Comparing a few SNP calling algorithms using low-coverage sequencing data

Background Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. M...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 14; no. 1; p. 274
Main Authors Yu, Xiaoqing, Sun, Shuying
Format Journal Article
LanguageEnglish
Published London BioMed Central 17.09.2013
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-14-274

Cover

Abstract Background Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. Results To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs’ quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Conclusions Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria.
AbstractList Background Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. Results To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs’ quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Conclusions Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria.
Background Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. Results To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Conclusions Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria. Keywords: Next generation sequencing, SNP calling, Low-coverage, Single-sample, SOAPsnp, Atlas-SNP2, SAMtools, GATK
Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria.
Background: Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. Results: To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Conclusions: Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria.
Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations.BACKGROUNDMany Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations.To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs.RESULTSTo explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs.Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria.CONCLUSIONSOur results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria.
Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria.
Doc number: 274 Abstract Background: Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data. Moreover, commonly used SNP calling programs usually include several metrics in their output files for each potential SNP. These metrics are highly correlated in complex patterns, making it extremely difficult to select SNPs for further experimental validations. Results: To explore solutions to the above challenges, we compare the performance of four SNP calling algorithm, SOAPsnp, Atlas-SNP2, SAMtools, and GATK, in a low-coverage single-sample sequencing dataset. Without any post-output filtering, SOAPsnp calls more SNVs than the other programs since it has fewer internal filtering criteria. Atlas-SNP2 has stringent internal filtering criteria; thus it reports the least number of SNVs. The numbers of SNVs called by GATK and SAMtools fall between SOAPsnp and Atlas-SNP2. Moreover, we explore the values of key metrics related to SNVs' quality in each algorithm and use them as post-output filtering criteria to filter out low quality SNVs. Under different coverage cutoff values, we compare four algorithms and calculate the empirical positive calling rate and sensitivity. Our results show that: 1) the overall agreement of the four calling algorithms is low, especially in non-dbSNPs; 2) the agreement of the four algorithms is similar when using different coverage cutoffs, except that the non-dbSNPs agreement level tends to increase slightly with increasing coverage; 3) SOAPsnp, SAMtools, and GATK have a higher empirical calling rate for dbSNPs compared to non-dbSNPs; and 4) overall, GATK and Atlas-SNP2 have a relatively higher positive calling rate and sensitivity, but GATK calls more SNVs. Conclusions: Our results show that the agreement between different calling algorithms is relatively low. Thus, more caution should be used in choosing algorithms, setting filtering parameters, and designing validation studies. For reliable SNV calling results, we recommend that users employ more than one algorithm and use metrics related to calling quality and coverage as filtering criteria.
ArticleNumber 274
Audience Academic
Author Sun, Shuying
Yu, Xiaoqing
AuthorAffiliation 2 Department of Mathematics, Texas State University, San Marcos, Texas 78666, USA
1 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA
AuthorAffiliation_xml – name: 1 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA
– name: 2 Department of Mathematics, Texas State University, San Marcos, Texas 78666, USA
Author_xml – sequence: 1
  givenname: Xiaoqing
  surname: Yu
  fullname: Yu, Xiaoqing
  organization: Department of Epidemiology and Biostatistics, Case Western Reserve University
– sequence: 2
  givenname: Shuying
  surname: Sun
  fullname: Sun, Shuying
  email: ssun5211@yahoo.com
  organization: Department of Epidemiology and Biostatistics, Case Western Reserve University, Department of Mathematics, Texas State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24044377$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB-wZ4UisYFFit9ONkjViMdIFSAKa8tx7NRVYg920qH_HocZykzFo8rCzsl3bnyP7zE48MEbAJ4ieIpQxV8hKlCJEWQloiUW9AE4upUOdvaH4DilKwiRqCB7BA4xhZQSIY7AchGGlYrOd4UqrFkXFx8-FVr1_U-l70J04-WQiinNQh_WpQ7XJqrOFMl8m4zXs96qUT0GD63qk3myXU_A17dvvizel-cf3y0XZ-el5oSMZW2pIBjjWlQIkUrbqslvvNUGEtJSTS1pNSJQE2Iaa3CjGoZFTQyziLW4JScAbepOfqVu1vmochXdoOKNRFDOsci5bzn3nXcyx5I9rzee1dQMJv_Lj1H99gXl5P4X7y5lF64lqWjFEcsFXmwLxJC7TqMcXNKm75U3YUoScYEorCil_0cpqxHjkPN7oKTO4RAkMvr8DnoVpuhz0DNFa8RhvUN1qjfSeRtyN3ouKs8YoQznXupMnf6Byk9rBqfzhFmX9T3Dyz1DZkbzfezUlJJcXnzeZ5_tRn2b8a-RywDcADqGlKKx97k-fsei3ahGF-bLcv2_jNtZSat5xE3cSe1vnh8V-ANX
CitedBy_id crossref_primary_10_1093_bioinformatics_btw786
crossref_primary_10_1089_cmb_2016_0106
crossref_primary_10_7717_peerj_12446
crossref_primary_10_1186_s13015_015_0037_5
crossref_primary_10_1016_j_csbj_2023_03_038
crossref_primary_10_1186_s12864_015_2050_y
crossref_primary_10_7717_peerj_10501
crossref_primary_10_1186_s12864_015_2059_2
crossref_primary_10_1146_annurev_animal_090414_014900
crossref_primary_10_1186_s13104_016_2209_x
crossref_primary_10_3389_fpls_2017_00089
crossref_primary_10_3389_fgene_2020_00546
crossref_primary_10_1038_s41598_022_15563_2
crossref_primary_10_1186_s12859_020_03704_1
crossref_primary_10_3389_fneur_2020_00544
crossref_primary_10_1093_dnares_dsy033
crossref_primary_10_1186_1471_2105_15_S10_P30
crossref_primary_10_1186_s12859_021_04144_1
crossref_primary_10_1038_s41598_018_32674_x
crossref_primary_10_1371_journal_pone_0132120
crossref_primary_10_1016_j_molp_2015_02_002
crossref_primary_10_1186_s12859_016_1279_z
crossref_primary_10_1111_1755_0998_13175
crossref_primary_10_1186_s12864_022_08775_3
crossref_primary_10_7717_peerj_1508
crossref_primary_10_7717_peerj_600
crossref_primary_10_1016_j_atg_2014_12_003
crossref_primary_10_1093_bioinformatics_btu591
crossref_primary_10_1111_mec_13647
crossref_primary_10_1038_s41598_017_12498_x
crossref_primary_10_1021_acs_jproteome_5b00490
crossref_primary_10_3892_mmr_2015_4242
crossref_primary_10_1038_hdy_2016_102
crossref_primary_10_1186_s12863_023_01134_5
crossref_primary_10_1186_gm543
crossref_primary_10_1038_s41598_019_49915_2
crossref_primary_10_3390_life13051069
crossref_primary_10_1186_s12859_016_1211_6
crossref_primary_10_1093_molbev_msz177
crossref_primary_10_3389_fpls_2018_01809
crossref_primary_10_1186_s12859_014_0356_4
crossref_primary_10_3389_fimmu_2016_00336
crossref_primary_10_1186_s12859_014_0382_2
crossref_primary_10_1186_s12859_016_1417_7
crossref_primary_10_1186_s12864_015_2249_y
crossref_primary_10_1007_s12539_020_00374_8
crossref_primary_10_1093_bioinformatics_bty183
crossref_primary_10_1186_s13040_021_00259_6
crossref_primary_10_1038_srep17875
crossref_primary_10_1007_s12298_017_0470_7
crossref_primary_10_1186_1471_2164_15_823
crossref_primary_10_1080_21505594_2020_1856560
crossref_primary_10_1186_s12864_016_3045_z
crossref_primary_10_1007_s00018_014_1807_9
crossref_primary_10_3168_jds_2015_10347
crossref_primary_10_1093_bib_bbw011
crossref_primary_10_1038_s41598_019_45835_3
crossref_primary_10_1038_s41598_020_77218_4
crossref_primary_10_1186_s12864_017_3980_3
crossref_primary_10_1016_j_livsci_2021_104629
crossref_primary_10_1371_journal_pone_0115740
crossref_primary_10_1007_s13199_017_0490_7
crossref_primary_10_1016_j_animal_2024_101350
crossref_primary_10_1186_s13007_022_00852_8
crossref_primary_10_2217_pme_14_40
crossref_primary_10_3390_ani12141855
crossref_primary_10_1371_journal_pone_0104652
crossref_primary_10_1186_s12870_018_1601_1
crossref_primary_10_1371_journal_pcbi_1008678
crossref_primary_10_1186_1471_2105_15_180
crossref_primary_10_1186_s12864_019_5806_y
crossref_primary_10_1186_1471_2105_16_S15_P18
crossref_primary_10_3390_biology6010014
crossref_primary_10_1186_s13040_019_0198_8
crossref_primary_10_1159_000434645
crossref_primary_10_2217_pme_14_34
crossref_primary_10_1016_j_virusres_2016_12_008
crossref_primary_10_1038_s41467_019_11146_4
Cites_doi 10.1038/nrg2626
10.1101/gr.078212.108
10.1038/ng.806
10.1093/nar/gkr599
10.1007/s00439-005-0003-2
10.1038/79216
10.1093/bioinformatics/btp373
10.1186/gm432
10.1093/bioinformatics/btq214
10.1093/bioinformatics/btp706
10.2337/db10-0134
10.1093/bioinformatics/btp352
10.1086/498122
10.1101/gr.8.12.1229
10.1007/s12561-012-9060-y
10.1093/hmg/ddq221
10.1038/nmeth.1172
10.1001/jama.287.13.1690
10.1038/35057050
10.1093/bioinformatics/btq526
10.1038/nrg1325
10.1093/bioinformatics/btr205
10.1038/nature01621
10.1101/gr.088013.108
10.1093/bioinformatics/btq040
10.1093/hmg/ddl142
10.1073/pnas.0409806102
10.1101/gr.096388.109
10.1111/j.1464-5491.2006.01834.x
10.1038/nature11632
10.1101/gr.117259.110
10.1038/ng.952
10.1093/bioinformatics/btr032
10.1038/modpathol.2012.121
10.1158/1078-0432.CCR-05-1152
10.1038/sj.onc.1210199
10.1007/s00125-005-1902-4
10.1186/1756-0381-5-6
10.1101/gr.109157.110
10.1101/gr.107524.110
ContentType Journal Article
Copyright Yu and Sun; licensee BioMed Central Ltd. 2013
COPYRIGHT 2013 BioMed Central Ltd.
2013 Yu and Sun; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2013 Yu and Sun; licensee BioMed Central Ltd. 2013 Yu and Sun; licensee BioMed Central Ltd.
Copyright_xml – notice: Yu and Sun; licensee BioMed Central Ltd. 2013
– notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: 2013 Yu and Sun; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2013 Yu and Sun; licensee BioMed Central Ltd. 2013 Yu and Sun; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2105-14-274
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
Health Research Premium Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Computer and Information Systems Abstracts
MEDLINE - Academic
Engineering Research Database

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 274
ExternalDocumentID 10.1186/1471-2105-14-274
PMC3848615
3079232461
A534526159
24044377
10_1186_1471_2105_14_274
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c633t-9f4732229781138cf8b2226dce033d4c4f3dc130c33ebfe2bab52793e5f15d2d3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Sun Oct 26 05:51:54 EDT 2025
Tue Sep 30 16:26:55 EDT 2025
Fri Sep 05 14:03:21 EDT 2025
Wed Oct 01 13:13:56 EDT 2025
Tue Oct 07 09:31:07 EDT 2025
Mon Oct 06 18:20:57 EDT 2025
Mon Oct 20 22:49:55 EDT 2025
Mon Oct 20 16:58:03 EDT 2025
Thu Oct 16 16:17:27 EDT 2025
Mon Jul 21 05:48:01 EDT 2025
Wed Oct 01 04:15:23 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Sat Sep 06 07:27:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords GATK
Single-sample
SOAPsnp
SNP calling
Low-coverage
Next generation sequencing
Atlas-SNP2
SAMtools
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-9f4732229781138cf8b2226dce033d4c4f3dc130c33ebfe2bab52793e5f15d2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-14-274
PMID 24044377
PQID 1434916097
PQPubID 44065
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_1471_2105_14_274
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3848615
proquest_miscellaneous_1671408444
proquest_miscellaneous_1459156066
proquest_miscellaneous_1439222317
proquest_journals_1434916097
gale_infotracmisc_A534526159
gale_infotracacademiconefile_A534526159
gale_incontextgauss_ISR_A534526159
pubmed_primary_24044377
crossref_primary_10_1186_1471_2105_14_274
crossref_citationtrail_10_1186_1471_2105_14_274
springer_journals_10_1186_1471_2105_14_274
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-17
PublicationDateYYYYMMDD 2013-09-17
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-17
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2013
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References Y Li (6043_CR40) 2011; 21
H Ueda (6043_CR7) 2003; 423
G Jimenez-Sanchez (6043_CR2) 2001; 409
Y Li (6043_CR39) 2012; 5
MK Higashi (6043_CR15) 2002; 287
ND Palmer (6043_CR6) 2011; 60
J O’Rawe (6043_CR46) 2013; 5
JK Wolford (6043_CR3) 2006; 23
A Altmann (6043_CR31) 2011; 27
A Henningsson (6043_CR14) 2005; 11
The Genomes Project C (6043_CR36) 2012; 491
H Li (6043_CR37) 2009; 25
X Yu (6043_CR45) 2012; 5
MA DePristo (6043_CR27) 2011; 43
FLM Vallania (6043_CR33) 2010; 20
AR Quinlan (6043_CR18) 2008; 5
A McKenna (6043_CR38) 2010; 20
GL Bond (6043_CR10) 2006; 26
6043_CR32
JJ Corneveaux (6043_CR13) 2010; 19
S Kammerer (6043_CR11) 2005; 102
MN Edmonson (6043_CR28) 2011; 27
E Zeggini (6043_CR4) 2005; 48
T Vyshkina (6043_CR8) 2005; 118
R Goya (6043_CR29) 2010; 26
MA Rivas (6043_CR30) 2011; 43
D Altshuler (6043_CR5) 2000; 26
S Pabinger (6043_CR34) 2013
T Arinami (6043_CR9) 2005; 77
R Li (6043_CR19) 2009; 19
J Shendure (6043_CR16) 2004; 5
DC Koboldt (6043_CR22) 2009; 25
E Harris (6043_CR43) 2010; 26
FS Collins (6043_CR1) 1998; 8
6043_CR26
H Li (6043_CR21) 2008; 18
ER Martin (6043_CR23) 2010; 26
MD Adams (6043_CR35) 2012; 25
6043_CR44
Y Shen (6043_CR20) 2010; 20
R Kuwano (6043_CR12) 2006; 15
V Bansal (6043_CR24) 2010; 26
ML Metzker (6043_CR17) 2010; 11
6043_CR42
Z Wei (6043_CR25) 2011; 39
6043_CR41
15684076 - Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2004-9
21460063 - Genome Res. 2011 Jun;21(6):940-51
20980453 - Diabetes. 2011 Feb;60(2):662-8
16620264 - Diabet Med. 2006 Apr;23(4):367-76
16132956 - Diabetologia. 2005 Oct;48(10):2013-7
16380906 - Am J Hum Genet. 2005 Dec;77(6):937-44
16078049 - Hum Genet. 2005 Oct;118(1):67-75
20031974 - Bioinformatics. 2010 Feb 15;26(4):572-3
20644199 - Genome Res. 2010 Sep;20(9):1297-303
22709551 - BioData Min. 2012 Jun 18;5(1):6
21813454 - Nucleic Acids Res. 2011 Oct;39(19):e132
19542151 - Bioinformatics. 2009 Sep 1;25(17):2283-5
23537139 - Genome Med. 2013 Mar 27;5(3):28
21041413 - Genome Res. 2010 Dec;20(12):1711-8
21685105 - Bioinformatics. 2011 Jul 1;27(13):i77-84
21983784 - Nat Genet. 2011 Nov;43(11):1066-73
23128226 - Nature. 2012 Nov 1;491(7422):56-65
15143316 - Nat Rev Genet. 2004 May;5(5):335-44
11926893 - JAMA. 2002 Apr 3;287(13):1690-8
21478889 - Nat Genet. 2011 May;43(5):491-8
9872978 - Genome Res. 1998 Dec;8(12):1229-31
20130035 - Bioinformatics. 2010 Mar 15;26(6):730-6
20529923 - Bioinformatics. 2010 Jun 15;26(12):i318-24
17322917 - Oncogene. 2007 Feb 26;26(9):1317-23
11237009 - Nature. 2001 Feb 15;409(6822):853-5
21278191 - Bioinformatics. 2011 Mar 15;27(6):865-6
24489615 - Stat Biosci. 2013 May;5(1):3-25
19420381 - Genome Res. 2009 Jun;19(6):1124-32
22878650 - Mod Pathol. 2012 Dec;25(12):1599-608
23341494 - Brief Bioinform. 2014 Mar;15(2):256-78
20019143 - Genome Res. 2010 Feb;20(2):273-80
12724780 - Nature. 2003 May 29;423(6939):506-11
18193056 - Nat Methods. 2008 Feb;5(2):179-81
18714091 - Genome Res. 2008 Nov;18(11):1851-8
10973253 - Nat Genet. 2000 Sep;26(1):76-80
19997069 - Nat Rev Genet. 2010 Jan;11(1):31-46
19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
16740596 - Hum Mol Genet. 2006 Jul 1;15(13):2170-82
20861027 - Bioinformatics. 2010 Nov 15;26(22):2803-10
20534741 - Hum Mol Genet. 2010 Aug 15;19(16):3295-301
16299241 - Clin Cancer Res. 2005 Nov 15;11(22):8097-104
References_xml – volume: 11
  start-page: 31
  issue: 1
  year: 2010
  ident: 6043_CR17
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2626
– ident: 6043_CR44
– volume: 18
  start-page: 1851
  issue: 11
  year: 2008
  ident: 6043_CR21
  publication-title: Genome Res
  doi: 10.1101/gr.078212.108
– volume: 43
  start-page: 491
  issue: 5
  year: 2011
  ident: 6043_CR27
  publication-title: Nat Genet
  doi: 10.1038/ng.806
– volume: 39
  start-page: e132
  issue: 19
  year: 2011
  ident: 6043_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr599
– volume: 118
  start-page: 67
  issue: 1
  year: 2005
  ident: 6043_CR8
  publication-title: Hum Genet
  doi: 10.1007/s00439-005-0003-2
– volume: 26
  start-page: 76
  issue: 1
  year: 2000
  ident: 6043_CR5
  publication-title: Nat Genet
  doi: 10.1038/79216
– volume: 25
  start-page: 2283
  issue: 17
  year: 2009
  ident: 6043_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp373
– volume: 5
  start-page: 28
  issue: 3
  year: 2013
  ident: 6043_CR46
  publication-title: Genome Med
  doi: 10.1186/gm432
– volume: 26
  start-page: i318
  issue: 12
  year: 2010
  ident: 6043_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq214
– volume: 26
  start-page: 572
  issue: 4
  year: 2010
  ident: 6043_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp706
– volume: 60
  start-page: 662
  issue: 2
  year: 2011
  ident: 6043_CR6
  publication-title: Diabetes
  doi: 10.2337/db10-0134
– volume: 25
  start-page: 2078
  issue: 16
  year: 2009
  ident: 6043_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 77
  start-page: 937
  issue: 6
  year: 2005
  ident: 6043_CR9
  publication-title: Am J Hum Gen
  doi: 10.1086/498122
– volume: 8
  start-page: 1229
  issue: 12
  year: 1998
  ident: 6043_CR1
  publication-title: Genome Res
  doi: 10.1101/gr.8.12.1229
– volume-title: Brief Bioinform
  year: 2013
  ident: 6043_CR34
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  ident: 6043_CR39
  publication-title: Stat Biosci
  doi: 10.1007/s12561-012-9060-y
– volume: 19
  start-page: 3295
  issue: 16
  year: 2010
  ident: 6043_CR13
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddq221
– volume: 5
  start-page: 179
  issue: 2
  year: 2008
  ident: 6043_CR18
  publication-title: Nat Meth
  doi: 10.1038/nmeth.1172
– ident: 6043_CR26
– volume: 287
  start-page: 1690
  issue: 13
  year: 2002
  ident: 6043_CR15
  publication-title: JAMA
  doi: 10.1001/jama.287.13.1690
– volume: 409
  start-page: 853
  issue: 6822
  year: 2001
  ident: 6043_CR2
  publication-title: Nature
  doi: 10.1038/35057050
– ident: 6043_CR41
– volume: 26
  start-page: 2803
  issue: 22
  year: 2010
  ident: 6043_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq526
– volume: 5
  start-page: 335
  issue: 5
  year: 2004
  ident: 6043_CR16
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1325
– volume: 27
  start-page: i77
  issue: 13
  year: 2011
  ident: 6043_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr205
– volume: 423
  start-page: 506
  issue: 6939
  year: 2003
  ident: 6043_CR7
  publication-title: Nature
  doi: 10.1038/nature01621
– volume: 19
  start-page: 1124
  issue: 6
  year: 2009
  ident: 6043_CR19
  publication-title: Genome Res
  doi: 10.1101/gr.088013.108
– volume: 26
  start-page: 730
  issue: 6
  year: 2010
  ident: 6043_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq040
– volume: 15
  start-page: 2170
  issue: 13
  year: 2006
  ident: 6043_CR12
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddl142
– volume: 102
  start-page: 2004
  issue: 6
  year: 2005
  ident: 6043_CR11
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0409806102
– volume: 20
  start-page: 273
  issue: 2
  year: 2010
  ident: 6043_CR20
  publication-title: Genome Res
  doi: 10.1101/gr.096388.109
– volume: 23
  start-page: 367
  issue: 4
  year: 2006
  ident: 6043_CR3
  publication-title: Diabet Med
  doi: 10.1111/j.1464-5491.2006.01834.x
– volume: 491
  start-page: 56
  issue: 7422
  year: 2012
  ident: 6043_CR36
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 21
  start-page: 940
  issue: 6
  year: 2011
  ident: 6043_CR40
  publication-title: Genome Res
  doi: 10.1101/gr.117259.110
– volume: 43
  start-page: 1066
  issue: 11
  year: 2011
  ident: 6043_CR30
  publication-title: Nat Genet
  doi: 10.1038/ng.952
– ident: 6043_CR32
– volume: 27
  start-page: 865
  issue: 6
  year: 2011
  ident: 6043_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr032
– volume: 25
  start-page: 1599
  issue: 12
  year: 2012
  ident: 6043_CR35
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2012.121
– volume: 11
  start-page: 8097
  issue: 22
  year: 2005
  ident: 6043_CR14
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-05-1152
– volume: 26
  start-page: 1317
  issue: 9
  year: 2006
  ident: 6043_CR10
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210199
– volume: 48
  start-page: 2013
  issue: 10
  year: 2005
  ident: 6043_CR4
  publication-title: Diabetologia
  doi: 10.1007/s00125-005-1902-4
– ident: 6043_CR42
– volume: 5
  start-page: 6
  issue: 1
  year: 2012
  ident: 6043_CR45
  publication-title: BioData Mining
  doi: 10.1186/1756-0381-5-6
– volume: 20
  start-page: 1711
  issue: 12
  year: 2010
  ident: 6043_CR33
  publication-title: Genome Res
  doi: 10.1101/gr.109157.110
– volume: 20
  start-page: 1297
  year: 2010
  ident: 6043_CR38
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– reference: 21278191 - Bioinformatics. 2011 Mar 15;27(6):865-6
– reference: 22709551 - BioData Min. 2012 Jun 18;5(1):6
– reference: 16620264 - Diabet Med. 2006 Apr;23(4):367-76
– reference: 20019143 - Genome Res. 2010 Feb;20(2):273-80
– reference: 20130035 - Bioinformatics. 2010 Mar 15;26(6):730-6
– reference: 23341494 - Brief Bioinform. 2014 Mar;15(2):256-78
– reference: 20980453 - Diabetes. 2011 Feb;60(2):662-8
– reference: 23128226 - Nature. 2012 Nov 1;491(7422):56-65
– reference: 15143316 - Nat Rev Genet. 2004 May;5(5):335-44
– reference: 16078049 - Hum Genet. 2005 Oct;118(1):67-75
– reference: 9872978 - Genome Res. 1998 Dec;8(12):1229-31
– reference: 18714091 - Genome Res. 2008 Nov;18(11):1851-8
– reference: 20644199 - Genome Res. 2010 Sep;20(9):1297-303
– reference: 21983784 - Nat Genet. 2011 Nov;43(11):1066-73
– reference: 19997069 - Nat Rev Genet. 2010 Jan;11(1):31-46
– reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
– reference: 21041413 - Genome Res. 2010 Dec;20(12):1711-8
– reference: 11237009 - Nature. 2001 Feb 15;409(6822):853-5
– reference: 15684076 - Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2004-9
– reference: 20031974 - Bioinformatics. 2010 Feb 15;26(4):572-3
– reference: 16740596 - Hum Mol Genet. 2006 Jul 1;15(13):2170-82
– reference: 21685105 - Bioinformatics. 2011 Jul 1;27(13):i77-84
– reference: 19542151 - Bioinformatics. 2009 Sep 1;25(17):2283-5
– reference: 16132956 - Diabetologia. 2005 Oct;48(10):2013-7
– reference: 18193056 - Nat Methods. 2008 Feb;5(2):179-81
– reference: 20529923 - Bioinformatics. 2010 Jun 15;26(12):i318-24
– reference: 10973253 - Nat Genet. 2000 Sep;26(1):76-80
– reference: 17322917 - Oncogene. 2007 Feb 26;26(9):1317-23
– reference: 21813454 - Nucleic Acids Res. 2011 Oct;39(19):e132
– reference: 21460063 - Genome Res. 2011 Jun;21(6):940-51
– reference: 22878650 - Mod Pathol. 2012 Dec;25(12):1599-608
– reference: 12724780 - Nature. 2003 May 29;423(6939):506-11
– reference: 20861027 - Bioinformatics. 2010 Nov 15;26(22):2803-10
– reference: 11926893 - JAMA. 2002 Apr 3;287(13):1690-8
– reference: 20534741 - Hum Mol Genet. 2010 Aug 15;19(16):3295-301
– reference: 23537139 - Genome Med. 2013 Mar 27;5(3):28
– reference: 16299241 - Clin Cancer Res. 2005 Nov 15;11(22):8097-104
– reference: 21478889 - Nat Genet. 2011 May;43(5):491-8
– reference: 16380906 - Am J Hum Genet. 2005 Dec;77(6):937-44
– reference: 19420381 - Genome Res. 2009 Jun;19(6):1124-32
– reference: 24489615 - Stat Biosci. 2013 May;5(1):3-25
SSID ssj0017805
Score 2.4144206
Snippet Background Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation...
Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing...
Background Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation...
Doc number: 274 Abstract Background: Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations...
Background: Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 274
SubjectTerms Algorithms
Autoimmune diseases
Bioinformatics
Biomedical and Life Sciences
Comparative analysis
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Criteria
Databases, Genetic
Disease
Empirical analysis
Filtering
Filtration
Genetic aspects
Genomes
High-Throughput Nucleotide Sequencing - methods
Humans
Life Sciences
Microarrays
Nucleotides
Polymorphism, Single Nucleotide - genetics
Research Article
Sequence analysis (methods)
Sequencing
Single nucleotide polymorphisms
Statistical methods
Studies
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEF_qFVE_iO9Gq0QRxMLSS_aR5INILS2tH47SWui3ZbOPq5Amp3fH0f_emby8FDy_3WUnF-axM5Ob2d8Q8tFmHvRqDc3AHCiX1lF4BWOUMeEFy-Oxc3WD7ESeXPLvV-Jqi0y6szDYVtn5xNpR28rgf-T7ENc5pDLjLPk6-0VxahRWV7sRGrodrWC_1BBj98h2jMhYI7L97Whydt7XFRDBvytWphJ-NIko0AkacRonfBCc7rrotRh1t3-yL6I-Ig-W5UzfrnRRrMWp4yfkcZtghgeNRTwlW658Ru43Iydvn5PTw2bwYDkNdejdKryYnIWgp6K-UkyB5cX1zTzEfvhpWFQrarDJE7xO2HZd43XsK31BLo-Pfhye0HacAjWSsQXNPE-wroIoVxFLjU9z-AZ6cmPGLDfcM2sgpBnGXO5dnOtcxLB9nfCRsLFlL8morEq3Q0LNtPUx-IdcQv7CfMYjo1nkUy1FlqdRQPY7OSrTYo3jyItC1e8cqVQoeYWSh08KJB-Qz_0dswZnYwPtB1SNQviKEvtjpno5n6vTi3N1IBjOTIccLSCfWiJfwaONbo8bAAOIeDWg3B1Qwv4yw-XOAlS7v-fqrzUG5H2_jHdiz1rpqmVNk2H2FW2kERmeZZdyA41EUMWUc2D8VWN4vYggH-OcJfCEZGCSPQGihw9Xyp_XNYo4S3kK_AVkrzPeNfb-Kfm93rz_q6bXmwX3hjyM69EiGY2SXTJa_F66t5DgLfJ37a79A6iTSdQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCAEPiG8CAwWEhJhkrc7ZTvw4VUwbDxNiTNpb5Dh2Nykk09qq2n_PXZJGzQRFvKXxOanPd75z7vw7xj6VJuC8lo4bFAcudek5bsGAA6igoEgm3rcJsif66Ex-O1fn_fcOOguzGb8Xmd4XuHhy3JYoLiTHHdRddg9NlG7Dsno6xAsImX8dhPxDr5HRub30btie23mRQ3D0EXuwrK_szcpW1Yb9OXzCHveOY3zQzfRTdsfXz9j9rpTkzXN2PO0KCtaz2MbBr-LTk-8x8r9q71Sz5vpycfFrHlOe-yyumhV3lLyJq0ncZ1PTfcoXfcHODr_-nB7xvkwCdxpgwU2QKcVLCL1KQOZCVuAv5L-fAJTSyQClQ1PlAHwRfFLYQiWoll4FocqkhJdsp25q_5rFFmwZEtT7QqNfAsFI4SyIkFmtTJGJiO2v-Zi7HkOcSllUebuXyHROnM-J83iVI-cj9mXocdXhZ2yh_UhTkxMsRU15LzO7nM_z49Mf-YECqoWOvlfEPvdEocFXO9sfI8ABEJLViHJ3RIl648bNawnIe72d4x8BiQ7zxKQR-zA0U0_KRat9s2xpDHlVYiuNMnRGXestNJrAEjMpceCvOsEbWIR-lpSQ4hvSkUgOBIQKPm6pLy9adHDIZIbji9jeWng3hvdXzu8N4v3PaXrzP09-yx4mbQERw0W6y3YW10v_Dt24RfG-1eDfsaw6yg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEB_OHqI--P1RPSWKIB5s22Q3afJYDo87H0rxLJxPIbvZ7RVzSW0byvnXO5MvmqIVwbc2O0syszOzs-zMbwDex4HBdY0VC1AdmPBizfAIxhnnrnG5dAZaFwmyY-9sKj5fupcHMKlrYeS1kvOsAg0loOLedhl6UlY5UBcFvewvYlMave_1bXSyDI8vLrMFw5PWLTj0XIzOO3A4HU9G34oio4qkvq38zbTW7rTro7c2qd0EyuYW9R7cydNFdLOJkmRrozp9AD9qFsv8lO-9fC176ucO-uP_lMFDuF9FtdaoVMNHcKDTx3C77HN58wTOT8puh-nMiiyjN9bFeGKhciTFk2SWLefrq-uVRUn4MyvJNkxRZim6OqtK9abnlMz6FKann76enLGqhwNTHudrFhgxpMscgtayua-ML_EfKocecB4LJQyPFe6jinMtjXZkJF0HfYZ2je3GTsyfQSfNUv0CrIhHsXHQKUkPgyZuAmGriNvGj3ClpW93oV-vXagqgHPqs5GExUHH90ISUEgCwl8hCqgLH5sZixLcYw_tO1KHkDAzUkrKmUX5ahWeX3wJRy6nRu0YGHbhQ0VkMny1iqoaB2SAYLZalEctSjRq1R6utS6snMoKP4QLjOYHwbALb5thmkmJcqnO8oImoJDP3kvjBlRA73l7aDxCcvSFQMafl8reiAiDQCH4EN8wbJlBQ0CQ5e2RdH5VQJdzX_jIXxeOa4PZYu-Pkj9uTOqvy_TyX4hfwV2n6G4SMHt4BJ31MtevMcZcyzeV2_gF55Zymw
  priority: 102
  providerName: Unpaywall
Title Comparing a few SNP calling algorithms using low-coverage sequencing data
URI https://link.springer.com/article/10.1186/1471-2105-14-274
https://www.ncbi.nlm.nih.gov/pubmed/24044377
https://www.proquest.com/docview/1434916097
https://www.proquest.com/docview/1439222317
https://www.proquest.com/docview/1459156066
https://www.proquest.com/docview/1671408444
https://pubmed.ncbi.nlm.nih.gov/PMC3848615
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-14-274
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9swEBdry9j2Yexdb13wxmCsoDW2ZNn-MEYWmrWBhdAskH4ytiylBdfu8iDLf787vxqXNvuSh3Qilu5OdxedfkfIp9jXwNdYUh_EgXIRKwohGKOMOdphkd1WKk-QHYiTMe9PnMnN9ehyAed3hnZYT2o8S77-_bP-Dgr_LVd4TxxZsMFSCF0canEKUdYO2QM75WMhh1_85kwB0furg8o7RiEsMG9zzly3YaNu79Qbpup2GmV9lvqEPFqm1-F6FSbJhrnqPSNPSz_T7BSC8Zw8UOkL8rCoPLl-SU67Rf3BdGqGplYrczQYmsCuJG9JptnscnFxNTcxLX5qJtmKSsz1hM3HLJOvsR3TS1-Rce_4d_eEllUVqBSMLaivuYvHKwh2ZTFPai-Cb8Au1WYs5pJrFkuwbJIxFWllR2Hk2KDFytGWE9sxe0120yxV-8QMWRhrG7aJSIAbw7TPLRkyS3uhcPzIswxyVK1jIEvIcax8kQR56OGJAJkQIBPgUwBMMMiXesR1AbexhfYjsiZAFIsU02Sm4XI-D05HZ0HHYVg6HVw1g3wuiXQGPy3D8tYBTACBrxqUBw1KUDPZ7K4kIKikFB6EcfCv275rkA91N47E1LVUZcucxkcnzNpK4_h4pV2ILTQCsRU9zmHibwrBq5eoElyDuA2RrAkQRLzZk15e5GDizOMezM8gh5Xwbkzv3pU_rMX7v2x6e-_TviOP7by4iE8t94DsLmZL9R5cvEXUIjvuxIVXr_ezRfY6nf6oD-8_jgfDM2jtim4r__OklWs49IwHw875P4LQTg0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIlR4QNw1FDAIhFpp1di7vh4QqgpVQkuEaCvlbbHXu2klYweSKMqf4jcy44u4EuGpb7Z3fOzst3N4Z2cA3qSRwXFNFYsQDkz4qWbognHGuWc8nrg9rcsA2aHfPxefR95oA343e2EorLKRiaWgTgtF_8j3Ua8LNGV6UfBh8pNR1ShaXW1KaFSwONbLBbps0_eDjzi-b1336NPZYZ_VVQWY8jmfsciIgJYXKNmTw0NlwgTP8HN1j_NUKGF4qlCyK851YrSbxInnIoq1ZxwvdVOOz70BNwVHWYLzJxi1Dp5D9QGapdDQx08OHIYulcccwdxAdFTfVQWwogGvRme2S7R3YGueT-LlIs6yFS14dA_u1uarfVDh7T5s6PwB3KoKWi4fwuCwKmuYj-3YNnphnw6_2oiCrLySjZGhs4sfU5ui7cd2ViyYohBSlGl2HdNN1ylq9RGcXwtbH8NmXuR6G-yYx6lxUfokPlpH3ETCUTF3TBj7XpSEjgX7DR-lqjOZU0GNTJYeTehL4rwkzuORRM5bsNveMamyeKyhfU1DIyk5Rk7RN-N4Pp3Kwek3eeBxqsiOFqAF72oiU-CrVVxvZsAOUD6tDuVOhxJnr-o2NwiQtfSYyr9Yt-BV20x3UkRcrot5SRORbeespfEi2inv-2tofErZGAqBHX9SAa9lEVp7QvAA3xB0INkSUG7ybkt-eVHmKOehCLF_Fuw14F3p3j85v9fC-7_D9HQ9417CVv_sy4k8GQyPn8FttyxiEjEn2IHN2a-5fo6m5Cx5Uc5fG75ft8D4A_Ecf88
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgiNcHxJvAgICQEJOsNvEjycepUK2Aqokxad8sx7G7SSGpllbV_nvu8lIzQRHf0vic1PfwnePz7wj5kCUO5JoZmoA6UC4zS2EJxihjwgmWhmNr6wTZuTw65V_PxFn7wa3qst27LcnmTAOiNBWr0TJzjYnHchTAlEphsSJowCmsq26SWxx8G1YwmMhJv4uAeP3d1uQfeg1c0fUJecsjXc-W7LdM75O762KprzY6z7e80vQhedCGk_5hI_9H5IYtHpPbTYHJqydkNmnKDBYLX_vObvyT-bEPUsnrO_mivLxYnf-qfMx-X_h5uaEGUzphjvHbHGu8j1mkT8np9MvPyRFtiydQIxlb0cTxCHdRENMqYLFxcQq_QCp2zFjGDXcsM-DADGM2dTZMdSpCMFYrXCCyMGPPyF5RFvYF8TXTmQthNkglRCvMJTwwmgUu1lIkaRx4ZNTxUZkWWRwLXOSqXmHEUiHnFXIerhRw3iOf-h7LBlVjB-17FI1CsIoCs2EWel1VanbyQx0KhhXSISLzyMeWyJXwaqPbwwUwAMS3GlDuDyjBmsywudMA1VpzBX-EcQijx0nkkXd9M_bEDLXCluuaJsFYK9hJIxI8uS7lDhqJEIox5zDw543i9SyC6ItzFsEbooFK9gSIFT5sKS7Oa8xwFvMYxueRg055t4b3V84f9Or9TzG9_J8nvyV3jj9P1ffZ_Nsrci-sK4wkNIj2yd7qcm1fQ5y3St_UxvwbfKxGAA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEB_OHqI--P1RPSWKIB5s22Q3afJYDo87H0rxLJxPIbvZ7RVzSW0byvnXO5MvmqIVwbc2O0syszOzs-zMbwDex4HBdY0VC1AdmPBizfAIxhnnrnG5dAZaFwmyY-9sKj5fupcHMKlrYeS1kvOsAg0loOLedhl6UlY5UBcFvewvYlMave_1bXSyDI8vLrMFw5PWLTj0XIzOO3A4HU9G34oio4qkvq38zbTW7rTro7c2qd0EyuYW9R7cydNFdLOJkmRrozp9AD9qFsv8lO-9fC176ucO-uP_lMFDuF9FtdaoVMNHcKDTx3C77HN58wTOT8puh-nMiiyjN9bFeGKhciTFk2SWLefrq-uVRUn4MyvJNkxRZim6OqtK9abnlMz6FKann76enLGqhwNTHudrFhgxpMscgtayua-ML_EfKocecB4LJQyPFe6jinMtjXZkJF0HfYZ2je3GTsyfQSfNUv0CrIhHsXHQKUkPgyZuAmGriNvGj3ClpW93oV-vXagqgHPqs5GExUHH90ISUEgCwl8hCqgLH5sZixLcYw_tO1KHkDAzUkrKmUX5ahWeX3wJRy6nRu0YGHbhQ0VkMny1iqoaB2SAYLZalEctSjRq1R6utS6snMoKP4QLjOYHwbALb5thmkmJcqnO8oImoJDP3kvjBlRA73l7aDxCcvSFQMafl8reiAiDQCH4EN8wbJlBQ0CQ5e2RdH5VQJdzX_jIXxeOa4PZYu-Pkj9uTOqvy_TyX4hfwV2n6G4SMHt4BJ31MtevMcZcyzeV2_gF55Zymw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+a+few+SNP+calling+algorithms+using+low-coverage+sequencing+data&rft.jtitle=BMC+bioinformatics&rft.au=Yu%2C+Xiaoqing&rft.au=Sun%2C+Shuying&rft.date=2013-09-17&rft.eissn=1471-2105&rft.volume=14&rft.spage=274&rft_id=info:doi/10.1186%2F1471-2105-14-274&rft_id=info%3Apmid%2F24044377&rft.externalDocID=24044377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon