BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include...
Saved in:
| Published in | PLoS computational biology Vol. 15; no. 4; p. e1006971 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.04.2019
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1553-7358 1553-734X 1553-7358 |
| DOI | 10.1371/journal.pcbi.1006971 |
Cover
| Abstract | Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat). |
|---|---|
| AbstractList | Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat). Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat). The formulation of phenotypic predictions by genome-scale models (GEMs) is dependent on the specified objective. The idea of a biomass objective function (BOF) is to represent all metabolites necessary for cells to double so that optimizing the BOF is equivalent to optimizing growth. Knowledge of the qualitative and quantitative organism’s composition (i.e. which metabolites are necessary for growth and in what proportion) is critical for accurate predictions. We implemented BOFdat with the idea that experimental data should drive the definition of the biomass composition. As omic datasets become more available, the possibility of integrating them to obtain a condition-specific biomass composition is in reach and therefore one of the main features of BOFdat. While major macromolecules, coenzymes, and inorganic ions are ubiquitous components across species, several species-specific components exist in the cell that should be accounted for in the BOF. To identify these, we implemented an approach that minimizes the error between experimental essentiality data and GEM-driven prediction. Hence BOFdat provides an unbiased, data-driven approach to defining BOF that has the potential to improve the quality of new genome-scale models and greatly decrease the time required to generate a new reconstruction. Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub ( Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat). |
| Audience | Academic |
| Author | Feist, Adam M. King, Zachary A. Seif, Yara Sastry, Anand V. Lloyd, Colton J. Rodrigue, Sébastien Monk, Jonathan M. Jacques, Pierre-Étienne Lachance, Jean-Christophe Yang, Laurence Palsson, Bernhard O. |
| AuthorAffiliation | 3 Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, United States of America 1 Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada 4 Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America 5 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark 2 Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America Hebrew University of Jerusalem, ISRAEL |
| AuthorAffiliation_xml | – name: 2 Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America – name: 3 Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, United States of America – name: 5 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Lyngby, Denmark – name: 1 Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada – name: 4 Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America – name: Hebrew University of Jerusalem, ISRAEL |
| Author_xml | – sequence: 1 givenname: Jean-Christophe orcidid: 0000-0002-3096-6995 surname: Lachance fullname: Lachance, Jean-Christophe – sequence: 2 givenname: Colton J. surname: Lloyd fullname: Lloyd, Colton J. – sequence: 3 givenname: Jonathan M. surname: Monk fullname: Monk, Jonathan M. – sequence: 4 givenname: Laurence orcidid: 0000-0001-6663-7643 surname: Yang fullname: Yang, Laurence – sequence: 5 givenname: Anand V. orcidid: 0000-0002-8293-3909 surname: Sastry fullname: Sastry, Anand V. – sequence: 6 givenname: Yara surname: Seif fullname: Seif, Yara – sequence: 7 givenname: Bernhard O. orcidid: 0000-0003-2357-6785 surname: Palsson fullname: Palsson, Bernhard O. – sequence: 8 givenname: Sébastien surname: Rodrigue fullname: Rodrigue, Sébastien – sequence: 9 givenname: Adam M. orcidid: 0000-0002-8630-4800 surname: Feist fullname: Feist, Adam M. – sequence: 10 givenname: Zachary A. orcidid: 0000-0003-1238-1499 surname: King fullname: King, Zachary A. – sequence: 11 givenname: Pierre-Étienne orcidid: 0000-0002-3961-294X surname: Jacques fullname: Jacques, Pierre-Étienne |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31009451$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkktv1DAUhSNURB_wDxBEYgOLGeLYsZMukEpFy0gVlXisLT-ug0eOPdhJaf89HmZadSqEQFnEsr9zfH3uPSz2fPBQFM9RNUeYobfLMEUv3HylpJ2jqqIdQ4-KA9Q0eMZw0-7dW-8XhyktqyovO_qk2MeZ70iDDor-_eWZFuNxeQ4eohit70tpwyBSKoNcghrtFZRm8nkRfCpNiGUPPgwwS0o4KAcYhQzOqnIIGlwmYhhKuF5BtAP4Ubgy-4unxWMjXIJn2_9R8e3sw9fTj7OLy_PF6cnFTFGMxxlDpGkF0Rq3FbRKE92JrmUddCCwIUx3DICqqpZAG6xFQ5nEiNaSMmVMh_BR8XLju3Ih8W1Gidd1U1GCMSGZWGwIHcSSr3KVIt7wICz_vRFiz0UcrXLAkcCskrUB1jIipc6XSmoU0pVpjZR19mo2XpNfiZufwrk7Q1TxdZtuS-DrNvFtm7Lu3bbKSQ6gVc4pCrdTzO6Jt995H644JR3DFcsGr7cGMfyYII18sEmBc8JDmNbvRRiRjrY0o68eoH9OZb6h-txUbr0J-V6VPw2DVXnyjM37J01L6i6r2ix4syPIzAjXYy-mlPjiy-f_YD_tsi_uR3OXye3IZoBsABVDShHMv0Z-_ECm7CjWQ50fat3fxb8AU_wXCA |
| CitedBy_id | crossref_primary_10_1039_D0MO00154F crossref_primary_10_1016_j_coisb_2021_04_008 crossref_primary_10_1038_s41467_024_52725_4 crossref_primary_10_1007_s12257_020_0061_2 crossref_primary_10_1126_sciadv_ado2623 crossref_primary_10_1016_j_cels_2021_06_005 crossref_primary_10_3389_fmicb_2023_1126030 crossref_primary_10_1016_j_isci_2021_103110 crossref_primary_10_1016_j_biotechadv_2023_108203 crossref_primary_10_1016_j_biotechadv_2024_108400 crossref_primary_10_1016_j_cels_2024_12_005 crossref_primary_10_3389_fbioe_2021_602464 crossref_primary_10_3390_metabo15020101 crossref_primary_10_1080_10643389_2023_2212569 crossref_primary_10_1016_j_csbj_2021_06_009 crossref_primary_10_1016_j_ymben_2020_11_013 crossref_primary_10_1186_s12859_022_05108_9 crossref_primary_10_1042_BST20190667 crossref_primary_10_15252_msb_202010099 crossref_primary_10_1007_s00239_021_10018_0 crossref_primary_10_1128_mbio_00873_24 crossref_primary_10_1016_j_csbj_2025_01_013 crossref_primary_10_1186_s12859_024_05651_7 crossref_primary_10_1186_s12859_024_05655_3 crossref_primary_10_1371_journal_pcbi_1008528 crossref_primary_10_1590_0001_3765202220211071 crossref_primary_10_1016_j_csbj_2023_02_011 crossref_primary_10_1038_s41598_019_49079_z crossref_primary_10_2139_ssrn_4133892 crossref_primary_10_1007_s12257_024_00009_5 crossref_primary_10_15302_J_QB_022_0313 crossref_primary_10_1038_s41596_019_0254_3 crossref_primary_10_1093_bioadv_vbaf036 crossref_primary_10_3389_fmicb_2021_750206 crossref_primary_10_3389_fbioe_2024_1356551 crossref_primary_10_1038_s41467_023_40380_0 crossref_primary_10_1186_s12896_021_00702_w crossref_primary_10_1371_journal_pone_0262450 crossref_primary_10_1111_hel_13074 crossref_primary_10_1093_bioinformatics_btad600 crossref_primary_10_1016_j_egg_2022_100145 crossref_primary_10_3389_fmicb_2024_1368377 crossref_primary_10_3390_pr8030331 crossref_primary_10_1371_journal_pone_0280077 crossref_primary_10_1016_j_csbj_2023_07_025 crossref_primary_10_1128_msystems_00919_21 crossref_primary_10_1371_journal_pcbi_1011363 crossref_primary_10_1080_10409238_2024_2418639 crossref_primary_10_3390_life10110299 crossref_primary_10_3389_fbioe_2020_612832 crossref_primary_10_1016_j_ymben_2020_06_002 crossref_primary_10_1186_s13059_021_02289_z crossref_primary_10_1038_s41598_020_69509_7 crossref_primary_10_1016_j_mib_2021_05_003 crossref_primary_10_3390_metabo11080491 crossref_primary_10_1016_j_isci_2023_105931 crossref_primary_10_3390_ijms20215464 crossref_primary_10_3389_fsysb_2024_1291612 crossref_primary_10_3389_fgene_2020_00116 crossref_primary_10_1111_1751_7915_13747 crossref_primary_10_1016_j_copbio_2020_08_017 crossref_primary_10_15252_msb_20209844 crossref_primary_10_1371_journal_pone_0289757 crossref_primary_10_1111_1541_4337_13193 crossref_primary_10_3390_metabo11040232 |
| Cites_doi | 10.1007/s11306-015-0819-2 10.1016/j.cell.2015.05.019 10.1093/bioinformatics/btp575 10.1186/s13059-016-0983-3 10.1093/nar/gkw1003 10.1093/bioinformatics/btx453 10.1016/j.cell.2016.05.003 10.1073/pnas.0603364103 10.1016/0022-2836(77)90123-1 10.1093/bioinformatics/bti213 10.1038/nbt1492 10.1038/nbt.1614 10.1038/nbt.3956 10.1016/j.ymben.2016.12.002 10.3390/pr6050038 10.1186/1471-2105-9-43 10.1128/MMBR.62.1.181-203.1998 10.1007/978-1-62703-299-5_2 10.1038/nbt.3418 10.1038/s41586-018-0124-0 10.1371/journal.pcbi.1000308 10.1093/nar/gkv1117 10.1186/s13059-016-0968-2 10.1038/nbt.2870 10.1128/mBio.01840-15 10.1186/1471-2105-8-212 10.1016/j.mib.2010.03.003 10.1093/nar/gkv1049 10.1002/bit.22844 10.1038/nprot.2009.203 10.1038/msb.2011.9 10.1006/jtbi.1993.1202 10.1126/science.1192588 10.1371/journal.pone.0177678 10.1042/bj1170551 10.1371/journal.pone.0023126 10.1002/bit.10617 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Public Library of Science 2019 Lachance et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Lachance et al 2019 Lachance et al |
| Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Lachance et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Lachance et al 2019 Lachance et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pcbi.1006971 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | BOFdat package for the generation of biomass objective function from experimental data |
| EISSN | 1553-7358 |
| ExternalDocumentID | 2250643344 oai_doaj_org_article_1a370b2fe7874bbdbe6b6fc1d0f8fbb2 oai:escholarship.org:ark:/13030/qt8px4x4j0 PMC6497307 A584292508 31009451 10_1371_journal_pcbi_1006971 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Denmark La Jolla California Canada California United States--US |
| GeographicLocations_xml | – name: Denmark – name: La Jolla California – name: Canada – name: California – name: United States--US |
| GrantInformation_xml | – fundername: ; – fundername: ; grantid: NNF10CC1016517 – fundername: ; grantid: 206064 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ M0N M~E NPM PGMZT RIG WOQ 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913 |
| IEDL.DBID | UNPAY |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Sun Jun 04 06:37:56 EDT 2023 Fri Oct 03 12:53:47 EDT 2025 Sun Oct 26 03:16:44 EDT 2025 Tue Sep 30 16:58:05 EDT 2025 Thu Oct 02 05:14:53 EDT 2025 Tue Oct 07 06:22:54 EDT 2025 Mon Oct 20 16:32:47 EDT 2025 Thu Oct 16 15:20:59 EDT 2025 Thu Oct 16 14:21:00 EDT 2025 Wed Feb 19 02:31:05 EST 2025 Wed Oct 01 04:00:42 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c633t-71458a4dd380e8cd4d9a9879e9ea3f47d97ee6c02be653da567b3162b67cff913 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-8293-3909 0000-0003-1238-1499 0000-0003-2357-6785 0000-0002-3961-294X 0000-0001-6663-7643 0000-0002-8630-4800 0000-0002-3096-6995 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://escholarship.org/uc/item/8px4x4j0 |
| PMID | 31009451 |
| PQID | 2250643344 |
| PQPubID | 1436340 |
| ParticipantIDs | plos_journals_2250643344 doaj_primary_oai_doaj_org_article_1a370b2fe7874bbdbe6b6fc1d0f8fbb2 unpaywall_primary_10_1371_journal_pcbi_1006971 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6497307 proquest_miscellaneous_2213149686 proquest_journals_2250643344 gale_infotracacademiconefile_A584292508 gale_incontextgauss_ISR_A584292508 gale_incontextgauss_ISN_A584292508 pubmed_primary_31009451 crossref_primary_10_1371_journal_pcbi_1006971 crossref_citationtrail_10_1371_journal_pcbi_1006971 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2019 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | EP Gianchandani (ref11) 2008; 9 JD Orth (ref15) 2010; 28 F-A Fortin (ref26) 2012; 13 Q Zhao (ref12) 2016; 17 AE Beck (ref8) 2018; 6 N Kleckner (ref28) 1977; 116 IM Keseler (ref36) 2017; 45 MJ Herrgård (ref41) 2008; 26 GB Cox (ref38) 1970; 117 I Thiele (ref3) 2010; 5 B Volkmer (ref7) 2011; 6 BRB Haverkorn van Rijsewijk (ref40) 2011; 7 A Schmidt (ref35) 2016; 34 PA Diaz-Gomez (ref31) 2007 V Hatzimanikatis (ref19) 2005; 21 D Dikicioglu (ref4) 2015; 11 AM Feist (ref13) 2016; 17 VS Kumar (ref21) 2009; 5 JC Xavier (ref5) 2017; 39 V Satish Kumar (ref18) 2007; 8 M Scott (ref6) 2010; 330 J Monk (ref1) 2014; 32 AM Feist (ref2) 2010; 13 SHJ Chan (ref17) 2017; 33 A Ebrahim (ref27) 2013; 7 ZA King (ref25) 2016; 44 S Moretti (ref32) 2016; 44 A Varma (ref16) 1993; 165 P Gerlee (ref24) 2009; 25 JV Bazurto (ref39) 2016; 7 S Devoid (ref9) 2013; 985 JV Höltje (ref37) 1998; 62 JM Monk (ref23) 2017; 35 JM Peters (ref29) 2016; 165 JL Reed (ref20) 2006; 103 EJ O’Brien (ref34) 2015; 161 JD Orth (ref22) 2010; 107 L Yang (ref33) 2018 AP Burgard (ref10) 2003; 82 MN Price (ref14) 2018; 557 S Boughorbel (ref30) 2017; 12 |
| References_xml | – start-page: 43 year: 2007 ident: ref31 article-title: Initial Population for Genetic Algorithms: A Metric Approach publication-title: GEM – volume: 11 start-page: 1690 year: 2015 ident: ref4 article-title: Biomass composition: the “elephant in the room” of metabolic modelling publication-title: Metabolomics doi: 10.1007/s11306-015-0819-2 – volume: 161 start-page: 971 year: 2015 ident: ref34 article-title: Using Genome-scale Models to Predict Biological Capabilities publication-title: Cell doi: 10.1016/j.cell.2015.05.019 – volume: 13 start-page: 2171 year: 2012 ident: ref26 article-title: DEAP: Evolutionary Algorithms Made Easy publication-title: J Mach Learn Res – volume: 25 start-page: 3282 year: 2009 ident: ref24 article-title: Pathway identification by network pruning in the metabolic network of Escherichia coli publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp575 – volume: 17 start-page: 110 year: 2016 ident: ref13 article-title: What do cells actually want? publication-title: Genome Biol doi: 10.1186/s13059-016-0983-3 – volume: 45 start-page: D543 year: 2017 ident: ref36 article-title: The EcoCyc database: reflecting new knowledge about Escherichia coli K-12 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1003 – volume: 33 start-page: 3603 year: 2017 ident: ref17 article-title: Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx453 – volume: 165 start-page: 1493 year: 2016 ident: ref29 article-title: A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria publication-title: Cell doi: 10.1016/j.cell.2016.05.003 – volume: 103 start-page: 17480 year: 2006 ident: ref20 article-title: Systems approach to refining genome annotation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0603364103 – volume: 116 start-page: 125 year: 1977 ident: ref28 article-title: Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics publication-title: J Mol Biol doi: 10.1016/0022-2836(77)90123-1 – volume: 21 start-page: 1603 year: 2005 ident: ref19 article-title: Exploring the diversity of complex metabolic networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti213 – volume: 26 start-page: 1155 year: 2008 ident: ref41 article-title: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology publication-title: Nat Biotechnol doi: 10.1038/nbt1492 – year: 2018 ident: ref33 article-title: Genome-scale estimation of cellular objectives – volume: 28 start-page: 245 year: 2010 ident: ref15 article-title: What is flux balance analysis? publication-title: Nat Biotechnol doi: 10.1038/nbt.1614 – volume: 35 start-page: 904 year: 2017 ident: ref23 article-title: iML1515, a knowledgebase that computes Escherichia coli traits publication-title: Nat Biotechnol doi: 10.1038/nbt.3956 – volume: 39 start-page: 200 year: 2017 ident: ref5 article-title: Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes publication-title: Metab Eng doi: 10.1016/j.ymben.2016.12.002 – volume: 6 start-page: 38 year: 2018 ident: ref8 article-title: Measuring Cellular Biomass Composition for Computational Biology Applications. publication-title: Processes. doi: 10.3390/pr6050038 – volume: 9 start-page: 43 year: 2008 ident: ref11 article-title: Predicting biological system objectives de novo from internal state measurements publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-43 – volume: 62 start-page: 181 year: 1998 ident: ref37 article-title: Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.62.1.181-203.1998 – volume: 7 start-page: 74 year: 2013 ident: ref27 article-title: COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol publication-title: COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol – volume: 985 start-page: 17 year: 2013 ident: ref9 article-title: Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-299-5_2 – volume: 34 start-page: 104 year: 2016 ident: ref35 article-title: The quantitative and condition-dependent Escherichia coli proteome publication-title: Nat Biotechnol doi: 10.1038/nbt.3418 – volume: 557 start-page: 503 year: 2018 ident: ref14 article-title: Mutant phenotypes for thousands of bacterial genes of unknown function publication-title: Nature doi: 10.1038/s41586-018-0124-0 – volume: 5 start-page: e1000308 year: 2009 ident: ref21 article-title: GrowMatch: an automated method for reconciling in silico/in vivo growth predictions publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000308 – volume: 44 start-page: D523 year: 2016 ident: ref32 article-title: MetaNetX/MNXref—reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1117 – volume: 17 start-page: 109 year: 2016 ident: ref12 article-title: Mapping the landscape of metabolic goals of a cell publication-title: Genome Biol doi: 10.1186/s13059-016-0968-2 – volume: 32 start-page: 447 year: 2014 ident: ref1 article-title: Optimizing genome-scale network reconstructions publication-title: Nat Biotechnol doi: 10.1038/nbt.2870 – volume: 7 start-page: e01840 year: 2016 ident: ref39 article-title: An Unexpected Route to an Essential Cofactor: Escherichia coli Relies on Threonine for Thiamine Biosynthesis publication-title: MBio doi: 10.1128/mBio.01840-15 – volume: 8 start-page: 212 year: 2007 ident: ref18 article-title: Optimization based automated curation of metabolic reconstructions publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-212 – volume: 13 start-page: 344 year: 2010 ident: ref2 article-title: The biomass objective function publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2010.03.003 – volume: 44 start-page: D515 year: 2016 ident: ref25 article-title: BiGG Models: A platform for integrating, standardizing and sharing genome-scale models publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1049 – volume: 107 start-page: 403 year: 2010 ident: ref22 article-title: Systematizing the generation of missing metabolic knowledge publication-title: Biotechnol Bioeng doi: 10.1002/bit.22844 – volume: 5 start-page: 93 year: 2010 ident: ref3 article-title: A protocol for generating a high-quality genome-scale metabolic reconstruction. publication-title: Nat Protoc doi: 10.1038/nprot.2009.203 – volume: 7 start-page: 477 year: 2011 ident: ref40 article-title: Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli publication-title: Mol Syst Biol doi: 10.1038/msb.2011.9 – volume: 165 start-page: 477 year: 1993 ident: ref16 article-title: Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors publication-title: J Theor Biol doi: 10.1006/jtbi.1993.1202 – volume: 330 start-page: 1099 year: 2010 ident: ref6 article-title: Interdependence of cell growth and gene expression: origins and consequences publication-title: Science doi: 10.1126/science.1192588 – volume: 12 start-page: e0177678 year: 2017 ident: ref30 article-title: Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric publication-title: PLoS One doi: 10.1371/journal.pone.0177678 – volume: 117 start-page: 551 year: 1970 ident: ref38 article-title: The function of ubiquinone in Escherichia coli publication-title: Biochem J doi: 10.1042/bj1170551 – volume: 6 start-page: e23126 year: 2011 ident: ref7 article-title: Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling publication-title: PLoS One doi: 10.1371/journal.pone.0023126 – volume: 82 start-page: 670 year: 2003 ident: ref10 article-title: Optimization-based framework for inferring and testing hypothesized metabolic objective functions publication-title: Biotechnol Bioeng. Wiley Online Library doi: 10.1002/bit.10617 |
| SSID | ssj0035896 |
| Score | 2.5310705 |
| Snippet | Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information.... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1006971 |
| SubjectTerms | Analysis Bioengineering Bioinformatics Biology and Life Sciences Biomass Coenzymes Composition Computational biology Computer and Information Sciences Computer applications Deoxyribonucleic acid DNA E coli Ecosystems Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Experimental data Funding Gems Genetic algorithms Genetic aspects Genome, Bacterial Genomes Genomics - methods Growth rate Hydroxides Ions Knowledge bases (artificial intelligence) Lipids Macromolecules Mathematical models Metabolic Networks and Pathways Metabolism Metabolites Methods Models, Biological Objective function Objectives Phenotypes Phylogenetics Physical Sciences Python (Programming language) Ribonucleic acid RNA Scale models Software Source code Species Supervision Teaching methods |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSgguiO8uFGQQEqe0cfwVc2sRq8KhSEClvUV27LSLdpNVd1dV_31n4my0EUXlwDWeHDzzNH4jj98Q8iFnQbLgyiQYBwWKZTKxTpeJL30msyC1C223xak6ORPfpnK6M-oLe8KiPHB03CGzXKcuqwIgSzjnXVD4PoX5tMor59rsm-ZmW0zFHMxl3k7mwqE4ieZi2j2a45oddjE6WJZuhj0Cymg2OJRa7f4-Q4-W82Z1G_38s4vywaZe2usrO5_vHFGTx-RRxy3pUdzTE3Iv1E_J_Tht8voZOT_-PoH6_hONUtPY70zx9T3QZ9q43zHzUTzoWixSoLMUJVwXIVlBJANdhDVAZj4raTs_BywumwXdnRFAseH0OTmbfPn1-STp5iwkpeJ8nWgmZG6F9zxPAw4z8saaXJtgguWV0N7oEFSZZuB7yb2VSjvOVOaULqvKMP6CjOqmDnuE8gxCZbRPZQVES0DAqsCBwbDgTagqPSZ86-ii7ETIcRbGvGhv1jQUI9FXBYan6MIzJkn_1zKKcNxhf4wx7G1RQrv9AMAqOmAVdwFrTN4jAgoUyaixC-fcblar4uvP0-IIWFtmgDzmfzX6MTD62BlVDWy2tN3LB3AZim8NLPcQbttNrQrItsgZuRBjsr-F4O3L7_plSBB462Pr0GzQhnEog1WuxuRlRGzvGLzdMUKCw_QAywPPDVfq2UUrQq6EgcMBAnrQo_6fYvPqf8TmNXkIxNXEDqp9MlpfbsIbIIdr97bNAze-oGZz priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJwQvE9etYyCDkHjKVseOHSMhtKJVg4eCBpP6FtmxU4rapPQitH_PObmxiHF5rU-k-Jwvx8f18fcR8jJmPmLepoHXFjYohkWBsSoNXOrCKPSRsr7sthjL80vxYRJNdsi4uQuDbZVNTiwTtStS_I_8BHCHqycX4u3ye4CqUXi62khomFpawb0pKcZukd0QmbF6ZHd4Nv500eRmHsWlYheK5QSKi0l9mY4rdlLH7niZ2hn2DkitWGexKjn928zdW86L9U1l6e_dlXe2-dJc_TDz-bWla3SP7NU1Jz2tQHKf7Pj8AbldqVBePSTT4ccR7Ptf04qCGvugKd7Kh7KaFvZblREpLoAlRimUuRSpXRc-WEOEPV34DUBpPktpqasDFqtiQa9rB1BsRH1ELkdnX96dB7X-QpBKzjeBYiKKjXCOxwOPIkdOGx0r7bU3PBPKaeW9TAeh9TLizkRSWc5kaKVKs0wz_pj08iL3B4Ty0IaZVm4QZVCACWFt5jlUNsw77bNM9QlvHJ2kNTk5amTMk_LETcEmpfJVguFJ6vD0SdA-tazIOf5hP8QYtrZIrV3-UKymSf2lJsxwNYC39ZDK4D0dTA4vRDE3yOLM2rBPXiACEiTPyLE7Z2q263Xy_vM4OYVqLtQA1PiPRhcdo1e1UVbAZFNT34gAlyEpV8fyAOHWTGqd_Poa-uSogeDNw8_bYUgceBpkcl9s0YZx2B7LWPbJfoXY1jF46qNFBA5THSx3PNcdyWdfS3JyKTQsGhDQ4xb1_xWbw7_P4wm5C6Wqrnqmjkhvs9r6p1AObuyz-hv_CemaYno priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF-OiuiL-H3VU1YRfErpZr-ygsidWE7BE9RC38JusqmVNKlNi_a_dyZJwwV7eK_ZScjOzO7-lvn4EfIqYl4y75LAGwcXFMtkYJ1OgjRJQxl6qZ2vsy0u1PlUfJrJ2RHZc7a2CqwOXu2QT2q6zkd_fu3ewYJ_W7M2aLZ_abRK3AKj_spgUfkNOKsMkjl8Fl1cgcuoZuxCspxAczFri-mu-krvsKp7-nc792CVl9UhWPpvduWtbbGyu982zy8dXZO75E6LOelp4yT3yJEv7pObDQvl7gGZn32ZwL3_DW1aUGMeNMWqfIDVtHQ_mx2R4gFY-ygFmEuxtevSBxVY2NOl34Ar5YuE1rw6ILEul_QydwDFRNSHZDr58P39edDyLwSJ4nwTaCZkZEWa8mjskeQoNdZE2njjLc-ETo32XiXj0HkleWql0o4zFTqlkywzjD8ig6Is_DGhPHRhZnQ6lhkAMCGcyzwHZMN8anyW6SHhe0XHSducHDky8riOuGm4pDS6itE8cWueIQm6t1ZNc47_yJ-hDTtZbK1dPyjX87hdqTGzXI_hbz1sZfCfKUwOC6JYOs6izLlwSF6iB8TYPKPA7Jy53VZV_PHbRXwKaC40ACqjK4W-9oRet0JZCZNNbFsRASrDplw9yWN0t_2kqhh2YcSSXIghOdm74OHhF90wbBwYDbKFL7cowzhcj1WkhuRx47GdYjDqY4QEhemeL_c01x8pFj_q5uRKGDg0wKCjzuuvZZsn19HYU3IbAKtpMqdOyGCz3vpnAAo37nm9zv8Czrtjzg priority: 102 providerName: Scholars Portal |
| Title | BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31009451 https://www.proquest.com/docview/2250643344 https://www.proquest.com/docview/2213149686 https://pubmed.ncbi.nlm.nih.gov/PMC6497307 https://escholarship.org/uc/item/8px4x4j0 https://doaj.org/article/1a370b2fe7874bbdbe6b6fc1d0f8fbb2 http://dx.doi.org/10.1371/journal.pcbi.1006971 |
| UnpaywallVersion | submittedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: GX1 dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 8FG dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1553-7358 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M48 dateStart: 20050601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagFYIXfsMKowoIiad0dWzHMW8trAwkyjSYVJ4iO3a2jjaJlkRs_PWckzQsMMR4SaL6IsW-8_m7-vwdQi8DbBg2KnKNUBCgSMxcqXjk6kh7zDOMK1NlW8z9vUP6YcEWDVm0PQtjNjHd8TKrNvLLuibZTpCd0TN6AtF532cAu3uofzjfn3yt-FAZcTmhi1_PLGiOyRGOdxqtjLJILW1WgC847ixDFVt_65N72SrNLwOcf-ZN3iyTTJ5_l6vVhUVpdqdO58orLkObi_JtVBZqFP34jenxSv29i2430NSZ1LZ0D10zyX10oy5Wef4AHU0_zbQsXjs1U7VNl3bs4X1A306qTmrH6dh1sjJlB9CwYxlg18bNwRCMszYFWNxqGTlV-R2QOE3XzsUSA47NV32IDme7X97suU2ZBjfyCSlcjikLJNWaBGNjayFpIUXAhRFGkphyLbgxfjT2lPEZ0ZL5XBHse8rnURwLTB6hXpImZgs5xFNeLLgesxhwGqVKxYYAAMJGCxPHfIDIRmth1HCY21Iaq7DamOMQy9RjFVpdh42uB8ht38pqDo9_yE-tQbSyloG7-gH0EzYTOsSS8DF8rQGPB9-poXP23BTW4ziIlfIG6IU1p9BybCQ2iedIlnkevv88DycA-jwB2DP4q9BBR-hVIxSn0NlINgcnYMgsd1dHcsva7qZTeQjO2kJOQukAbW_s-fLm520z-Be7aSQTk5ZWBhOIov3AH6DHtfm3A2M3hwRlMGC8MzE6I9dtSZbHFYe5TwWsLaDQUTuFrqSbJ__7wlN0CzCuqJOttlGvOC3NM8CRhRqi63zB4RrM3g1RfzJ9O53Bfbo73z8YVv_NwPUjDYaNp_kJEth-MA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGERoviPsKAwwC8ZStiZ04RkJoA6qVjSLBJvUts2OnFLVJaVpN_VP8Rs7JjUWMy8tem9MqPufzudTH5yPkeeha37U6dqzUUKAo13eUFrFjYuP5nvWFtkW3xTA4OOEfRv5og_yo78JgW2XtEwtHbbIY_yPfBdxh9GScv5l_d5A1Ck9XawqNEhaHdn0GJVv-evAO7PvC8_rvj98eOBWrgBMHjC0d4XI_VNwYFvYsUvcYqaDwllZaxRIujBTWBnHP0zbwmVF-IDRzA08HIk4S6TL43SvkKmfgS2D_iFFT4DE_LPjAkIrHEYyPqqt6TLi7FTJ25rGeYGdCIIXbCoUFY0ATFzrzaZZflPT-3ru5uUrnan2mptNzgbF_k9yoMlq6V0LwFtmw6W1yreS4XN8h4_1PfaOWr2g54Bq7rCne-YeknWb6W-lvKYbXYgdQSKIpDo6dWScH_Fg6s0sA6nQS04K1ByQW2YyeZyag2OZ6l5xcih3ukU6apXaLUOZpL5HC9PwE0jvOtU4sg7zJtUbaJBFdwmpFR3E1-hwZOKZRcZ4noAQqdRWheaLKPF3iNN-al6M__iG_jzZsZHFwd_FBthhHlR-IXMVED97WgqOE9zSwOLxu5ZpeEiZae13yDBEQ4WiOFHt_xmqV59HgyzDag1zRk7ANwj8KfW4JvayEkgwWG6vqvgWoDEd-tSS3EG71ovLo117rku0aghc_fto8BreEZ00qtdkKZVwGxXcQBl1yv0Rsoxg8U5LcB4WJFpZbmms_SSdfi9HnAZcQksCgOw3q_8s2D_6-jidk8-D441F0NBgePiTXISmWZXfWNuksFyv7CBLPpX5c7HZKTi_bvfwEquiZOw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEZcXxH2FAQaBeMpax0kcIyG0MaqVoYKASX0LduyUojYpTaupf41fxzm5sYhxedlrc1rF53w-l_r4fIQ8DZn1mdWxY6WGAkUx31FaxI6Jjeu71hfaFt0Wo-Dw2Hs79sdb5Ed9FwbbKmufWDhqk8X4H3kPcIfRk3teL6naIj4cDF4tvjvIIIUnrTWdRgmRI7s5gfItfzk8AFs_c93Bm8-vD52KYcCJA85XjmCeHyrPGB72LdL4GKmgCJdWWsUTTxgprA3ivqtt4HOj_EBozgJXByJOEsk4_O4FclFwLrGdUIybYo_7YcENhrQ8juDeuLq2xwXrVSjZXcR6il0KgRSsFRYL9oAmRnQWsyw_KwH-vY_zyjpdqM2Jms1OBcnBdXKtym7pXgnHG2TLpjfJpZLvcnOLTPbfD4xavaDlsGvsuKZ4_x8SeJrpb6XvpRhqi91AIaGmOER2bp0csGTp3K4AtLNpTAsGH5BYZnN6mqWAYsvrbXJ8Lna4QzppltptQrmr3UQK0_cTSPU8T-vEcsihmDXSJonoEl4rOoqrMejIxjGLirM9AeVQqasIzRNV5ukSp_nWohwD8g_5fbRhI4tDvIsPsuUkqnxCxBQXfXhbC04T3tPA4vDqFTP9JEy0drvkCSIgwjEdKQJ-otZ5Hg0_jaI9yBtdCVsi_KPQx5bQ80ooyWCxsaruXoDKcPxXS3Ib4VYvKo9-7bsu2akhePbjx81jcFF47qRSm61RhnEoxIMw6JK7JWIbxeD5kvR8UJhoYbmlufaTdPq1GIMeeBLCExh0t0H9f9nm3t_X8YhcBscSvRuOju6Tq5Afy7JRa4d0Vsu1fQA56Eo_LDY7JV_O27v8BPwZnX4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwQvfMMKAxmExFO6Ov6KeesQ1eChIKBSeYrs2Nk62iRaUrHx13NO0rDAEOMtii9SfHc-_yzf_Q6hlxFxnDiTBE4ZOKBowgNtZBLYxIY8dFwaV2dbzMThnL1f8EVLFu1rYdz2THe8LOqL_E3Tk2w_Ks7YGTuB0_mO4AC7B2hnPvs4-VrzoXIaSMoWv5551JbJUUn2W6uMisQsfVaAUJL0tqGarb-LyYNilZeXAc4_8yZvbLJCn3_Xq9WFTWl6u0nnKmsuQ5-L8m20qcwo-fEb0-OV5nsH3WqhKZ40vnQXXXPZPXS9aVZ5fh8dHXyYWl29xg1TtU-Xxr54H9A3zs1JEzix3ydrV8aAhrFngF27oARHcHjtKvC41TLBdfsdkDjN1_hiiwHs81UfoPn07Zc3h0HbpiFIBKVVIAnjkWbW0mjsfC8kq7SKpHLKaZoyaZV0TiTj0DjBqdVcSEOJCI2QSZoqQh-iQZZnbhdhGpowVdKOeQo4jTFjUkcBABFnlUtTOUR0a7U4aTnMfSuNVVxfzEk4yzS6ir2t49bWQxR0XxUNh8c_5A-8Q3SynoG7fgH2idsFHRNN5Rj-1kHEg_-0MDlfN0XsOI1SY8IheuHdKfYcG5lP4jnSm7KM332exRMAfaEC7Bn9VehTT-hVK5TmMNlEt4UToDLP3dWT3PW-u51UGUOw9pCTMjZEe1t_vnz4eTcM8cVfGunM5RsvQyicokUkhuhR4_6dYvzlkGIcFCZ7C6Onuf5ItjyuOcwFU7C3gEFH3RK6km0e_-8HT9BNwLiqSbbaQ4PqdOOeAo6szLM2gvwE8YZ3iA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BOFdat%3A+Generating+biomass+objective+functions+for+genome-scale+metabolic+models+from+experimental+data&rft.jtitle=PLoS+computational+biology&rft.au=Lachance%2C+Jean-Christophe&rft.au=Lloyd%2C+Colton+J&rft.au=Monk%2C+Jonathan+M&rft.au=Yang%2C+Laurence&rft.date=2019-04-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=15&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pcbi.1006971&rft.externalDBID=ISR&rft.externalDocID=A584292508 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |