zipHMMlib: a highly optimised HMM library exploiting repetitions in the input to speed up the forward algorithm
Background Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number...
Saved in:
| Published in | BMC bioinformatics Vol. 14; no. 1; p. 339 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
22.11.2013
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-14-339 |
Cover
| Abstract | Background
Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library.
Results
We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.
Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library.
Conclusions
We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at
http://birc.au.dk/software/ziphmm/
. |
|---|---|
| AbstractList | Background: Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. Results: We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. Conclusions: We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/ . Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library.BACKGROUNDHidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library.We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library.RESULTSWe have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library.We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.CONCLUSIONSWe have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/. Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/. Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/. Background Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. Results We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. Conclusions We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at Background Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. Results We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. Conclusions We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/ . Doc number: 339 Abstract Background: Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. Results: We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. Conclusions: We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/ . |
| ArticleNumber | 339 |
| Audience | Academic |
| Author | Pedersen, Christian NS Mailund, Thomas Kristiansen, Martin Sand, Andreas |
| AuthorAffiliation | 1 Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark 2 Department of Computer Science, Aarhus University, Aarhus, Denmark |
| AuthorAffiliation_xml | – name: 1 Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark – name: 2 Department of Computer Science, Aarhus University, Aarhus, Denmark |
| Author_xml | – sequence: 1 givenname: Andreas surname: Sand fullname: Sand, Andreas email: asand@birc.au.dk organization: Bioinformatics Research Centre, Aarhus University, Department of Computer Science, Aarhus University – sequence: 2 givenname: Martin surname: Kristiansen fullname: Kristiansen, Martin organization: Department of Computer Science, Aarhus University – sequence: 3 givenname: Christian NS surname: Pedersen fullname: Pedersen, Christian NS organization: Bioinformatics Research Centre, Aarhus University, Department of Computer Science, Aarhus University – sequence: 4 givenname: Thomas surname: Mailund fullname: Mailund, Thomas organization: Bioinformatics Research Centre, Aarhus University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24266924$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstv1DAQxiNURB9w54QscYFDit_ecECqKqCVWiHxOFve2Mm68trBdmjLX4_TXdrdikflg0czv2_k-Tz71Y4P3lTVcwQPEZrxN4gKVGMEWY1oTUjzqNq7Te1sxLvVfkoXECIxg-xJtYsp5rzBdK8KP-1wcn7u7PwtUGBh-4W7BmHIdmmT0aCUQKlFFa-BuRpcsNn6HkQzmFzC4BOwHuSFKdcwZpADSIMpwnG4yXYhXqqogXJ9iDYvlk-rx51yyTxb3wfVtw_vvx6f1GefPp4eH53VLSck15Q1wsyNJpzSORZQE6wI0w3skGo40UzoVrVMdK2ivOPdjOBOc9RqzRWZGUwOKrTqO_pBXV8q5-QQ7bLMIRGUk3lyckdO7pRIFvOK5t1KM4zzpdGt8TmqO11QVm5XvF3IPvyQFGMsqCgNXq0bxPB9NCnL4mJrnFPehDFJxAVikHHO_o_SBnPMBGwegHLKIJrdTPDyHnoRxuiL0ROFGcUNJXdUr5yR1nehTNNOTeURI5QhIfhEHf6BKkebpW3LHna25LcEr7cEhcnmKvdqTEmefvm8zb7YtPrW49-LWQC-AtoYUoqmk63Natq48grr_vWJ8J7wAf--3pVUUN-buOHa3zS_ABh2Els |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2973741 crossref_primary_10_1007_s00607_017_0557_6 crossref_primary_10_1016_j_compbiolchem_2015_02_001 crossref_primary_10_1145_3046945 crossref_primary_10_1371_journal_pgen_1008449 crossref_primary_10_7554_eLife_89470_4 crossref_primary_10_7554_eLife_89470 |
| Cites_doi | 10.1371/journal.pgen.1001319 10.1007/BF02458837 10.1093/bioinformatics/14.9.755 10.1371/journal.pgen.0030007 10.1101/gr.114751.110 10.1534/genetics.109.103010 10.1038/nature11128 10.1093/nar/gkh121 10.1093/molbev/msq053 10.1371/journal.pgen.1003125 10.1006/jmbi.1997.0951 10.1038/nature09687 10.1109/5.18626 10.1038/nature10842 10.1007/s00453-007-9128-0 10.1006/jmbi.2000.4315 10.1007/0-387-27733-1_12 |
| ContentType | Journal Article |
| Copyright | Sand et al.; licensee BioMed Central Ltd. 2013 COPYRIGHT 2013 BioMed Central Ltd. 2013 Sand et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2013 Sand et al.; licensee BioMed Central Ltd. 2013 Sand et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Sand et al.; licensee BioMed Central Ltd. 2013 – notice: COPYRIGHT 2013 BioMed Central Ltd. – notice: 2013 Sand et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2013 Sand et al.; licensee BioMed Central Ltd. 2013 Sand et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/1471-2105-14-339 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database MEDLINE - Academic Computer and Information Systems Abstracts MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 339 |
| ExternalDocumentID | 10.1186/1471-2105-14-339 PMC4222747 3141615021 A534517763 24266924 10_1186_1471_2105_14_339 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ ADTOC AFFHD C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c633t-4597ebed3644b270d32a35d90f1a963d57dcac57fca46f6f832fd61cdd6a38e23 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Wed Oct 29 12:06:23 EDT 2025 Tue Sep 30 16:51:32 EDT 2025 Fri Sep 05 14:35:29 EDT 2025 Tue Oct 07 09:09:16 EDT 2025 Fri Sep 05 08:19:18 EDT 2025 Mon Oct 06 18:37:46 EDT 2025 Mon Oct 20 22:50:29 EDT 2025 Mon Oct 20 16:58:02 EDT 2025 Thu Oct 16 16:17:26 EDT 2025 Mon Jul 21 06:03:59 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 Wed Oct 01 04:15:23 EDT 2025 Sat Sep 06 07:27:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Alphabet Size Forward Algorithm Hide State Input Sequence Hide Markov Model |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c633t-4597ebed3644b270d32a35d90f1a963d57dcac57fca46f6f832fd61cdd6a38e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-14-339 |
| PMID | 24266924 |
| PQID | 1462542943 |
| PQPubID | 44065 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1186_1471_2105_14_339 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4222747 proquest_miscellaneous_1671505665 proquest_miscellaneous_1492625709 proquest_miscellaneous_1464501839 proquest_journals_1462542943 gale_infotracmisc_A534517763 gale_infotracacademiconefile_A534517763 gale_incontextgauss_ISR_A534517763 pubmed_primary_24266924 crossref_citationtrail_10_1186_1471_2105_14_339 crossref_primary_10_1186_1471_2105_14_339 springer_journals_10_1186_1471_2105_14_339 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-11-22 |
| PublicationDateYYYYMMDD | 2013-11-22 |
| PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2013 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | L Rabiner (6206_CR18) 1989; 77 S Eddy (6206_CR5) 1998; 14 A Hobolth (6206_CR14) 2011; 21 Y Lifshits (6206_CR10) 2009; 54 C Burge (6206_CR2) 1997; 268 GA Churchill (6206_CR1) 1989; 51 J Nielsen (6206_CR11) 2011 DP Locke (6206_CR13) 2011; 469 K Prüfer (6206_CR16) 2012; 486 AD Kern (6206_CR9) 2010; 27 T Mailund (6206_CR17) 2012; 8 A Krogh (6206_CR3) 2001; 305 A Siepel (6206_CR6) 2005 A Scally (6206_CR15) 2012; 483 A Sand (6206_CR19) 2010 A Hobolth (6206_CR7) 2007; 3 JY Dutheil (6206_CR8) 2009; 183 T Mailund (6206_CR12) 2011; 7 A Bateman (6206_CR4) 2004; 32 21270173 - Genome Res. 2011 Mar;21(3):349-56 20185453 - Mol Biol Evol. 2010 Jul;27(7):1673-85 21270892 - Nature. 2011 Jan 27;469(7331):529-33 17319744 - PLoS Genet. 2007 Feb 23;3(2):e7 23284294 - PLoS Genet. 2012;8(12):e1003125 11152613 - J Mol Biol. 2001 Jan 19;305(3):567-80 19581452 - Genetics. 2009 Sep;183(1):259-74 21408205 - PLoS Genet. 2011 Mar;7(3):e1001319 14681378 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41 22722832 - Nature. 2012 Jun 28;486(7404):527-31 2706403 - Bull Math Biol. 1989;51(1):79-94 9149143 - J Mol Biol. 1997 Apr 25;268(1):78-94 9918945 - Bioinformatics. 1998;14(9):755-63 22398555 - Nature. 2012 Mar 8;483(7388):169-75 |
| References_xml | – volume: 7 start-page: e1001319 issue: 3 year: 2011 ident: 6206_CR12 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001319 – volume: 51 start-page: 79 year: 1989 ident: 6206_CR1 publication-title: Bull Math Biol doi: 10.1007/BF02458837 – start-page: 126 volume-title: 2010 Ninth International Workshop on Parallel and Distributed Methods in Verification/2010 Second International Workshop on High Performance Computational Systems Biology., IEEE year: 2010 ident: 6206_CR19 – volume: 14 start-page: 755 issue: 9 year: 1998 ident: 6206_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.9.755 – volume: 3 start-page: e7 issue: 2 year: 2007 ident: 6206_CR7 publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030007 – volume: 21 start-page: 349 issue: 3 year: 2011 ident: 6206_CR14 publication-title: Genome Res doi: 10.1101/gr.114751.110 – volume: 183 start-page: 259 year: 2009 ident: 6206_CR8 publication-title: Genetics doi: 10.1534/genetics.109.103010 – volume: 486 start-page: 527 year: 2012 ident: 6206_CR16 publication-title: Nature doi: 10.1038/nature11128 – volume: 32 start-page: D138 issue: suppl 1 year: 2004 ident: 6206_CR4 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh121 – volume: 27 start-page: 1673 issue: 7 year: 2010 ident: 6206_CR9 publication-title: Mol Biol Evol doi: 10.1093/molbev/msq053 – volume: 8 start-page: e1003125 issue: 12 year: 2012 ident: 6206_CR17 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003125 – volume: 268 start-page: 78 year: 1997 ident: 6206_CR2 publication-title: J Mol Biol doi: 10.1006/jmbi.1997.0951 – volume: 469 start-page: 529 issue: 7331 year: 2011 ident: 6206_CR13 publication-title: Nature doi: 10.1038/nature09687 – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 6206_CR18 publication-title: Proc IEEE doi: 10.1109/5.18626 – start-page: 452 volume-title: Proceedings of the 2011 IEEE IPDPS Workshops & PhD Forum, IEEE year: 2011 ident: 6206_CR11 – volume: 483 start-page: 169 issue: 7388 year: 2012 ident: 6206_CR15 publication-title: Nature doi: 10.1038/nature10842 – volume: 54 start-page: 379 issue: 3 year: 2009 ident: 6206_CR10 publication-title: Algorithmica doi: 10.1007/s00453-007-9128-0 – volume: 305 start-page: 567 issue: 3 year: 2001 ident: 6206_CR3 publication-title: J Mol Biol doi: 10.1006/jmbi.2000.4315 – start-page: 325 volume-title: Statistical Methods in Molecular Evolution year: 2005 ident: 6206_CR6 doi: 10.1007/0-387-27733-1_12 – reference: 9918945 - Bioinformatics. 1998;14(9):755-63 – reference: 2706403 - Bull Math Biol. 1989;51(1):79-94 – reference: 9149143 - J Mol Biol. 1997 Apr 25;268(1):78-94 – reference: 17319744 - PLoS Genet. 2007 Feb 23;3(2):e7 – reference: 21270892 - Nature. 2011 Jan 27;469(7331):529-33 – reference: 21270173 - Genome Res. 2011 Mar;21(3):349-56 – reference: 14681378 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41 – reference: 22398555 - Nature. 2012 Mar 8;483(7388):169-75 – reference: 22722832 - Nature. 2012 Jun 28;486(7404):527-31 – reference: 19581452 - Genetics. 2009 Sep;183(1):259-74 – reference: 20185453 - Mol Biol Evol. 2010 Jul;27(7):1673-85 – reference: 11152613 - J Mol Biol. 2001 Jan 19;305(3):567-80 – reference: 21408205 - PLoS Genet. 2011 Mar;7(3):e1001319 – reference: 23284294 - PLoS Genet. 2012;8(12):e1003125 |
| SSID | ssj0017805 |
| Score | 2.161231 |
| Snippet | Background
Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the... Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a... Background Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the... Doc number: 339 Abstract Background: Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis... Background: Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 339 |
| SubjectTerms | Algorithms Analysis Animals Bioinformatics Biomedical and Life Sciences Computation Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer programs Computer Simulation Construction Gorilla gorilla - genetics Humans Libraries Life Sciences Likelihood Functions Markov analysis Markov Chains Markov processes Mathematical models Microarrays Observational Studies as Topic Pan troglodytes - genetics Peptide Library Phylogeny Pongo - genetics Preprocessing Probability Science Sequence analysis (methods) Software Time Factors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ri9NAEF_OHqJ-EN9GT1lFEA_CNdnsbiqInHJHFVrk9OC-hc0-7go1iZcEqX-9M3nZHlz91NCdpN2Z2dmZnclvCHnDdBoKa8D6SSt8TBT52A_Hj7TUNpWxZQ4DxdlcTE-jr2f8bIfM-3dhsKyyt4mNoTa5xjPyA1jRIfZWitjH4pePXaMwu9q30FBdawXzoYEYu0F2Q0TGGpHdT0fzbydDXgER_PtkZSzgoTLwgY77QeQzbBi-tjldNdFre9TV-skhiXqH3KqzQq1-q-VybZ86vkfudg4mPWw14j7ZsdkDcrNtObl6SPI_i2I6m0GU_J4qimDFyxXNwW6AvK2hMES7gx1qsTxvgWXR9NIWtkU1Kukio-A0wkdRV7TKaVnABkjrovkWXGAsw6VqeQ7Mqy5-PiKnx0c_Pk_9rumCrwVjlR9BhAGCNQwcpTSUY8NCxbiZjF2gYLEaLo1WmkunVSSccCBZZ0SgjRGKxTZkj8koyzP7lNAgjlmqjEj5REUudLETETdcAKWZCOk8ctBzO9EdIjk2xlgmTWQSiwTlk6B84CoB-Xjk3XBH0aJxbKF9jQJMEOQiwyqac1WXZfLl-0lyyFnEAwmm1SNvOyKXw0_DzNqXEmACiIu1Qbm3QQlS0ZvDvZ4knRUok38665FXwzDeiZVtmc3rhiZCUEX8w9fTIKojl-NtNEIG6M0K7pEnrXoOLGrcMAi0PSI3FHcgQIzxzZFscdFgjeMJIUScHtnvVXxtetdyfn9YBP8V07PtjHtObofYgCSAdRrukVF1WdsX4AZW6ctubf8FpVtZZQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEF_0RNQH8dvoKasI4kG4JvuV-nYcHlWoD-rBvYXNftwVYhKaBKl_vTNJGprDO_GppTPbdnd2dmZ2Jr8h5B0zWSydhdNPORlioijEfjghN8q4TCWOeQwUl1_l4pR_ORNnw30HPguzm7-PEnkYweEZQlgiwoiHjM1vkltgomSXlpXHY74Akfm3Sci_jJoYnctH747tuVwXOSZH75E7bVHpzS-d5zv25-QBuT84jvSol_RDcsMVj8jtvpXk5jEpf6-qxXIJ0e9HqimCEOcbWsJ5AHJ0lgKJDhc21GHZ3QrLnenaVa5HK6rpqqDgDMJL1Ta0KWldgWGjbdV9Cq4tltdSnZ-X61Vz8fMJOT359ON4EQ7NFEIjGWtCDpEDCMwycICyWM0sizUTdj7zkQYltEJZo41Q3mguvfQgMW9lZKyVmiUuZk_JXlEW7jmhUZKwTFuZibnmPvaJl1xYIYHTzqXyATncrnZqBqRxbHiRp13EkcgU5ZOifOBdCvIJyIdxRNWjbFzD-xYFmCJ4RYHVMee6rev08_dv6ZFgXEQKjsyAvB-YfAk_DTPrHzaACSDe1YRzf8IJUjFT8nafpIN21xguxdjniwP5zUjGkVixVriy7Xg4giXiH76aB9EahZpdxyNVhF6qFAF51m_PcYk69woC6ICoycYdGRA7fEopVhcdhjje_EEkGZCD7Rbfmd6VK38wKsE_xfTif775JbkbY5uRCLQ23id7zbp1r8DZa7LXnZ7_Adc6Smc priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DmgMJBBSIhJaZs4dlLeKsQ0kDpNQKXxFDm2s0VkSWgToe6v5y5faio2hMRTq95Zjc9357v4_DtC3jAVOsJo8H6eERYeFFnYD8dyladM6PmGRZgozo_F0cL9fMpPd8hJexcmvFBhnDWgoQhUPNq8hp7Utxywi4JZjnMd1Ubvi7ENTtaC9IVbtmsxNr1BdgWH6HxAdhfHJ7Pv1SWjhqU9rfzDsN7utO2jNzap7QLK7hT1DrlVprlc_5JJsrFRHd4jP9sp1vUpP0ZlEY7U5Rb64_-UwX1yt4lq6axWwwdkx6QPyc26z-X6Ecku4_xoPofU_D2VFBGSkzXNwFmBkhlNgUSbt0nUYE1gjLXYdGlyU0MprWicUohU4SMvC1pkdJXDrkvLvPoVZoC1v1QmZ9kyLs4v9sji8OO3D0dW0-nBUoKxwnIhrQFt0gyis9DxJpo5knE9nUS2BA-huaeVVNyLlHRFJCJQp0gLW2ktJPONwx6TQZql5imhtu-zUGoR8ql0IyfyI-FyzQVw6qnwoiEZtyscqAYGHbtxJEGVDvkiQDEGKEb4FoAYh-RdNyKvIUCu4X2NShMgskaKpTtnslytgk9fvwQzzlxue-DPh-RtwxRl8Ncws_omBEwAwbh6nPs9TlgV1Se3uhk0rmeFuZyDTchcIL_qyDgSy-lSk5UVj4tIjvjAV_MglCT3JtfxCM_GEFrwIXlSm0Qnoir2g-x-SLyesXQMCGzep6TxeQVwjq8lIc0dkoPWrDamd6XkDzrD--syPfsX5ufktoM9UGwwLmefDIplaV5AJFqELxvn8htz-4I6 priority: 102 providerName: Unpaywall |
| Title | zipHMMlib: a highly optimised HMM library exploiting repetitions in the input to speed up the forward algorithm |
| URI | https://link.springer.com/article/10.1186/1471-2105-14-339 https://www.ncbi.nlm.nih.gov/pubmed/24266924 https://www.proquest.com/docview/1462542943 https://www.proquest.com/docview/1464501839 https://www.proquest.com/docview/1492625709 https://www.proquest.com/docview/1671505665 https://pubmed.ncbi.nlm.nih.gov/PMC4222747 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-14-339 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ri9NAEF_ugagfxLfRs6wiigfxmmyymwoitVythZbjzkL9FJLs5q4Qk1yboPWvdyYvm-OufmlKZpI2M7OzM7uT3xDyhgW-yZUE7ycU13GjSMd-OLoViED5wlEsxERxMuWjmTWe2_MdUr9dUglwdW1qh_2kZsvow-_L9WcY8J-KAe_wIwMcrA6pi60bls5Y7216qWNbKdx-rXps7JJ9mLp62NthYv3bZkBA_3rv8pobteaqqx57Y8q6Wk7Z7KneJbfzOPXWv7wo2pi2hvfJvSrepP3SQB6QHRU_JLfKDpTrRyT5s0hHkwkkzR-pRxG7OFrTBNwIqF9JCiRarfNQhdV6C6ySpkuVqhLkaEUXMYUYEg5pntEsoasU5kOap8VZiIixKpd60TmIKrv4-ZjMhsffByO96sGgB5yxTLcg4QA9SwZxk2-KrmSmx2zZ64aGB2NX2kIGXmCLMPAsHvIQFB1KbgRSco85ymRPyF6cxOoZoYbjMN-T3Ld7nhWaoRNyy5Y2B07Z4yLUyFEtbTeoAMqxT0bkFomKw13Uj4v6gW8u6Ecj75sr0hKcYwvva1Sgi5gXMRbVnHv5auV-Ozt1-zazbEOAp9XIu4opTOCn4cnKdxTgARAmq8V50OIErQRtcm0nbm3TmGWZ2B7MAvKrhoxXYqFbrJK84LEQYxH_8M08CPJoi-42Hi4MDG65rZGnpXk2IiqiMsi7NSJahtswIOR4mxIvLgrocVwwhARUI4e1iW883o2SP2wGwX_V9Hy74F6QOyb2IzFgnJoHZC9b5uolRIWZ3yG7Yi7g0xl-7ZD9fn98Nobjl-PpySmcHfBBp1hv6RQeACiz6Un_x19guGVe |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRahwQLwxFFgQCFHJaux9OUgIVUCV0KYHaKXc3LV33UYKtqltVeFH8RuZ8YukUsupp0TZsbI7r53ZHX9DyBsWR760BryfstLFiyIX--G4PFaxjVRgWYKJ4uRAjo74t6mYrpE_3bswWFbZ-cTaUZssxjPybbBoH3srcfYp_-Vi1yi8Xe1aaDRqsWcX55CyFR_HX0C-b31_9-vh55HbdhVwY8lY6XIIoWHmhkEkEPlqYJivmTDDQeJp0EYjlIl1LFQSay4TmcDUEyO92BipWWAR6ABc_g3OwJeA_ahpn-B52B-guwoNJExZeS6kVML1uMuwHfnS1ndxA1jaAS9WZ_ZXtLfJRpXmenGu5_OlXXD3LrnThq90p9G3e2TNpvfJzaah5eIByX7P8tFkAjn4B6opQiHPFzQDrwTaZA2FIdoeG1GLxX8zLLqmZza3DWZSQWcphZAUPvKqpGVGixy2V1rl9a8QYGORL9XzExBNefrzITm6FuY_IutpltonhHpBwCJtZCSGmid-EiSSCyMkUJqhVIlDtjtuh3GLd45tN-ZhnfcEMkT5hCgf-BaCfBzyvn8ib7A-rqB9jQIMEUIjxRqdE10VRTj-8T3cEYwLT4Hjdsi7lijJ4K9hZc0rD7AARN1aodxcoQSpxKvDnZ6ErY8pwn8W4ZBX_TA-iXVzqc2qmoYjZCNO-HIaxIwUanAVjVQexspSOORxo549i-ogD9J4h6gVxe0JEMF8dSSdndZI5nj-CPmsQ7Y6FV9a3qWc3-qN4L9ieno1416SjdHhZD_cHx_sPSO3fGx14oHN-ptkvTyr7HMIOMvoRW3llBxft1v5C4bekKo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgiK8HxOcIDDAICTEpahPHdsrbVKg6oBMCJu0tcmJ7q9QlUZMIlb-eu3ypmdgQT61657b2-Xx3vsvvCHnLktgXRsPpJ41wMVHkYj8cN0hkYmIZGmYxUFwciflx8PmEn7QXbkVX7d6lJJtnGhClKS1HubaNiodi5MGR6kKwwl0vcBmbXCc3ArBt2MFgKqZ9FgHx-rvU5F9GDUzRxQN5yyJdrJbsU6Z3ye0qzdXml1qttqzS7D6517qT9KCR_wNyzaQPyc2mweTmEcl-L_P5YgEx8QeqKEITrzY0g1MCpGs0BRJtr3GowWK8JRZB07XJTYNhVNBlSsFFhJe8KmmZ0SIHc0ervP4UHF4suqVqdZqtl-XZ-WNyPPv0czp32xYLbiIYK90A4gkQo2bgFsW-HGvmK8b1ZGw9BaqpudSJSri0iQqEFRbkaLXwEq2FYqHx2ROyk2apeUqoF4YsVlrEfKIC69vQioBrLoBTT4S0Dhl1qx0lLf44tsFYRXUcEooI5ROhfOBdBPJxyPt-RN5gb1zB-wYFGCGkRYo1M6eqKoro8Mf36ICzgHsSDlKHvGuZbAY_DTNrHkGACSAK1oBzb8AJUkmG5G6fRK3OFxhE-dj9KwDy656MI7GOLTVZVfMECKGIf_hyHsRw5HJ8FY-QHvqugjtkt9me_RLVTheE1Q6Rg43bMyCi-JCSLs9qZHG8D4T40iH73Rbfmt6lK7_fK8E_xfTsf775Fbn17eMs-np49OU5ueNjHxIPFNjfIzvlujIvwBss45e1yv8BmphVnQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DmgMJBBSIhJaZs4dlLeKsQ0kDpNQKXxFDm2s0VkSWgToe6v5y5faio2hMRTq95Zjc9357v4_DtC3jAVOsJo8H6eERYeFFnYD8dyladM6PmGRZgozo_F0cL9fMpPd8hJexcmvFBhnDWgoQhUPNq8hp7Utxywi4JZjnMd1Ubvi7ENTtaC9IVbtmsxNr1BdgWH6HxAdhfHJ7Pv1SWjhqU9rfzDsN7utO2jNzap7QLK7hT1DrlVprlc_5JJsrFRHd4jP9sp1vUpP0ZlEY7U5Rb64_-UwX1yt4lq6axWwwdkx6QPyc26z-X6Ecku4_xoPofU_D2VFBGSkzXNwFmBkhlNgUSbt0nUYE1gjLXYdGlyU0MprWicUohU4SMvC1pkdJXDrkvLvPoVZoC1v1QmZ9kyLs4v9sji8OO3D0dW0-nBUoKxwnIhrQFt0gyis9DxJpo5knE9nUS2BA-huaeVVNyLlHRFJCJQp0gLW2ktJPONwx6TQZql5imhtu-zUGoR8ql0IyfyI-FyzQVw6qnwoiEZtyscqAYGHbtxJEGVDvkiQDEGKEb4FoAYh-RdNyKvIUCu4X2NShMgskaKpTtnslytgk9fvwQzzlxue-DPh-RtwxRl8Ncws_omBEwAwbh6nPs9TlgV1Se3uhk0rmeFuZyDTchcIL_qyDgSy-lSk5UVj4tIjvjAV_MglCT3JtfxCM_GEFrwIXlSm0Qnoir2g-x-SLyesXQMCGzep6TxeQVwjq8lIc0dkoPWrDamd6XkDzrD--syPfsX5ufktoM9UGwwLmefDIplaV5AJFqELxvn8htz-4I6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=zipHMMlib%3A+a+highly+optimised+HMM+library+exploiting+repetitions+in+the+input+to+speed+up+the+forward+algorithm&rft.jtitle=BMC+bioinformatics&rft.au=Sand%2C+Andreas&rft.au=Kristiansen%2C+Martin&rft.au=Pedersen%2C+Christian+NS&rft.au=Mailund%2C+Thomas&rft.date=2013-11-22&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=14&rft_id=info:doi/10.1186%2F1471-2105-14-339&rft.externalDocID=3141615021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |