5GtAuYkK1nWqVL9G15hsdUp3dfOrvhkMEe4u6czmFdK4uOnK_WBMnjQ62jOGh27EJTJMDrR3wLlhS7Y4q5OdA6v9iAv-9N__9ZLcnhwfHqiD6Wz_GbnDAIo28VVbZLReVfY5QMd1_KIer5R8v24D8RO-6IEF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYgXxPfKBhgE4ik0sfPhPCA0KNXKoEKMSX0zjmNvlaoka1pN-9f213GXLwga8LSHPqS-RMn5fP6d_fMdIS8D7RmY1pWjQx45fogLTdYHZ2hh-ghSaKnOcX-ZhftH_qd5MN8iF-1ZGKRVtj6xctRprnGNfMQEQH_fB5sc2YYW8XU8eVecOlhBCnda23IatYkcmPMzCN_Kt9Mx9PUrxiYfv3_Yd5oKA_hq_tpBfqfSKTOuUJ7yfa1M6iqhVeAlBryYAXifsITFKeAgExm4EgJ-sWYsYlpweO41cj3iPkc6WTTvgj0eiKo2GJblcaB93hzb45E3aqzkTaGTBUbPWKOyNy1W1QO6OWJQLPPyMgD8J4_zt4lxcofcbhAt3atN8C7ZMtk9cqOucXl-n5jDE1UYJ12hW6WpMQXFHJpwR1Yz0EsKuJlaVa6p0qebRU0io7mlKsdnUj6mFVt3szJUZSlFlpOG4IHaZX5GKwpe-YAcXYnmH5JBlmdmm9DExBFPMckiQBWRuIpFClAoRGLWjXVgh4S3qpW6SXyO9TeWstrNiyAAqjUlsUNk0yFD4nR3FXXij__Iv8de62QxbXf1R746lo0XkBDOMNcGJtQwILgOhadiK0zKOS5GM39IXmCfS0zMkaGJH6tNWcrp4Uzu4QcBluDsr0LfekKvGyGbw8dq1Zy2AJVhwq-e5DYaWPtRpfw10oZktzW6y5ufd83glHCnSWUm36CMixuwPAiH5FFto51ieOTGXKDCRM96e5rrt2SLkyrxOag6iGGsPf73ez0jN8E1yM_T2cEOucUAldZUq10yWK825gmgyHXytBqulPy4av_wE9gNhUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape-driven+deep+neural+networks+for+fast+acquisition+of+aortic+3D+pressure+and+velocity+flow+fields&rft.jtitle=PLoS+computational+biology&rft.au=Endrit+Pajaziti&rft.au=Javier+Montalt-Tordera&rft.au=Claudio+Capelli&rft.au=Rapha%C3%ABl+Sivera&rft.date=2023-04-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=19&rft.issue=4&rft.spage=e1011055&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011055&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_88220f5e6c8f43c681a9f8ed3313e324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon