zipHMMlib: a highly optimised HMM library exploiting repetitions in the input to speed up the forward algorithm

Background Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 14; no. 1; p. 339
Main Authors Sand, Andreas, Kristiansen, Martin, Pedersen, Christian NS, Mailund, Thomas
Format Journal Article
LanguageEnglish
Published London BioMed Central 22.11.2013
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-14-339

Cover

Abstract Background Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. Results We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. Conclusions We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/ .
AbstractList Background: Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. Results: We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. Conclusions: We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/ .
Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library.BACKGROUNDHidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library.We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library.RESULTSWe have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library.We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.CONCLUSIONSWe have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.
Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.
Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.
Background Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. Results We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. Conclusions We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at
Background Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. Results We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. Conclusions We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/ .
Doc number: 339 Abstract Background: Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. Results: We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models. Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. Conclusions: We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/ .
ArticleNumber 339
Audience Academic
Author Pedersen, Christian NS
Mailund, Thomas
Kristiansen, Martin
Sand, Andreas
AuthorAffiliation 1 Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
2 Department of Computer Science, Aarhus University, Aarhus, Denmark
AuthorAffiliation_xml – name: 1 Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
– name: 2 Department of Computer Science, Aarhus University, Aarhus, Denmark
Author_xml – sequence: 1
  givenname: Andreas
  surname: Sand
  fullname: Sand, Andreas
  email: asand@birc.au.dk
  organization: Bioinformatics Research Centre, Aarhus University, Department of Computer Science, Aarhus University
– sequence: 2
  givenname: Martin
  surname: Kristiansen
  fullname: Kristiansen, Martin
  organization: Department of Computer Science, Aarhus University
– sequence: 3
  givenname: Christian NS
  surname: Pedersen
  fullname: Pedersen, Christian NS
  organization: Bioinformatics Research Centre, Aarhus University, Department of Computer Science, Aarhus University
– sequence: 4
  givenname: Thomas
  surname: Mailund
  fullname: Mailund, Thomas
  organization: Bioinformatics Research Centre, Aarhus University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24266924$$D View this record in MEDLINE/PubMed
BookMark eNqNkstv1DAQxiNURB9w54QscYFDit_ecECqKqCVWiHxOFve2Mm68trBdmjLX4_TXdrdikflg0czv2_k-Tz71Y4P3lTVcwQPEZrxN4gKVGMEWY1oTUjzqNq7Te1sxLvVfkoXECIxg-xJtYsp5rzBdK8KP-1wcn7u7PwtUGBh-4W7BmHIdmmT0aCUQKlFFa-BuRpcsNn6HkQzmFzC4BOwHuSFKdcwZpADSIMpwnG4yXYhXqqogXJ9iDYvlk-rx51yyTxb3wfVtw_vvx6f1GefPp4eH53VLSck15Q1wsyNJpzSORZQE6wI0w3skGo40UzoVrVMdK2ivOPdjOBOc9RqzRWZGUwOKrTqO_pBXV8q5-QQ7bLMIRGUk3lyckdO7pRIFvOK5t1KM4zzpdGt8TmqO11QVm5XvF3IPvyQFGMsqCgNXq0bxPB9NCnL4mJrnFPehDFJxAVikHHO_o_SBnPMBGwegHLKIJrdTPDyHnoRxuiL0ROFGcUNJXdUr5yR1nehTNNOTeURI5QhIfhEHf6BKkebpW3LHna25LcEr7cEhcnmKvdqTEmefvm8zb7YtPrW49-LWQC-AtoYUoqmk63Natq48grr_vWJ8J7wAf--3pVUUN-buOHa3zS_ABh2Els
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2973741
crossref_primary_10_1007_s00607_017_0557_6
crossref_primary_10_1016_j_compbiolchem_2015_02_001
crossref_primary_10_1145_3046945
crossref_primary_10_1371_journal_pgen_1008449
crossref_primary_10_7554_eLife_89470_4
crossref_primary_10_7554_eLife_89470
Cites_doi 10.1371/journal.pgen.1001319
10.1007/BF02458837
10.1093/bioinformatics/14.9.755
10.1371/journal.pgen.0030007
10.1101/gr.114751.110
10.1534/genetics.109.103010
10.1038/nature11128
10.1093/nar/gkh121
10.1093/molbev/msq053
10.1371/journal.pgen.1003125
10.1006/jmbi.1997.0951
10.1038/nature09687
10.1109/5.18626
10.1038/nature10842
10.1007/s00453-007-9128-0
10.1006/jmbi.2000.4315
10.1007/0-387-27733-1_12
ContentType Journal Article
Copyright Sand et al.; licensee BioMed Central Ltd. 2013
COPYRIGHT 2013 BioMed Central Ltd.
2013 Sand et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2013 Sand et al.; licensee BioMed Central Ltd. 2013 Sand et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Sand et al.; licensee BioMed Central Ltd. 2013
– notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: 2013 Sand et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2013 Sand et al.; licensee BioMed Central Ltd. 2013 Sand et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2105-14-339
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
Computer and Information Systems Abstracts

MEDLINE



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 339
ExternalDocumentID 10.1186/1471-2105-14-339
PMC4222747
3141615021
A534517763
24266924
10_1186_1471_2105_14_339
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
ADTOC
AFFHD
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c633t-4597ebed3644b270d32a35d90f1a963d57dcac57fca46f6f832fd61cdd6a38e23
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Oct 29 12:06:23 EDT 2025
Tue Sep 30 16:51:32 EDT 2025
Fri Sep 05 14:35:29 EDT 2025
Tue Oct 07 09:09:16 EDT 2025
Fri Sep 05 08:19:18 EDT 2025
Mon Oct 06 18:37:46 EDT 2025
Mon Oct 20 22:50:29 EDT 2025
Mon Oct 20 16:58:02 EDT 2025
Thu Oct 16 16:17:26 EDT 2025
Mon Jul 21 06:03:59 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Wed Oct 01 04:15:23 EDT 2025
Sat Sep 06 07:27:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Alphabet Size
Forward Algorithm
Hide State
Input Sequence
Hide Markov Model
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-4597ebed3644b270d32a35d90f1a963d57dcac57fca46f6f832fd61cdd6a38e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-14-339
PMID 24266924
PQID 1462542943
PQPubID 44065
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_1471_2105_14_339
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4222747
proquest_miscellaneous_1671505665
proquest_miscellaneous_1492625709
proquest_miscellaneous_1464501839
proquest_journals_1462542943
gale_infotracmisc_A534517763
gale_infotracacademiconefile_A534517763
gale_incontextgauss_ISR_A534517763
pubmed_primary_24266924
crossref_citationtrail_10_1186_1471_2105_14_339
crossref_primary_10_1186_1471_2105_14_339
springer_journals_10_1186_1471_2105_14_339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-22
PublicationDateYYYYMMDD 2013-11-22
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-22
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2013
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References L Rabiner (6206_CR18) 1989; 77
S Eddy (6206_CR5) 1998; 14
A Hobolth (6206_CR14) 2011; 21
Y Lifshits (6206_CR10) 2009; 54
C Burge (6206_CR2) 1997; 268
GA Churchill (6206_CR1) 1989; 51
J Nielsen (6206_CR11) 2011
DP Locke (6206_CR13) 2011; 469
K Prüfer (6206_CR16) 2012; 486
AD Kern (6206_CR9) 2010; 27
T Mailund (6206_CR17) 2012; 8
A Krogh (6206_CR3) 2001; 305
A Siepel (6206_CR6) 2005
A Scally (6206_CR15) 2012; 483
A Sand (6206_CR19) 2010
A Hobolth (6206_CR7) 2007; 3
JY Dutheil (6206_CR8) 2009; 183
T Mailund (6206_CR12) 2011; 7
A Bateman (6206_CR4) 2004; 32
21270173 - Genome Res. 2011 Mar;21(3):349-56
20185453 - Mol Biol Evol. 2010 Jul;27(7):1673-85
21270892 - Nature. 2011 Jan 27;469(7331):529-33
17319744 - PLoS Genet. 2007 Feb 23;3(2):e7
23284294 - PLoS Genet. 2012;8(12):e1003125
11152613 - J Mol Biol. 2001 Jan 19;305(3):567-80
19581452 - Genetics. 2009 Sep;183(1):259-74
21408205 - PLoS Genet. 2011 Mar;7(3):e1001319
14681378 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41
22722832 - Nature. 2012 Jun 28;486(7404):527-31
2706403 - Bull Math Biol. 1989;51(1):79-94
9149143 - J Mol Biol. 1997 Apr 25;268(1):78-94
9918945 - Bioinformatics. 1998;14(9):755-63
22398555 - Nature. 2012 Mar 8;483(7388):169-75
References_xml – volume: 7
  start-page: e1001319
  issue: 3
  year: 2011
  ident: 6206_CR12
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001319
– volume: 51
  start-page: 79
  year: 1989
  ident: 6206_CR1
  publication-title: Bull Math Biol
  doi: 10.1007/BF02458837
– start-page: 126
  volume-title: 2010 Ninth International Workshop on Parallel and Distributed Methods in Verification/2010 Second International Workshop on High Performance Computational Systems Biology., IEEE
  year: 2010
  ident: 6206_CR19
– volume: 14
  start-page: 755
  issue: 9
  year: 1998
  ident: 6206_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.9.755
– volume: 3
  start-page: e7
  issue: 2
  year: 2007
  ident: 6206_CR7
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030007
– volume: 21
  start-page: 349
  issue: 3
  year: 2011
  ident: 6206_CR14
  publication-title: Genome Res
  doi: 10.1101/gr.114751.110
– volume: 183
  start-page: 259
  year: 2009
  ident: 6206_CR8
  publication-title: Genetics
  doi: 10.1534/genetics.109.103010
– volume: 486
  start-page: 527
  year: 2012
  ident: 6206_CR16
  publication-title: Nature
  doi: 10.1038/nature11128
– volume: 32
  start-page: D138
  issue: suppl 1
  year: 2004
  ident: 6206_CR4
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh121
– volume: 27
  start-page: 1673
  issue: 7
  year: 2010
  ident: 6206_CR9
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msq053
– volume: 8
  start-page: e1003125
  issue: 12
  year: 2012
  ident: 6206_CR17
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003125
– volume: 268
  start-page: 78
  year: 1997
  ident: 6206_CR2
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1997.0951
– volume: 469
  start-page: 529
  issue: 7331
  year: 2011
  ident: 6206_CR13
  publication-title: Nature
  doi: 10.1038/nature09687
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 6206_CR18
  publication-title: Proc IEEE
  doi: 10.1109/5.18626
– start-page: 452
  volume-title: Proceedings of the 2011 IEEE IPDPS Workshops & PhD Forum, IEEE
  year: 2011
  ident: 6206_CR11
– volume: 483
  start-page: 169
  issue: 7388
  year: 2012
  ident: 6206_CR15
  publication-title: Nature
  doi: 10.1038/nature10842
– volume: 54
  start-page: 379
  issue: 3
  year: 2009
  ident: 6206_CR10
  publication-title: Algorithmica
  doi: 10.1007/s00453-007-9128-0
– volume: 305
  start-page: 567
  issue: 3
  year: 2001
  ident: 6206_CR3
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.4315
– start-page: 325
  volume-title: Statistical Methods in Molecular Evolution
  year: 2005
  ident: 6206_CR6
  doi: 10.1007/0-387-27733-1_12
– reference: 9918945 - Bioinformatics. 1998;14(9):755-63
– reference: 2706403 - Bull Math Biol. 1989;51(1):79-94
– reference: 9149143 - J Mol Biol. 1997 Apr 25;268(1):78-94
– reference: 17319744 - PLoS Genet. 2007 Feb 23;3(2):e7
– reference: 21270892 - Nature. 2011 Jan 27;469(7331):529-33
– reference: 21270173 - Genome Res. 2011 Mar;21(3):349-56
– reference: 14681378 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41
– reference: 22398555 - Nature. 2012 Mar 8;483(7388):169-75
– reference: 22722832 - Nature. 2012 Jun 28;486(7404):527-31
– reference: 19581452 - Genetics. 2009 Sep;183(1):259-74
– reference: 20185453 - Mol Biol Evol. 2010 Jul;27(7):1673-85
– reference: 11152613 - J Mol Biol. 2001 Jan 19;305(3):567-80
– reference: 21408205 - PLoS Genet. 2011 Mar;7(3):e1001319
– reference: 23284294 - PLoS Genet. 2012;8(12):e1003125
SSID ssj0017805
Score 2.161231
Snippet Background Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the...
Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a...
Background Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the...
Doc number: 339 Abstract Background: Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis...
Background: Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 339
SubjectTerms Algorithms
Analysis
Animals
Bioinformatics
Biomedical and Life Sciences
Computation
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer programs
Computer Simulation
Construction
Gorilla gorilla - genetics
Humans
Libraries
Life Sciences
Likelihood Functions
Markov analysis
Markov Chains
Markov processes
Mathematical models
Microarrays
Observational Studies as Topic
Pan troglodytes - genetics
Peptide Library
Phylogeny
Pongo - genetics
Preprocessing
Probability
Science
Sequence analysis (methods)
Software
Time Factors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ri9NAEF_OHqJ-EN9GT1lFEA_CNdnsbiqInHJHFVrk9OC-hc0-7go1iZcEqX-9M3nZHlz91NCdpN2Z2dmZnclvCHnDdBoKa8D6SSt8TBT52A_Hj7TUNpWxZQ4DxdlcTE-jr2f8bIfM-3dhsKyyt4mNoTa5xjPyA1jRIfZWitjH4pePXaMwu9q30FBdawXzoYEYu0F2Q0TGGpHdT0fzbydDXgER_PtkZSzgoTLwgY77QeQzbBi-tjldNdFre9TV-skhiXqH3KqzQq1-q-VybZ86vkfudg4mPWw14j7ZsdkDcrNtObl6SPI_i2I6m0GU_J4qimDFyxXNwW6AvK2hMES7gx1qsTxvgWXR9NIWtkU1Kukio-A0wkdRV7TKaVnABkjrovkWXGAsw6VqeQ7Mqy5-PiKnx0c_Pk_9rumCrwVjlR9BhAGCNQwcpTSUY8NCxbiZjF2gYLEaLo1WmkunVSSccCBZZ0SgjRGKxTZkj8koyzP7lNAgjlmqjEj5REUudLETETdcAKWZCOk8ctBzO9EdIjk2xlgmTWQSiwTlk6B84CoB-Xjk3XBH0aJxbKF9jQJMEOQiwyqac1WXZfLl-0lyyFnEAwmm1SNvOyKXw0_DzNqXEmACiIu1Qbm3QQlS0ZvDvZ4knRUok38665FXwzDeiZVtmc3rhiZCUEX8w9fTIKojl-NtNEIG6M0K7pEnrXoOLGrcMAi0PSI3FHcgQIzxzZFscdFgjeMJIUScHtnvVXxtetdyfn9YBP8V07PtjHtObofYgCSAdRrukVF1WdsX4AZW6ctubf8FpVtZZQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEF_0RNQH8dvoKasI4kG4JvuV-nYcHlWoD-rBvYXNftwVYhKaBKl_vTNJGprDO_GppTPbdnd2dmZ2Jr8h5B0zWSydhdNPORlioijEfjghN8q4TCWOeQwUl1_l4pR_ORNnw30HPguzm7-PEnkYweEZQlgiwoiHjM1vkltgomSXlpXHY74Akfm3Sci_jJoYnctH747tuVwXOSZH75E7bVHpzS-d5zv25-QBuT84jvSol_RDcsMVj8jtvpXk5jEpf6-qxXIJ0e9HqimCEOcbWsJ5AHJ0lgKJDhc21GHZ3QrLnenaVa5HK6rpqqDgDMJL1Ta0KWldgWGjbdV9Cq4tltdSnZ-X61Vz8fMJOT359ON4EQ7NFEIjGWtCDpEDCMwycICyWM0sizUTdj7zkQYltEJZo41Q3mguvfQgMW9lZKyVmiUuZk_JXlEW7jmhUZKwTFuZibnmPvaJl1xYIYHTzqXyATncrnZqBqRxbHiRp13EkcgU5ZOifOBdCvIJyIdxRNWjbFzD-xYFmCJ4RYHVMee6rev08_dv6ZFgXEQKjsyAvB-YfAk_DTPrHzaACSDe1YRzf8IJUjFT8nafpIN21xguxdjniwP5zUjGkVixVriy7Xg4giXiH76aB9EahZpdxyNVhF6qFAF51m_PcYk69woC6ICoycYdGRA7fEopVhcdhjje_EEkGZCD7Rbfmd6VK38wKsE_xfTif775JbkbY5uRCLQ23id7zbp1r8DZa7LXnZ7_Adc6Smc
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DmgMJBBSIhJaZs4dlLeKsQ0kDpNQKXxFDm2s0VkSWgToe6v5y5faio2hMRTq95Zjc9357v4_DtC3jAVOsJo8H6eERYeFFnYD8dyladM6PmGRZgozo_F0cL9fMpPd8hJexcmvFBhnDWgoQhUPNq8hp7Utxywi4JZjnMd1Ubvi7ENTtaC9IVbtmsxNr1BdgWH6HxAdhfHJ7Pv1SWjhqU9rfzDsN7utO2jNzap7QLK7hT1DrlVprlc_5JJsrFRHd4jP9sp1vUpP0ZlEY7U5Rb64_-UwX1yt4lq6axWwwdkx6QPyc26z-X6Ecku4_xoPofU_D2VFBGSkzXNwFmBkhlNgUSbt0nUYE1gjLXYdGlyU0MprWicUohU4SMvC1pkdJXDrkvLvPoVZoC1v1QmZ9kyLs4v9sji8OO3D0dW0-nBUoKxwnIhrQFt0gyis9DxJpo5knE9nUS2BA-huaeVVNyLlHRFJCJQp0gLW2ktJPONwx6TQZql5imhtu-zUGoR8ql0IyfyI-FyzQVw6qnwoiEZtyscqAYGHbtxJEGVDvkiQDEGKEb4FoAYh-RdNyKvIUCu4X2NShMgskaKpTtnslytgk9fvwQzzlxue-DPh-RtwxRl8Ncws_omBEwAwbh6nPs9TlgV1Se3uhk0rmeFuZyDTchcIL_qyDgSy-lSk5UVj4tIjvjAV_MglCT3JtfxCM_GEFrwIXlSm0Qnoir2g-x-SLyesXQMCGzep6TxeQVwjq8lIc0dkoPWrDamd6XkDzrD--syPfsX5ufktoM9UGwwLmefDIplaV5AJFqELxvn8htz-4I6
  priority: 102
  providerName: Unpaywall
Title zipHMMlib: a highly optimised HMM library exploiting repetitions in the input to speed up the forward algorithm
URI https://link.springer.com/article/10.1186/1471-2105-14-339
https://www.ncbi.nlm.nih.gov/pubmed/24266924
https://www.proquest.com/docview/1462542943
https://www.proquest.com/docview/1464501839
https://www.proquest.com/docview/1492625709
https://www.proquest.com/docview/1671505665
https://pubmed.ncbi.nlm.nih.gov/PMC4222747
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-14-339
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ri9NAEF_ugagfxLfRs6wiigfxmmyymwoitVythZbjzkL9FJLs5q4Qk1yboPWvdyYvm-OufmlKZpI2M7OzM7uT3xDyhgW-yZUE7ycU13GjSMd-OLoViED5wlEsxERxMuWjmTWe2_MdUr9dUglwdW1qh_2kZsvow-_L9WcY8J-KAe_wIwMcrA6pi60bls5Y7216qWNbKdx-rXps7JJ9mLp62NthYv3bZkBA_3rv8pobteaqqx57Y8q6Wk7Z7KneJbfzOPXWv7wo2pi2hvfJvSrepP3SQB6QHRU_JLfKDpTrRyT5s0hHkwkkzR-pRxG7OFrTBNwIqF9JCiRarfNQhdV6C6ySpkuVqhLkaEUXMYUYEg5pntEsoasU5kOap8VZiIixKpd60TmIKrv4-ZjMhsffByO96sGgB5yxTLcg4QA9SwZxk2-KrmSmx2zZ64aGB2NX2kIGXmCLMPAsHvIQFB1KbgRSco85ymRPyF6cxOoZoYbjMN-T3Ld7nhWaoRNyy5Y2B07Z4yLUyFEtbTeoAMqxT0bkFomKw13Uj4v6gW8u6Ecj75sr0hKcYwvva1Sgi5gXMRbVnHv5auV-Ozt1-zazbEOAp9XIu4opTOCn4cnKdxTgARAmq8V50OIErQRtcm0nbm3TmGWZ2B7MAvKrhoxXYqFbrJK84LEQYxH_8M08CPJoi-42Hi4MDG65rZGnpXk2IiqiMsi7NSJahtswIOR4mxIvLgrocVwwhARUI4e1iW883o2SP2wGwX_V9Hy74F6QOyb2IzFgnJoHZC9b5uolRIWZ3yG7Yi7g0xl-7ZD9fn98Nobjl-PpySmcHfBBp1hv6RQeACiz6Un_x19guGVe
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRahwQLwxFFgQCFHJaux9OUgIVUCV0KYHaKXc3LV33UYKtqltVeFH8RuZ8YukUsupp0TZsbI7r53ZHX9DyBsWR760BryfstLFiyIX--G4PFaxjVRgWYKJ4uRAjo74t6mYrpE_3bswWFbZ-cTaUZssxjPybbBoH3srcfYp_-Vi1yi8Xe1aaDRqsWcX55CyFR_HX0C-b31_9-vh55HbdhVwY8lY6XIIoWHmhkEkEPlqYJivmTDDQeJp0EYjlIl1LFQSay4TmcDUEyO92BipWWAR6ABc_g3OwJeA_ahpn-B52B-guwoNJExZeS6kVML1uMuwHfnS1ndxA1jaAS9WZ_ZXtLfJRpXmenGu5_OlXXD3LrnThq90p9G3e2TNpvfJzaah5eIByX7P8tFkAjn4B6opQiHPFzQDrwTaZA2FIdoeG1GLxX8zLLqmZza3DWZSQWcphZAUPvKqpGVGixy2V1rl9a8QYGORL9XzExBNefrzITm6FuY_IutpltonhHpBwCJtZCSGmid-EiSSCyMkUJqhVIlDtjtuh3GLd45tN-ZhnfcEMkT5hCgf-BaCfBzyvn8ib7A-rqB9jQIMEUIjxRqdE10VRTj-8T3cEYwLT4Hjdsi7lijJ4K9hZc0rD7AARN1aodxcoQSpxKvDnZ6ErY8pwn8W4ZBX_TA-iXVzqc2qmoYjZCNO-HIaxIwUanAVjVQexspSOORxo549i-ogD9J4h6gVxe0JEMF8dSSdndZI5nj-CPmsQ7Y6FV9a3qWc3-qN4L9ieno1416SjdHhZD_cHx_sPSO3fGx14oHN-ptkvTyr7HMIOMvoRW3llBxft1v5C4bekKo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgiK8HxOcIDDAICTEpahPHdsrbVKg6oBMCJu0tcmJ7q9QlUZMIlb-eu3ypmdgQT61657b2-Xx3vsvvCHnLktgXRsPpJ41wMVHkYj8cN0hkYmIZGmYxUFwciflx8PmEn7QXbkVX7d6lJJtnGhClKS1HubaNiodi5MGR6kKwwl0vcBmbXCc3ArBt2MFgKqZ9FgHx-rvU5F9GDUzRxQN5yyJdrJbsU6Z3ye0qzdXml1qttqzS7D6517qT9KCR_wNyzaQPyc2mweTmEcl-L_P5YgEx8QeqKEITrzY0g1MCpGs0BRJtr3GowWK8JRZB07XJTYNhVNBlSsFFhJe8KmmZ0SIHc0ervP4UHF4suqVqdZqtl-XZ-WNyPPv0czp32xYLbiIYK90A4gkQo2bgFsW-HGvmK8b1ZGw9BaqpudSJSri0iQqEFRbkaLXwEq2FYqHx2ROyk2apeUqoF4YsVlrEfKIC69vQioBrLoBTT4S0Dhl1qx0lLf44tsFYRXUcEooI5ROhfOBdBPJxyPt-RN5gb1zB-wYFGCGkRYo1M6eqKoro8Mf36ICzgHsSDlKHvGuZbAY_DTNrHkGACSAK1oBzb8AJUkmG5G6fRK3OFxhE-dj9KwDy656MI7GOLTVZVfMECKGIf_hyHsRw5HJ8FY-QHvqugjtkt9me_RLVTheE1Q6Rg43bMyCi-JCSLs9qZHG8D4T40iH73Rbfmt6lK7_fK8E_xfTsf775Fbn17eMs-np49OU5ueNjHxIPFNjfIzvlujIvwBss45e1yv8BmphVnQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DmgMJBBSIhJaZs4dlLeKsQ0kDpNQKXxFDm2s0VkSWgToe6v5y5faio2hMRTq95Zjc9357v4_DtC3jAVOsJo8H6eERYeFFnYD8dyladM6PmGRZgozo_F0cL9fMpPd8hJexcmvFBhnDWgoQhUPNq8hp7Utxywi4JZjnMd1Ubvi7ENTtaC9IVbtmsxNr1BdgWH6HxAdhfHJ7Pv1SWjhqU9rfzDsN7utO2jNzap7QLK7hT1DrlVprlc_5JJsrFRHd4jP9sp1vUpP0ZlEY7U5Rb64_-UwX1yt4lq6axWwwdkx6QPyc26z-X6Ecku4_xoPofU_D2VFBGSkzXNwFmBkhlNgUSbt0nUYE1gjLXYdGlyU0MprWicUohU4SMvC1pkdJXDrkvLvPoVZoC1v1QmZ9kyLs4v9sji8OO3D0dW0-nBUoKxwnIhrQFt0gyis9DxJpo5knE9nUS2BA-huaeVVNyLlHRFJCJQp0gLW2ktJPONwx6TQZql5imhtu-zUGoR8ql0IyfyI-FyzQVw6qnwoiEZtyscqAYGHbtxJEGVDvkiQDEGKEb4FoAYh-RdNyKvIUCu4X2NShMgskaKpTtnslytgk9fvwQzzlxue-DPh-RtwxRl8Ncws_omBEwAwbh6nPs9TlgV1Se3uhk0rmeFuZyDTchcIL_qyDgSy-lSk5UVj4tIjvjAV_MglCT3JtfxCM_GEFrwIXlSm0Qnoir2g-x-SLyesXQMCGzep6TxeQVwjq8lIc0dkoPWrDamd6XkDzrD--syPfsX5ufktoM9UGwwLmefDIplaV5AJFqELxvn8htz-4I6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=zipHMMlib%3A+a+highly+optimised+HMM+library+exploiting+repetitions+in+the+input+to+speed+up+the+forward+algorithm&rft.jtitle=BMC+bioinformatics&rft.au=Sand%2C+Andreas&rft.au=Kristiansen%2C+Martin&rft.au=Pedersen%2C+Christian+NS&rft.au=Mailund%2C+Thomas&rft.date=2013-11-22&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=14&rft_id=info:doi/10.1186%2F1471-2105-14-339&rft.externalDocID=3141615021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon