A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity

The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subje...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 13; no. 8; p. e1005632
Main Authors Wang, Quan, Rothkopf, Constantin A., Triesch, Jochen
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.08.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1005632

Cover

Abstract The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN) model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP) with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP) and synaptic normalization (SN). When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that STDP, IP, and SN may be the driving forces behind our ability to learn complex action sequences.
AbstractList The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN) model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP) with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP) and synaptic normalization (SN). When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that STDP, IP, and SN may be the driving forces behind our ability to learn complex action sequences.
The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN) model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP) with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP) and synaptic normalization (SN). When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that STDP, IP, and SN may be the driving forces behind our ability to learn complex action sequences.The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN) model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP) with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP) and synaptic normalization (SN). When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that STDP, IP, and SN may be the driving forces behind our ability to learn complex action sequences.
The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN) model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP) with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP) and synaptic normalization (SN). When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network’s changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network’s sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that STDP, IP, and SN may be the driving forces behind our ability to learn complex action sequences. From dialing a phone number to driving home after work, much of human behavior is inherently sequential. But how do we learn such sequential behaviors and what neural plasticity mechanisms support this learning? Recent experiments on sequence learning in human adults have produced a range of confusing findings, especially when subjects have to learn multiple sequences at the same time. For example, the succes of training can strongly depend on subjects’ training schedules, i.e., whether they practice one task until they are proficient before switching to the next or whether they interleave training of the different tasks. Here we show that a model self-organizing neural network readily explains many findings on human sequence learning. The model is formulated as a recurrent network of simplified spiking neurons and incorporates multiple biologically plausible plasticity mechanisms of neurons and synapses. Therefore, it offers a theoretical bridge between basic mechanisms of synaptic and neuronal plasticity and the behavior of human subjects in sequence learning tasks.
Audience Academic
Author Wang, Quan
Triesch, Jochen
Rothkopf, Constantin A.
AuthorAffiliation 1 Frankfurt Institute for Advanced Studies, Ruth-Moufang Str. 1, 60438 Frankfurt, Germany
2 Centre for Cognitive Science & Institute of Psychology, Technical University Darmstadt, Darmstadt, Germany
Ghent University, BELGIUM
AuthorAffiliation_xml – name: Ghent University, BELGIUM
– name: 2 Centre for Cognitive Science & Institute of Psychology, Technical University Darmstadt, Darmstadt, Germany
– name: 1 Frankfurt Institute for Advanced Studies, Ruth-Moufang Str. 1, 60438 Frankfurt, Germany
Author_xml – sequence: 1
  givenname: Quan
  orcidid: 0000-0003-4826-2408
  surname: Wang
  fullname: Wang, Quan
– sequence: 2
  givenname: Constantin A.
  orcidid: 0000-0002-5636-0801
  surname: Rothkopf
  fullname: Rothkopf, Constantin A.
– sequence: 3
  givenname: Jochen
  orcidid: 0000-0001-8166-2441
  surname: Triesch
  fullname: Triesch, Jochen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28767646$$D View this record in MEDLINE/PubMed
BookMark eNqVUk1v1DAQjVARbRf-AQJLXOCwS-LEccIBaVXxsVIFEh9ny3EmWy-OHWwHuld-OZPutupWSEAsJRP7zfObN3OaHFlnIUkeZ-kiy3n2cuNGb6VZDKrRiyxNWZnTe8lJxlg-5zmrjm7Fx8lpCJs0xbAuHyTHtOIlL4vyJPm1JL1rwRDXkYuxlxZ_o_MkwPcRrAJiQHqr7ZrA5WCktoF0Ummjo4zaWSJtS7SN4DvwV3joOlAxkEYGaAkiwqC_wTzqfiJpYQDbgo0EyULUSsftw-R-J02AR_vvLPn69s2Xs_fz84_vVmfL87kq8zzO66JKC0qBlbJSsikznuZ5V9CW8rRivMt4wWvVAoLLVJWc1nXd4aoBeNWgO7Pk6Y53MC6IvX1BZHVeFzmrixoRqx2idXIjBq976bfCSS2uNpxfC-lRtAEBRZPSEmhZyKZAi-sWWoZvjHPIUMMsYTuu0Q5y-1Mac0OYpWLq4LUEMXVQ7DuIea_3Ksemh1ahV16aAzGHJ1ZfiLX7IRg-PJsufr4n8A57GKLodVBgjLTgxqleyqqq4nyq99kd6J9dWexQa4mFa9s5vFfhaqHXCoey07i_ZCmtKM3ZpODFQQJiIlzGtRxDEKvPn_4D--EQ--S2NTeeXE8zAl7tAMq7EDx0Qu3nFBVr8zfjizvJ_9Sv33JHHws
CitedBy_id crossref_primary_10_1038_s43588_021_00184_y
crossref_primary_10_1371_journal_pcbi_1006187
crossref_primary_10_1007_s00221_022_06482_9
crossref_primary_10_3389_fnins_2020_00189
crossref_primary_10_1371_journal_pone_0220161
crossref_primary_10_1038_s41598_023_31500_3
crossref_primary_10_1038_s41598_020_79127_y
Cites_doi 10.1073/pnas.0600676103
10.1038/nrn1426
10.1016/S0959-4388(02)00307-0
10.1371/journal.pcbi.1002848
10.1038/nn1184
10.1016/j.biosystems.2008.08.001
10.1523/JNEUROSCI.17-01-00409.1997
10.1371/journal.pcbi.1004640
10.1038/31235
10.1093/cercor/6.3.406
10.1371/journal.pone.0008973
10.1162/neco.1993.5.1.1
10.1162/neco.2008.06-08-804
10.1080/00222895.2010.481694
10.1523/JNEUROSCI.18-01-00399.1998
10.1016/j.humov.2008.02.021
10.1038/382252a0
10.1162/089892901750363208
10.1152/jn.00773.2012
10.1016/j.neuron.2014.04.045
10.1162/NECO_a_00184
10.1371/journal.pcbi.1004759
10.1371/journal.pcbi.1004954
10.3200/JMBR.38.1.60-70
10.1162/0899766053011555
10.1038/nn.4042
10.1162/089976602760407955
10.1016/j.neuron.2010.02.003
10.1023/A:1008910918445
10.1523/JNEUROSCI.4098-12.2013
10.1007/s11571-009-9076-2
10.1016/j.neunet.2007.04.017
10.1371/journal.pcbi.1003512
10.1109/IJCNN.2006.246880
ContentType Journal Article
Copyright COPYRIGHT 2017 Public Library of Science
2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wang Q, Rothkopf CA, Triesch J (2017) A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity. PLoS Comput Biol 13(8): e1005632. https://doi.org/10.1371/journal.pcbi.1005632
2017 Wang et al 2017 Wang et al
2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wang Q, Rothkopf CA, Triesch J (2017) A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity. PLoS Comput Biol 13(8): e1005632. https://doi.org/10.1371/journal.pcbi.1005632
Copyright_xml – notice: COPYRIGHT 2017 Public Library of Science
– notice: 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wang Q, Rothkopf CA, Triesch J (2017) A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity. PLoS Comput Biol 13(8): e1005632. https://doi.org/10.1371/journal.pcbi.1005632
– notice: 2017 Wang et al 2017 Wang et al
– notice: 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wang Q, Rothkopf CA, Triesch J (2017) A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity. PLoS Comput Biol 13(8): e1005632. https://doi.org/10.1371/journal.pcbi.1005632
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pcbi.1005632
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate A spike-timing dependent plasticity model explains facilitation and interference effects
EISSN 1553-7358
ExternalDocumentID 1939435949
oai_doaj_org_article_e4b026e264ab47359ded559d4733e163
10.1371/journal.pcbi.1005632
PMC5555713
A502822353
28767646
10_1371_journal_pcbi_1005632
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: FKZ 01GQ0840
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
-
AAPBV
ABPTK
ADACO
BBAFP
ID FETCH-LOGICAL-c633t-9480422e56a8cab617033f42d270857f17479cde63360c672999f9f99ee78b563
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:12:21 EST 2021
Fri Oct 03 12:50:44 EDT 2025
Sun Oct 26 03:44:59 EDT 2025
Tue Sep 30 17:00:07 EDT 2025
Fri Sep 05 14:46:48 EDT 2025
Tue Oct 07 06:41:08 EDT 2025
Mon Oct 20 16:31:07 EDT 2025
Thu Oct 16 14:55:42 EDT 2025
Thu Oct 16 14:44:14 EDT 2025
Wed Feb 19 02:32:30 EST 2025
Wed Oct 01 05:00:29 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-9480422e56a8cab617033f42d270857f17479cde63360c672999f9f99ee78b563
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceptualization: QW CAR JT.Formal analysis: QW CAR JT.Funding acquisition: CAR JT.Methodology: QW CAR.Resources: QW CAR JT.Software: QW CAR.Supervision: CAR JT.Validation: QW CAR.Visualization: QW CAR.Writing – original draft: QW CAR JT.Writing – review & editing: QW CAR JT.
Current address: 7D, 40 Temple Street, Yale Child Study Center, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
The authors have declared that no competing interests exist.
ORCID 0000-0003-4826-2408
0000-0002-5636-0801
0000-0001-8166-2441
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1005632
PMID 28767646
PQID 1939435949
PQPubID 1436340
ParticipantIDs plos_journals_1939435949
doaj_primary_oai_doaj_org_article_e4b026e264ab47359ded559d4733e163
unpaywall_primary_10_1371_journal_pcbi_1005632
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5555713
proquest_miscellaneous_1925888779
proquest_journals_1939435949
gale_infotracacademiconefile_A502822353
gale_incontextgauss_ISR_A502822353
gale_incontextgauss_ISN_A502822353
pubmed_primary_28767646
crossref_citationtrail_10_1371_journal_pcbi_1005632
crossref_primary_10_1371_journal_pcbi_1005632
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2017
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References EM Robertson (ref1) 2004; 5
SL Moody (ref35) 1998; 18
DA Braun (ref2) 2010; 5
IS Howard (ref37) 2013; 109
JM Koedijker (ref26) 2010; 42
S Panzer (ref25) 2008; 27
W Maass (ref27) 2002; 14
ref11
H Hayashi (ref12) 2009; 3
A Lazar (ref20) 2008
ref32
T Brashers-krug (ref39) 1996; 382
M Griniasty (ref14) 1993; 5
G Hennequin (ref41) 2014; 82
D Miner (ref43) 2016; 12
A Hayashi-Takagi (ref45) 2015
H Toutounji (ref9) 2014; 10
D Sussillo (ref42) 2015; 18
P Zheng (ref22) 2013; 9
E Hourdakis (ref34) 2011
C Hartmann (ref23) 2015; 11
R Shadmehr (ref40) 1997; 17
S Byrnes (ref8) 2011; 23
PJ Tully (ref17) 2016; 12
R Osu (ref38) 2004; 7
O Hikosaka (ref3) 2002; 12
KP Dockendorf (ref31) 2009; 95
L Abbott (ref16) 1996; 6
S Panzer (ref24) 2006; 38
H Nakahara (ref4) 2001; 13
ref21
G Rainer (ref36) 1998; 393
J Brea (ref13) 2013; 33
F Wörgötter (ref18) 2005; 17
ref28
T Masquelier (ref6) 2009; 21
IR Fiete (ref7) 2010; 65
ref29
C Hartmann (ref44) 2015; 9
PD Roberts (ref10) 1999; 7
A Lazar (ref5) 2009; 3
PJ Drew (ref19) 2006; 103
B Widrow (ref30) 1960; vol. 4
R Legenstein (ref33) 2007; 20
AA Minai (ref15) 1993; vol. 2
References_xml – volume: 103
  start-page: 8876
  issue: 23
  year: 2006
  ident: ref19
  article-title: Extending the effects of spike-timing-dependent plasticity to behavioral timescales
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0600676103
– volume: 5
  start-page: 1
  year: 2004
  ident: ref1
  article-title: Current concepts in procedural consolidation
  publication-title: Nature Reviews, Neuroscience
  doi: 10.1038/nrn1426
– volume: 12
  start-page: 217
  issue: 2
  year: 2002
  ident: ref3
  article-title: Central mechanisms of motor skill learning
  publication-title: Current opinion in neurobiology
  doi: 10.1016/S0959-4388(02)00307-0
– volume: vol. 2
  start-page: 505
  year: 1993
  ident: ref15
  article-title: INNS world congress on neural networks
– volume: 9
  start-page: e1002848
  issue: 1
  year: 2013
  ident: ref22
  article-title: Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002848
– volume: 7
  start-page: 111
  issue: 2
  year: 2004
  ident: ref38
  article-title: Random presentation enables subjects to adapt to two opposing forces on the hand
  publication-title: Nat Neuroscience
  doi: 10.1038/nn1184
– volume: 95
  start-page: 90
  issue: 2
  year: 2009
  ident: ref31
  article-title: Liquid state machines and cultured cortical networks: The separation property
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2008.08.001
– volume: 17
  start-page: 409
  issue: 1
  year: 1997
  ident: ref40
  article-title: Functional Stages in the Formation of Human Long—Term Motor Memory
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.17-01-00409.1997
– volume: 11
  start-page: e1004640
  issue: 12
  year: 2015
  ident: ref23
  article-title: Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004640
– ident: ref29
– volume: 393
  start-page: 577
  issue: 11
  year: 1998
  ident: ref36
  article-title: Selective representation of relevant information by neurons in the primate prefrontal cortex
  publication-title: Nature
  doi: 10.1038/31235
– volume: 6
  start-page: 406
  issue: 3
  year: 1996
  ident: ref16
  article-title: Functional significance of long-term potentiation for sequence learning and prediction
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/6.3.406
– volume: 5
  issue: 1
  year: 2010
  ident: ref2
  article-title: Structure Learning in a Sensorimotor Association Task
  publication-title: PLos ONE
  doi: 10.1371/journal.pone.0008973
– volume: 5
  start-page: 1
  issue: 1
  year: 1993
  ident: ref14
  article-title: Conversion of temporal correlations between stimuli to spatial correlations between attractors
  publication-title: Neural computation
  doi: 10.1162/neco.1993.5.1.1
– volume: 21
  start-page: 1259
  issue: 5
  year: 2009
  ident: ref6
  article-title: Competitive STDP-based spike pattern learning
  publication-title: Neural computation
  doi: 10.1162/neco.2008.06-08-804
– volume: 42
  start-page: 209
  issue: 4
  year: 2010
  ident: ref26
  article-title: Interference Effects in Learning Similar Sequences of Discrete Movements
  publication-title: Journal of Motor Behavior
  doi: 10.1080/00222895.2010.481694
– volume: vol. 4
  start-page: 96
  year: 1960
  ident: ref30
  article-title: IRE WESCON convention record
– volume: 18
  start-page: 399
  issue: 1
  year: 1998
  ident: ref35
  article-title: A Model That Accounts for Activity in Primate Frontal Cortex during a Delayed Matching—to—Sample Task
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.18-01-00399.1998
– volume: 27
  start-page: 873
  year: 2008
  ident: ref25
  article-title: The learning of two similar complex movement sequences: Does practive insulate a sequence from interference
  publication-title: Human Movement Science
  doi: 10.1016/j.humov.2008.02.021
– ident: ref11
– volume: 382
  start-page: 252
  issue: 18
  year: 1996
  ident: ref39
  article-title: Consolidation in Human Motor Memory
  publication-title: Nature
  doi: 10.1038/382252a0
– volume: 13
  start-page: 626
  issue: 5
  year: 2001
  ident: ref4
  article-title: Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences æ a computational approach
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/089892901750363208
– start-page: 386
  year: 2008
  ident: ref20
  article-title: Artificial Neural Networks—ICANN 2008. vol. 5164 of Lecture Notes in Computer Science
– volume: 3
  issue: 23
  year: 2009
  ident: ref5
  article-title: SORN: a self—organizing recurrent neural network
  publication-title: Front Comput Neurosci
– volume: 109
  start-page: 2632
  issue: 10
  year: 2013
  ident: ref37
  article-title: The effect of contextual cues on the encoding of motor memories
  publication-title: Journal of neurophysiology
  doi: 10.1152/jn.00773.2012
– volume: 9
  year: 2015
  ident: ref44
  article-title: Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning
  publication-title: Frontiers in neural circuits
– volume: 82
  start-page: 1394
  issue: 6
  year: 2014
  ident: ref41
  article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.045
– volume: 23
  start-page: 2567
  issue: 10
  year: 2011
  ident: ref8
  article-title: Learning a sparse code for temporal sequences using STDP and sequence compression
  publication-title: Neural computation
  doi: 10.1162/NECO_a_00184
– volume: 12
  start-page: e1004759
  issue: 2
  year: 2016
  ident: ref43
  article-title: Plasticity-driven self-organization under topological constraints accounts for non-random features of cortical synaptic wiring
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004759
– year: 2015
  ident: ref45
  article-title: Labelling and optical erasure of synaptic memory traces in the motor cortex
  publication-title: Nature
– volume: 12
  start-page: e1004954
  issue: 5
  year: 2016
  ident: ref17
  article-title: Spike-Based Bayesian-Hebbian Learning of Temporal Sequences
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004954
– ident: ref28
– ident: ref21
– volume: 38
  start-page: 60
  issue: 1
  year: 2006
  ident: ref24
  article-title: Learning of Similar Complex Movement Sequences: Proactive and Retroactive Effects on Learning
  publication-title: Journal of Motor Behavior
  doi: 10.3200/JMBR.38.1.60-70
– volume: 17
  start-page: 245
  issue: 2
  year: 2005
  ident: ref18
  article-title: Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms
  publication-title: Neural Computation
  doi: 10.1162/0899766053011555
– start-page: 52
  year: 2011
  ident: ref34
  article-title: Engineering Applications of Neural Networks. vol. 363 of IFIP Advances in Information and Communication Technology
– volume: 18
  start-page: 1025
  issue: 7
  year: 2015
  ident: ref42
  article-title: A neural network that finds a naturalistic solution for the production of muscle activity
  publication-title: Nature neuroscience
  doi: 10.1038/nn.4042
– volume: 14
  start-page: 2531
  issue: 11
  year: 2002
  ident: ref27
  article-title: Real—time computing without stable states: A new framework for neural computation based on perturbations
  publication-title: Neural Computation
  doi: 10.1162/089976602760407955
– volume: 65
  start-page: 563
  issue: 4
  year: 2010
  ident: ref7
  article-title: Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.02.003
– volume: 7
  start-page: 235
  issue: 3
  year: 1999
  ident: ref10
  article-title: Computational consequences of temporally asymmetric learning rules: I. Differential Hebbian learning
  publication-title: Journal of Computational Neuroscience
  doi: 10.1023/A:1008910918445
– volume: 33
  start-page: 9565
  issue: 23
  year: 2013
  ident: ref13
  article-title: Matching recall and storage in sequence learning with spiking neural networks
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4098-12.2013
– volume: 3
  start-page: 119
  issue: 2
  year: 2009
  ident: ref12
  article-title: LTD windows of the STDP learning rule and synaptic connections having a large transmission delay enable robust sequence learning amid background noise
  publication-title: Cognitive neurodynamics
  doi: 10.1007/s11571-009-9076-2
– volume: 20
  start-page: 323
  issue: 3
  year: 2007
  ident: ref33
  article-title: Edge of chaos and prediction of computational performance for neural circuit models
  publication-title: Neural Nets
  doi: 10.1016/j.neunet.2007.04.017
– volume: 10
  start-page: e1003512
  issue: 3
  year: 2014
  ident: ref9
  article-title: Spatiotemporal computations of an excitable and plastic brain: neuronal plasticity leads to noise-robust and noise-constructive computations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003512
– ident: ref32
  doi: 10.1109/IJCNN.2006.246880
SSID ssj0035896
Score 2.27542
Snippet The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1005632
SubjectTerms Action Potentials - physiology
Behavior
Biology and Life Sciences
Brain
Computational Biology
Computer and Information Sciences
Driving ability
Experiments
Firing pattern
Homeostatic plasticity
Human performance
Human subjects
Humans
Interference
IP (Internet Protocol)
Learning
Learning - physiology
Memory
Models, Neurological
Motor skill learning
Motor skills
Neural circuitry
Neural networks
Neuronal Plasticity - physiology
Neurons
Neuroplasticity
Neurosciences
Physiological aspects
Plasticity (neural)
Recurrent neural networks
Social Sciences
Studies
Synaptic plasticity
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSgguiHcDBRmExCntNo5fxwVRFSR6ACrtzbITZ1k1SqImK-iVX85M4kSNKCoHNpfNehKtZybjGWX8fYS8cR7bpqyPuSryOPWpi10uHPiyEl5nsKQtcb_z51NxcpZ-WvP1Faov7Akb4IEHxR3C1VAm4B2tQ5pcnfscsuAcvjMPyQRG36XSYzE1xGDGVc_MhaQ4sWTpOmyaY_LoMNjooMncFnsEuGDJbFHqsfunCL1oyrq9Lv38s4vyzq5q7OUPW5ZXlqjj--ReyC3papjTA3LLVw_J7YFt8vIR-bWiPe8NrQvaU_PBKVTcdOympoFBYkP9z6a026qlhc0mFG9qq5wiusRF2CJIQy8IxZUwpyDRNttzH3dIFLahI71uR-FmiAYN-f5jcnb84dv7kzhQMMSZYKyLdaoQJMxzYVVmHaK3M1akSZ5IhMYvoJ6ROss9CItlJiBT17qAQ3svlQPVPiGLqq78HqF26ZYiAXUrC1WS8qpIvIJySTLnnVQ8Imy0gcnCzJAmozT9SzcJdcqgRoOWM8FyEYmnq5oBn-MG-Xdo3kkW0bX7H8DnTPA5c5PPReQ1OodB_IwKG3Q2dte25uPXU7PifWMu438X-jITehuEihomm9mwKQJUhrhcM8k99MRxUq2BzFtDrqtTHZH90TuvH341DUPswBdCtvL1DmUSrmCVkSDzdHDmSTFQSQspUhEROXPzmebmI9X2e49PzuEjj-AfH0wPxD_Z5tn_sM1zcjfBzKvv0dwni-5i519A3ti5l32I-A3hWGrT
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwQvE59bx0AGIfGUrYsT23lAqEObBhIVGkzqW2THTqmoktCkgr3yl3PnOIGI8dG-tM2lqu_Ovrv6_PsR8lxbbJtSNohlboLIRjrQhmvwZcltkkFIm-B553czfn4ZvZ3H8y0y687CYFtltya6hdqUGf5HfgSJRgKhPYmSV9WXAFmjcHe1o9BQnlrBvHQQYzfIdojIWCOyfXI6e3_Rrc0slo6xC8lyAsGiuT9Mx8TxkbfdYZXpJfYOxJyFg2DlMP37lXtUrcr6urT09-7KW5uiUldf1Wr1S-g6u0N2fM5Jp62T3CVbtrhHbrYslFf3yfcpdXw4tMypo-yDt1CJ067LmnpmiQW136qVWhY1zVXWo3tTVRiKqBNrf3SQ-h4RihHSUJCoq-VnGzRIILagHe1uQ-HLECUa6oAH5PLs9OPr88BTMwQZZ6wJkkgieJiNuZKZ0ojqzlgehSYUCJmfQ50jksxYEOaTjEMGnyQ5PBNrhdSg2odkVJSF3SNUTfSEh6BuqaB6klbmoZVQRgmmrRYyHhPW2SDN_MiQPmOVus04AfVLq8YULZd6y41J0N9Vtbgd_5A_QfP2soi67T4o14vUT-IUPBlKVvRupZGyOTHWQEVm4DWzkNiOyTN0jhRxNQps3FmoTV2nbz7M0mnsGnZZ_Gehi4HQCy-UlzDYTPnDEqAyxOsaSO6hJ3aDqtOfE2VMDjrvvP7y0_4yrCm4UaQKW25QJowlRB8BMrutM_eKgQqbCx7xMREDNx9obnilWH5yuOUxPMQx_OLDfkL8l232_z6OR-R2iLmW68o8IKNmvbGPIVNs9BM__X8A9nlpjg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQvfMMKAxmE4CldG8cfeSyIaSBRIaDSeIrsxCnVqqRqUsF4hH-cO8cJBDYBD7QvTn224vPZvqvvfkfIY2PRbUrbgKs8CyIbmcBkwoAsK2HjFI60McY7v56Jo3n06pgf7xDTxsJ4DoKNuCord5OPBXSvRlCiA8_OAwQtaq5QRxMmJ22z0To1S7z454KFTxzsEP49VmMU0gWyKzjo6wOyO5-9mX5wQKqcBZJFxz_KXPn4uvN67Z1fDua_28wH-Kpnaaq_O1xe2hZrffpJr1Y_nWaHV8m3lg-NE8vJaFubUfrlF4jI_8uoa-SKV4bptOnlOtmxxQ1ysUmPeXqTfJ1Sl6iHljl1uQThsS43tHX_pj7lxYLaz-uVXhYVzXXawY5TXWQU4TA2PqaReucVikd3RoGiWi9PbFBjZrMFbfMB1xQ6Q_hqMFBukfnhi_fPjwKfMyJIBWN1EEcKUc0sF1ql2iDcPGN5FGahRCz_HAwwGaeZBWIxTgWYFnGcwze2VioD3LhNBkVZ2D1C9diMRQgcUhrMOmVVHloF9p1kxhqp-JCwVhKS1I8M83qsEndLKMGwatiYILMTz-whCbpW6wZQ5A_0z1DIOlqEA3c_wJQnfpYTWGJgS-Oy0wZzSceZzcBUzKDMLGjcQ_IIRTRBwI8CPYoWeltVyct3s2TKnScx4-cTve0RPfVEeQmDTbWP4gCWoaj1KPdQIttBVQmYCjEo53EUD8l-u0bOrn7YVcNmhzdYurDlFmlCruBYlEBzp1lSHWPA9BdSRGJIZG-x9TjXrymWHx2gOoePnMAbj7pl-Vdzc_dfG9wjl0NUC50D6T4Z1JutvQ9KbW0e-F3pOzUzpo0
  priority: 102
  providerName: Unpaywall
Title A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity
URI https://www.ncbi.nlm.nih.gov/pubmed/28767646
https://www.proquest.com/docview/1939435949
https://www.proquest.com/docview/1925888779
https://pubmed.ncbi.nlm.nih.gov/PMC5555713
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005632&type=printable
https://doaj.org/article/e4b026e264ab47359ded559d4733e163
http://dx.doi.org/10.1371/journal.pcbi.1005632
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Medical Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwQviO8FRmUQEk-punzYzgNCLawMpFXToFJ5iuzEKRVREppWrK_85dy5TkREJ9ZK_YgvUXM---7q8-9HyGulsWxKajcUWeoGOlCuSpkCWxZMRwm4tCHudz6fsrNZ8Hkezg9Iw9lqFVjvTe2QT2q2ygdXP7fvYMC_NawN_KQ5aVAlaomr_iHzYVI-BF8VIZnDedCuK_ihMIxdSJbjcj-Y2810112l46wMpn87c_eqvKz3haX_Vlfe2RSV3P6Sef6X65rcJ_dszElHOyN5QA508ZDc3rFQbh-R3yNq-HBomVFD2QdfIROnTZU1tcwSC6qvqlwui5pmMmnRvaksUoqoEyu7dZDaGhGKHjKlIFFXyx_aXSOB2II2tLtrChdDlGjIAx6T2eT06_sz11IzuAnz_bUbBQLBw3TIpEikQlR3388CL_U4QuZnkOfwKEk1CLNhwiCCj6IMnpHWXChQ7RPSK8pCHxEqh2rIPFC3kJA9CS0yTwtIo7ivtOIidIjf9EGc2DtD-ow8NotxHPKXnRpj7LnY9pxD3Pasaofb8R_5MXZvK4uo2-ZAuVrEdhDHYMmQsqJ1S4WUzVGqU8jIUvjsawhsHfIKjSNGXI0CC3cWclPX8acv03gUmoJdP7xe6LIj9MYKZSXcbCLtZglQGeJ1dSSP0BKbm6pjiMgjiIGjIHLIcWOd-5tfts0wp-BCkSx0uUEZLxTgfTjIPN0Zc6sYyLAZZwFzCO-YeUdz3ZZi-d3glofw4CfwiwftgLhR3zy7icaek7seRlymNvOY9NarjX4B8eJa9cktPufwKiYf--RwNP4wnsD7-HR6cdk3_8H0zSQBx2bTi9G3P4mFch4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGERoviO8VBhgE4ilbFye284BQ-Zg6tvUBNqlvxk6cUlEloWk1-sofxN_IXeIEIsbHy9qXtr5ate98H_Xd_Qh5aiymTWnrhTJNvMAGxjMJNyDLktsoBpM2wHrn4zEfnQbvJuFkg3xvamEwrbLRiZWiTvIY_yPfBUcjAtMeBdHL4ouHqFF4u9pAaNRicWjXZxCylS8O3gB_n_n-_tuT1yPPoQp4MWds6UWBxL5XNuRaxtpgQ3LG0sBPfIHd3lNw0UUUJxaI-SDm4HxGUQrPyFohTcgZzHuJXA4Y6BI4P2LSBngslBUeGELxeIIFE1eqx8TerpOMnSI2M8xMgHn8jimsEANau9Ar5nl5ntP7e-7m5ior9PpMz-e_GMb96-Sa82jpsBbBG2TDZjfJlRrjcn2LfBvSCm2H5imtAAHhLcT5tMnhpg63Ykrt12KuZ1lJUx23vcOpzhKKPS0WrjCRugwUivY3oUBRFrPP1lsiPNmUNqC-SwqTYQ9qiDJuk9MLYdEd0svyzG4RqgdmwH3YbqkhNpNWpr6VEKQJZqwRMuwT1vBAxW5lCM4xV9VVn4DoqN5GhZxTjnN94rXfKuquIP-gf4XsbWmxp3f1Qb6YKqciFJwTCIjx7GiDgNBRYhOI9xJ4zSy4zX3yBIVDYdeODNOCpnpVlurgw1gNwyodmIV_JnrfIXruiNIcFhtrV4oBW4bdwDqUWyiJzaJK9fMY9sl2I53nDz9uh0Fj4TWUzmy-Qho_lGDbBNDcrYW53RiI37ngAe8T0RHzzs51R7LZp6oreggPsQe_eKc9EP_Fm3t_X8cjsjk6OT5SRwfjw_vkqo9eXZX_uU16y8XKPgCfdGkeVoqAko8XrXl-AHQNnWc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWIh4XxHsDCxgE4pRtN05s54BQYam2LFQIWKm3rJ04paJKQtNq6ZWfxa9jJnECEcvjsu2lradW7RnPo56Zj5DH2mDalDJuINPE9Y2vXZ1wDbIsuQljMGkDrHd-O-EHR_7raTDdIt-bWhhMq2x0YqWokzzG_8j74GiEYNpDP-ynNi3i3f7oefHFRQQpvGlt4DRqETk0mxMI38pn433g9RPPG736-PLAtQgDbswZW7mhL7EHlgm4krHS2JycsdT3Ek9g5_cU3HURxokBYj6IOTiiYZjCMzRGSB1wBvOeI-cFYyGmE4ppG-yxQFbYYAjL4wrmT23ZHhN7fSslu0Ws55ilAPN4HbNYoQe0NqJXLPLyNAf49zzOS-usUJsTtVj8YiRHV8kV693SYS2O18iWya6TCzXe5eYG-TakFfIOzVNagQPCW4j5aZPPTS2GxYyar8VCzbOSpipu-4hTlSUU-1ssbZEitdkoFG1xQoGiLOafjbtCqLIZbQB-VxQmw37UEHHcJEdnwqJbpJflmdkmVA30gHuw3VJBnCaNTD0jIWATTBstZOAQ1vAgiu3KEKhjEVXXfgIipXobI-RcZDnnELf9VlF3CPkH_Qtkb0uL_b2rD_LlLLLqIoIzA8ExniOlERw6TEwCsV8Cr5kBF9ohj1A4IuzgkeFZmKl1WUbjD5NoGFSpwSz4M9H7DtFTS5TmsNhY2bIM2DLsDNah3EZJbBZVRj-PpEN2Guk8ffhhOwzaC6-kVGbyNdJ4gQQ7J4Dmdi3M7cZALM8F97lDREfMOzvXHcnmn6oO6QE8xB784t32QPwXb-78fR0PyEXQOdGb8eTwLrnsoYNXpYLukN5quTb3wD1d6fuVHqDk-KwVzw854KGq
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQvfMMKAxmE4CldG8cfeSyIaSBRIaDSeIrsxCnVqqRqUsF4hH-cO8cJBDYBD7QvTn224vPZvqvvfkfIY2PRbUrbgKs8CyIbmcBkwoAsK2HjFI60McY7v56Jo3n06pgf7xDTxsJ4DoKNuCord5OPBXSvRlCiA8_OAwQtaq5QRxMmJ22z0To1S7z454KFTxzsEP49VmMU0gWyKzjo6wOyO5-9mX5wQKqcBZJFxz_KXPn4uvN67Z1fDua_28wH-Kpnaaq_O1xe2hZrffpJr1Y_nWaHV8m3lg-NE8vJaFubUfrlF4jI_8uoa-SKV4bptOnlOtmxxQ1ysUmPeXqTfJ1Sl6iHljl1uQThsS43tHX_pj7lxYLaz-uVXhYVzXXawY5TXWQU4TA2PqaReucVikd3RoGiWi9PbFBjZrMFbfMB1xQ6Q_hqMFBukfnhi_fPjwKfMyJIBWN1EEcKUc0sF1ql2iDcPGN5FGahRCz_HAwwGaeZBWIxTgWYFnGcwze2VioD3LhNBkVZ2D1C9diMRQgcUhrMOmVVHloF9p1kxhqp-JCwVhKS1I8M83qsEndLKMGwatiYILMTz-whCbpW6wZQ5A_0z1DIOlqEA3c_wJQnfpYTWGJgS-Oy0wZzSceZzcBUzKDMLGjcQ_IIRTRBwI8CPYoWeltVyct3s2TKnScx4-cTve0RPfVEeQmDTbWP4gCWoaj1KPdQIttBVQmYCjEo53EUD8l-u0bOrn7YVcNmhzdYurDlFmlCruBYlEBzp1lSHWPA9BdSRGJIZG-x9TjXrymWHx2gOoePnMAbj7pl-Vdzc_dfG9wjl0NUC50D6T4Z1JutvQ9KbW0e-F3pOzUzpo0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+of+human+motor+sequence+learning+explains+facilitation+and+interference+effects+based+on+spike-timing+dependent+plasticity&rft.jtitle=PLoS+computational+biology&rft.au=Wang%2C+Quan&rft.au=Rothkopf%2C+Constantin+A&rft.au=Triesch%2C+Jochen&rft.date=2017-08-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=13&rft.issue=8&rft_id=info:doi/10.1371%2Fjournal.pcbi.1005632&rft.externalDBID=ISR&rft.externalDocID=A502822353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon