Comparing a few SNP calling algorithms using low-coverage sequencing data
Background Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. M...
Saved in:
| Published in | BMC bioinformatics Vol. 14; no. 1; p. 274 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
17.09.2013
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-14-274 |
Cover
| Abstract | Background
Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations.
Results
To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs’ quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs.
Conclusions
Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria. |
|---|---|
| AbstractList | Background
Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations.
Results
To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs’ quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs.
Conclusions
Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria. Background Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. Results To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Conclusions Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria. Keywords: Next generation sequencing, SNP calling, Low-coverage, Single-sample, SOAPsnp, Atlas-SNP2, SAMtools, GATK Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria. Background: Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. Results: To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Conclusions: Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria. Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations.BACKGROUNDMany Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations.To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs.RESULTSTo explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs.Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria.CONCLUSIONSOur results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria. Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria. Doc number: 274 Abstract Background: Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. Results: To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Conclusions: Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria. |
| ArticleNumber | 274 |
| Audience | Academic |
| Author | Sun, Shuying Yu, Xiaoqing |
| AuthorAffiliation | 2 Department of Mathematics, Texas State University, San Marcos, Texas 78666, USA 1 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA |
| AuthorAffiliation_xml | – name: 1 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA – name: 2 Department of Mathematics, Texas State University, San Marcos, Texas 78666, USA |
| Author_xml | – sequence: 1 givenname: Xiaoqing surname: Yu fullname: Yu, Xiaoqing organization: Department of Epidemiology and Biostatistics, Case Western Reserve University – sequence: 2 givenname: Shuying surname: Sun fullname: Sun, Shuying email: ssun5211@yahoo.com organization: Department of Epidemiology and Biostatistics, Case Western Reserve University, Department of Mathematics, Texas State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24044377$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhS1URB-wZ4UisYFFit9ONkjViMdIFSAKa8tx7NRVYg920qH_HocZykzFo8rCzsl3bnyP7zE48MEbAJ4ieIpQxV8hKlCJEWQloiUW9AE4upUOdvaH4DilKwiRqCB7BA4xhZQSIY7AchGGlYrOd4UqrFkXFx8-FVr1_U-l70J04-WQiinNQh_WpQ7XJqrOFMl8m4zXs96qUT0GD63qk3myXU_A17dvvizel-cf3y0XZ-el5oSMZW2pIBjjWlQIkUrbqslvvNUGEtJSTS1pNSJQE2Iaa3CjGoZFTQyziLW4JScAbepOfqVu1vmochXdoOKNRFDOsci5bzn3nXcyx5I9rzee1dQMJv_Lj1H99gXl5P4X7y5lF64lqWjFEcsFXmwLxJC7TqMcXNKm75U3YUoScYEorCil_0cpqxHjkPN7oKTO4RAkMvr8DnoVpuhz0DNFa8RhvUN1qjfSeRtyN3ouKs8YoQznXupMnf6Byk9rBqfzhFmX9T3Dyz1DZkbzfezUlJJcXnzeZ5_tRn2b8a-RywDcADqGlKKx97k-fsei3ahGF-bLcv2_jNtZSat5xE3cSe1vnh8V-ANX |
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btw786 crossref_primary_10_1089_cmb_2016_0106 crossref_primary_10_7717_peerj_12446 crossref_primary_10_1186_s13015_015_0037_5 crossref_primary_10_1016_j_csbj_2023_03_038 crossref_primary_10_1186_s12864_015_2050_y crossref_primary_10_7717_peerj_10501 crossref_primary_10_1186_s12864_015_2059_2 crossref_primary_10_1146_annurev_animal_090414_014900 crossref_primary_10_1186_s13104_016_2209_x crossref_primary_10_3389_fpls_2017_00089 crossref_primary_10_3389_fgene_2020_00546 crossref_primary_10_1038_s41598_022_15563_2 crossref_primary_10_1186_s12859_020_03704_1 crossref_primary_10_3389_fneur_2020_00544 crossref_primary_10_1093_dnares_dsy033 crossref_primary_10_1186_1471_2105_15_S10_P30 crossref_primary_10_1186_s12859_021_04144_1 crossref_primary_10_1038_s41598_018_32674_x crossref_primary_10_1371_journal_pone_0132120 crossref_primary_10_1016_j_molp_2015_02_002 crossref_primary_10_1186_s12859_016_1279_z crossref_primary_10_1111_1755_0998_13175 crossref_primary_10_1186_s12864_022_08775_3 crossref_primary_10_7717_peerj_1508 crossref_primary_10_7717_peerj_600 crossref_primary_10_1016_j_atg_2014_12_003 crossref_primary_10_1093_bioinformatics_btu591 crossref_primary_10_1111_mec_13647 crossref_primary_10_1038_s41598_017_12498_x crossref_primary_10_1021_acs_jproteome_5b00490 crossref_primary_10_3892_mmr_2015_4242 crossref_primary_10_1038_hdy_2016_102 crossref_primary_10_1186_s12863_023_01134_5 crossref_primary_10_1186_gm543 crossref_primary_10_1038_s41598_019_49915_2 crossref_primary_10_3390_life13051069 crossref_primary_10_1186_s12859_016_1211_6 crossref_primary_10_1093_molbev_msz177 crossref_primary_10_3389_fpls_2018_01809 crossref_primary_10_1186_s12859_014_0356_4 crossref_primary_10_3389_fimmu_2016_00336 crossref_primary_10_1186_s12859_014_0382_2 crossref_primary_10_1186_s12859_016_1417_7 crossref_primary_10_1186_s12864_015_2249_y crossref_primary_10_1007_s12539_020_00374_8 crossref_primary_10_1093_bioinformatics_bty183 crossref_primary_10_1186_s13040_021_00259_6 crossref_primary_10_1038_srep17875 crossref_primary_10_1007_s12298_017_0470_7 crossref_primary_10_1186_1471_2164_15_823 crossref_primary_10_1080_21505594_2020_1856560 crossref_primary_10_1186_s12864_016_3045_z crossref_primary_10_1007_s00018_014_1807_9 crossref_primary_10_3168_jds_2015_10347 crossref_primary_10_1093_bib_bbw011 crossref_primary_10_1038_s41598_019_45835_3 crossref_primary_10_1038_s41598_020_77218_4 crossref_primary_10_1186_s12864_017_3980_3 crossref_primary_10_1016_j_livsci_2021_104629 crossref_primary_10_1371_journal_pone_0115740 crossref_primary_10_1007_s13199_017_0490_7 crossref_primary_10_1016_j_animal_2024_101350 crossref_primary_10_1186_s13007_022_00852_8 crossref_primary_10_2217_pme_14_40 crossref_primary_10_3390_ani12141855 crossref_primary_10_1371_journal_pone_0104652 crossref_primary_10_1186_s12870_018_1601_1 crossref_primary_10_1371_journal_pcbi_1008678 crossref_primary_10_1186_1471_2105_15_180 crossref_primary_10_1186_s12864_019_5806_y crossref_primary_10_1186_1471_2105_16_S15_P18 crossref_primary_10_3390_biology6010014 crossref_primary_10_1186_s13040_019_0198_8 crossref_primary_10_1159_000434645 crossref_primary_10_2217_pme_14_34 crossref_primary_10_1016_j_virusres_2016_12_008 crossref_primary_10_1038_s41467_019_11146_4 |
| Cites_doi | 10.1038/nrg2626 10.1101/gr.078212.108 10.1038/ng.806 10.1093/nar/gkr599 10.1007/s00439-005-0003-2 10.1038/79216 10.1093/bioinformatics/btp373 10.1186/gm432 10.1093/bioinformatics/btq214 10.1093/bioinformatics/btp706 10.2337/db10-0134 10.1093/bioinformatics/btp352 10.1086/498122 10.1101/gr.8.12.1229 10.1007/s12561-012-9060-y 10.1093/hmg/ddq221 10.1038/nmeth.1172 10.1001/jama.287.13.1690 10.1038/35057050 10.1093/bioinformatics/btq526 10.1038/nrg1325 10.1093/bioinformatics/btr205 10.1038/nature01621 10.1101/gr.088013.108 10.1093/bioinformatics/btq040 10.1093/hmg/ddl142 10.1073/pnas.0409806102 10.1101/gr.096388.109 10.1111/j.1464-5491.2006.01834.x 10.1038/nature11632 10.1101/gr.117259.110 10.1038/ng.952 10.1093/bioinformatics/btr032 10.1038/modpathol.2012.121 10.1158/1078-0432.CCR-05-1152 10.1038/sj.onc.1210199 10.1007/s00125-005-1902-4 10.1186/1756-0381-5-6 10.1101/gr.109157.110 10.1101/gr.107524.110 |
| ContentType | Journal Article |
| Copyright | Yu and Sun; licensee BioMed Central Ltd. 2013 COPYRIGHT 2013 BioMed Central Ltd. 2013 Yu and Sun; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2013 Yu and Sun; licensee BioMed Central Ltd. 2013 Yu and Sun; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Yu and Sun; licensee BioMed Central Ltd. 2013 – notice: COPYRIGHT 2013 BioMed Central Ltd. – notice: 2013 Yu and Sun; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2013 Yu and Sun; licensee BioMed Central Ltd. 2013 Yu and Sun; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/1471-2105-14-274 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central Health Research Premium Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Computer and Information Systems Abstracts MEDLINE - Academic Engineering Research Database Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 274 |
| ExternalDocumentID | 10.1186/1471-2105-14-274 PMC3848615 3079232461 A534526159 24044377 10_1186_1471_2105_14_274 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c633t-9f4732229781138cf8b2226dce033d4c4f3dc130c33ebfe2bab52793e5f15d2d3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Sun Oct 26 05:51:54 EDT 2025 Tue Sep 30 16:26:55 EDT 2025 Fri Sep 05 14:03:21 EDT 2025 Wed Oct 01 13:13:56 EDT 2025 Tue Oct 07 09:31:07 EDT 2025 Mon Oct 06 18:20:57 EDT 2025 Mon Oct 20 22:49:55 EDT 2025 Mon Oct 20 16:58:03 EDT 2025 Thu Oct 16 16:17:27 EDT 2025 Mon Jul 21 05:48:01 EDT 2025 Wed Oct 01 04:15:23 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Sat Sep 06 07:27:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | GATK Single-sample SOAPsnp SNP calling Low-coverage Next generation sequencing Atlas-SNP2 SAMtools |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c633t-9f4732229781138cf8b2226dce033d4c4f3dc130c33ebfe2bab52793e5f15d2d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-14-274 |
| PMID | 24044377 |
| PQID | 1434916097 |
| PQPubID | 44065 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1186_1471_2105_14_274 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3848615 proquest_miscellaneous_1671408444 proquest_miscellaneous_1459156066 proquest_miscellaneous_1439222317 proquest_journals_1434916097 gale_infotracmisc_A534526159 gale_infotracacademiconefile_A534526159 gale_incontextgauss_ISR_A534526159 pubmed_primary_24044377 crossref_primary_10_1186_1471_2105_14_274 crossref_citationtrail_10_1186_1471_2105_14_274 springer_journals_10_1186_1471_2105_14_274 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-17 |
| PublicationDateYYYYMMDD | 2013-09-17 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2013 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | Y Li (6043_CR40) 2011; 21 H Ueda (6043_CR7) 2003; 423 G Jimenez-Sanchez (6043_CR2) 2001; 409 Y Li (6043_CR39) 2012; 5 MK Higashi (6043_CR15) 2002; 287 ND Palmer (6043_CR6) 2011; 60 J O’Rawe (6043_CR46) 2013; 5 JK Wolford (6043_CR3) 2006; 23 A Altmann (6043_CR31) 2011; 27 A Henningsson (6043_CR14) 2005; 11 The Genomes Project C (6043_CR36) 2012; 491 H Li (6043_CR37) 2009; 25 X Yu (6043_CR45) 2012; 5 MA DePristo (6043_CR27) 2011; 43 FLM Vallania (6043_CR33) 2010; 20 AR Quinlan (6043_CR18) 2008; 5 A McKenna (6043_CR38) 2010; 20 GL Bond (6043_CR10) 2006; 26 6043_CR32 JJ Corneveaux (6043_CR13) 2010; 19 S Kammerer (6043_CR11) 2005; 102 MN Edmonson (6043_CR28) 2011; 27 E Zeggini (6043_CR4) 2005; 48 T Vyshkina (6043_CR8) 2005; 118 R Goya (6043_CR29) 2010; 26 MA Rivas (6043_CR30) 2011; 43 D Altshuler (6043_CR5) 2000; 26 S Pabinger (6043_CR34) 2013 T Arinami (6043_CR9) 2005; 77 R Li (6043_CR19) 2009; 19 J Shendure (6043_CR16) 2004; 5 DC Koboldt (6043_CR22) 2009; 25 E Harris (6043_CR43) 2010; 26 FS Collins (6043_CR1) 1998; 8 6043_CR26 H Li (6043_CR21) 2008; 18 ER Martin (6043_CR23) 2010; 26 MD Adams (6043_CR35) 2012; 25 6043_CR44 Y Shen (6043_CR20) 2010; 20 R Kuwano (6043_CR12) 2006; 15 V Bansal (6043_CR24) 2010; 26 ML Metzker (6043_CR17) 2010; 11 6043_CR42 Z Wei (6043_CR25) 2011; 39 6043_CR41 15684076 - Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2004-9 21460063 - Genome Res. 2011 Jun;21(6):940-51 20980453 - Diabetes. 2011 Feb;60(2):662-8 16620264 - Diabet Med. 2006 Apr;23(4):367-76 16132956 - Diabetologia. 2005 Oct;48(10):2013-7 16380906 - Am J Hum Genet. 2005 Dec;77(6):937-44 16078049 - Hum Genet. 2005 Oct;118(1):67-75 20031974 - Bioinformatics. 2010 Feb 15;26(4):572-3 20644199 - Genome Res. 2010 Sep;20(9):1297-303 22709551 - BioData Min. 2012 Jun 18;5(1):6 21813454 - Nucleic Acids Res. 2011 Oct;39(19):e132 19542151 - Bioinformatics. 2009 Sep 1;25(17):2283-5 23537139 - Genome Med. 2013 Mar 27;5(3):28 21041413 - Genome Res. 2010 Dec;20(12):1711-8 21685105 - Bioinformatics. 2011 Jul 1;27(13):i77-84 21983784 - Nat Genet. 2011 Nov;43(11):1066-73 23128226 - Nature. 2012 Nov 1;491(7422):56-65 15143316 - Nat Rev Genet. 2004 May;5(5):335-44 11926893 - JAMA. 2002 Apr 3;287(13):1690-8 21478889 - Nat Genet. 2011 May;43(5):491-8 9872978 - Genome Res. 1998 Dec;8(12):1229-31 20130035 - Bioinformatics. 2010 Mar 15;26(6):730-6 20529923 - Bioinformatics. 2010 Jun 15;26(12):i318-24 17322917 - Oncogene. 2007 Feb 26;26(9):1317-23 11237009 - Nature. 2001 Feb 15;409(6822):853-5 21278191 - Bioinformatics. 2011 Mar 15;27(6):865-6 24489615 - Stat Biosci. 2013 May;5(1):3-25 19420381 - Genome Res. 2009 Jun;19(6):1124-32 22878650 - Mod Pathol. 2012 Dec;25(12):1599-608 23341494 - Brief Bioinform. 2014 Mar;15(2):256-78 20019143 - Genome Res. 2010 Feb;20(2):273-80 12724780 - Nature. 2003 May 29;423(6939):506-11 18193056 - Nat Methods. 2008 Feb;5(2):179-81 18714091 - Genome Res. 2008 Nov;18(11):1851-8 10973253 - Nat Genet. 2000 Sep;26(1):76-80 19997069 - Nat Rev Genet. 2010 Jan;11(1):31-46 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 16740596 - Hum Mol Genet. 2006 Jul 1;15(13):2170-82 20861027 - Bioinformatics. 2010 Nov 15;26(22):2803-10 20534741 - Hum Mol Genet. 2010 Aug 15;19(16):3295-301 16299241 - Clin Cancer Res. 2005 Nov 15;11(22):8097-104 |
| References_xml | – volume: 11 start-page: 31 issue: 1 year: 2010 ident: 6043_CR17 publication-title: Nat Rev Genet doi: 10.1038/nrg2626 – ident: 6043_CR44 – volume: 18 start-page: 1851 issue: 11 year: 2008 ident: 6043_CR21 publication-title: Genome Res doi: 10.1101/gr.078212.108 – volume: 43 start-page: 491 issue: 5 year: 2011 ident: 6043_CR27 publication-title: Nat Genet doi: 10.1038/ng.806 – volume: 39 start-page: e132 issue: 19 year: 2011 ident: 6043_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr599 – volume: 118 start-page: 67 issue: 1 year: 2005 ident: 6043_CR8 publication-title: Hum Genet doi: 10.1007/s00439-005-0003-2 – volume: 26 start-page: 76 issue: 1 year: 2000 ident: 6043_CR5 publication-title: Nat Genet doi: 10.1038/79216 – volume: 25 start-page: 2283 issue: 17 year: 2009 ident: 6043_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp373 – volume: 5 start-page: 28 issue: 3 year: 2013 ident: 6043_CR46 publication-title: Genome Med doi: 10.1186/gm432 – volume: 26 start-page: i318 issue: 12 year: 2010 ident: 6043_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq214 – volume: 26 start-page: 572 issue: 4 year: 2010 ident: 6043_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp706 – volume: 60 start-page: 662 issue: 2 year: 2011 ident: 6043_CR6 publication-title: Diabetes doi: 10.2337/db10-0134 – volume: 25 start-page: 2078 issue: 16 year: 2009 ident: 6043_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 77 start-page: 937 issue: 6 year: 2005 ident: 6043_CR9 publication-title: Am J Hum Gen doi: 10.1086/498122 – volume: 8 start-page: 1229 issue: 12 year: 1998 ident: 6043_CR1 publication-title: Genome Res doi: 10.1101/gr.8.12.1229 – volume-title: Brief Bioinform year: 2013 ident: 6043_CR34 – volume: 5 start-page: 1 issue: 1 year: 2012 ident: 6043_CR39 publication-title: Stat Biosci doi: 10.1007/s12561-012-9060-y – volume: 19 start-page: 3295 issue: 16 year: 2010 ident: 6043_CR13 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddq221 – volume: 5 start-page: 179 issue: 2 year: 2008 ident: 6043_CR18 publication-title: Nat Meth doi: 10.1038/nmeth.1172 – ident: 6043_CR26 – volume: 287 start-page: 1690 issue: 13 year: 2002 ident: 6043_CR15 publication-title: JAMA doi: 10.1001/jama.287.13.1690 – volume: 409 start-page: 853 issue: 6822 year: 2001 ident: 6043_CR2 publication-title: Nature doi: 10.1038/35057050 – ident: 6043_CR41 – volume: 26 start-page: 2803 issue: 22 year: 2010 ident: 6043_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq526 – volume: 5 start-page: 335 issue: 5 year: 2004 ident: 6043_CR16 publication-title: Nat Rev Genet doi: 10.1038/nrg1325 – volume: 27 start-page: i77 issue: 13 year: 2011 ident: 6043_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr205 – volume: 423 start-page: 506 issue: 6939 year: 2003 ident: 6043_CR7 publication-title: Nature doi: 10.1038/nature01621 – volume: 19 start-page: 1124 issue: 6 year: 2009 ident: 6043_CR19 publication-title: Genome Res doi: 10.1101/gr.088013.108 – volume: 26 start-page: 730 issue: 6 year: 2010 ident: 6043_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq040 – volume: 15 start-page: 2170 issue: 13 year: 2006 ident: 6043_CR12 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddl142 – volume: 102 start-page: 2004 issue: 6 year: 2005 ident: 6043_CR11 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0409806102 – volume: 20 start-page: 273 issue: 2 year: 2010 ident: 6043_CR20 publication-title: Genome Res doi: 10.1101/gr.096388.109 – volume: 23 start-page: 367 issue: 4 year: 2006 ident: 6043_CR3 publication-title: Diabet Med doi: 10.1111/j.1464-5491.2006.01834.x – volume: 491 start-page: 56 issue: 7422 year: 2012 ident: 6043_CR36 publication-title: Nature doi: 10.1038/nature11632 – volume: 21 start-page: 940 issue: 6 year: 2011 ident: 6043_CR40 publication-title: Genome Res doi: 10.1101/gr.117259.110 – volume: 43 start-page: 1066 issue: 11 year: 2011 ident: 6043_CR30 publication-title: Nat Genet doi: 10.1038/ng.952 – ident: 6043_CR32 – volume: 27 start-page: 865 issue: 6 year: 2011 ident: 6043_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr032 – volume: 25 start-page: 1599 issue: 12 year: 2012 ident: 6043_CR35 publication-title: Mod Pathol doi: 10.1038/modpathol.2012.121 – volume: 11 start-page: 8097 issue: 22 year: 2005 ident: 6043_CR14 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-05-1152 – volume: 26 start-page: 1317 issue: 9 year: 2006 ident: 6043_CR10 publication-title: Oncogene doi: 10.1038/sj.onc.1210199 – volume: 48 start-page: 2013 issue: 10 year: 2005 ident: 6043_CR4 publication-title: Diabetologia doi: 10.1007/s00125-005-1902-4 – ident: 6043_CR42 – volume: 5 start-page: 6 issue: 1 year: 2012 ident: 6043_CR45 publication-title: BioData Mining doi: 10.1186/1756-0381-5-6 – volume: 20 start-page: 1711 issue: 12 year: 2010 ident: 6043_CR33 publication-title: Genome Res doi: 10.1101/gr.109157.110 – volume: 20 start-page: 1297 year: 2010 ident: 6043_CR38 publication-title: Genome Res doi: 10.1101/gr.107524.110 – reference: 21278191 - Bioinformatics. 2011 Mar 15;27(6):865-6 – reference: 22709551 - BioData Min. 2012 Jun 18;5(1):6 – reference: 16620264 - Diabet Med. 2006 Apr;23(4):367-76 – reference: 20019143 - Genome Res. 2010 Feb;20(2):273-80 – reference: 20130035 - Bioinformatics. 2010 Mar 15;26(6):730-6 – reference: 23341494 - Brief Bioinform. 2014 Mar;15(2):256-78 – reference: 20980453 - Diabetes. 2011 Feb;60(2):662-8 – reference: 23128226 - Nature. 2012 Nov 1;491(7422):56-65 – reference: 15143316 - Nat Rev Genet. 2004 May;5(5):335-44 – reference: 16078049 - Hum Genet. 2005 Oct;118(1):67-75 – reference: 9872978 - Genome Res. 1998 Dec;8(12):1229-31 – reference: 18714091 - Genome Res. 2008 Nov;18(11):1851-8 – reference: 20644199 - Genome Res. 2010 Sep;20(9):1297-303 – reference: 21983784 - Nat Genet. 2011 Nov;43(11):1066-73 – reference: 19997069 - Nat Rev Genet. 2010 Jan;11(1):31-46 – reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 – reference: 21041413 - Genome Res. 2010 Dec;20(12):1711-8 – reference: 11237009 - Nature. 2001 Feb 15;409(6822):853-5 – reference: 15684076 - Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2004-9 – reference: 20031974 - Bioinformatics. 2010 Feb 15;26(4):572-3 – reference: 16740596 - Hum Mol Genet. 2006 Jul 1;15(13):2170-82 – reference: 21685105 - Bioinformatics. 2011 Jul 1;27(13):i77-84 – reference: 19542151 - Bioinformatics. 2009 Sep 1;25(17):2283-5 – reference: 16132956 - Diabetologia. 2005 Oct;48(10):2013-7 – reference: 18193056 - Nat Methods. 2008 Feb;5(2):179-81 – reference: 20529923 - Bioinformatics. 2010 Jun 15;26(12):i318-24 – reference: 10973253 - Nat Genet. 2000 Sep;26(1):76-80 – reference: 17322917 - Oncogene. 2007 Feb 26;26(9):1317-23 – reference: 21813454 - Nucleic Acids Res. 2011 Oct;39(19):e132 – reference: 21460063 - Genome Res. 2011 Jun;21(6):940-51 – reference: 22878650 - Mod Pathol. 2012 Dec;25(12):1599-608 – reference: 12724780 - Nature. 2003 May 29;423(6939):506-11 – reference: 20861027 - Bioinformatics. 2010 Nov 15;26(22):2803-10 – reference: 11926893 - JAMA. 2002 Apr 3;287(13):1690-8 – reference: 20534741 - Hum Mol Genet. 2010 Aug 15;19(16):3295-301 – reference: 23537139 - Genome Med. 2013 Mar 27;5(3):28 – reference: 16299241 - Clin Cancer Res. 2005 Nov 15;11(22):8097-104 – reference: 21478889 - Nat Genet. 2011 May;43(5):491-8 – reference: 16380906 - Am J Hum Genet. 2005 Dec;77(6):937-44 – reference: 19420381 - Genome Res. 2009 Jun;19(6):1124-32 – reference: 24489615 - Stat Biosci. 2013 May;5(1):3-25 |
| SSID | ssj0017805 |
| Score | 2.4144206 |
| Snippet | Background
Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation... Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing... Background Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation... Doc number: 274 Abstract Background: Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations... Background: Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 274 |
| SubjectTerms | Algorithms Autoimmune diseases Bioinformatics Biomedical and Life Sciences Comparative analysis Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Criteria Databases, Genetic Disease Empirical analysis Filtering Filtration Genetic aspects Genomes High-Throughput Nucleotide Sequencing - methods Humans Life Sciences Microarrays Nucleotides Polymorphism, Single Nucleotide - genetics Research Article Sequence analysis (methods) Sequencing Single nucleotide polymorphisms Statistical methods Studies |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEF_qFVE_iO9Gq0QRxMLSS_aR5INILS2tH47SWui3ZbOPq5Amp3fH0f_emby8FDy_3WUnF-axM5Ob2d8Q8tFmHvRqDc3AHCiX1lF4BWOUMeEFy-Oxc3WD7ESeXPLvV-Jqi0y6szDYVtn5xNpR28rgf-T7ENc5pDLjLPk6-0VxahRWV7sRGrodrWC_1BBj98h2jMhYI7L97Whydt7XFRDBvytWphJ-NIko0AkacRonfBCc7rrotRh1t3-yL6I-Ig-W5UzfrnRRrMWp4yfkcZtghgeNRTwlW658Ru43Iydvn5PTw2bwYDkNdejdKryYnIWgp6K-UkyB5cX1zTzEfvhpWFQrarDJE7xO2HZd43XsK31BLo-Pfhye0HacAjWSsQXNPE-wroIoVxFLjU9z-AZ6cmPGLDfcM2sgpBnGXO5dnOtcxLB9nfCRsLFlL8morEq3Q0LNtPUx-IdcQv7CfMYjo1nkUy1FlqdRQPY7OSrTYo3jyItC1e8cqVQoeYWSh08KJB-Qz_0dswZnYwPtB1SNQviKEvtjpno5n6vTi3N1IBjOTIccLSCfWiJfwaONbo8bAAOIeDWg3B1Qwv4yw-XOAlS7v-fqrzUG5H2_jHdiz1rpqmVNk2H2FW2kERmeZZdyA41EUMWUc2D8VWN4vYggH-OcJfCEZGCSPQGihw9Xyp_XNYo4S3kK_AVkrzPeNfb-Kfm93rz_q6bXmwX3hjyM69EiGY2SXTJa_F66t5DgLfJ37a79A6iTSdQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCAEPiG8CAwWEhJhkrc7ZTvw4VUwbDxNiTNpb5Dh2Nykk09qq2n_PXZJGzQRFvKXxOanPd75z7vw7xj6VJuC8lo4bFAcudek5bsGAA6igoEgm3rcJsif66Ex-O1fn_fcOOguzGb8Xmd4XuHhy3JYoLiTHHdRddg9NlG7Dsno6xAsImX8dhPxDr5HRub30btie23mRQ3D0EXuwrK_szcpW1Yb9OXzCHveOY3zQzfRTdsfXz9j9rpTkzXN2PO0KCtaz2MbBr-LTk-8x8r9q71Sz5vpycfFrHlOe-yyumhV3lLyJq0ncZ1PTfcoXfcHODr_-nB7xvkwCdxpgwU2QKcVLCL1KQOZCVuAv5L-fAJTSyQClQ1PlAHwRfFLYQiWoll4FocqkhJdsp25q_5rFFmwZEtT7QqNfAsFI4SyIkFmtTJGJiO2v-Zi7HkOcSllUebuXyHROnM-J83iVI-cj9mXocdXhZ2yh_UhTkxMsRU15LzO7nM_z49Mf-YECqoWOvlfEPvdEocFXO9sfI8ABEJLViHJ3RIl648bNawnIe72d4x8BiQ7zxKQR-zA0U0_KRat9s2xpDHlVYiuNMnRGXestNJrAEjMpceCvOsEbWIR-lpSQ4hvSkUgOBIQKPm6pLy9adHDIZIbji9jeWng3hvdXzu8N4v3PaXrzP09-yx4mbQERw0W6y3YW10v_Dt24RfG-1eDfsaw6yg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEB_OHqI--P1RPSWKIB5s22Q3afJYDo87H0rxLJxPIbvZ7RVzSW0byvnXO5MvmqIVwbc2O0syszOzs-zMbwDex4HBdY0VC1AdmPBizfAIxhnnrnG5dAZaFwmyY-9sKj5fupcHMKlrYeS1kvOsAg0loOLedhl6UlY5UBcFvewvYlMave_1bXSyDI8vLrMFw5PWLTj0XIzOO3A4HU9G34oio4qkvq38zbTW7rTro7c2qd0EyuYW9R7cydNFdLOJkmRrozp9AD9qFsv8lO-9fC176ucO-uP_lMFDuF9FtdaoVMNHcKDTx3C77HN58wTOT8puh-nMiiyjN9bFeGKhciTFk2SWLefrq-uVRUn4MyvJNkxRZim6OqtK9abnlMz6FKann76enLGqhwNTHudrFhgxpMscgtayua-ML_EfKocecB4LJQyPFe6jinMtjXZkJF0HfYZ2je3GTsyfQSfNUv0CrIhHsXHQKUkPgyZuAmGriNvGj3ClpW93oV-vXagqgHPqs5GExUHH90ISUEgCwl8hCqgLH5sZixLcYw_tO1KHkDAzUkrKmUX5ahWeX3wJRy6nRu0YGHbhQ0VkMny1iqoaB2SAYLZalEctSjRq1R6utS6snMoKP4QLjOYHwbALb5thmkmJcqnO8oImoJDP3kvjBlRA73l7aDxCcvSFQMafl8reiAiDQCH4EN8wbJlBQ0CQ5e2RdH5VQJdzX_jIXxeOa4PZYu-Pkj9uTOqvy_TyX4hfwV2n6G4SMHt4BJ31MtevMcZcyzeV2_gF55Zymw priority: 102 providerName: Unpaywall |
| Title | Comparing a few SNP calling algorithms using low-coverage sequencing data |
| URI | https://link.springer.com/article/10.1186/1471-2105-14-274 https://www.ncbi.nlm.nih.gov/pubmed/24044377 https://www.proquest.com/docview/1434916097 https://www.proquest.com/docview/1439222317 https://www.proquest.com/docview/1459156066 https://www.proquest.com/docview/1671408444 https://pubmed.ncbi.nlm.nih.gov/PMC3848615 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-14-274 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9swEBdry9j2Yexdb13wxmCsoDW2ZNn-MEYWmrWBhdAskH4ytiylBdfu8iDLf787vxqXNvuSh3Qilu5OdxedfkfIp9jXwNdYUh_EgXIRKwohGKOMOdphkd1WKk-QHYiTMe9PnMnN9ehyAed3hnZYT2o8S77-_bP-Dgr_LVd4TxxZsMFSCF0canEKUdYO2QM75WMhh1_85kwB0furg8o7RiEsMG9zzly3YaNu79Qbpup2GmV9lvqEPFqm1-F6FSbJhrnqPSNPSz_T7BSC8Zw8UOkL8rCoPLl-SU67Rf3BdGqGplYrczQYmsCuJG9JptnscnFxNTcxLX5qJtmKSsz1hM3HLJOvsR3TS1-Rce_4d_eEllUVqBSMLaivuYvHKwh2ZTFPai-Cb8Au1WYs5pJrFkuwbJIxFWllR2Hk2KDFytGWE9sxe0120yxV-8QMWRhrG7aJSIAbw7TPLRkyS3uhcPzIswxyVK1jIEvIcax8kQR56OGJAJkQIBPgUwBMMMiXesR1AbexhfYjsiZAFIsU02Sm4XI-D05HZ0HHYVg6HVw1g3wuiXQGPy3D8tYBTACBrxqUBw1KUDPZ7K4kIKikFB6EcfCv275rkA91N47E1LVUZcucxkcnzNpK4_h4pV2ILTQCsRU9zmHibwrBq5eoElyDuA2RrAkQRLzZk15e5GDizOMezM8gh5Xwbkzv3pU_rMX7v2x6e-_TviOP7by4iE8t94DsLmZL9R5cvEXUIjvuxIVXr_ezRfY6nf6oD-8_jgfDM2jtim4r__OklWs49IwHw875P4LQTg0 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIlR4QNw1FDAIhFpp1di7vh4QqgpVQkuEaCvlbbHXu2klYweSKMqf4jcy44u4EuGpb7Z3fOzst3N4Z2cA3qSRwXFNFYsQDkz4qWbognHGuWc8nrg9rcsA2aHfPxefR95oA343e2EorLKRiaWgTgtF_8j3Ua8LNGV6UfBh8pNR1ShaXW1KaFSwONbLBbps0_eDjzi-b1336NPZYZ_VVQWY8jmfsciIgJYXKNmTw0NlwgTP8HN1j_NUKGF4qlCyK851YrSbxInnIoq1ZxwvdVOOz70BNwVHWYLzJxi1Dp5D9QGapdDQx08OHIYulcccwdxAdFTfVQWwogGvRme2S7R3YGueT-LlIs6yFS14dA_u1uarfVDh7T5s6PwB3KoKWi4fwuCwKmuYj-3YNnphnw6_2oiCrLySjZGhs4sfU5ui7cd2ViyYohBSlGl2HdNN1ylq9RGcXwtbH8NmXuR6G-yYx6lxUfokPlpH3ETCUTF3TBj7XpSEjgX7DR-lqjOZU0GNTJYeTehL4rwkzuORRM5bsNveMamyeKyhfU1DIyk5Rk7RN-N4Pp3Kwek3eeBxqsiOFqAF72oiU-CrVVxvZsAOUD6tDuVOhxJnr-o2NwiQtfSYyr9Yt-BV20x3UkRcrot5SRORbeespfEi2inv-2tofErZGAqBHX9SAa9lEVp7QvAA3xB0INkSUG7ybkt-eVHmKOehCLF_Fuw14F3p3j85v9fC-7_D9HQ9417CVv_sy4k8GQyPn8FttyxiEjEn2IHN2a-5fo6m5Cx5Uc5fG75ft8D4A_Ecf88 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgiNcHxJvAgICQEJOsNvEjycepUK2Aqokxad8sx7G7SSGpllbV_nvu8lIzQRHf0vic1PfwnePz7wj5kCUO5JoZmoA6UC4zS2EJxihjwgmWhmNr6wTZuTw65V_PxFn7wa3qst27LcnmTAOiNBWr0TJzjYnHchTAlEphsSJowCmsq26SWxx8G1YwmMhJv4uAeP3d1uQfeg1c0fUJecsjXc-W7LdM75O762KprzY6z7e80vQhedCGk_5hI_9H5IYtHpPbTYHJqydkNmnKDBYLX_vObvyT-bEPUsnrO_mivLxYnf-qfMx-X_h5uaEGUzphjvHbHGu8j1mkT8np9MvPyRFtiydQIxlb0cTxCHdRENMqYLFxcQq_QCp2zFjGDXcsM-DADGM2dTZMdSpCMFYrXCCyMGPPyF5RFvYF8TXTmQthNkglRCvMJTwwmgUu1lIkaRx4ZNTxUZkWWRwLXOSqXmHEUiHnFXIerhRw3iOf-h7LBlVjB-17FI1CsIoCs2EWel1VanbyQx0KhhXSISLzyMeWyJXwaqPbwwUwAMS3GlDuDyjBmsywudMA1VpzBX-EcQijx0nkkXd9M_bEDLXCluuaJsFYK9hJIxI8uS7lDhqJEIox5zDw543i9SyC6ItzFsEbooFK9gSIFT5sKS7Oa8xwFvMYxueRg055t4b3V84f9Or9TzG9_J8nvyV3jj9P1ffZ_Nsrci-sK4wkNIj2yd7qcm1fQ5y3St_UxvwbfKxGAA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEB_OHqI--P1RPSWKIB5s22Q3afJYDo87H0rxLJxPIbvZ7RVzSW0byvnXO5MvmqIVwbc2O0syszOzs-zMbwDex4HBdY0VC1AdmPBizfAIxhnnrnG5dAZaFwmyY-9sKj5fupcHMKlrYeS1kvOsAg0loOLedhl6UlY5UBcFvewvYlMave_1bXSyDI8vLrMFw5PWLTj0XIzOO3A4HU9G34oio4qkvq38zbTW7rTro7c2qd0EyuYW9R7cydNFdLOJkmRrozp9AD9qFsv8lO-9fC176ucO-uP_lMFDuF9FtdaoVMNHcKDTx3C77HN58wTOT8puh-nMiiyjN9bFeGKhciTFk2SWLefrq-uVRUn4MyvJNkxRZim6OqtK9abnlMz6FKann76enLGqhwNTHudrFhgxpMscgtayua-ML_EfKocecB4LJQyPFe6jinMtjXZkJF0HfYZ2je3GTsyfQSfNUv0CrIhHsXHQKUkPgyZuAmGriNvGj3ClpW93oV-vXagqgHPqs5GExUHH90ISUEgCwl8hCqgLH5sZixLcYw_tO1KHkDAzUkrKmUX5ahWeX3wJRy6nRu0YGHbhQ0VkMny1iqoaB2SAYLZalEctSjRq1R6utS6snMoKP4QLjOYHwbALb5thmkmJcqnO8oImoJDP3kvjBlRA73l7aDxCcvSFQMafl8reiAiDQCH4EN8wbJlBQ0CQ5e2RdH5VQJdzX_jIXxeOa4PZYu-Pkj9uTOqvy_TyX4hfwV2n6G4SMHt4BJ31MtevMcZcyzeV2_gF55Zymw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+a+few+SNP+calling+algorithms+using+low-coverage+sequencing+data&rft.jtitle=BMC+bioinformatics&rft.au=Yu%2C+Xiaoqing&rft.au=Sun%2C+Shuying&rft.date=2013-09-17&rft.eissn=1471-2105&rft.volume=14&rft.spage=274&rft_id=info:doi/10.1186%2F1471-2105-14-274&rft_id=info%3Apmid%2F24044377&rft.externalDocID=24044377 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |