Ten simple rules for initial data analysis
Typically, researchers do not perform IDA in a systematic way, if at all, or mix IDA activities with subsequent data analysis tasks such as hypothesis generation or exploration, formal analysis, and interpretation of conclusions. The value of an effective IDA strategy for researchers lies in ensurin...
Saved in:
Published in | PLoS computational biology Vol. 18; no. 2; p. e1009819 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.02.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7358 1553-734X 1553-7358 |
DOI | 10.1371/journal.pcbi.1009819 |
Cover
Abstract | Typically, researchers do not perform IDA in a systematic way, if at all, or mix IDA activities with subsequent data analysis tasks such as hypothesis generation or exploration, formal analysis, and interpretation of conclusions. The value of an effective IDA strategy for researchers lies in ensuring that data are of sufficient quality, that model assumptions made in the SAP are satisfied, or to support decisions for the statistical analyses (and are adequately documented). IDA requires domain knowledge, especially researchers with an understanding of why and how the data was measured and collected, expertise in data management and stewardship, competencies in planning and implementing data analysis, and experience of scientific computing practices. Make IDA reproducible IDA is a crucial part of the research pipeline, and as such, it should be well documented to promote transparency, utility, and reproducibility. [...]keeping track of changes that you and your collaborators make to project data, programs (including analysis scripts, libraries, and packages), and documentation (including plans and reports) is a key IDA practice [15]. |
---|---|
AbstractList | Typically, researchers do not perform IDA in a systematic way, if at all, or mix IDA activities with subsequent data analysis tasks such as hypothesis generation or exploration, formal analysis, and interpretation of conclusions.
The value of an effective IDA strategy for researchers lies in ensuring that data are of sufficient quality, that model assumptions made in the SAP are satisfied, or to support decisions for the statistical analyses (and are adequately documented).
IDA requires domain knowledge, especially researchers with an understanding of why and how the data was measured and collected, expertise in data management and stewardship, competencies in planning and implementing data analysis, and experience of scientific computing practices.
Make IDA reproducible IDA is a crucial part of the research pipeline, and as such, it should be well documented to promote transparency, utility, and reproducibility.
[...]keeping track of changes that you and your collaborators make to project data, programs (including analysis scripts, libraries, and packages), and documentation (including plans and reports) is a key IDA practice [15]. Typically, researchers do not perform IDA in a systematic way, if at all, or mix IDA activities with subsequent data analysis tasks such as hypothesis generation or exploration, formal analysis, and interpretation of conclusions. The value of an effective IDA strategy for researchers lies in ensuring that data are of sufficient quality, that model assumptions made in the SAP are satisfied, or to support decisions for the statistical analyses (and are adequately documented). IDA requires domain knowledge, especially researchers with an understanding of why and how the data was measured and collected, expertise in data management and stewardship, competencies in planning and implementing data analysis, and experience of scientific computing practices. Make IDA reproducible IDA is a crucial part of the research pipeline, and as such, it should be well documented to promote transparency, utility, and reproducibility. [...]keeping track of changes that you and your collaborators make to project data, programs (including analysis scripts, libraries, and packages), and documentation (including plans and reports) is a key IDA practice [15]. |
Audience | Academic |
Author | Schmidt, Carsten Oliver Huebner, Marianne Baillie, Mark Lusa, Lara le Cessie, Saskia |
AuthorAffiliation | 5 Department of Statistics and Probability, Michigan State University, East Lansing, Michigan, United States of America 4 Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technology, University of Primorska, Koper, Slovenia 1 Novartis, Basel, Switzerland 2 Department of Clinical Epidemiology and Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands 3 Institute for Community Medicine, SHIP-KEF University Medicine of Greifswald, Greifswald, Germany |
AuthorAffiliation_xml | – name: 4 Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technology, University of Primorska, Koper, Slovenia – name: 5 Department of Statistics and Probability, Michigan State University, East Lansing, Michigan, United States of America – name: 1 Novartis, Basel, Switzerland – name: 3 Institute for Community Medicine, SHIP-KEF University Medicine of Greifswald, Greifswald, Germany – name: 2 Department of Clinical Epidemiology and Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands |
Author_xml | – sequence: 1 givenname: Mark orcidid: 0000-0002-5618-0667 surname: Baillie fullname: Baillie, Mark – sequence: 2 givenname: Saskia surname: le Cessie fullname: le Cessie, Saskia – sequence: 3 givenname: Carsten Oliver orcidid: 0000-0001-5266-9396 surname: Schmidt fullname: Schmidt, Carsten Oliver – sequence: 4 givenname: Lara orcidid: 0000-0002-8981-2421 surname: Lusa fullname: Lusa, Lara – sequence: 5 givenname: Marianne orcidid: 0000-0002-9694-9231 surname: Huebner fullname: Huebner, Marianne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35202399$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl2L1DAUhousuB_6D0QL3qzCjEnz0cQLYVn8GFgUdL0Op0k6ZkibMWnF_febOh3ZWUSQXjScPO97cg7vaXHUh94WxVOMlpjU-PUmjLEHv9zqxi0xQlJg-aA4wYyRRU2YOLpzPi5OU9oglI-SPyqOCatQRaQ8KV5d275Mrtt6W8bR21S2IZaud4MDXxoYoITc5Sa59Lh42IJP9sn8Pyu-vX93fflxcfX5w-ry4mqhOSHDogXOpagEtAYk11zW2piG1IIh3DAmCEcSswpzIwk12AhMNEOVaChoKS0iZ8Xzne_Wh6TmMZOqOEU4P5vRTKx2hAmwUdvoOog3KoBTvwshrhXEwWlvFbaao7ZGmBpJK2gE5k0DdUO1zlUqs9fbudvYdNZo2w8R_IHp4U3vvqt1-KmEqBHDVTY4nw1i-DHaNKjOJW29h96GcXo3IYIKXk29XtxD_z7dcketIQ_g-jbkvjp_xnZO5xC0LtcvuGQ0r7ISWfDyQJCZwf4a1jCmpFZfv_wH--mQfXZ3NX92sk9PBt7sAB1DStG2SrsBBhemTTmvMFJTVPdTqimqao5qFtN74r3_P2W3W_br4A |
CitedBy_id | crossref_primary_10_1136_bmjopen_2022_066189 crossref_primary_10_1177_0272989X251326069 crossref_primary_10_1177_25152459241297674 crossref_primary_10_1515_stat_2022_0110 crossref_primary_10_1002_pst_2463 crossref_primary_10_3390_ijerph191811260 crossref_primary_10_1186_s13040_023_00326_0 crossref_primary_10_3389_fdgth_2022_932599 crossref_primary_10_1371_journal_pcbi_1010718 crossref_primary_10_14746_rpeis_2024_86_4_14 crossref_primary_10_1016_j_bonr_2023_101730 crossref_primary_10_1002_pst_2368 crossref_primary_10_1016_j_jclinepi_2024_111342 crossref_primary_10_3390_a17030112 crossref_primary_10_1088_1742_6596_2839_1_012019 crossref_primary_10_1186_s12874_024_02294_3 crossref_primary_10_3390_su162411086 crossref_primary_10_1016_j_jval_2023_12_002 crossref_primary_10_1186_s12875_024_02667_z crossref_primary_10_1016_j_jclinepi_2024_111605 crossref_primary_10_1002_sta4_644 crossref_primary_10_1371_journal_pone_0295726 crossref_primary_10_47836_pjssh_32_S3_09 crossref_primary_10_3390_biomedinformatics2030028 crossref_primary_10_1371_journal_pcbi_1010749 |
Cites_doi | 10.1371/journal.pcbi.1005510 10.1038/sdata.2016.18 10.1016/j.jclinepi.2021.01.008 10.1371/journal.pcbi.1003285 10.1080/00031305.1998.10480528 10.1207/s15327957pspr0203_4 10.1186/s12874-020-00942-y 10.1136/bmj.308.6924.283 10.1038/520612a 10.1353/obs.2018.0014 10.1186/1741-7015-8-24 10.1186/s12874-021-01252-7 10.1371/journal.pcbi.1004961 10.2307/2981525 10.1186/s13059-020-02133-w 10.3389/fpsyg.2016.01832 10.2307/2981969 10.1002/psp4.12455 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Public Library of Science 2022 Baillie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Baillie et al 2022 Baillie et al |
Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Baillie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Baillie et al 2022 Baillie et al |
CorporateAuthor | for the Topic Group “Initial Data Analysis” of the STRATOS Initiative Topic Group “Initial Data Analysis” of the STRATOS Initiative |
CorporateAuthor_xml | – name: for the Topic Group “Initial Data Analysis” of the STRATOS Initiative – name: Topic Group “Initial Data Analysis” of the STRATOS Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1009819 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database Health & Medical Collection (Alumni) Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Initial data analysis |
EISSN | 1553-7358 |
ExternalDocumentID | 2640120254 oai_doaj_org_article_1ec60f7014d942ab816bba7b4ccf7049 PMC8870512 A695460928 35202399 10_1371_journal_pcbi_1009819 |
Genre | Editorial Commentary |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ PMFND 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM - AAPBV ABPTK ADACO BBAFP M~E |
ID | FETCH-LOGICAL-c633t-fa669828afda96c697cddb378501b558360915216d934d1d813c5028b4ac99e03 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Sun Apr 03 16:02:37 EDT 2022 Wed Aug 27 01:12:57 EDT 2025 Thu Aug 21 13:43:21 EDT 2025 Thu Sep 04 18:35:52 EDT 2025 Fri Jul 25 10:53:21 EDT 2025 Tue Jun 10 20:28:27 EDT 2025 Fri Jun 27 05:02:21 EDT 2025 Fri Jun 27 03:57:54 EDT 2025 Thu Apr 03 07:05:35 EDT 2025 Thu Apr 24 22:59:46 EDT 2025 Tue Jul 01 04:07:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-fa669828afda96c697cddb378501b558360915216d934d1d813c5028b4ac99e03 |
Notes | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Editorial-2 ObjectType-Commentary-1 content type line 23 Membership of the STRATOS Initiative is provided in the Acknowledgments. The authors have declared that no competing interests exist. |
ORCID | 0000-0002-5618-0667 0000-0002-9694-9231 0000-0002-8981-2421 0000-0001-5266-9396 |
OpenAccessLink | https://doaj.org/article/1ec60f7014d942ab816bba7b4ccf7049 |
PMID | 35202399 |
PQID | 2640120254 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_2640120254 doaj_primary_oai_doaj_org_article_1ec60f7014d942ab816bba7b4ccf7049 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8870512 proquest_miscellaneous_2633848629 proquest_journals_2640120254 gale_infotracacademiconefile_A695460928 gale_incontextgauss_ISR_A695460928 gale_incontextgauss_ISN_A695460928 pubmed_primary_35202399 crossref_citationtrail_10_1371_journal_pcbi_1009819 crossref_primary_10_1371_journal_pcbi_1009819 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | I Simera (pcbi.1009819.ref026) 2010; 8 TH Davenport (pcbi.1009819.ref002) 2012; 90 JA Nelder (pcbi.1009819.ref005) 1986; 149 RJA Little (pcbi.1009819.ref025) 2019 I Yanai (pcbi.1009819.ref009) 2020; 21 CO Schmidt (pcbi.1009819.ref018) 2021; 21 C. Mallows (pcbi.1009819.ref020) 1998; 52 D Cook (pcbi.1009819.ref012) 2021 M Vandemeulebroecke (pcbi.1009819.ref023) 2019; 8 RE Kass (pcbi.1009819.ref014) 2016; 12 A Richter (pcbi.1009819.ref017) KJ Lee (pcbi.1009819.ref024) 2021; 134 C. Chatfield (pcbi.1009819.ref004) 1985 M Huebner (pcbi.1009819.ref013) 2020; 20 B. Shneiderman (pcbi.1009819.ref022); 1996 pcbi.1009819.ref011 JM Wicherts (pcbi.1009819.ref008) 2016; 7 The Economist. (pcbi.1009819.ref001) 2017 M Huebner (pcbi.1009819.ref007) 2018; 4 G Wilson (pcbi.1009819.ref015) 2017; 13 GK Sandve (pcbi.1009819.ref016) 2013; 9 NL Kerr (pcbi.1009819.ref021) 1998; 2 DG Altman (pcbi.1009819.ref006) 1994; 308 C. Chatfield (pcbi.1009819.ref010) 1991; 6 JT Leek (pcbi.1009819.ref003) 2015; 520 MD Wilkinson (pcbi.1009819.ref019) 2016; 3 |
References_xml | – volume: 13 start-page: e1005510 year: 2017 ident: pcbi.1009819.ref015 article-title: Good enough practices in scientific computing publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005510 – volume: 3 start-page: 160018 year: 2016 ident: pcbi.1009819.ref019 article-title: The FAIR Guiding Principles for scientific data management and stewardship. publication-title: Sci Data. doi: 10.1038/sdata.2016.18 – volume: 134 start-page: 79 year: 2021 ident: pcbi.1009819.ref024 article-title: Framework for the treatment and reporting of missing data in observational studies: The Treatment And Reporting of Missing data in Observational Studies framework. publication-title: J Clin Epidemiol. doi: 10.1016/j.jclinepi.2021.01.008 – volume: 6 start-page: 240 issue: 3 year: 1991 ident: pcbi.1009819.ref010 article-title: Avoiding Statistical Pitfalls. publication-title: Statist Sci – volume: 9 start-page: e1003285 year: 2013 ident: pcbi.1009819.ref016 article-title: Ten simple rules for reproducible computational research. publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003285 – volume: 1996 start-page: 336 ident: pcbi.1009819.ref022 article-title: The eyes have it: a task by data type taxonomy for information visualizations. publication-title: Proceedings 1996 IEEE Symposium on Visual Languages. – volume: 52 start-page: 1 year: 1998 ident: pcbi.1009819.ref020 article-title: The Zeroth Problem. publication-title: Am Stat doi: 10.1080/00031305.1998.10480528 – volume: 2 start-page: 196 year: 1998 ident: pcbi.1009819.ref021 article-title: HARKing: hypothesizing after the results are known. publication-title: Personal Soc Psychol Rev doi: 10.1207/s15327957pspr0203_4 – volume-title: Statistical Analysis with Missing Data year: 2019 ident: pcbi.1009819.ref025 – volume: 90 start-page: 70 year: 2012 ident: pcbi.1009819.ref002 article-title: Data scientist. publication-title: Harv Bus Rev – volume: 20 start-page: 61 year: 2020 ident: pcbi.1009819.ref013 article-title: Topic Group “Initial Data Analysis” of the STRATOS Initiative (STRengthening Analytical Thinking for Observational Studies, http://www.stratos-initiative.org). Hidden analyses: a review of reporting practice and recommendations for more transparent reporting of initial data analyses. publication-title: BMC Med Res Methodol doi: 10.1186/s12874-020-00942-y – ident: pcbi.1009819.ref017 article-title: Data quality monitoring in clinical and observational epidemiologic studies: the role of metadata and process information publication-title: Management von Datenqualität in klinischen und beobachtenden epidemiologischen Studien: Die Rolle von Metadaten und Prozessinformationen – volume: 308 start-page: 283 year: 1994 ident: pcbi.1009819.ref006 article-title: The scandal of poor medical research publication-title: BMJ doi: 10.1136/bmj.308.6924.283 – volume: 520 start-page: 612 year: 2015 ident: pcbi.1009819.ref003 article-title: Statistics: P values are just the tip of the iceberg publication-title: Nature doi: 10.1038/520612a – volume: 4 start-page: 171 year: 2018 ident: pcbi.1009819.ref007 article-title: A contemporary conceptual framework for initial data analysis. publication-title: Obs Stud doi: 10.1353/obs.2018.0014 – volume: 8 start-page: 24 year: 2010 ident: pcbi.1009819.ref026 article-title: Transparent and accurate reporting increases reliability, utility, and impact of your research: reporting guidelines and the EQUATOR Network. publication-title: BMC Med. doi: 10.1186/1741-7015-8-24 – ident: pcbi.1009819.ref011 – volume: 21 start-page: 63 year: 2021 ident: pcbi.1009819.ref018 article-title: Facilitating harmonized data quality assessments. A data quality framework for observational health research data collections with software implementations in R. publication-title: BMC Med Res Methodol doi: 10.1186/s12874-021-01252-7 – year: 2021 ident: pcbi.1009819.ref012 article-title: The foundation is available for thinking about data visualization inferentially. publication-title: Harv Data Sci Rev. – volume: 12 start-page: e1004961 year: 2016 ident: pcbi.1009819.ref014 article-title: Ten Simple Rules for Effective Statistical Practice. publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1004961 – volume: 149 start-page: 109 year: 1986 ident: pcbi.1009819.ref005 article-title: Statistics, Science and Technology. publication-title: J R Stat Soc Ser A. doi: 10.2307/2981525 – volume: 21 start-page: 1 year: 2020 ident: pcbi.1009819.ref009 article-title: A hypothesis is a liability publication-title: Genome Biol doi: 10.1186/s13059-020-02133-w – volume: 7 start-page: 1832 year: 2016 ident: pcbi.1009819.ref008 article-title: Degrees of Freedom in Planning, Running, Analyzing, and Reporting Psychological Studies: A Checklist to Avoid p-Hacking. publication-title: Front Psychol. doi: 10.3389/fpsyg.2016.01832 – start-page: 214 year: 1985 ident: pcbi.1009819.ref004 article-title: The Initial Examination of Data. publication-title: J R Stat Soc Ser A. doi: 10.2307/2981969 – volume-title: The world’s most valuable resource is no longer oil, but data. year: 2017 ident: pcbi.1009819.ref001 – volume: 8 start-page: 705 year: 2019 ident: pcbi.1009819.ref023 article-title: Effective Visual Communication for the Quantitative Scientist. publication-title: CPT Pharmacometrics Syst Pharmacol. doi: 10.1002/psp4.12455 |
SSID | ssj0035896 |
Score | 2.5152423 |
SecondaryResourceType | review_article |
Snippet | Typically, researchers do not perform IDA in a systematic way, if at all, or mix IDA activities with subsequent data analysis tasks such as hypothesis... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1009819 |
SubjectTerms | Computer and Information Sciences Data Analysis Data management Data mining Decision analysis Humans Hypotheses Information management Laws, regulations and rules Metadata Methods Ovarian Neoplasms Physical Sciences Planning Reproducibility Research and Analysis Methods Researchers Science Policy Social Sciences Statistical analysis Subject specialists |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_koOCL2PrRaJUogiDEJtmP7D5WsVTBPmgL97bsV_TgyB3N3UP_e2c2e-Eilb74ujt5mN9OdmbYmd8Q8s44G0xDfeG4tAXjXGARAIUDadtAWydsJKv-fikurtm3OZ_vjfrCmrCBHngA7rQKTpRtA5G8V6w2VlbCWtNY5hyssti6V6pyl0wNdzDlMk7mwqE4RUPZPDXN0aY6TWf0ce3sAmsElESWnT2nFLn7xxt6tl6u-rvCz7-rKPfc0vlj8ijFk_nZoMcheRC6I3IwTJi8fUI-XIUu7xdIAZzfbJehzyFIzRdYMQRfYXlobhItyVNyff7l6vNFkcYjFE5QuilaI4SChMm03ijhhGqc95Y2kpeV5Ry7MxR6Z-EVZb7ysqKOQzhhmXFKhZI-I7Nu1YVjkqsaDixQZwJF_i0lJTfeMi8ceHQRbEboDh_tEnc4jrBY6vgg1kAOMairEVWdUM1IMX61Hrgz7pH_hNCPssh8HRfAHnSyB32fPWTkLR6cRm6LDotnfplt3-uvPy_1mVCcASi1_KfQj4nQ-yTUrkBZZ1LDAkCGnFkTyWO0kp1SvYYoE5uSIfnOyMnOcu7efjNuw3-NjzWmC6stylAqGeSboNHzwdBGYCBojj3JGWkmJjhBbrrTLX5H7nDwKXAN1y_-B9QvycMam0FiDfsJmW1utuEVhGgb-zr-jX8At1E3Lw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF_qFcEX8btXq0QRBCH2kv3I7oNIKy1V8JDawr2F_Uo9OJLr5e7B_96ZzSb2pOprdjZkZ2fnIzvzG0LeaGu8LqhLLZcmZZwLTAKgsCFV5WllhQlg1V-n4uySfZnx2Q6Z9rUwmFbZ68SgqF1j8R_5IRhurPOEeObj8jrFrlF4u9q30NCxtYL7ECDG7pBdUMkS5H73-GT67bzXzZTL0LELm-WkBWWzWExHi-ww7t37pTVzzB1QEtF3bhirgOk_aO7RctG0t7mlf2ZX3jBXpw_I_ehnJkedYDwkO75-RO52nSd_PibvLnydtHOEBk5Wm4VvE3BekzlmEsEsTBtNdIQreUIuT08uPp2lsW1CagWl67TSQigIpHTltBJWqMI6Z2gh-SQznGPVhkKrLZyizGVOZtRycDMM01YpP6FPyahuar9HEpXDRnpqtaeIy6Wk5NoZ5oQFSy-8GRPa86e0EVMcW1ssynBRVkBs0S23RK6Wkatjkg6zlh2mxn_oj5H1Ay0iYocHzeqqjAeszLwVk6qAiM8plmsjM2GMLgyzFp4yeMlr3LgSMS9qTKq50pu2LT9_n5ZHQnEGTMnlX4nOt4jeRqKqgcVaHQsZgGWIpbVFuYdS0i-qLX8L8Zgc9JJz-_CrYRjOO17i6No3G6ShVDKIQ2FFzzpBGxgDznSoVR6TYksEtzi3PVLPfwRMcbA1oJ7z_X9_1nNyL8fyj5C1fkBG69XGvwCnbG1expP2C9fDNL4 priority: 102 providerName: ProQuest |
Title | Ten simple rules for initial data analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35202399 https://www.proquest.com/docview/2640120254 https://www.proquest.com/docview/2633848629 https://pubmed.ncbi.nlm.nih.gov/PMC8870512 https://doaj.org/article/1ec60f7014d942ab816bba7b4ccf7049 http://dx.doi.org/10.1371/journal.pcbi.1009819 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_OHoIv4vf1PEsUQRByNNnvB5FWr57CFTmv0Lewu9mchZL2mha8_96ZbRqM9NCXBLKzgZmdzcxkZ35DyFvjrDeS5rHjysaMc4FJABQWpCg8LZywAaz6YizOJ-zblE8PyK5nay3Aam9oh_2kJqv56a-b24-w4T-Erg0y2U06XTo7w1N_rRAH9BBsk8Bw7II15wqUq9CxC5vlxJKyaV1Md9dbWsYqYPo3X-7Ocr6o9rmlf2dX_mGuRo_Iw9rPjAZbxXhMDnz5hNzfdp68fUreX_kyqmYIDRytNnNfReC8RjPMJIJZmDYamRqu5BmZjM6uPp3HdduE2AlK13FhhNAQSJkiN1o4oaXLc0ul4v3Eco5VGxqttsg1ZXmSq4Q6Dm6GZcZp7fv0OemUi9IfkUinsJCeOuMp4nJppbjJLcuFA0svvO0SupNP5mpMcWxtMc_CQZmE2GLLboZSzWqpdknczFpuMTX-QT9E0Te0iIgdHixW11m9wbLEO9EvJER8uWapsSoR1hppmXPwlMFL3uDCZYh5UWJSzbXZVFX29cc4GwjNGQglVXcSXbaI3tVExQKYdaYuZACRIZZWi_IItWTHVJWB94nFyhCUd8nJTnP2D79uhmG_4yGOKf1igzSUKgZxKHD0YqtojWDAmQ61yl0iWyrYklx7pJz9DJjiYGvg85we_zdvL8mDFCtBQgL7CemsVxv_Cvyzte2Re3Iq4apGX3rkcDD8PBzBfXg2_n7ZC_88emFT_gY7xz4L |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIAQviLspBQwCISGZxt7D3geEyhES2uYBUilvy15uI0V2iBOh_il-IzM-QoMKPPXVO7ays3NmZ74h5Lm2xuuEutDy1ISMc4FFABQOJMs8zawwFVj10UgMjtnnCZ9skZ9tLwyWVbY2sTLUrrD4H_keOG7s84R85u38e4hTo_B2tR2hUYvFgT_7ASlb-Wb4Ac73RRz3P47fD8JmqkBoBaXLMNNCSMgzdOa0FFbIxDpnaJLyXmQ4x6YGiU5NOEmZi1waUcvBCxumrZS-R-G7V8hVBrkdalHa_9RafsrTah4YjuIJE8omTaseTaK9RjJez62ZYmWCTBHb55wrrCYGrP1CZz4ryouC3j9rN885w_4tcrOJYoP9Wuxuky2f3yHX6rmWZ3fJq7HPg3KKwMPBYjXzZQChcTDFOiV4C4tSA92Aodwjx5fCvvukkxe53yaBjEFMPLXaU0T9kmnKtTPMCQtxhPCmS2jLH2UbxHIcnDFT1TVcAplLvV2FXFUNV7skXL81rxE7_kP_Dlm_pkW87epBsThRjfqqyFvRyxLIJ51ksTZpJIzRiWHWwlMGH3mGB6cQUSPHkp0TvSpLNfw6UvtCcgZMidO_En3ZIHrZEGUFbNbqpk0CWIZIXRuU2ygl7aZK9VtFumS3lZyLl5-ul8Ga4BWRzn2xQhoQawZZLuzoQS1oa8ZAqF51QndJsiGCG5zbXMmnpxViOXgyMP7xzr9_1hNyfTA-OlSHw9HBQ3IjxkaTqj5-l3SWi5V_BOHf0jyudC4g3y5byX8BZmdpfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYgXxPcKAwICISGFNrHj2A8IDUZZGVQINqlvxl8ZlaqkNK3Q_jX-Ou7yURY04Gmv8TmKz3e-u_jud4Q80dZ4nVIX2kSYkCUJxyQAChuSZZ5mlpsKrPrjhO8fsffTZLpFfra1MJhW2Z6J1UHtCov_yAdguLHOE-KZQdakRXzaG71afA-xgxTetLbtNGoROfAnPyB8K1-O92Cvn8bx6O3hm_2w6TAQWk7pKsw05xJiDp05LbnlMrXOGZqKZBiZJMECB4kGjjtJmYuciKhNwCIbpq2UfkjhvRfIxZSmErVLjN61VoAmouoNhm15wpSyaVO2R9No0EjJi4U1M8xSkAJxfk6Zxap7wMZG9BbzojzLAf4zj_OUYRxdI1cbjzbYrUXwOtny-Q1yqe5xeXKTPD_0eVDOEIQ4WK7nvgzATQ5mmLMEszBBNdANMMotcnQu7LtNenmR-20SyBhExlOrPUUEMClEop1hjlvwKbg3fUJb_ijboJdjE425qq7kUohi6uUq5KpquNon4WbWokbv-A_9a2T9hhaxt6sHxfJYNaqsIm_5MEshtnSSxdqIiBujU8OshacMXvIYN04hukaOcnqs12Wpxl8mapfLhAFTYvFXos8domcNUVbAYq1uSiaAZYja1aHcRilpF1Wq3-rSJzut5Jw9_GgzDCcLXhfp3BdrpKFUMIh4YUV3akHbMAbc9qoquk_Sjgh2ONcdyWffKvRysGpgCOK7__6sh-QyqLf6MJ4c3CNXYqw5qVLld0hvtVz7--AJrsyDSuUC8vW8dfwXe-FttQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ten+simple+rules+for+initial+data+analysis&rft.jtitle=PLoS+computational+biology&rft.au=Baillie%2C+Mark&rft.au=le+Cessie%2C+Saskia&rft.au=Schmidt%2C+Carsten+Oliver&rft.au=Lusa%2C+Lara&rft.date=2022-02-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009819&rft.externalDocID=A695460928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |