Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy

Mechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle stability for Ni-rich cathode materials of Li-ion batteries. Indeed, the detrimental effects generated from the crack formation are not yet entirely...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 6024 - 10
Main Authors Liu, Tongchao, Yu, Lei, Lu, Jun, Zhou, Tao, Huang, Xiaojing, Cai, Zhonghou, Dai, Alvin, Gim, Jihyeon, Ren, Yang, Xiao, Xianghui, Holt, Martin V., Chu, Yong S., Arslan, Ilke, Wen, Jianguo, Amine, Khalil
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.10.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-021-26290-z

Cover

Abstract Mechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle stability for Ni-rich cathode materials of Li-ion batteries. Indeed, the detrimental effects generated from the crack formation are not yet entirely addressed. Here, applying physicochemical and electrochemical ex situ and in situ characterizations, the effect of Co and Mn on the mechanical properties of the Ni-rich material are thoroughly investigated. As a result, we successfully mitigate the particle cracking issue in Ni-rich cathodes via rational concentration gradient design without sacrificing the electrode capacity. Our result reveals that the Co-enriched surface design in Ni-rich particles benefits from its low stiffness, which can effectively suppress the formation of particle cracking. Meanwhile, the Mn-enriched core limits internal expansion and improve structural integrity. The concentration gradient design also promotes morphological stability and cycling performances in Li metal coin cell configuration. Mechanical integrity issues are one of the main causes of limited long-term cycle stability for Ni-rich cathode materials. Here the authors analyse the roles of cobalt and manganese and utilise a concentration gradient design to mitigate these issues.
AbstractList Mechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle stability for Ni-rich cathode materials of Li-ion batteries. Indeed, the detrimental effects generated from the crack formation are not yet entirely addressed. Here, applying physicochemical and electrochemical ex situ and in situ characterizations, the effect of Co and Mn on the mechanical properties of the Ni-rich material are thoroughly investigated. As a result, we successfully mitigate the particle cracking issue in Ni-rich cathodes via rational concentration gradient design without sacrificing the electrode capacity. Our result reveals that the Co-enriched surface design in Ni-rich particles benefits from its low stiffness, which can effectively suppress the formation of particle cracking. Meanwhile, the Mn-enriched core limits internal expansion and improve structural integrity. The concentration gradient design also promotes morphological stability and cycling performances in Li metal coin cell configuration. Mechanical integrity issues are one of the main causes of limited long-term cycle stability for Ni-rich cathode materials. Here the authors analyse the roles of cobalt and manganese and utilise a concentration gradient design to mitigate these issues.
Mechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle stability for Ni-rich cathode materials of Li-ion batteries. Indeed, the detrimental effects generated from the crack formation are not yet entirely addressed. Here, applying physicochemical and electrochemical ex situ and in situ characterizations, the effect of Co and Mn on the mechanical properties of the Ni-rich material are thoroughly investigated. As a result, we successfully mitigate the particle cracking issue in Ni-rich cathodes via rational concentration gradient design without sacrificing the electrode capacity. Our result reveals that the Co-enriched surface design in Ni-rich particles benefits from its low stiffness, which can effectively suppress the formation of particle cracking. Meanwhile, the Mn-enriched core limits internal expansion and improve structural integrity. The concentration gradient design also promotes morphological stability and cycling performances in Li metal coin cell configuration.Mechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle stability for Ni-rich cathode materials of Li-ion batteries. Indeed, the detrimental effects generated from the crack formation are not yet entirely addressed. Here, applying physicochemical and electrochemical ex situ and in situ characterizations, the effect of Co and Mn on the mechanical properties of the Ni-rich material are thoroughly investigated. As a result, we successfully mitigate the particle cracking issue in Ni-rich cathodes via rational concentration gradient design without sacrificing the electrode capacity. Our result reveals that the Co-enriched surface design in Ni-rich particles benefits from its low stiffness, which can effectively suppress the formation of particle cracking. Meanwhile, the Mn-enriched core limits internal expansion and improve structural integrity. The concentration gradient design also promotes morphological stability and cycling performances in Li metal coin cell configuration.
Mechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle stability for Ni-rich cathode materials of Li-ion batteries. Indeed, the detrimental effects generated from the crack formation are not yet entirely addressed. Here, applying physicochemical and electrochemical ex situ and in situ characterizations, the effect of Co and Mn on the mechanical properties of the Ni-rich material are thoroughly investigated. As a result, we successfully mitigate the particle cracking issue in Ni-rich cathodes via rational concentration gradient design without sacrificing the electrode capacity. Our result reveals that the Co-enriched surface design in Ni-rich particles benefits from its low stiffness, which can effectively suppress the formation of particle cracking. Meanwhile, the Mn-enriched core limits internal expansion and improve structural integrity. The concentration gradient design also promotes morphological stability and cycling performances in Li metal coin cell configuration.
AbstractMechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle stability for Ni-rich cathode materials of Li-ion batteries. Indeed, the detrimental effects generated from the crack formation are not yet entirely addressed. Here, applying physicochemical and electrochemical ex situ and in situ characterizations, the effect of Co and Mn on the mechanical properties of the Ni-rich material are thoroughly investigated. As a result, we successfully mitigate the particle cracking issue in Ni-rich cathodes via rational concentration gradient design without sacrificing the electrode capacity. Our result reveals that the Co-enriched surface design in Ni-rich particles benefits from its low stiffness, which can effectively suppress the formation of particle cracking. Meanwhile, the Mn-enriched core limits internal expansion and improve structural integrity. The concentration gradient design also promotes morphological stability and cycling performances in Li metal coin cell configuration.
Mechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle stability for Ni-rich cathode materials of Li-ion batteries. Indeed, the detrimental effects generated from the crack formation are not yet entirely addressed. Here, applying physicochemical and electrochemical ex situ and in situ characterizations, the effect of Co and Mn on the mechanical properties of the Ni-rich material are thoroughly investigated. As a result, we successfully mitigate the particle cracking issue in Ni-rich cathodes via rational concentration gradient design without sacrificing the electrode capacity. Our result reveals that the Co-enriched surface design in Ni-rich particles benefits from its low stiffness, which can effectively suppress the formation of particle cracking. Meanwhile, the Mn-enriched core limits internal expansion and improve structural integrity. The concentration gradient design also promotes morphological stability and cycling performances in Li metal coin cell configuration.Mechanical integrity issues are one of the main causes of limited long-term cycle stability for Ni-rich cathode materials. Here the authors analyse the roles of cobalt and manganese and utilise a concentration gradient design to mitigate these issues.
Mechanical integrity issues are one of the main causes of limited long-term cycle stability for Ni-rich cathode materials. Here the authors analyse the roles of cobalt and manganese and utilise a concentration gradient design to mitigate these issues.
ArticleNumber 6024
Author Ren, Yang
Arslan, Ilke
Zhou, Tao
Holt, Martin V.
Liu, Tongchao
Yu, Lei
Dai, Alvin
Huang, Xiaojing
Amine, Khalil
Wen, Jianguo
Gim, Jihyeon
Lu, Jun
Chu, Yong S.
Cai, Zhonghou
Xiao, Xianghui
Author_xml – sequence: 1
  givenname: Tongchao
  surname: Liu
  fullname: Liu, Tongchao
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory
– sequence: 2
  givenname: Lei
  surname: Yu
  fullname: Yu, Lei
  organization: Center for Nanoscale Materials, Argonne National Laboratory
– sequence: 3
  givenname: Jun
  orcidid: 0000-0003-0858-8577
  surname: Lu
  fullname: Lu, Jun
  email: junlu@anl.gov
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory
– sequence: 4
  givenname: Tao
  surname: Zhou
  fullname: Zhou, Tao
  organization: Center for Nanoscale Materials, Argonne National Laboratory
– sequence: 5
  givenname: Xiaojing
  surname: Huang
  fullname: Huang, Xiaojing
  organization: National Synchrotron Light Source II, Brookhaven National Laboratory
– sequence: 6
  givenname: Zhonghou
  surname: Cai
  fullname: Cai, Zhonghou
  organization: X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory
– sequence: 7
  givenname: Alvin
  surname: Dai
  fullname: Dai, Alvin
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory
– sequence: 8
  givenname: Jihyeon
  orcidid: 0000-0002-4171-3707
  surname: Gim
  fullname: Gim, Jihyeon
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory
– sequence: 9
  givenname: Yang
  orcidid: 0000-0001-9831-6035
  surname: Ren
  fullname: Ren, Yang
  organization: X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory
– sequence: 10
  givenname: Xianghui
  orcidid: 0000-0002-7142-3452
  surname: Xiao
  fullname: Xiao, Xianghui
  organization: National Synchrotron Light Source II, Brookhaven National Laboratory
– sequence: 11
  givenname: Martin V.
  orcidid: 0000-0003-2640-7100
  surname: Holt
  fullname: Holt, Martin V.
  organization: Center for Nanoscale Materials, Argonne National Laboratory
– sequence: 12
  givenname: Yong S.
  surname: Chu
  fullname: Chu, Yong S.
  organization: National Synchrotron Light Source II, Brookhaven National Laboratory
– sequence: 13
  givenname: Ilke
  surname: Arslan
  fullname: Arslan, Ilke
  organization: Center for Nanoscale Materials, Argonne National Laboratory
– sequence: 14
  givenname: Jianguo
  orcidid: 0000-0002-3755-0044
  surname: Wen
  fullname: Wen, Jianguo
  email: jwen@anl.gov
  organization: Center for Nanoscale Materials, Argonne National Laboratory
– sequence: 15
  givenname: Khalil
  orcidid: 0000-0001-9206-3719
  surname: Amine
  fullname: Amine, Khalil
  email: amine@anl.gov
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, Material Science and Engineering, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34654811$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1828322$$D View this record in Osti.gov
BookMark eNp9kstu1DAUhiNUREvpC7BAFmzYBHyL7WyQqopLpQokBGvLObEzHmXsYnsqtU-PZ9JC20W98e37fx-fc142ByEG2zSvCf5AMFMfMydcyBZT0lJBe9zePGuOKOakJZKyg3vrw-Yk5zWug_VEcf6iOWRcdFwRctSMP03xMZgZjTb7KaDo0MbCygQPZp6vUYrDNhf03bfJwwqBKas4WrQxxSZv5oyuvEEQA9hQ0t4LTcmMvm5R3p3Y6fpV89xV1J7czsfN7y-ff519ay9-fD0_O71oQTBWWsqccZR1kvdKiF4MzgDte0WAdhZ3SjhpBuskt64XXdeJUTDnyGgUHajpgB0354vvGM1aXya_MelaR-P1_iCmSZtUPMxWgwQCjCoJILkUYmAWpNvlSFkMHFevT4vX5XbY2HH53vzA9OFN8Cs9xSutOooxUdXg7WIQc_E6gy81rTVRwULRRFHFKK3Q-9tXUvyztbnojc9g59kEG7dZ066ChDNGKvruEbqO21Qrt1BUCs55pd7cD_tfvHcVr4BaAEgx52SdrpHt61Z_4WdNsN71l176S9f-0vv-0jdVSh9J79yfFLFFlCscJpv-h_2E6i-bt-NO
CitedBy_id crossref_primary_10_1002_anie_202302170
crossref_primary_10_1016_j_jechem_2022_04_006
crossref_primary_10_1007_s12613_023_2776_5
crossref_primary_10_1002_smll_202402126
crossref_primary_10_1039_D4NR02119C
crossref_primary_10_1021_jacs_2c13787
crossref_primary_10_1039_D2TA06703J
crossref_primary_10_1177_08953996241290323
crossref_primary_10_1039_D4TA03592E
crossref_primary_10_1016_j_jechem_2024_07_062
crossref_primary_10_1002_adfm_202414441
crossref_primary_10_1002_adma_202415860
crossref_primary_10_1002_smtd_202201173
crossref_primary_10_1021_acsami_4c13570
crossref_primary_10_1016_j_cej_2024_149189
crossref_primary_10_1002_sus2_176
crossref_primary_10_1002_adma_202411311
crossref_primary_10_1557_s43578_022_00528_y
crossref_primary_10_1038_s41467_022_30020_4
crossref_primary_10_1038_s41557_025_01733_y
crossref_primary_10_1002_adfm_202400956
crossref_primary_10_1002_adma_202204845
crossref_primary_10_1016_j_ensm_2023_102775
crossref_primary_10_1002_adfm_202424823
crossref_primary_10_1039_D3CS01110K
crossref_primary_10_1002_smll_202410149
crossref_primary_10_1016_j_nxmate_2023_100004
crossref_primary_10_1007_s10008_024_06031_0
crossref_primary_10_1016_j_jpowsour_2024_234245
crossref_primary_10_1038_s41467_024_45373_1
crossref_primary_10_1016_j_cej_2022_137939
crossref_primary_10_1016_j_cej_2024_149599
crossref_primary_10_1021_acsami_2c10613
crossref_primary_10_1021_acsnano_4c10015
crossref_primary_10_1016_j_clay_2023_107156
crossref_primary_10_1016_j_matdes_2024_113464
crossref_primary_10_1557_s43577_024_00749_y
crossref_primary_10_3390_batteries9010023
crossref_primary_10_1016_j_est_2024_114639
crossref_primary_10_1016_j_jechem_2024_10_015
crossref_primary_10_31613_ceramist_2024_27_1_02
crossref_primary_10_1002_adfm_202415035
crossref_primary_10_1016_j_electacta_2023_142339
crossref_primary_10_1021_acs_energyfuels_4c06016
crossref_primary_10_1002_anie_202302547
crossref_primary_10_1021_acsenergylett_4c03556
crossref_primary_10_1038_s41467_024_54637_9
crossref_primary_10_1002_anie_202214880
crossref_primary_10_1016_j_apsusc_2022_153410
crossref_primary_10_1360_nso_20240010
crossref_primary_10_1016_j_ensm_2024_103949
crossref_primary_10_1016_j_nanoen_2024_109620
crossref_primary_10_1007_s12274_023_5630_1
crossref_primary_10_1002_anie_202412533
crossref_primary_10_1002_adfm_202300127
crossref_primary_10_1038_s41598_023_33383_w
crossref_primary_10_1002_adfm_202423717
crossref_primary_10_1002_ange_202302547
crossref_primary_10_1039_D3SE00844D
crossref_primary_10_1016_j_ceramint_2024_02_357
crossref_primary_10_1016_j_matt_2023_02_001
crossref_primary_10_1038_s43246_023_00418_8
crossref_primary_10_1002_smll_202206561
crossref_primary_10_1126_science_ado1675
crossref_primary_10_1007_s41918_023_00192_8
crossref_primary_10_1021_acsnano_4c10476
crossref_primary_10_1002_adma_202419253
crossref_primary_10_1002_celc_202400529
crossref_primary_10_1021_acs_chemrev_2c00251
crossref_primary_10_1021_acsami_1c22091
crossref_primary_10_1021_acsenergylett_2c01297
crossref_primary_10_1149_1945_7111_ac60ee
crossref_primary_10_1021_acsaem_4c00279
crossref_primary_10_1039_D4TA04307C
crossref_primary_10_1002_adfm_202113013
crossref_primary_10_1016_j_mtener_2024_101584
crossref_primary_10_1002_adfm_202300081
crossref_primary_10_1002_aenm_202204241
crossref_primary_10_1002_advs_202205918
crossref_primary_10_1021_acs_energyfuels_3c03390
crossref_primary_10_1039_D3CS00254C
crossref_primary_10_1021_acsaem_2c03111
crossref_primary_10_1016_j_jiec_2022_03_036
crossref_primary_10_1016_j_jpowsour_2023_233804
crossref_primary_10_1016_j_jallcom_2025_179198
crossref_primary_10_1002_adma_202212098
crossref_primary_10_1021_acsami_4c00686
crossref_primary_10_1021_acs_iecr_4c03843
crossref_primary_10_1002_advs_202206442
crossref_primary_10_1021_acsaem_4c01891
crossref_primary_10_31613_ceramist_2023_26_1_10
crossref_primary_10_1002_ange_202302170
crossref_primary_10_1016_j_cej_2023_144888
crossref_primary_10_1002_anie_202420413
crossref_primary_10_1016_j_ensm_2025_104117
crossref_primary_10_1021_acscentsci_3c01478
crossref_primary_10_1021_acsami_3c06472
crossref_primary_10_1002_aenm_202402068
crossref_primary_10_1016_j_ensm_2023_102969
crossref_primary_10_1016_j_jallcom_2023_170386
crossref_primary_10_1016_j_cjac_2023_100250
crossref_primary_10_1021_acsnano_3c10986
crossref_primary_10_1016_j_mtener_2023_101292
crossref_primary_10_1002_aenm_202404999
crossref_primary_10_1002_ange_202214880
crossref_primary_10_1016_j_esci_2022_02_007
crossref_primary_10_1002_ange_202412533
crossref_primary_10_1016_j_ensm_2021_12_019
crossref_primary_10_1016_j_ensm_2024_103914
crossref_primary_10_1038_s41560_025_01720_0
crossref_primary_10_1002_ange_202420413
crossref_primary_10_1002_smll_202307030
crossref_primary_10_1002_adma_202312292
crossref_primary_10_1021_acs_jpcc_3c05419
crossref_primary_10_1021_acsami_2c02678
crossref_primary_10_1039_D3CS00741C
crossref_primary_10_1039_D5EE00267B
crossref_primary_10_1007_s11705_022_2286_4
crossref_primary_10_1002_aenm_202200022
crossref_primary_10_1016_j_pmatsci_2024_101247
crossref_primary_10_1016_j_est_2024_114151
crossref_primary_10_1149_1945_7111_ac6a81
crossref_primary_10_1002_ange_202414484
crossref_primary_10_1002_adfm_202211515
crossref_primary_10_1007_s41918_022_00155_5
crossref_primary_10_1007_s11426_023_1706_8
crossref_primary_10_1016_j_jechem_2022_04_037
crossref_primary_10_1016_j_surfin_2024_104721
crossref_primary_10_1038_s41467_024_55235_5
crossref_primary_10_1038_s41560_024_01605_8
crossref_primary_10_1016_j_colsurfa_2024_134381
crossref_primary_10_1038_s41560_024_01465_2
crossref_primary_10_3390_batteries10080262
crossref_primary_10_1007_s12598_022_02070_6
crossref_primary_10_1002_adfm_202301650
crossref_primary_10_3390_batteries9100485
crossref_primary_10_1016_j_jpowsour_2024_234302
crossref_primary_10_1021_acsenergylett_4c00652
crossref_primary_10_1016_j_jechem_2024_03_039
crossref_primary_10_1039_D3MA01102J
crossref_primary_10_1039_D4TA03727H
crossref_primary_10_1021_acsomega_4c00318
crossref_primary_10_1002_anie_202414484
crossref_primary_10_1016_j_ensm_2023_102906
Cites_doi 10.1038/s41563-020-0767-8
10.1038/s41560-018-0107-2
10.1002/adma.201704309
10.1038/s41560-021-00776-y
10.1149/2.0351701jes
10.1021/acs.chemmater.7b00931
10.1038/s41560-018-0191-3
10.1021/nl5022859
10.1002/adma.201800561
10.1016/j.chempr.2017.12.027
10.1002/smll.201803179
10.1002/aenm.201300015
10.1149/2.1381902jes
10.1021/acs.chemmater.7b03268
10.1016/j.matdes.2014.12.058
10.1021/acsenergylett.9b00733
10.1021/jacs.8b13798
10.1016/j.chempr.2020.07.017
10.1016/j.nanoen.2020.105420
10.1016/j.joule.2019.09.014
10.1021/acs.nanolett.6b02742
10.1088/2399-1984/aab25d
10.1002/adfm.201900247
10.1021/acs.chemmater.7b05269
10.1126/science.aba9168
10.1038/s41560-019-0409-z
10.1039/C8EE00155C
10.1038/nmat3435
10.1038/ncomms14101
10.1002/advs.201600262
10.1038/s41560-019-0387-1
10.1038/natrevmats.2016.13
10.1039/C6CS00875E
10.1039/D0CC00327A
10.1016/j.jpowsour.2020.228422
10.1016/j.nanoen.2019.02.027
10.1039/D0EE02290J
10.1002/aenm.201901756
10.1038/nenergy.2015.4
10.1021/acs.chemmater.9b02372
10.1038/s41467-019-13993-7
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021
2021. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021
– notice: 2021. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
Brookhaven National Lab. (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Lab. (BNL), Upton, NY (United States)
– name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-021-26290-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Publicly Available Content Database

PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_c7c1c3287cc74766b3ec7f00038e0c40
PMC8520018
1828322
34654811
10_1038_s41467_021_26290_z
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c633t-23faf23574986696bfac29981c25e0586f7abef74ef965556d63ff1da82b2a5c3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:20:07 EDT 2025
Thu Aug 21 14:11:25 EDT 2025
Thu May 18 22:32:35 EDT 2023
Fri Sep 05 03:40:26 EDT 2025
Wed Aug 13 05:11:10 EDT 2025
Mon Jul 21 06:03:32 EDT 2025
Tue Jul 01 04:17:36 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Fri Feb 21 02:39:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633t-23faf23574986696bfac29981c25e0586f7abef74ef965556d63ff1da82b2a5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
BNL-222331-2021-JAAM
SC0012704; AC02-06CH11357
ORCID 0000-0002-3755-0044
0000-0001-9206-3719
0000-0002-7142-3452
0000-0002-4171-3707
0000-0003-2640-7100
0000-0003-0858-8577
0000-0001-9831-6035
0000000237550044
0000000271423452
0000000308588577
0000000241713707
0000000326407100
0000000198316035
0000000192063719
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-26290-z
PMID 34654811
PQID 2582276444
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_c7c1c3287cc74766b3ec7f00038e0c40
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8520018
osti_scitechconnect_1828322
proquest_miscellaneous_2582814331
proquest_journals_2582276444
pubmed_primary_34654811
crossref_citationtrail_10_1038_s41467_021_26290_z
crossref_primary_10_1038_s41467_021_26290_z
springer_journals_10_1038_s41467_021_26290_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Schipper (CR12) 2016; 164
Lin (CR17) 2016; 1
Zhang (CR20) 2019; 4
Lee (CR25) 2014; 14
Sun, Manthiram (CR15) 2017; 29
Korsunsky, Sui, Song (CR18) 2015; 69
Zeng, Zhan, Lu, Amine (CR9) 2018; 4
Sun (CR37) 2012; 11
Miller, Proff, Wen, Abraham, Bareño (CR24) 2013; 3
Chen (CR4) 2019; 3
Li, Song, Manthiram (CR32) 2017; 46
Hu (CR28) 2020; 79
Ryu, Park, Yoon, Sun (CR35) 2018; 14
Gim (CR38) 2020; 469
Mao (CR8) 2019; 29
Li (CR27) 2019; 31
Yan (CR31) 2017; 8
Brandt (CR19) 2020; 13
Liu (CR34) 2021; 6
Zhang (CR10) 2020; 11
Li, Lu (CR2) 2020; 367
Lai (CR7) 2020; 56
Yan (CR21) 2018; 3
Xu (CR26) 2019; 4
Park (CR29) 2019; 4
Li (CR36) 2019; 166
Kong (CR11) 2019; 9
Wu (CR39) 2019; 59
Zou (CR13) 2017; 4
Choi, Aurbach (CR5) 2016; 1
Kim (CR14) 2018; 30
Yan (CR40) 2018; 2
Wu (CR23) 2016; 16
Li, Lu, Chen, Amine (CR1) 2018; 30
Schmuch, Wagner, Hörpel, Placke, Winter (CR3) 2018; 3
Xu (CR16) 2021; 20
Kim (CR22) 2018; 11
Hong (CR41) 2020; 6
Ryu, Park, Yoon, Sun (CR33) 2018; 30
Koerver (CR6) 2017; 29
Li, Asl, Xie, Manthiram (CR30) 2019; 141
J Kim (26290_CR22) 2018; 11
F Schipper (26290_CR12) 2016; 164
HY Li (26290_CR36) 2019; 166
F Wu (26290_CR39) 2019; 59
Z Wu (26290_CR23) 2016; 16
J Hu (26290_CR28) 2020; 79
J Kim (26290_CR14) 2018; 30
Y Mao (26290_CR8) 2019; 29
X Zeng (26290_CR9) 2018; 4
YK Sun (26290_CR37) 2012; 11
D Kong (26290_CR11) 2019; 9
AM Korsunsky (26290_CR18) 2015; 69
JW Choi (26290_CR5) 2016; 1
R Koerver (26290_CR6) 2017; 29
G-L Xu (26290_CR26) 2019; 4
LR Brandt (26290_CR19) 2020; 13
EJ Lee (26290_CR25) 2014; 14
R Schmuch (26290_CR3) 2018; 3
F Zhang (26290_CR10) 2020; 11
H-H Sun (26290_CR15) 2017; 29
Y Zou (26290_CR13) 2017; 4
DJ Miller (26290_CR24) 2013; 3
YS Hong (26290_CR41) 2020; 6
K-J Park (26290_CR29) 2019; 4
H Yan (26290_CR40) 2018; 2
HH Ryu (26290_CR35) 2018; 14
J Lai (26290_CR7) 2020; 56
HH Ryu (26290_CR33) 2018; 30
W Li (26290_CR32) 2017; 46
H Li (26290_CR27) 2019; 31
M Li (26290_CR2) 2020; 367
F Lin (26290_CR17) 2016; 1
W Li (26290_CR30) 2019; 141
T Liu (26290_CR34) 2021; 6
P Yan (26290_CR21) 2018; 3
M Chen (26290_CR4) 2019; 3
P Yan (26290_CR31) 2017; 8
J-N Zhang (26290_CR20) 2019; 4
M Li (26290_CR1) 2018; 30
J Gim (26290_CR38) 2020; 469
C Xu (26290_CR16) 2021; 20
References_xml – volume: 20
  start-page: 84
  year: 2021
  end-page: 92
  ident: CR16
  article-title: Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0767-8
– volume: 3
  start-page: 267
  year: 2018
  end-page: 278
  ident: CR3
  article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 30
  start-page: 1704309
  year: 2018
  ident: CR14
  article-title: Controllable solid electrolyte interphase in nickel-rich cathodes by an electrochemical rearrangement for stable lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704309
– volume: 6
  start-page: 277
  year: 2021
  end-page: 286
  ident: CR34
  article-title: Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00776-y
– volume: 164
  start-page: A6220
  year: 2016
  end-page: A6228
  ident: CR12
  article-title: Review—Recent advances and remaining challenges for lithium ion battery cathodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0351701jes
– volume: 29
  start-page: 5574
  year: 2017
  end-page: 5582
  ident: CR6
  article-title: Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00931
– volume: 3
  start-page: 600
  year: 2018
  end-page: 605
  ident: CR21
  article-title: Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0191-3
– volume: 14
  start-page: 4873
  year: 2014
  end-page: 4880
  ident: CR25
  article-title: Development of microstrain in aged lithium transition metal oxides
  publication-title: Nano Lett.
  doi: 10.1021/nl5022859
– volume: 30
  start-page: 1800561
  year: 2018
  ident: CR1
  article-title: 30 years of lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800561
– volume: 4
  start-page: 690
  year: 2018
  end-page: 704
  ident: CR9
  article-title: Stabilization of a high-capacity and high-power nickel-based cathode for Li-ion batteries
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.027
– volume: 14
  start-page: 1803179
  year: 2018
  ident: CR35
  article-title: Microstructural degradation of Ni-rich Li[Ni Co Mn ]O cathodes during accelerated calendar aging
  publication-title: Small
  doi: 10.1002/smll.201803179
– volume: 3
  start-page: 1098
  year: 2013
  end-page: 1103
  ident: CR24
  article-title: Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300015
– volume: 166
  start-page: A429
  year: 2019
  end-page: A439
  ident: CR36
  article-title: Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries?
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1381902jes
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR10
  article-title: Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage
  publication-title: Nat. Commun.
– volume: 29
  start-page: 8486
  year: 2017
  end-page: 8493
  ident: CR15
  article-title: Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni Co Mn ]O cathode for lithium-ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03268
– volume: 69
  start-page: 247
  year: 2015
  end-page: 252
  ident: CR18
  article-title: Explicit formulae for the internal stress in spherical particles of active material within lithium ion battery cathodes during charging and discharging
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.12.058
– volume: 4
  start-page: 1394
  year: 2019
  end-page: 1400
  ident: CR29
  article-title: Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: are microcracks really critical?
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00733
– volume: 141
  start-page: 5097
  year: 2019
  end-page: 5101
  ident: CR30
  article-title: Collapse of LiNi Co Mn O lattice at deep charge irrespective of nickel content in lithium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13798
– volume: 6
  start-page: 2759
  year: 2020
  end-page: 2769
  ident: CR41
  article-title: Hierarchical defect engineering for LiCoO through low-solubility trace element doping
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.07.017
– volume: 79
  start-page: 105420
  year: 2020
  ident: CR28
  article-title: Mesoscale-architecture-based crack evolution dictating cycling stability of advanced lithium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105420
– volume: 3
  start-page: 2622
  year: 2019
  end-page: 2646
  ident: CR4
  article-title: Recycling end-of-life electric vehicle lithium-ion batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.014
– volume: 16
  start-page: 6357
  year: 2016
  end-page: 6363
  ident: CR23
  article-title: Aligned Li tunnels in core-shell Li(Ni Mn Co )O @LiFePO enhances its high voltage cycling stability as Li-ion battery cathode
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02742
– volume: 2
  start-page: 011001
  year: 2018
  ident: CR40
  article-title: Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science
  publication-title: Nano Futures
  doi: 10.1088/2399-1984/aab25d
– volume: 29
  start-page: 1900247
  year: 2019
  ident: CR8
  article-title: High-voltage charging-induced strain, heterogeneity, and micro-cracks in secondary particles of a nickel-rich layered cathode material
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900247
– volume: 30
  start-page: 1155
  year: 2018
  end-page: 1163
  ident: CR33
  article-title: Capacity fading of Ni-rich Li[Ni Co Mn ]O (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b05269
– volume: 367
  start-page: 979
  year: 2020
  end-page: 980
  ident: CR2
  article-title: Cobalt in lithium-ion batteries
  publication-title: Science
  doi: 10.1126/science.aba9168
– volume: 4
  start-page: 594
  year: 2019
  end-page: 603
  ident: CR20
  article-title: Trace doping of multiple elements enables stable battery cycling of LiCoO at 4.6 V
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0409-z
– volume: 11
  start-page: 1449
  year: 2018
  end-page: 1459
  ident: CR22
  article-title: A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00155C
– volume: 11
  start-page: 942
  year: 2012
  end-page: 947
  ident: CR37
  article-title: Nanostructured high-energy cathode materials for advanced lithium batteries
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3435
– volume: 8
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR31
  article-title: Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14101
– volume: 4
  start-page: 1600262
  year: 2017
  ident: CR13
  article-title: Multishelled Ni-rich Li(Ni Co Mn )O hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600262
– volume: 4
  start-page: 484
  year: 2019
  end-page: 494
  ident: CR26
  article-title: Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0387-1
– volume: 1
  start-page: 1
  year: 2016
  end-page: 16
  ident: CR5
  article-title: Promise and reality of post-lithium-ion batteries with high energy densities
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 46
  start-page: 3006
  year: 2017
  end-page: 3059
  ident: CR32
  article-title: High-voltage positive electrode materials for lithium-ion batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00875E
– volume: 56
  start-page: 4886
  year: 2020
  end-page: 4889
  ident: CR7
  article-title: Structural elucidation of the degradation mechanism of nickel-rich layered cathodes during high-voltage cycling
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC00327A
– volume: 469
  start-page: 228422
  year: 2020
  ident: CR38
  article-title: Probing solid-state reaction through microstrain: a case study on synthesis of LiCoO
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228422
– volume: 59
  start-page: 50
  year: 2019
  end-page: 57
  ident: CR39
  article-title: Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.027
– volume: 13
  start-page: 3556
  year: 2020
  end-page: 3566
  ident: CR19
  article-title: Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02290J
– volume: 9
  start-page: 1901756
  year: 2019
  ident: CR11
  article-title: Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901756
– volume: 1
  start-page: 1
  year: 2016
  end-page: 8
  ident: CR17
  article-title: Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.4
– volume: 31
  start-page: 7574
  year: 2019
  end-page: 7583
  ident: CR27
  article-title: An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02372
– volume: 3
  start-page: 2622
  year: 2019
  ident: 26290_CR4
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.014
– volume: 30
  start-page: 1704309
  year: 2018
  ident: 26290_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704309
– volume: 469
  start-page: 228422
  year: 2020
  ident: 26290_CR38
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228422
– volume: 29
  start-page: 8486
  year: 2017
  ident: 26290_CR15
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03268
– volume: 11
  start-page: 1449
  year: 2018
  ident: 26290_CR22
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00155C
– volume: 11
  start-page: 942
  year: 2012
  ident: 26290_CR37
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3435
– volume: 1
  start-page: 1
  year: 2016
  ident: 26290_CR5
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 1
  start-page: 1
  year: 2016
  ident: 26290_CR17
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.4
– volume: 69
  start-page: 247
  year: 2015
  ident: 26290_CR18
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.12.058
– volume: 3
  start-page: 600
  year: 2018
  ident: 26290_CR21
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0191-3
– volume: 14
  start-page: 1803179
  year: 2018
  ident: 26290_CR35
  publication-title: Small
  doi: 10.1002/smll.201803179
– volume: 4
  start-page: 1600262
  year: 2017
  ident: 26290_CR13
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600262
– volume: 20
  start-page: 84
  year: 2021
  ident: 26290_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0767-8
– volume: 59
  start-page: 50
  year: 2019
  ident: 26290_CR39
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.027
– volume: 6
  start-page: 277
  year: 2021
  ident: 26290_CR34
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00776-y
– volume: 29
  start-page: 1900247
  year: 2019
  ident: 26290_CR8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900247
– volume: 4
  start-page: 484
  year: 2019
  ident: 26290_CR26
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0387-1
– volume: 9
  start-page: 1901756
  year: 2019
  ident: 26290_CR11
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901756
– volume: 11
  start-page: 1
  year: 2020
  ident: 26290_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 14
  start-page: 4873
  year: 2014
  ident: 26290_CR25
  publication-title: Nano Lett.
  doi: 10.1021/nl5022859
– volume: 3
  start-page: 1098
  year: 2013
  ident: 26290_CR24
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300015
– volume: 2
  start-page: 011001
  year: 2018
  ident: 26290_CR40
  publication-title: Nano Futures
  doi: 10.1088/2399-1984/aab25d
– volume: 4
  start-page: 690
  year: 2018
  ident: 26290_CR9
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.027
– volume: 56
  start-page: 4886
  year: 2020
  ident: 26290_CR7
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC00327A
– volume: 6
  start-page: 2759
  year: 2020
  ident: 26290_CR41
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.07.017
– volume: 31
  start-page: 7574
  year: 2019
  ident: 26290_CR27
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02372
– volume: 30
  start-page: 1155
  year: 2018
  ident: 26290_CR33
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b05269
– volume: 13
  start-page: 3556
  year: 2020
  ident: 26290_CR19
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02290J
– volume: 4
  start-page: 594
  year: 2019
  ident: 26290_CR20
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0409-z
– volume: 164
  start-page: A6220
  year: 2016
  ident: 26290_CR12
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0351701jes
– volume: 16
  start-page: 6357
  year: 2016
  ident: 26290_CR23
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02742
– volume: 4
  start-page: 1394
  year: 2019
  ident: 26290_CR29
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00733
– volume: 29
  start-page: 5574
  year: 2017
  ident: 26290_CR6
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00931
– volume: 367
  start-page: 979
  year: 2020
  ident: 26290_CR2
  publication-title: Science
  doi: 10.1126/science.aba9168
– volume: 46
  start-page: 3006
  year: 2017
  ident: 26290_CR32
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00875E
– volume: 79
  start-page: 105420
  year: 2020
  ident: 26290_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105420
– volume: 166
  start-page: A429
  year: 2019
  ident: 26290_CR36
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1381902jes
– volume: 8
  start-page: 1
  year: 2017
  ident: 26290_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14101
– volume: 141
  start-page: 5097
  year: 2019
  ident: 26290_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13798
– volume: 3
  start-page: 267
  year: 2018
  ident: 26290_CR3
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 30
  start-page: 1800561
  year: 2018
  ident: 26290_CR1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800561
SSID ssj0000391844
Score 2.6709247
Snippet Mechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle...
AbstractMechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle...
Mechanical integrity issues are one of the main causes of limited long-term cycle stability for Ni-rich cathode materials. Here the authors analyse the roles...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6024
SubjectTerms 147/143
639/301/299/161
639/301/299/891
639/4077/4079/891
639/638/675
Cathodes
Cobalt
Concentration gradient
Design
Electrochemistry
Electrode materials
Electrolytes
Humanities and Social Sciences
Investigations
Laboratories
Lithium-ion batteries
Manganese
MATERIALS SCIENCE
Mechanical properties
Morphology
multidisciplinary
Nickel
Phase transitions
Rechargeable batteries
Science
Science (multidisciplinary)
Stability analysis
Stiffness
Structural integrity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH26SYsKvbUmtvWwdExDQig0h9JAbkLWo1lI7bLrDWx-fWYk7zbb56UngyWDPA_NN9LoEyFvmQ--raQtvfACV6tE2UkZS-tj8IoxqxMdw6czeXrOP16IiztXfWFNWKYHzoI7cK2rHQNc7xwgXyk7Flwb045WqBxP2XqlqzvJVJqDmYbUhU-nZKDvwYKnOQErEhrZ6Kq82YpEibAfHgM41u_A5q81kz9tnKZ4dPKIPJyAJD3MP7BL7oX-Mbmfr5ZcPSH-87TKR32q0aBDpN8CHvNFrVyt6HzolouRns1KmAkvKdK3Dj5QALDZJun1zFKHhxr7iVmXfp2n-rCRLjKl7eopOT85_nJ0Wk43KpROMjaWDYs2IsEN10pKLbtoHcQjVbtGhEooGVvbhdjyELUUQkgvWYy1t6rpGisce0Z2-qEPLwgFcSplg7NWcw5xXse68p3lsWbRe6cKUq-la9xEN463XlyZtO3NlMkaMaARkzRibgrybvPN90y28dfeH1Bpm55IlJ1egPmYyXzMv8ynIHuocgN4A0lzHVYXudFA1oVTXUH215ZgJt9emEYAqGoBR_KCvNk0g1fiVovtw7DMfVSNp9EK8jwbzmacDCnsVA0t7ZZJbf3Idks_u0zM3wpJsmqQ7fu18f0Y1p8F9fJ_CGqPPGjQebCYR-yTnXG-DK8Aj43d6-R6tyF-MZ0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEB7SDYW-lN51kxYV-taa2NZh-aGUpiSEQpcSGsibkHUkC4md7noDm18fjWxv2B55MlgyyJpTmplvAD5Q62yZCZ1abjneVvG0FsKn2npnJaW6inAMP6bi6IR9P-WnWzAda2EwrXLUiVFR29bgHflewYMpK4P1Zl-ufqfYNQqjq2MLDT20VrCfI8TYA9gOKplnE9jeP5j-PF7fuiAeumRsqJ7JqNxbsKgrMFOhEEWVpTcbFioC-YdHGwTuX07o37mUfwRUo506fAKPBweTfO054ilsueYZPOxbTq6egz0ebv-IjbkbpPXk0mH5L1LrYkXmbb1cdGQ6S4OGPCcI69paR4Jj2_MquZ5pYrDYsRkQd8nZPOaNdWTRQ92uXsDJ4cGvb0fp0GkhNYLSLi2o1x6Bb1glhahE7bUJdkrmpuAu41L4UtfOl8z5SnDOhRXU-9xqWdSF5oa-hEnTNu41kLCdUmpntK4YC_a_8nlma818Tr21RiaQj7urzABDjt0wLlQMh1OpeoqoQBEVKaJuEvi4_uaqB-G4d_Y-Em09EwG044t2fqYGeVSmNLmh4bhoTDhQCVFTZ0ofA6UuMyxLYAdJroIfgmC6BrOOTKfCaQxVYAK7IyeoQeYX6o5DE3i_Hg7SiiEY3bh22c-ROVapJfCqZ5z1OilC28k8jJQbLLXxI5sjzew8IoJLBM_Kw95-Gpnvbln_36g39__FDjwqUCwwfYfvwqSbL93b4IF19btBrG4BuPIwBg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5qRfBFvBtbZQXfNJjsLZvHerAUwT6Ihb4tm720B2oi5-QIp7_enc2lHK2CT4HsBDZz2ZndmfkW4C1z3lWFNLkTTuBplcgbKUNuXPBOMWbqBMfw5VSenPHP5-J8D-jUC5OK9hOkZVqmp-qwD2ueTBoLCqikdZFf34G7qmICtXohF_O5CiKeK87H_piCqVs-3fFBCao_PrpoUreFmX9WS_6WMk2e6PghPBhDSHI0TPoR7Pn2MdwbLpXcPgH3dTzfIy5VZ5AukO8eG3xRHldbsuqazbonp8s8roGXBIFbO-dJDF0HbSQ_l4ZYbGdsR0xdcrFKlWE9WQ9gttuncHb86dviJB_vUsitZKzPKQsmILQNr5WUtWyCsdETqdJS4QuhZKhM40PFfailEEI6yUIonVG0oUZY9gz22671L4BEdiplvDWm5jx6-DqUhWsMDyULzlmVQTlxV9sRaBzvu7jSKeHNlB4koqNEdJKIvs7g3fzNjwFm45_UH1FoMyVCZKcX3epCjyqjbWVLy-KG0Nq4ZZKyYd5WIaVCfWF5kcEBilzHSAPhci3WFdlex_0WLnIZHE6aoEerXmsqYjhVxQiSZ_BmHo72iEkW0_puM9CoEvvQMng-KM48T4bgdaqMI9WOSu38yO5Iu7xMmN8K4bHKyNv3k_LdTOvvjHr5f-QHcJ-imWDBjjiE_X618a9izNU3r5OR_QLsfCfF
  priority: 102
  providerName: Springer Nature
Title Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy
URI https://link.springer.com/article/10.1038/s41467-021-26290-z
https://www.ncbi.nlm.nih.gov/pubmed/34654811
https://www.proquest.com/docview/2582276444
https://www.proquest.com/docview/2582814331
https://www.osti.gov/servlets/purl/1828322
https://pubmed.ncbi.nlm.nih.gov/PMC8520018
https://doaj.org/article/c7c1c3287cc74766b3ec7f00038e0c40
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_3geCL-G29c4ngm1bbpknTB5G95dZjwUVOF_YtpPm4W1hb7XbFvb_eSdqurK6CLy00KbTzkcxkZn6D0Auijc4iJkNNNXWnVTQsGLOh1NZoTojMPRzDhym7mKWTOZ0foL7dUUfA1V7XzvWTmtXL1z--bd6Bwr9tS8b5m1Xq1d0lGyQsyaPw5hAd-3iRS-XrzH2_MpMcHJq0q53Z_-rO_uRh_OFWgbrtM0H_zKT8LZzqd6nxXXSnMy_xsJWHe-jAlPfRrbbh5OYB0pfd2R_WPnMDVxZ_Ma741_FqucF1VaxXDZ4uQlgfr7EDda20wWDWtpKKvy8kVq7UsezwdvFV7bPGGrxqgW43D9FsfP55dBF2fRZCxQhpwoRYaR3sTZpzxnJWWKlgl-KxSqiJKGc2k4WxWWpsziilTDNibawlT4pEUkUeoaOyKs0ThIGcnEujpMzTFHb_3MaRLmRqY2K1VjxAcU9doToQctcLYyl8MJxw0XJEAEeE54i4CdDL7TtfWwiOf84-c0zbznTw2f5BVV-JThuFylSsCDiLSoE7xVhBjMqsD5OaSKVRgE4cywVYIQ5KV7mcI9UI8MXcAhig014SRC-wIqFgamVgXaYBer4dBl11ARhZmmrdzuGxq1EL0ONWcLbfSRywHY9hJNsRqZ0f2R0pF9ceD5w76KwYaPuqF75fn_V3Qj39v-kn6Hbi1MQl89BTdNTUa_MM7LGmGKDDbJ7BlY_fD9DxcDj5NIH72fn04yU8HbHRwJ90DLwy_gRvGjgj
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ7gEqMvxrsV1DHRJ21oO5dOH4gRhYDAxhBIeBumc4FNsMXdrmb5cf4250zbJeuFN5422ZndtOc2Z87lOwi9IcaaPOEqNswwiFaxuOTcxco4awQhqghwDPtDvn1Evxyz4yX0q--FgbLK3iYGQ21qDTHytYz5oyz3pzf9cPE9hqlRkF3tR2iobrSCWQ8QY11jx66d_fRXuMn6zmfP77dZtrV5-Gk77qYMxJoT0sQZccoB6AstBOcFL53S3kaLVGfMJkxwl6vSupxaV3DGGDecOJcaJbIyU0wT_7-30DKFAMoALW9sDr8ezKM8gL8uKO26dRIi1iY02CaojMh4ViTx5cKJGAYH-I_aK_i_nN6_azf_SOCGc3HrPrrXObT4YyuBD9CSrR6i2-2Iy9kjZA66aCM2oVYE1w5_s9BuDNJxPsPjupxOGjwcxd4in2GAka2Nxd6RbnUD_xgprKG5suoQfvHpONSpNXjSQuvOHqOjG6H5EzSo6so-Q9iTUwhltVIFpd7fKFyamFJRlxJnjBYRSnvqSt3BnsP0jXMZ0u9EyJYj0nNEBo7Iywi9m__mogX9uHb3BjBtvhMAu8MX9fhUdvovda5TTfz1VGt_geO8JFbnLiRmbaJpEqEVYLn0fg-A92qoctKN9Lc_MLkRWu0lQXY2ZiKvNCJCr-fL3jpAykdVtp62e0QKXXERetoKzvw5CUDpidSv5AsitfAiiyvV6CwgkAsA60o9bd_3wnf1WP8n1PPr3-IVurN9uL8n93aGuyvobgYqAqVDbBUNmvHUvvDeX1O-7FQMo5Ob1urfNjZs_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJhAviG_CBhgJniBqEseO8zAhxlZtDKppYtLejOOPrdJIRpuCuj-Rvwqf43QqH3vbU6XarZL78p3v7ncIvSLa6CJhMtZUU7itonHFmI2ltkZzQmTp4Rg-j9juUf7xmB6voF99LwyUVfY20Rtq3Si4Ix9k1B1lhTu984ENZREH28N3599jmCAFmdZ-nIYMYxb0pocbC00e-2b-04Vz0829bcf711k23PnyYTcOEwdixQhp44xYaQEAJi85YyWrrFTOXvNUZdQklDNbyMrYIje2ZJRSphmxNtWSZ1UmqSLuf2-gtcKd-i4QXNvaGR0cLm58AIud53no3EkIH0xzb6egSiJjWZnEF0unox8i4D4ap-z_coD_ruP8I5nrz8jhXXQnOLf4fSeN99CKqe-jm924y_kDpA_DzSPWvm4ENxZ_M9B6DJJyNseTpppNWzwax846n2KAlG20wc6p7vQE_xhLrKDRsg5ov_hk4mvWWjztYHbnD9HRtdD8EVqtm9o8QdiRk3NplJRlnjvfo7RpoiuZ25RYrRWPUNpTV6gAgQ6TOM6ET8UTLjqOCMcR4TkiLiL0ZvGb8w4A5MrdW8C0xU4A7_ZfNJMTEWyBUIVKFXGhqlIumGOsIkYV1idpTaLyJELrwHLhfCAA8lVQ8aRa4SJBML8R2uglQQR7MxWX2hGhl4tlZykg_SNr08y6PTyFDrkIPe4EZ_GcBGD1eOpWiiWRWnqR5ZV6fOrRyDkAd6WOtm974bt8rP8T6unVb_EC3XLaLT7tjfbX0e0MNASqiOgGWm0nM_PMOYJt9TxoGEZfr1upfwOE_HFB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+design+of+mechanically+robust+Ni-rich+cathode+materials+via+concentration+gradient+strategy&rft.jtitle=Nature+communications&rft.au=Liu%2C+Tongchao&rft.au=Yu%2C+Lei&rft.au=Lu%2C+Jun&rft.au=Zhou%2C+Tao&rft.date=2021-10-15&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26290-z&rft.externalDocID=10_1038_s41467_021_26290_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon