BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data

Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 15; no. 4; p. e1006971
Main Authors Lachance, Jean-Christophe, Lloyd, Colton J., Monk, Jonathan M., Yang, Laurence, Sastry, Anand V., Seif, Yara, Palsson, Bernhard O., Rodrigue, Sébastien, Feist, Adam M., King, Zachary A., Jacques, Pierre-Étienne
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1006971

Cover

Abstract Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).
AbstractList Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).
Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat). The formulation of phenotypic predictions by genome-scale models (GEMs) is dependent on the specified objective. The idea of a biomass objective function (BOF) is to represent all metabolites necessary for cells to double so that optimizing the BOF is equivalent to optimizing growth. Knowledge of the qualitative and quantitative organism’s composition (i.e. which metabolites are necessary for growth and in what proportion) is critical for accurate predictions. We implemented BOFdat with the idea that experimental data should drive the definition of the biomass composition. As omic datasets become more available, the possibility of integrating them to obtain a condition-specific biomass composition is in reach and therefore one of the main features of BOFdat. While major macromolecules, coenzymes, and inorganic ions are ubiquitous components across species, several species-specific components exist in the cell that should be accounted for in the BOF. To identify these, we implemented an approach that minimizes the error between experimental essentiality data and GEM-driven prediction. Hence BOFdat provides an unbiased, data-driven approach to defining BOF that has the potential to improve the quality of new genome-scale models and greatly decrease the time required to generate a new reconstruction.
Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (
Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).
Audience Academic
Author Feist, Adam M.
King, Zachary A.
Seif, Yara
Sastry, Anand V.
Lloyd, Colton J.
Rodrigue, Sébastien
Monk, Jonathan M.
Jacques, Pierre-Étienne
Lachance, Jean-Christophe
Yang, Laurence
Palsson, Bernhard O.
AuthorAffiliation 3 Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, United States of America
1 Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
4 Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
5 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
2 Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
Hebrew University of Jerusalem, ISRAEL
AuthorAffiliation_xml – name: 2 Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America
– name: 3 Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, United States of America
– name: 5 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
– name: 1 Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
– name: 4 Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
– name: Hebrew University of Jerusalem, ISRAEL
Author_xml – sequence: 1
  givenname: Jean-Christophe
  orcidid: 0000-0002-3096-6995
  surname: Lachance
  fullname: Lachance, Jean-Christophe
– sequence: 2
  givenname: Colton J.
  surname: Lloyd
  fullname: Lloyd, Colton J.
– sequence: 3
  givenname: Jonathan M.
  surname: Monk
  fullname: Monk, Jonathan M.
– sequence: 4
  givenname: Laurence
  orcidid: 0000-0001-6663-7643
  surname: Yang
  fullname: Yang, Laurence
– sequence: 5
  givenname: Anand V.
  orcidid: 0000-0002-8293-3909
  surname: Sastry
  fullname: Sastry, Anand V.
– sequence: 6
  givenname: Yara
  surname: Seif
  fullname: Seif, Yara
– sequence: 7
  givenname: Bernhard O.
  orcidid: 0000-0003-2357-6785
  surname: Palsson
  fullname: Palsson, Bernhard O.
– sequence: 8
  givenname: Sébastien
  surname: Rodrigue
  fullname: Rodrigue, Sébastien
– sequence: 9
  givenname: Adam M.
  orcidid: 0000-0002-8630-4800
  surname: Feist
  fullname: Feist, Adam M.
– sequence: 10
  givenname: Zachary A.
  orcidid: 0000-0003-1238-1499
  surname: King
  fullname: King, Zachary A.
– sequence: 11
  givenname: Pierre-Étienne
  orcidid: 0000-0002-3961-294X
  surname: Jacques
  fullname: Jacques, Pierre-Étienne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31009451$$D View this record in MEDLINE/PubMed
BookMark eNqVkktv1DAUhSNURB_wDxBEYgOLGeLYsZMukEpFy0gVlXisLT-ug0eOPdhJaf89HmZadSqEQFnEsr9zfH3uPSz2fPBQFM9RNUeYobfLMEUv3HylpJ2jqqIdQ4-KA9Q0eMZw0-7dW-8XhyktqyovO_qk2MeZ70iDDor-_eWZFuNxeQ4eohit70tpwyBSKoNcghrtFZRm8nkRfCpNiGUPPgwwS0o4KAcYhQzOqnIIGlwmYhhKuF5BtAP4Ubgy-4unxWMjXIJn2_9R8e3sw9fTj7OLy_PF6cnFTFGMxxlDpGkF0Rq3FbRKE92JrmUddCCwIUx3DICqqpZAG6xFQ5nEiNaSMmVMh_BR8XLju3Ih8W1Gidd1U1GCMSGZWGwIHcSSr3KVIt7wICz_vRFiz0UcrXLAkcCskrUB1jIipc6XSmoU0pVpjZR19mo2XpNfiZufwrk7Q1TxdZtuS-DrNvFtm7Lu3bbKSQ6gVc4pCrdTzO6Jt995H644JR3DFcsGr7cGMfyYII18sEmBc8JDmNbvRRiRjrY0o68eoH9OZb6h-txUbr0J-V6VPw2DVXnyjM37J01L6i6r2ix4syPIzAjXYy-mlPjiy-f_YD_tsi_uR3OXye3IZoBsABVDShHMv0Z-_ECm7CjWQ50fat3fxb8AU_wXCA
CitedBy_id crossref_primary_10_1039_D0MO00154F
crossref_primary_10_1016_j_coisb_2021_04_008
crossref_primary_10_1038_s41467_024_52725_4
crossref_primary_10_1007_s12257_020_0061_2
crossref_primary_10_1126_sciadv_ado2623
crossref_primary_10_1016_j_cels_2021_06_005
crossref_primary_10_3389_fmicb_2023_1126030
crossref_primary_10_1016_j_isci_2021_103110
crossref_primary_10_1016_j_biotechadv_2023_108203
crossref_primary_10_1016_j_biotechadv_2024_108400
crossref_primary_10_1016_j_cels_2024_12_005
crossref_primary_10_3389_fbioe_2021_602464
crossref_primary_10_3390_metabo15020101
crossref_primary_10_1080_10643389_2023_2212569
crossref_primary_10_1016_j_csbj_2021_06_009
crossref_primary_10_1016_j_ymben_2020_11_013
crossref_primary_10_1186_s12859_022_05108_9
crossref_primary_10_1042_BST20190667
crossref_primary_10_15252_msb_202010099
crossref_primary_10_1007_s00239_021_10018_0
crossref_primary_10_1128_mbio_00873_24
crossref_primary_10_1016_j_csbj_2025_01_013
crossref_primary_10_1186_s12859_024_05651_7
crossref_primary_10_1186_s12859_024_05655_3
crossref_primary_10_1371_journal_pcbi_1008528
crossref_primary_10_1590_0001_3765202220211071
crossref_primary_10_1016_j_csbj_2023_02_011
crossref_primary_10_1038_s41598_019_49079_z
crossref_primary_10_2139_ssrn_4133892
crossref_primary_10_1007_s12257_024_00009_5
crossref_primary_10_15302_J_QB_022_0313
crossref_primary_10_1038_s41596_019_0254_3
crossref_primary_10_1093_bioadv_vbaf036
crossref_primary_10_3389_fmicb_2021_750206
crossref_primary_10_3389_fbioe_2024_1356551
crossref_primary_10_1038_s41467_023_40380_0
crossref_primary_10_1186_s12896_021_00702_w
crossref_primary_10_1371_journal_pone_0262450
crossref_primary_10_1111_hel_13074
crossref_primary_10_1093_bioinformatics_btad600
crossref_primary_10_1016_j_egg_2022_100145
crossref_primary_10_3389_fmicb_2024_1368377
crossref_primary_10_3390_pr8030331
crossref_primary_10_1371_journal_pone_0280077
crossref_primary_10_1016_j_csbj_2023_07_025
crossref_primary_10_1128_msystems_00919_21
crossref_primary_10_1371_journal_pcbi_1011363
crossref_primary_10_1080_10409238_2024_2418639
crossref_primary_10_3390_life10110299
crossref_primary_10_3389_fbioe_2020_612832
crossref_primary_10_1016_j_ymben_2020_06_002
crossref_primary_10_1186_s13059_021_02289_z
crossref_primary_10_1038_s41598_020_69509_7
crossref_primary_10_1016_j_mib_2021_05_003
crossref_primary_10_3390_metabo11080491
crossref_primary_10_1016_j_isci_2023_105931
crossref_primary_10_3390_ijms20215464
crossref_primary_10_3389_fsysb_2024_1291612
crossref_primary_10_3389_fgene_2020_00116
crossref_primary_10_1111_1751_7915_13747
crossref_primary_10_1016_j_copbio_2020_08_017
crossref_primary_10_15252_msb_20209844
crossref_primary_10_1371_journal_pone_0289757
crossref_primary_10_1111_1541_4337_13193
crossref_primary_10_3390_metabo11040232
Cites_doi 10.1007/s11306-015-0819-2
10.1016/j.cell.2015.05.019
10.1093/bioinformatics/btp575
10.1186/s13059-016-0983-3
10.1093/nar/gkw1003
10.1093/bioinformatics/btx453
10.1016/j.cell.2016.05.003
10.1073/pnas.0603364103
10.1016/0022-2836(77)90123-1
10.1093/bioinformatics/bti213
10.1038/nbt1492
10.1038/nbt.1614
10.1038/nbt.3956
10.1016/j.ymben.2016.12.002
10.3390/pr6050038
10.1186/1471-2105-9-43
10.1128/MMBR.62.1.181-203.1998
10.1007/978-1-62703-299-5_2
10.1038/nbt.3418
10.1038/s41586-018-0124-0
10.1371/journal.pcbi.1000308
10.1093/nar/gkv1117
10.1186/s13059-016-0968-2
10.1038/nbt.2870
10.1128/mBio.01840-15
10.1186/1471-2105-8-212
10.1016/j.mib.2010.03.003
10.1093/nar/gkv1049
10.1002/bit.22844
10.1038/nprot.2009.203
10.1038/msb.2011.9
10.1006/jtbi.1993.1202
10.1126/science.1192588
10.1371/journal.pone.0177678
10.1042/bj1170551
10.1371/journal.pone.0023126
10.1002/bit.10617
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Lachance et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Lachance et al 2019 Lachance et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Lachance et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Lachance et al 2019 Lachance et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pcbi.1006971
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database




MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate BOFdat package for the generation of biomass objective function from experimental data
EISSN 1553-7358
ExternalDocumentID 2250643344
oai_doaj_org_article_1a370b2fe7874bbdbe6b6fc1d0f8fbb2
oai:escholarship.org:ark:/13030/qt8px4x4j0
PMC6497307
A584292508
31009451
10_1371_journal_pcbi_1006971
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Denmark
La Jolla California
Canada
California
United States--US
GeographicLocations_xml – name: Denmark
– name: La Jolla California
– name: Canada
– name: California
– name: United States--US
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: NNF10CC1016517
– fundername: ;
  grantid: 206064
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913
IEDL.DBID UNPAY
ISSN 1553-7358
1553-734X
IngestDate Sun Jun 04 06:37:56 EDT 2023
Fri Oct 03 12:53:47 EDT 2025
Sun Oct 26 03:16:44 EDT 2025
Tue Sep 30 16:58:05 EDT 2025
Thu Oct 02 05:14:53 EDT 2025
Tue Oct 07 06:22:54 EDT 2025
Mon Oct 20 16:32:47 EDT 2025
Thu Oct 16 15:20:59 EDT 2025
Thu Oct 16 14:21:00 EDT 2025
Wed Feb 19 02:31:05 EST 2025
Wed Oct 01 04:00:42 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-8293-3909
0000-0003-1238-1499
0000-0003-2357-6785
0000-0002-3961-294X
0000-0001-6663-7643
0000-0002-8630-4800
0000-0002-3096-6995
OpenAccessLink https://proxy.k.utb.cz/login?url=https://escholarship.org/uc/item/8px4x4j0
PMID 31009451
PQID 2250643344
PQPubID 1436340
ParticipantIDs plos_journals_2250643344
doaj_primary_oai_doaj_org_article_1a370b2fe7874bbdbe6b6fc1d0f8fbb2
unpaywall_primary_10_1371_journal_pcbi_1006971
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6497307
proquest_miscellaneous_2213149686
proquest_journals_2250643344
gale_infotracacademiconefile_A584292508
gale_incontextgauss_ISR_A584292508
gale_incontextgauss_ISN_A584292508
pubmed_primary_31009451
crossref_primary_10_1371_journal_pcbi_1006971
crossref_citationtrail_10_1371_journal_pcbi_1006971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References EP Gianchandani (ref11) 2008; 9
JD Orth (ref15) 2010; 28
F-A Fortin (ref26) 2012; 13
Q Zhao (ref12) 2016; 17
AE Beck (ref8) 2018; 6
N Kleckner (ref28) 1977; 116
IM Keseler (ref36) 2017; 45
MJ Herrgård (ref41) 2008; 26
GB Cox (ref38) 1970; 117
I Thiele (ref3) 2010; 5
B Volkmer (ref7) 2011; 6
BRB Haverkorn van Rijsewijk (ref40) 2011; 7
A Schmidt (ref35) 2016; 34
PA Diaz-Gomez (ref31) 2007
V Hatzimanikatis (ref19) 2005; 21
D Dikicioglu (ref4) 2015; 11
AM Feist (ref13) 2016; 17
VS Kumar (ref21) 2009; 5
JC Xavier (ref5) 2017; 39
V Satish Kumar (ref18) 2007; 8
M Scott (ref6) 2010; 330
J Monk (ref1) 2014; 32
AM Feist (ref2) 2010; 13
SHJ Chan (ref17) 2017; 33
A Ebrahim (ref27) 2013; 7
ZA King (ref25) 2016; 44
S Moretti (ref32) 2016; 44
A Varma (ref16) 1993; 165
P Gerlee (ref24) 2009; 25
JV Bazurto (ref39) 2016; 7
S Devoid (ref9) 2013; 985
JV Höltje (ref37) 1998; 62
JM Monk (ref23) 2017; 35
JM Peters (ref29) 2016; 165
JL Reed (ref20) 2006; 103
EJ O’Brien (ref34) 2015; 161
JD Orth (ref22) 2010; 107
L Yang (ref33) 2018
AP Burgard (ref10) 2003; 82
MN Price (ref14) 2018; 557
S Boughorbel (ref30) 2017; 12
References_xml – start-page: 43
  year: 2007
  ident: ref31
  article-title: Initial Population for Genetic Algorithms: A Metric Approach
  publication-title: GEM
– volume: 11
  start-page: 1690
  year: 2015
  ident: ref4
  article-title: Biomass composition: the “elephant in the room” of metabolic modelling
  publication-title: Metabolomics
  doi: 10.1007/s11306-015-0819-2
– volume: 161
  start-page: 971
  year: 2015
  ident: ref34
  article-title: Using Genome-scale Models to Predict Biological Capabilities
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.019
– volume: 13
  start-page: 2171
  year: 2012
  ident: ref26
  article-title: DEAP: Evolutionary Algorithms Made Easy
  publication-title: J Mach Learn Res
– volume: 25
  start-page: 3282
  year: 2009
  ident: ref24
  article-title: Pathway identification by network pruning in the metabolic network of Escherichia coli
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp575
– volume: 17
  start-page: 110
  year: 2016
  ident: ref13
  article-title: What do cells actually want?
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0983-3
– volume: 45
  start-page: D543
  year: 2017
  ident: ref36
  article-title: The EcoCyc database: reflecting new knowledge about Escherichia coli K-12
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1003
– volume: 33
  start-page: 3603
  year: 2017
  ident: ref17
  article-title: Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx453
– volume: 165
  start-page: 1493
  year: 2016
  ident: ref29
  article-title: A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.003
– volume: 103
  start-page: 17480
  year: 2006
  ident: ref20
  article-title: Systems approach to refining genome annotation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0603364103
– volume: 116
  start-page: 125
  year: 1977
  ident: ref28
  article-title: Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(77)90123-1
– volume: 21
  start-page: 1603
  year: 2005
  ident: ref19
  article-title: Exploring the diversity of complex metabolic networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti213
– volume: 26
  start-page: 1155
  year: 2008
  ident: ref41
  article-title: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1492
– year: 2018
  ident: ref33
  article-title: Genome-scale estimation of cellular objectives
– volume: 28
  start-page: 245
  year: 2010
  ident: ref15
  article-title: What is flux balance analysis?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1614
– volume: 35
  start-page: 904
  year: 2017
  ident: ref23
  article-title: iML1515, a knowledgebase that computes Escherichia coli traits
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3956
– volume: 39
  start-page: 200
  year: 2017
  ident: ref5
  article-title: Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2016.12.002
– volume: 6
  start-page: 38
  year: 2018
  ident: ref8
  article-title: Measuring Cellular Biomass Composition for Computational Biology Applications.
  publication-title: Processes.
  doi: 10.3390/pr6050038
– volume: 9
  start-page: 43
  year: 2008
  ident: ref11
  article-title: Predicting biological system objectives de novo from internal state measurements
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-43
– volume: 62
  start-page: 181
  year: 1998
  ident: ref37
  article-title: Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.62.1.181-203.1998
– volume: 7
  start-page: 74
  year: 2013
  ident: ref27
  article-title: COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol
  publication-title: COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol
– volume: 985
  start-page: 17
  year: 2013
  ident: ref9
  article-title: Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-299-5_2
– volume: 34
  start-page: 104
  year: 2016
  ident: ref35
  article-title: The quantitative and condition-dependent Escherichia coli proteome
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3418
– volume: 557
  start-page: 503
  year: 2018
  ident: ref14
  article-title: Mutant phenotypes for thousands of bacterial genes of unknown function
  publication-title: Nature
  doi: 10.1038/s41586-018-0124-0
– volume: 5
  start-page: e1000308
  year: 2009
  ident: ref21
  article-title: GrowMatch: an automated method for reconciling in silico/in vivo growth predictions
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000308
– volume: 44
  start-page: D523
  year: 2016
  ident: ref32
  article-title: MetaNetX/MNXref—reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1117
– volume: 17
  start-page: 109
  year: 2016
  ident: ref12
  article-title: Mapping the landscape of metabolic goals of a cell
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0968-2
– volume: 32
  start-page: 447
  year: 2014
  ident: ref1
  article-title: Optimizing genome-scale network reconstructions
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2870
– volume: 7
  start-page: e01840
  year: 2016
  ident: ref39
  article-title: An Unexpected Route to an Essential Cofactor: Escherichia coli Relies on Threonine for Thiamine Biosynthesis
  publication-title: MBio
  doi: 10.1128/mBio.01840-15
– volume: 8
  start-page: 212
  year: 2007
  ident: ref18
  article-title: Optimization based automated curation of metabolic reconstructions
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-212
– volume: 13
  start-page: 344
  year: 2010
  ident: ref2
  article-title: The biomass objective function
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2010.03.003
– volume: 44
  start-page: D515
  year: 2016
  ident: ref25
  article-title: BiGG Models: A platform for integrating, standardizing and sharing genome-scale models
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1049
– volume: 107
  start-page: 403
  year: 2010
  ident: ref22
  article-title: Systematizing the generation of missing metabolic knowledge
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.22844
– volume: 5
  start-page: 93
  year: 2010
  ident: ref3
  article-title: A protocol for generating a high-quality genome-scale metabolic reconstruction.
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.203
– volume: 7
  start-page: 477
  year: 2011
  ident: ref40
  article-title: Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.9
– volume: 165
  start-page: 477
  year: 1993
  ident: ref16
  article-title: Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.1993.1202
– volume: 330
  start-page: 1099
  year: 2010
  ident: ref6
  article-title: Interdependence of cell growth and gene expression: origins and consequences
  publication-title: Science
  doi: 10.1126/science.1192588
– volume: 12
  start-page: e0177678
  year: 2017
  ident: ref30
  article-title: Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0177678
– volume: 117
  start-page: 551
  year: 1970
  ident: ref38
  article-title: The function of ubiquinone in Escherichia coli
  publication-title: Biochem J
  doi: 10.1042/bj1170551
– volume: 6
  start-page: e23126
  year: 2011
  ident: ref7
  article-title: Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023126
– volume: 82
  start-page: 670
  year: 2003
  ident: ref10
  article-title: Optimization-based framework for inferring and testing hypothesized metabolic objective functions
  publication-title: Biotechnol Bioeng. Wiley Online Library
  doi: 10.1002/bit.10617
SSID ssj0035896
Score 2.5310705
Snippet Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information....
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1006971
SubjectTerms Analysis
Bioengineering
Bioinformatics
Biology and Life Sciences
Biomass
Coenzymes
Composition
Computational biology
Computer and Information Sciences
Computer applications
Deoxyribonucleic acid
DNA
E coli
Ecosystems
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Experimental data
Funding
Gems
Genetic algorithms
Genetic aspects
Genome, Bacterial
Genomes
Genomics - methods
Growth rate
Hydroxides
Ions
Knowledge bases (artificial intelligence)
Lipids
Macromolecules
Mathematical models
Metabolic Networks and Pathways
Metabolism
Metabolites
Methods
Models, Biological
Objective function
Objectives
Phenotypes
Phylogenetics
Physical Sciences
Python (Programming language)
Ribonucleic acid
RNA
Scale models
Software
Source code
Species
Supervision
Teaching methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSgguiO8uFGQQEqe0cfwVc2sRq8KhSEClvUV27LSLdpNVd1dV_31n4my0EUXlwDWeHDzzNH4jj98Q8iFnQbLgyiQYBwWKZTKxTpeJL30msyC1C223xak6ORPfpnK6M-oLe8KiPHB03CGzXKcuqwIgSzjnXVD4PoX5tMor59rsm-ZmW0zFHMxl3k7mwqE4ieZi2j2a45oddjE6WJZuhj0Cymg2OJRa7f4-Q4-W82Z1G_38s4vywaZe2usrO5_vHFGTx-RRxy3pUdzTE3Iv1E_J_Tht8voZOT_-PoH6_hONUtPY70zx9T3QZ9q43zHzUTzoWixSoLMUJVwXIVlBJANdhDVAZj4raTs_BywumwXdnRFAseH0OTmbfPn1-STp5iwkpeJ8nWgmZG6F9zxPAw4z8saaXJtgguWV0N7oEFSZZuB7yb2VSjvOVOaULqvKMP6CjOqmDnuE8gxCZbRPZQVES0DAqsCBwbDgTagqPSZ86-ii7ETIcRbGvGhv1jQUI9FXBYan6MIzJkn_1zKKcNxhf4wx7G1RQrv9AMAqOmAVdwFrTN4jAgoUyaixC-fcblar4uvP0-IIWFtmgDzmfzX6MTD62BlVDWy2tN3LB3AZim8NLPcQbttNrQrItsgZuRBjsr-F4O3L7_plSBB462Pr0GzQhnEog1WuxuRlRGzvGLzdMUKCw_QAywPPDVfq2UUrQq6EgcMBAnrQo_6fYvPqf8TmNXkIxNXEDqp9MlpfbsIbIIdr97bNAze-oGZz
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJwQvE9etYyCDkHjKVseOHSMhtKJVg4eCBpP6FtmxU4rapPQitH_PObmxiHF5rU-k-Jwvx8f18fcR8jJmPmLepoHXFjYohkWBsSoNXOrCKPSRsr7sthjL80vxYRJNdsi4uQuDbZVNTiwTtStS_I_8BHCHqycX4u3ye4CqUXi62khomFpawb0pKcZukd0QmbF6ZHd4Nv500eRmHsWlYheK5QSKi0l9mY4rdlLH7niZ2hn2DkitWGexKjn928zdW86L9U1l6e_dlXe2-dJc_TDz-bWla3SP7NU1Jz2tQHKf7Pj8AbldqVBePSTT4ccR7Ptf04qCGvugKd7Kh7KaFvZblREpLoAlRimUuRSpXRc-WEOEPV34DUBpPktpqasDFqtiQa9rB1BsRH1ELkdnX96dB7X-QpBKzjeBYiKKjXCOxwOPIkdOGx0r7bU3PBPKaeW9TAeh9TLizkRSWc5kaKVKs0wz_pj08iL3B4Ty0IaZVm4QZVCACWFt5jlUNsw77bNM9QlvHJ2kNTk5amTMk_LETcEmpfJVguFJ6vD0SdA-tazIOf5hP8QYtrZIrV3-UKymSf2lJsxwNYC39ZDK4D0dTA4vRDE3yOLM2rBPXiACEiTPyLE7Z2q263Xy_vM4OYVqLtQA1PiPRhcdo1e1UVbAZFNT34gAlyEpV8fyAOHWTGqd_Poa-uSogeDNw8_bYUgceBpkcl9s0YZx2B7LWPbJfoXY1jF46qNFBA5THSx3PNcdyWdfS3JyKTQsGhDQ4xb1_xWbw7_P4wm5C6Wqrnqmjkhvs9r6p1AObuyz-hv_CemaYno
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF-OiuiL-H3VU1YRfErpZr-ygsidWE7BE9RC38JusqmVNKlNi_a_dyZJwwV7eK_ZScjOzO7-lvn4EfIqYl4y75LAGwcXFMtkYJ1OgjRJQxl6qZ2vsy0u1PlUfJrJ2RHZc7a2CqwOXu2QT2q6zkd_fu3ewYJ_W7M2aLZ_abRK3AKj_spgUfkNOKsMkjl8Fl1cgcuoZuxCspxAczFri-mu-krvsKp7-nc792CVl9UhWPpvduWtbbGyu982zy8dXZO75E6LOelp4yT3yJEv7pObDQvl7gGZn32ZwL3_DW1aUGMeNMWqfIDVtHQ_mx2R4gFY-ygFmEuxtevSBxVY2NOl34Ar5YuE1rw6ILEul_QydwDFRNSHZDr58P39edDyLwSJ4nwTaCZkZEWa8mjskeQoNdZE2njjLc-ETo32XiXj0HkleWql0o4zFTqlkywzjD8ig6Is_DGhPHRhZnQ6lhkAMCGcyzwHZMN8anyW6SHhe0XHSducHDky8riOuGm4pDS6itE8cWueIQm6t1ZNc47_yJ-hDTtZbK1dPyjX87hdqTGzXI_hbz1sZfCfKUwOC6JYOs6izLlwSF6iB8TYPKPA7Jy53VZV_PHbRXwKaC40ACqjK4W-9oRet0JZCZNNbFsRASrDplw9yWN0t_2kqhh2YcSSXIghOdm74OHhF90wbBwYDbKFL7cowzhcj1WkhuRx47GdYjDqY4QEhemeL_c01x8pFj_q5uRKGDg0wKCjzuuvZZsn19HYU3IbAKtpMqdOyGCz3vpnAAo37nm9zv8Czrtjzg
  priority: 102
  providerName: Scholars Portal
Title BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
URI https://www.ncbi.nlm.nih.gov/pubmed/31009451
https://www.proquest.com/docview/2250643344
https://www.proquest.com/docview/2213149686
https://pubmed.ncbi.nlm.nih.gov/PMC6497307
https://escholarship.org/uc/item/8px4x4j0
https://doaj.org/article/1a370b2fe7874bbdbe6b6fc1d0f8fbb2
http://dx.doi.org/10.1371/journal.pcbi.1006971
UnpaywallVersion submittedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagFYIXfsMKowoIiad0dWzHMW8trAwkyjSYVJ4iO3a2jjaJlkRs_PWckzQsMMR4SaL6IsW-8_m7-vwdQi8DbBg2KnKNUBCgSMxcqXjk6kh7zDOMK1NlW8z9vUP6YcEWDVm0PQtjNjHd8TKrNvLLuibZTpCd0TN6AtF532cAu3uofzjfn3yt-FAZcTmhi1_PLGiOyRGOdxqtjLJILW1WgC847ixDFVt_65N72SrNLwOcf-ZN3iyTTJ5_l6vVhUVpdqdO58orLkObi_JtVBZqFP34jenxSv29i2430NSZ1LZ0D10zyX10oy5Wef4AHU0_zbQsXjs1U7VNl3bs4X1A306qTmrH6dh1sjJlB9CwYxlg18bNwRCMszYFWNxqGTlV-R2QOE3XzsUSA47NV32IDme7X97suU2ZBjfyCSlcjikLJNWaBGNjayFpIUXAhRFGkphyLbgxfjT2lPEZ0ZL5XBHse8rnURwLTB6hXpImZgs5xFNeLLgesxhwGqVKxYYAAMJGCxPHfIDIRmth1HCY21Iaq7DamOMQy9RjFVpdh42uB8ht38pqDo9_yE-tQbSyloG7-gH0EzYTOsSS8DF8rQGPB9-poXP23BTW4ziIlfIG6IU1p9BybCQ2iedIlnkevv88DycA-jwB2DP4q9BBR-hVIxSn0NlINgcnYMgsd1dHcsva7qZTeQjO2kJOQukAbW_s-fLm520z-Be7aSQTk5ZWBhOIov3AH6DHtfm3A2M3hwRlMGC8MzE6I9dtSZbHFYe5TwWsLaDQUTuFrqSbJ__7wlN0CzCuqJOttlGvOC3NM8CRhRqi63zB4RrM3g1RfzJ9O53Bfbo73z8YVv_NwPUjDYaNp_kJEth-MA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGERoviPsKAwwC8ZStiZ04RkJoA6qVjSLBJvUts2OnFLVJaVpN_VP8Rs7JjUWMy8tem9MqPufzudTH5yPkeeha37U6dqzUUKAo13eUFrFjYuP5nvWFtkW3xTA4OOEfRv5og_yo78JgW2XtEwtHbbIY_yPfBdxh9GScv5l_d5A1Ck9XawqNEhaHdn0GJVv-evAO7PvC8_rvj98eOBWrgBMHjC0d4XI_VNwYFvYsUvcYqaDwllZaxRIujBTWBnHP0zbwmVF-IDRzA08HIk4S6TL43SvkKmfgS2D_iFFT4DE_LPjAkIrHEYyPqqt6TLi7FTJ25rGeYGdCIIXbCoUFY0ATFzrzaZZflPT-3ru5uUrnan2mptNzgbF_k9yoMlq6V0LwFtmw6W1yreS4XN8h4_1PfaOWr2g54Bq7rCne-YeknWb6W-lvKYbXYgdQSKIpDo6dWScH_Fg6s0sA6nQS04K1ByQW2YyeZyag2OZ6l5xcih3ukU6apXaLUOZpL5HC9PwE0jvOtU4sg7zJtUbaJBFdwmpFR3E1-hwZOKZRcZ4noAQqdRWheaLKPF3iNN-al6M__iG_jzZsZHFwd_FBthhHlR-IXMVED97WgqOE9zSwOLxu5ZpeEiZae13yDBEQ4WiOFHt_xmqV59HgyzDag1zRk7ANwj8KfW4JvayEkgwWG6vqvgWoDEd-tSS3EG71ovLo117rku0aghc_fto8BreEZ00qtdkKZVwGxXcQBl1yv0Rsoxg8U5LcB4WJFpZbmms_SSdfi9HnAZcQksCgOw3q_8s2D_6-jidk8-D441F0NBgePiTXISmWZXfWNuksFyv7CBLPpX5c7HZKTi_bvfwEquiZOw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEZcXxH2FAQaBeMpax0kcIyG0MaqVoYKASX0LduyUojYpTaupf41fxzm5sYhxedlrc1rF53w-l_r4fIQ8DZn1mdWxY6WGAkUx31FaxI6Jjeu71hfaFt0Wo-Dw2Hs79sdb5Ed9FwbbKmufWDhqk8X4H3kPcIfRk3teL6naIj4cDF4tvjvIIIUnrTWdRgmRI7s5gfItfzk8AFs_c93Bm8-vD52KYcCJA85XjmCeHyrPGB72LdL4GKmgCJdWWsUTTxgprA3ivqtt4HOj_EBozgJXByJOEsk4_O4FclFwLrGdUIybYo_7YcENhrQ8juDeuLq2xwXrVSjZXcR6il0KgRSsFRYL9oAmRnQWsyw_KwH-vY_zyjpdqM2Jms1OBcnBdXKtym7pXgnHG2TLpjfJpZLvcnOLTPbfD4xavaDlsGvsuKZ4_x8SeJrpb6XvpRhqi91AIaGmOER2bp0csGTp3K4AtLNpTAsGH5BYZnN6mqWAYsvrbXJ8Lna4QzppltptQrmr3UQK0_cTSPU8T-vEcsihmDXSJonoEl4rOoqrMejIxjGLirM9AeVQqasIzRNV5ukSp_nWohwD8g_5fbRhI4tDvIsPsuUkqnxCxBQXfXhbC04T3tPA4vDqFTP9JEy0drvkCSIgwjEdKQJ-otZ5Hg0_jaI9yBtdCVsi_KPQx5bQ80ooyWCxsaruXoDKcPxXS3Ib4VYvKo9-7bsu2akhePbjx81jcFF47qRSm61RhnEoxIMw6JK7JWIbxeD5kvR8UJhoYbmlufaTdPq1GIMeeBLCExh0t0H9f9nm3t_X8YhcBscSvRuOju6Tq5Afy7JRa4d0Vsu1fQA56Eo_LDY7JV_O27v8BPwZnX4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwQvfMMKAxmExFO6Ov6KeesQ1eChIKBSeYrs2Nk62iRaUrHx13NO0rDAEOMtii9SfHc-_yzf_Q6hlxFxnDiTBE4ZOKBowgNtZBLYxIY8dFwaV2dbzMThnL1f8EVLFu1rYdz2THe8LOqL_E3Tk2w_Ks7YGTuB0_mO4AC7B2hnPvs4-VrzoXIaSMoWv5551JbJUUn2W6uMisQsfVaAUJL0tqGarb-LyYNilZeXAc4_8yZvbLJCn3_Xq9WFTWl6u0nnKmsuQ5-L8m20qcwo-fEb0-OV5nsH3WqhKZ40vnQXXXPZPXS9aVZ5fh8dHXyYWl29xg1TtU-Xxr54H9A3zs1JEzix3ydrV8aAhrFngF27oARHcHjtKvC41TLBdfsdkDjN1_hiiwHs81UfoPn07Zc3h0HbpiFIBKVVIAnjkWbW0mjsfC8kq7SKpHLKaZoyaZV0TiTj0DjBqdVcSEOJCI2QSZoqQh-iQZZnbhdhGpowVdKOeQo4jTFjUkcBABFnlUtTOUR0a7U4aTnMfSuNVVxfzEk4yzS6ir2t49bWQxR0XxUNh8c_5A-8Q3SynoG7fgH2idsFHRNN5Rj-1kHEg_-0MDlfN0XsOI1SY8IheuHdKfYcG5lP4jnSm7KM332exRMAfaEC7Bn9VehTT-hVK5TmMNlEt4UToDLP3dWT3PW-u51UGUOw9pCTMjZEe1t_vnz4eTcM8cVfGunM5RsvQyicokUkhuhR4_6dYvzlkGIcFCZ7C6Onuf5ItjyuOcwFU7C3gEFH3RK6km0e_-8HT9BNwLiqSbbaQ4PqdOOeAo6szLM2gvwE8YZ3iA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BOFdat%3A+Generating+biomass+objective+functions+for+genome-scale+metabolic+models+from+experimental+data&rft.jtitle=PLoS+computational+biology&rft.au=Lachance%2C+Jean-Christophe&rft.au=Lloyd%2C+Colton+J&rft.au=Monk%2C+Jonathan+M&rft.au=Yang%2C+Laurence&rft.date=2019-04-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=15&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pcbi.1006971&rft.externalDBID=ISR&rft.externalDocID=A584292508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon