Shape-driven deep neural networks for fast acquisition of aortic 3D pressure and velocity flow fields
Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high co...
Saved in:
Published in | PLoS computational biology Vol. 19; no. 4; p. e1011055 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.04.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7358 1553-734X 1553-7358 |
DOI | 10.1371/journal.pcbi.1011055 |
Cover
Abstract | Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy. |
---|---|
AbstractList | Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ~0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy. Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy.Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy. Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy. In the clinical management of pediatric disease (namely congenital heart defects), the indications for ‘when’ and ‘how’ to intervene are often unclear. It has been found that haemodynamic modelling tools such as computational fluid dynamics (CFD) simulations are useful in assisting clinicians and surgeons to better understand patient conditions and establish any potential risk factors. While this tool remains useful in a research capacity, its separation from clinical settings is an ongoing hindrance which prevents the full adoption of CFD in healthcare. The translation of CFD towards clinics is a continuous challenge, due to large time, computational and human resource requirements for running simulations. The application of machine learning (ML) for exploring potential methods to transform conventional CFD into clinically-suitable models is a recent phenomenon which is gaining significant momentum. Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy. |
Audience | Academic |
Author | Quail, Michael Sauvage, Emilie Montalt-Tordera, Javier Schievano, Silvia Muthurangu, Vivek Sivera, Raphaël Capelli, Claudio Pajaziti, Endrit |
AuthorAffiliation | 1 University College London, Institution of Cardiovascular Science, London, United Kingdom University of Michigan, UNITED STATES 2 Great Ormond Street Hospital, Cardiac Unit, London, United Kingdom |
AuthorAffiliation_xml | – name: 2 Great Ormond Street Hospital, Cardiac Unit, London, United Kingdom – name: University of Michigan, UNITED STATES – name: 1 University College London, Institution of Cardiovascular Science, London, United Kingdom |
Author_xml | – sequence: 1 givenname: Endrit orcidid: 0000-0003-1185-2973 surname: Pajaziti fullname: Pajaziti, Endrit – sequence: 2 givenname: Javier surname: Montalt-Tordera fullname: Montalt-Tordera, Javier – sequence: 3 givenname: Claudio surname: Capelli fullname: Capelli, Claudio – sequence: 4 givenname: Raphaël surname: Sivera fullname: Sivera, Raphaël – sequence: 5 givenname: Emilie surname: Sauvage fullname: Sauvage, Emilie – sequence: 6 givenname: Michael surname: Quail fullname: Quail, Michael – sequence: 7 givenname: Silvia surname: Schievano fullname: Schievano, Silvia – sequence: 8 givenname: Vivek surname: Muthurangu fullname: Muthurangu, Vivek |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37093855$$D View this record in MEDLINE/PubMed |
BookMark | eNqVUtluEzEUHaEiusAfILDECzwkeJnFwwuqyhapAonCs3XjuU5dJuOpPZPSv-eGJKipEBJjjbydc-x7fI6zgy50mGVPBZ8KVYnXV2GMHbTT3s79VHAheFE8yI5EUahJpQp9cGd8mB2ndMU5DevyUXaoKl4rXRRHGV5cQo-TJvoVdqxB7FmHY4SWuuEmxB-JuRCZgzQwsNejT37woWPBMQhx8Japd6yPmNIYkUHXsBW2wfrhlrk23DDnsW3S4-yhgzbhk21_kn3_8P7b2afJ-ZePs7PT84ktVT5MyqqswTYSuQYBeW4BGw7aQiHmiHOBJS_nci7rppYKK6SZ1vTXVspKWq1Osucb3b4NyWwdSkZqkdPHFSfEbINoAlyZPvolxFsTwJvfCyEuDKzLatFoLSV3BZZWu1zZUguoncZGKaFQyZy03m5PG-dLbCx2Axm3J7q_0_lLswgrQ69V1CpXpPByqxDD9YhpMEufLLYtdBjG9cXpUUWpipKgL-5B_17edINaAFXgOxfoYEutwaW3FCDnaf20ynUlda4kEV7tEQgz4M9hAWNKZnbx9T-wn_exz-5688eUXfII8GYDsDGkFNEZCg2ss0U39i15ZNYx31Vp1jE325gTOb9H3un_k_YLaQMC2A |
CitedBy_id | crossref_primary_10_1016_j_jacc_2023_10_025 crossref_primary_10_1098_rsif_2023_0281 crossref_primary_10_1080_10255842_2024_2423883 crossref_primary_10_1007_s10334_024_01180_9 crossref_primary_10_34133_icomputing_0093 crossref_primary_10_1109_TPS_2023_3326829 crossref_primary_10_1371_journal_pcbi_1012231 crossref_primary_10_1016_j_jbiomech_2023_111759 crossref_primary_10_1016_j_procs_2024_11_019 crossref_primary_10_3389_fcvm_2023_1221541 crossref_primary_10_1002_cnm_3778 crossref_primary_10_3389_fbioe_2024_1360330 |
Cites_doi | 10.1016/j.jbiomech.2019.109544 10.1007/s11517-008-0359-2 10.1016/j.jocs.2017.07.006 10.1016/j.jbiomech.2012.10.012 10.1186/s12968-022-00891-z 10.1016/j.media.2016.01.005 10.1080/10255842.2022.2128672 10.1186/s12880-016-0142-z 10.1115/1.4037857 10.1098/rsif.2017.0632 10.1007/978-3-030-01219-9_43 10.1136/heartjnl-2015-308044 10.1007/s10439-010-9949-x 10.1161/STROKEAHA.107.510644 10.1186/s12938-018-0497-1 10.1016/j.jbiomech.2013.04.028 10.1002/cnm.3134 10.1016/j.neucom.2015.08.104 10.1186/s12880-020-00511-1 10.1007/s11517-008-0420-1 10.1080/00401706.1987.10488205 10.1007/s10439-012-0715-0 10.1007/s002469910014 10.1093/ejcts/ezs388 10.1016/j.jbiomech.2017.06.005 10.1007/978-3-030-04747-4_1 10.1109/TMI.2021.3057496 10.1016/j.ejvs.2022.05.027 10.1117/12.57955 10.2218/marine2021.6838 10.1007/s13239-013-0146-6 10.1145/3197517.3201325 10.1109/TMI.2009.2021652 10.1002/jmri.25773 10.1109/MSP.2017.2765202 10.1038/s41598-020-66225-0 |
ContentType | Journal Article |
Copyright | Copyright: © 2023 Pajaziti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Pajaziti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Pajaziti et al 2023 Pajaziti et al |
Copyright_xml | – notice: Copyright: © 2023 Pajaziti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Pajaziti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Pajaziti et al 2023 Pajaziti et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1011055 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Deep neural networks for fast aortic 3D pressure and velocity flow fields |
EISSN | 1553-7358 |
ExternalDocumentID | 2814444030 oai_doaj_org_article_88220f5e6c8f43c681a9f8ed3313e324 PMC10159343 A748728432 37093855 10_1371_journal_pcbi_1011055 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom United States--US |
GeographicLocations_xml | – name: United Kingdom – name: United States--US |
GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/16/99/32572 – fundername: Medical Research Council grantid: MR/S032290/1 – fundername: British Heart Foundation grantid: PG/17/6/32797 – fundername: ; grantid: ERC-2017-StG-757923 – fundername: ; grantid: NH/18/1/33511 – fundername: ; grantid: RG2661/17/20 – fundername: ; grantid: GN2572 – fundername: ; grantid: EP/N02124X/1 – fundername: ; grantid: MR/S032290/1 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ PMFND 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM AAPBV ABPTK M~E N95 |
ID | FETCH-LOGICAL-c634t-6769acd2e08a1a44caed0a8ca51beeb1e606b2b29d923e7e06b886b89c2272c83 |
IEDL.DBID | DOA |
ISSN | 1553-7358 1553-734X |
IngestDate | Sun Jun 04 06:37:57 EDT 2023 Wed Aug 27 01:18:52 EDT 2025 Tue Sep 30 17:13:50 EDT 2025 Fri Sep 05 10:42:09 EDT 2025 Fri Jul 25 10:41:29 EDT 2025 Tue Jun 10 21:27:44 EDT 2025 Fri Jun 27 06:05:13 EDT 2025 Fri Jun 27 05:10:58 EDT 2025 Mon Jul 21 06:06:59 EDT 2025 Wed Oct 01 02:23:04 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright: © 2023 Pajaziti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c634t-6769acd2e08a1a44caed0a8ca51beeb1e606b2b29d923e7e06b886b89c2272c83 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0003-1185-2973 |
OpenAccessLink | https://doaj.org/article/88220f5e6c8f43c681a9f8ed3313e324 |
PMID | 37093855 |
PQID | 2814444030 |
PQPubID | 1436340 |
PageCount | e1011055 |
ParticipantIDs | plos_journals_2814444030 doaj_primary_oai_doaj_org_article_88220f5e6c8f43c681a9f8ed3313e324 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10159343 proquest_miscellaneous_2805516356 proquest_journals_2814444030 gale_infotracacademiconefile_A748728432 gale_incontextgauss_ISR_A748728432 gale_incontextgauss_ISN_A748728432 pubmed_primary_37093855 crossref_citationtrail_10_1371_journal_pcbi_1011055 crossref_primary_10_1371_journal_pcbi_1011055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2023 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | M Bonfanti (pcbi.1011055.ref022) 2017; 14 JL Bruse (pcbi.1011055.ref016) 2016; 16 PD Morris (pcbi.1011055.ref001) 2016; 102 Y Wang (pcbi.1011055.ref028) 2016; 184 AD Caballero (pcbi.1011055.ref038) 2013; 4 MJMM Hoeijmakers (pcbi.1011055.ref012) 2020; 36 A Creswell (pcbi.1011055.ref026) 2018; 35 B Thamsen (pcbi.1011055.ref042) 2021; 40 B Feiger (pcbi.1011055.ref010) 2020; 10 J Garcia (pcbi.1011055.ref020) 2018; 47 S Pirola (pcbi.1011055.ref047) 2017; 60 pcbi.1011055.ref031 L Itu (pcbi.1011055.ref005) 2013; 41 pcbi.1011055.ref034 J Lantz (pcbi.1011055.ref039) 2013; 46 U Morbiducci (pcbi.1011055.ref041) 2013; 46 MR Avendi (pcbi.1011055.ref008) 2016; 30 M Piccinelli (pcbi.1011055.ref018) 2009; 28 A Powell (pcbi.1011055.ref021) 2000; 21 P Youssefi (pcbi.1011055.ref040) 2018; 140 JF LaDisa (pcbi.1011055.ref004) 2011 GP Diller (pcbi.1011055.ref029) 2020; 20 S Madhavan (pcbi.1011055.ref046) 2018; 17 Y Zhu (pcbi.1011055.ref003) 2018; 17 W Huberts (pcbi.1011055.ref007) 2018; 24 L Antiga (pcbi.1011055.ref014) 2008; 46 J Montalt-Tordera (pcbi.1011055.ref035) 2022; 24 RM Romarowski (pcbi.1011055.ref044) 2018; 34 PJ Besl (pcbi.1011055.ref015) 1992 L Liang (pcbi.1011055.ref011) 2020; 99 T Eiter (pcbi.1011055.ref025) 1994 CR Qi (pcbi.1011055.ref032) 2016 N Umetani (pcbi.1011055.ref033) 2018; 37 N Westerhof (pcbi.1011055.ref043) 2009; 47 SW Lee (pcbi.1011055.ref013) 2008; 39 pcbi.1011055.ref027 P Yevtushenko (pcbi.1011055.ref009) 2021 AS Les (pcbi.1011055.ref045) 2010; 38 pcbi.1011055.ref023 G Biglino (pcbi.1011055.ref002) 2015; 3 J Bergstra (pcbi.1011055.ref024) 2011; 24 H Wiputra (pcbi.1011055.ref037) 2022 Y Qiu (pcbi.1011055.ref006) 2022; 64 S Hang (pcbi.1011055.ref019) 2015; 41 M Stein (pcbi.1011055.ref030) 1987; 29 A Bône (pcbi.1011055.ref017) 2018 KM Tse (pcbi.1011055.ref036) 2013; 43 |
References_xml | – ident: pcbi.1011055.ref023 – volume: 99 year: 2020 ident: pcbi.1011055.ref011 article-title: A feasibility study of deep learning for predicting hemodynamics of human thoracic aorta publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2019.109544 – volume: 47 start-page: 131 issue: 2 year: 2009 ident: pcbi.1011055.ref043 article-title: The arterial windkessel publication-title: Medical & biological engineering & computing doi: 10.1007/s11517-008-0359-2 – volume: 24 start-page: 68 year: 2018 ident: pcbi.1011055.ref007 article-title: What is needed to make cardiovascular models suitable for clinical decision support? A viewpoint paper publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2017.07.006 – volume: 46 start-page: 102 issue: 1 year: 2013 ident: pcbi.1011055.ref041 article-title: Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta publication-title: Journal of biomechanics doi: 10.1016/j.jbiomech.2012.10.012 – year: 2011 ident: pcbi.1011055.ref004 article-title: Computational simulations for aortic coarctation: representative results from a sampling of patients publication-title: Journal of Biomedical Engineering – volume: 24 start-page: 1 issue: 1 year: 2022 ident: pcbi.1011055.ref035 article-title: Automatic segmentation of the great arteries for computational hemodynamic assessment publication-title: Journal of Cardiovascular Magnetic Resonance doi: 10.1186/s12968-022-00891-z – volume: 3 start-page: 1 issue: December year: 2015 ident: pcbi.1011055.ref002 article-title: Using 4D Cardiovascular Magnetic Resonance Imaging to Validate Computational Fluid Dynamics: A Case Study publication-title: Frontiers in Pediatrics – volume: 17 start-page: 1 issue: 1 year: 2018 ident: pcbi.1011055.ref003 article-title: Clinical validation and assessment of aortic hemodynamics using computational fluid dynamics simulations from computed tomography angiography publication-title: BioMedical Engineering Online – volume: 30 start-page: 108 year: 2016 ident: pcbi.1011055.ref008 article-title: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI publication-title: Medical image analysis doi: 10.1016/j.media.2016.01.005 – start-page: 1 year: 2022 ident: pcbi.1011055.ref037 article-title: Statistical shape representation of the thoracic aorta: accounting for major branches of the aortic arch publication-title: Computer methods in biomechanics and biomedical engineering doi: 10.1080/10255842.2022.2128672 – volume: 16 start-page: 1 issue: 1 year: 2016 ident: pcbi.1011055.ref016 article-title: A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta publication-title: BMC medical imaging doi: 10.1186/s12880-016-0142-z – volume: 140 issue: 1 year: 2018 ident: pcbi.1011055.ref040 article-title: Impact of patient-specific inflow velocity profile on hemodynamics of the thoracic aorta publication-title: Journal of biomechanical engineering doi: 10.1115/1.4037857 – volume: 14 start-page: 20170632 issue: 136 year: 2017 ident: pcbi.1011055.ref022 article-title: Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data publication-title: Journal of The Royal Society Interface doi: 10.1098/rsif.2017.0632 – ident: pcbi.1011055.ref027 doi: 10.1007/978-3-030-01219-9_43 – volume: 102 start-page: 18 issue: 1 year: 2016 ident: pcbi.1011055.ref001 article-title: Computational fluid dynamics modelling in cardiovascular medicine publication-title: Heart doi: 10.1136/heartjnl-2015-308044 – year: 1994 ident: pcbi.1011055.ref025 article-title: Computing discrete Fréchet distance publication-title: Technical Report CD-TR 94/64 – volume: 38 start-page: 1288 issue: 4 year: 2010 ident: pcbi.1011055.ref045 article-title: Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics publication-title: Annals of biomedical engineering doi: 10.1007/s10439-010-9949-x – volume: 39 start-page: 2341 issue: 8 year: 2008 ident: pcbi.1011055.ref013 article-title: Geometry of the carotid bifurcation predicts its exposure to disturbed flow publication-title: Stroke doi: 10.1161/STROKEAHA.107.510644 – volume: 17 start-page: 1 issue: 1 year: 2018 ident: pcbi.1011055.ref046 article-title: The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow publication-title: Biomedical engineering online doi: 10.1186/s12938-018-0497-1 – volume: 46 start-page: 1851 issue: 11 year: 2013 ident: pcbi.1011055.ref039 article-title: Numerical and experimental assessment of turbulent kinetic energy in an aortic coarctation publication-title: Journal of biomechanics doi: 10.1016/j.jbiomech.2013.04.028 – volume: 34 start-page: e3134 issue: 11 year: 2018 ident: pcbi.1011055.ref044 article-title: Patient-specific CFD modelling in the thoracic aorta with PC-MRI–based boundary conditions: A least-square three-element Windkessel approach publication-title: International journal for numerical methods in biomedical engineering doi: 10.1002/cnm.3134 – volume: 184 start-page: 232 year: 2016 ident: pcbi.1011055.ref028 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.104 – volume: 20 start-page: 1 issue: 1 year: 2020 ident: pcbi.1011055.ref029 article-title: Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease publication-title: BMC Medical Imaging doi: 10.1186/s12880-020-00511-1 – volume: 41 start-page: 11 issue: 2 year: 2015 ident: pcbi.1011055.ref019 article-title: TetGen, a Delaunay-based quality tetrahedral mesh generator publication-title: ACM Trans Math Softw – volume: 46 start-page: 1097 issue: 11 year: 2008 ident: pcbi.1011055.ref014 article-title: An image-based modeling framework for patient-specific computational hemodynamics publication-title: Medical & biological engineering & computing doi: 10.1007/s11517-008-0420-1 – year: 2021 ident: pcbi.1011055.ref009 article-title: Deep Learning Based Centerline-Aggregated Aortic Hemodynamics: An Efficient Alternative to Numerical Modelling of Hemodynamics publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 29 start-page: 143 issue: 2 year: 1987 ident: pcbi.1011055.ref030 article-title: Large sample properties of simulations using Latin hypercube sampling publication-title: Technometrics doi: 10.1080/00401706.1987.10488205 – volume: 41 start-page: 669 issue: 4 year: 2013 ident: pcbi.1011055.ref005 article-title: Non-invasive hemodynamic assessment of aortic coarctation: validation with in vivo measurements publication-title: Annals of biomedical engineering doi: 10.1007/s10439-012-0715-0 – volume: 21 start-page: 104 issue: 2 year: 2000 ident: pcbi.1011055.ref021 article-title: Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation publication-title: Pediatric cardiology doi: 10.1007/s002469910014 – volume: 43 start-page: 829 issue: 4 year: 2013 ident: pcbi.1011055.ref036 article-title: A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics publication-title: European Journal of Cardio-Thoracic Surgery doi: 10.1093/ejcts/ezs388 – volume: 60 start-page: 15 year: 2017 ident: pcbi.1011055.ref047 article-title: On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics publication-title: Journal of biomechanics doi: 10.1016/j.jbiomech.2017.06.005 – start-page: 3 volume-title: International Workshop on Shape in Medical Imaging year: 2018 ident: pcbi.1011055.ref017 doi: 10.1007/978-3-030-04747-4_1 – ident: pcbi.1011055.ref034 – volume: 40 start-page: 1438 issue: 5 year: 2021 ident: pcbi.1011055.ref042 article-title: Synthetic Database of Aortic Morphometry and Hemodynamics: Overcoming Medical Imaging Data Availability publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2021.3057496 – volume: 64 start-page: 155 issue: 2–3 year: 2022 ident: pcbi.1011055.ref006 article-title: Association between blood flow pattern and rupture risk of abdominal aortic aneurysm based on computational fluid dynamics publication-title: European Journal of Vascular and Endovascular Surgery doi: 10.1016/j.ejvs.2022.05.027 – start-page: 586 volume-title: Sensor fusion IV: control paradigms and data structures year: 1992 ident: pcbi.1011055.ref015 doi: 10.1117/12.57955 – ident: pcbi.1011055.ref031 doi: 10.2218/marine2021.6838 – volume: 4 start-page: 103 issue: 2 year: 2013 ident: pcbi.1011055.ref038 article-title: A review on computational fluid dynamics modelling in human thoracic aorta publication-title: Cardiovascular Engineering and Technology doi: 10.1007/s13239-013-0146-6 – volume: 37 issue: 4 year: 2018 ident: pcbi.1011055.ref033 article-title: Learning Three-Dimensional Flow for Interactive Aerodynamic Design regression prediction for new shape publication-title: ACM Trans Graph doi: 10.1145/3197517.3201325 – volume: 28 start-page: 1141 issue: 8 year: 2009 ident: pcbi.1011055.ref018 article-title: A framework for geometric analysis of vascular structures: application to cerebral aneurysms publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2009.2021652 – volume: 47 start-page: 487 issue: 2 year: 2018 ident: pcbi.1011055.ref020 article-title: Distribution of blood flow velocity in the normal aorta: effect of age and gender publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.25773 – volume: 35 start-page: 53 issue: 1 year: 2018 ident: pcbi.1011055.ref026 article-title: Generative adversarial networks: An overview publication-title: IEEE signal processing magazine doi: 10.1109/MSP.2017.2765202 – volume: 24 year: 2011 ident: pcbi.1011055.ref024 article-title: Algorithms for hyper-parameter optimization publication-title: Advances in neural information processing systems – volume: 10 start-page: 1 issue: 1 year: 2020 ident: pcbi.1011055.ref010 article-title: Accelerating massively parallel hemodynamic models of coarctation of the aorta using neural networks publication-title: Scientific Reports doi: 10.1038/s41598-020-66225-0 – year: 2016 ident: pcbi.1011055.ref032 article-title: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation publication-title: CVPR 2017 Open Access – volume: 36 start-page: 1 issue: 10 year: 2020 ident: pcbi.1011055.ref012 article-title: Combining statistical shape modeling, CFD, and meta-modeling to approximate the patient-specific pressure-drop across the aortic valve in real-time publication-title: International Journal for Numerical Methods in Biomedical Engineering |
SSID | ssj0035896 |
Score | 2.4850173 |
Snippet | Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1011055 |
SubjectTerms | Aorta Aortic valve Artificial neural networks Biology and Life Sciences Blood Flow Velocity Computational fluid dynamics Computer applications Computer Simulation Coronary vessels Correspondence Decomposition Fluid dynamics Fluid flow Hemodynamics Humans Hydrodynamics Machine learning Mathematical models Mechanical properties Medicine and Health Sciences Model testing Models, Cardiovascular Neural networks Neural Networks, Computer Patients Physical Sciences Regression analysis Regression models Research and Analysis Methods Simulation Standard deviation Statistical analysis Three dimensional flow Velocity |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgERIXVJ4NLcggJE6hie0kzgmVx1KQ6IFSaW-WYzvtSqsk3WyE-PfMJE4gqMBhD1lPonhmMg_78wwhLxMTO3DrOjQpz0KR4kJTKcAYluA-Egsj_TnuL6fpybn4vEpWfsGt9bDK0Sb2htrWBtfIj5iE0F8I0Mk3zVWIXaNwd9W30LhJbsUMNAlPii8_jpaYJ7Lvz4WtccKMi5U_Osez-MhL6nVjijVmsNgncuaa-gr-k51eNJu6vS4I_RNL-ZtzWu6Ruz6qpMeDGtwjN1x1n9we-kz-eEDc2aVuXGi3aNqoda6hWMcS7qgGFHhLIXalpW53VJurbj0AuWhdUl3jMyl_T3vEbLd1VFeWItLIQABPy039nfYwuPYhOV9--PbuJPT9FVAwYhciulUby1wkdayFMNrZSEujk7hwYMMdJDcFK1huIQp0mYMrKeGXG8YyZiR_RBZVXbl9QguXZ9xioUMIF2QRaZZpiAQhGyqj3CRlQPjIWmV88XHsgbFR_Y5aBknIwCmFAlFeIAEJp7uaofjGf-jfotQmWiyd3f9Rby-U_xIVpBQsKhOXGlBKblIZ67yUznKOC8JMBOQFylxhcYwK0TcXumtb9ensVB3jhMCfc_ZXoq8zoleeqKxhskb7Ew_AMiy6NaPcRwUbJ9WqX9oekMNR6a4ffj4Ng2HA3R5dubpDmgg3QXmSBuTxoKMTY3gW5Vwiw-RMe2ecm49U68u--DiwOsm54E_-_V4H5A6DcHDAOB2SxW7buacQvu2KZ_03-hN5qkNL priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBbplkIvoe-4TYtaCj052JJsy4dS0kdIC8mh6cLejCxLycJiO_aaNv--M_KDumzopYc9eDUy6JvRPKzRDCFvIx0aMOvK1zFPfBHjhyYrQBlaMB9RASPuHvfZeXy6FN9W0WqPjD1bBwDbnaEd9pNaNpujX9c3H2DDv3ddG5JwnHRU63yN0Sj2fLxD7oJtYijnZ2I6V-CRdB27sFmOn3CxGi7T3faWmbFyNf0nzb2oN1W7yy39O7vyD3N18oDsD34mPe4F4yHZM-Ujcq_vPHnzmJiLK1Ubv2hQ2dHCmJpiZUuYUfZ54S0Fb5Za1W6p0tfduk_topWlqsJ3Uv6ZuhzarjFUlQXF3CMNLj21m-ondYlx7ROyPPny49OpP3RcQFaJrY_5rkoXzARShUoIrUwRKKlVFOYGtLqBcCdnOUsL8AtNYuBJSvilmrGEacmfkkVZleaA0NykCS-w9CE4EDIPFEsU-IYQH9kg1ZH1CB-hzfRQjhy7Ymwyd8aWQFjSI5UhQ7KBIR7xp1l1X47jH_QfkWsTLRbTdn9UzWU27M0MggwW2MjEGsSU61iGKrXSFJzjJ2ImPPIGeZ5huYwS83EuVde22deL8-wYFwQWnrNbib7PiN4NRLaCxWo13IEAyLAM14zyAAVsXFSbMQmhrxCgkz1yOArd7uHX0zCoCjz_UaWpOqQJ8FiUR7FHnvUyOgHDkyDlEgGTM-mdITcfKddXrhw5QB2lXPDn_wPrF-Q-Azeyz406JItt05mX4PZt81duJ_8GjklV1Q priority: 102 providerName: Scholars Portal |
Title | Shape-driven deep neural networks for fast acquisition of aortic 3D pressure and velocity flow fields |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37093855 https://www.proquest.com/docview/2814444030 https://www.proquest.com/docview/2805516356 https://pubmed.ncbi.nlm.nih.gov/PMC10159343 https://doaj.org/article/88220f5e6c8f43c681a9f8ed3313e324 http://dx.doi.org/10.1371/journal.pcbi.1011055 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: GX1 dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 8FG dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M48 dateStart: 20050601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegCIkXxPcCozIIiaewxHZi57FlKwNpFdqY1LfIcZytUpWEphHiv-cuTqMFDe2Fh6ZKfInku8t9xOffEfIhMqEFt659E3Ppixg_NBUCjGEB7iPKYaTbx322jE8vxbdVtLrR6gtrwhw8sGPcEUSALCgiGxt4BjexCnVSKJtzjt_vWIcECm5sn0w5G8wj1XXmwqY4vuRi1W-a4zI86mX0qTbZGnNX7BA5ckoddv9goSf1pmpuCz__rqK84ZYWT8jjPp6kMzePp-SeLZ-Rh67D5O_nxF5c69r6-RaNGs2trSkiWMIdpav_bihErbTQzY5q87NduxIuWhVUV_hMyo9pVyvbbi3VZU6xxshA6E6LTfWLdgVwzQtyuTj58fnU7zsroEjEzse6Vm1yZgOlQy2E0TYPtDI6CjML1ttCWpOxjCU5xH9WWjhTCn6JYUwyo_hLMimr0h4QmtlE8hwhDiFQUFmgmdQQA0IeVASJiQqP8D1rU9PDjmP3i03araVJSD8cp1IUSNoLxCP-cFftYDfuoJ-j1AZaBM3uLoAqpb0qpXepkkfeo8xThMUose7mSrdNk369WKYznBB4cs7-SXQ-IvrYExUVTNbofq8DsAzhtkaUB6hg-0k1KVOQ4goBttcjh3ulu3343TAMJgHXeXRpqxZpAlz-5FHskVdORwfGcBkkXCHD1Eh7R5wbj5Tr6w52HFgdJVzw1_-D12_IIwbhoquBOiST3ba1byG822VTcl-uJBzV4suUPJjNj-cL-J-fLL-fT7u3HI5nQv0BVnlRBw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgQXxLsLBQwCcQpNbCdxDggVSrVL2z3QVtqbcRynXWmVpJuNqv4pfiMzeUFQgVMPOSSeRPHMePyNPZ4h5I1vPAvTunZMwENHBLjQlAowhilMH34CLfU57sNZMDkRX-f-fIP86M7CYFhlZxNrQ53kBtfIt5kE6C8E6OTH4tzBqlG4u9qV0GjUYt9eXoDLVn6Y7oJ83zK29-X488Rpqwrg74i1gzGd2iTMulJ7WgijbeJqabTvxRYslwVIH7OYRQlgHxtauJMSrsgwFjIjOXz3BrkpuCswV3847x087su6HhiW4nFCLubtUT0eetutZrwvTLxAjxnrUg6mwrpiQD8vjIplXl4Fev-M3fxtMty7R-62KJbuNGp3n2zY7AG51dS1vHxI7NGZLqyTrNCU0sTagmLeTHgja6LOSwpYmaa6XFNtzqtFEzhG85TqHL9J-S6tI3SrlaU6SyhGNhlwGGi6zC9oHXZXPiIn18L5x2SU5ZndJDS2UcgTTKwI8ETGrmahBuQJ3lfqRsZPx4R3rFWmTXaONTeWqt7BC8HpaTilUCCqFciYOP1bRZPs4z_0n1BqPS2m6q4f5KtT1Y58BS4Mc1PfBgYGATeB9HSUSptwjgvQTIzJa5S5wmQcGUb7nOqqLNX0aKZ2sEOAHzj7K9G3AdG7lijNobNGtycsgGWY5GtAuYkK1nWqVL9G15hsdUp3dfOrvhkMEe4u6czmFdK4uOnK_WBMnjQ62jOGh27EJTJMDrR3wLlhS7Y4q5OdA6v9iAv-9N__9ZLcnhwfHqiD6Wz_GbnDAIo28VVbZLReVfY5QMd1_KIer5R8v24D8RO-6IEF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYgXxPfKBhgE4ik0sfPhPCA0KNXKoEKMSX0zjmNvlaoka1pN-9f213GXLwga8LSHPqS-RMn5fP6d_fMdIS8D7RmY1pWjQx45fogLTdYHZ2hh-ghSaKnOcX-ZhftH_qd5MN8iF-1ZGKRVtj6xctRprnGNfMQEQH_fB5sc2YYW8XU8eVecOlhBCnda23IatYkcmPMzCN_Kt9Mx9PUrxiYfv3_Yd5oKA_hq_tpBfqfSKTOuUJ7yfa1M6iqhVeAlBryYAXifsITFKeAgExm4EgJ-sWYsYlpweO41cj3iPkc6WTTvgj0eiKo2GJblcaB93hzb45E3aqzkTaGTBUbPWKOyNy1W1QO6OWJQLPPyMgD8J4_zt4lxcofcbhAt3atN8C7ZMtk9cqOucXl-n5jDE1UYJ12hW6WpMQXFHJpwR1Yz0EsKuJlaVa6p0qebRU0io7mlKsdnUj6mFVt3szJUZSlFlpOG4IHaZX5GKwpe-YAcXYnmH5JBlmdmm9DExBFPMckiQBWRuIpFClAoRGLWjXVgh4S3qpW6SXyO9TeWstrNiyAAqjUlsUNk0yFD4nR3FXXij__Iv8de62QxbXf1R746lo0XkBDOMNcGJtQwILgOhadiK0zKOS5GM39IXmCfS0zMkaGJH6tNWcrp4Uzu4QcBluDsr0LfekKvGyGbw8dq1Zy2AJVhwq-e5DYaWPtRpfw10oZktzW6y5ufd83glHCnSWUm36CMixuwPAiH5FFto51ieOTGXKDCRM96e5rrt2SLkyrxOag6iGGsPf73ez0jN8E1yM_T2cEOucUAldZUq10yWK825gmgyHXytBqulPy4av_wE9gNhUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape-driven+deep+neural+networks+for+fast+acquisition+of+aortic+3D+pressure+and+velocity+flow+fields&rft.jtitle=PLoS+computational+biology&rft.au=Endrit+Pajaziti&rft.au=Javier+Montalt-Tordera&rft.au=Claudio+Capelli&rft.au=Rapha%C3%ABl+Sivera&rft.date=2023-04-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=19&rft.issue=4&rft.spage=e1011055&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011055&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_88220f5e6c8f43c681a9f8ed3313e324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |