Hybrid-RIS-Assisted Cellular ISAC Networks for UAV-Enabled Low-Altitude Economy via Deep Reinforcement Learning with Mixture-of-Experts

This paper investigates cellular base station (BS)-enabled wireless systems featuring downlink integrated sensing and communications, a critical enabler for the low-altitude economy. To serve a sensing target and multiple communication users simultaneously, a hybrid active-passive reconfigurable int...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking p. 1
Main Authors Ma, Zhangfeng, Liang, Yongzhe, Zhu, Qiuming, Zheng, Jiakang, Lian, Zhuxian, Zeng, Linzhou, Fu, Chengwei, Peng, Yifei, Ai, Bo
Format Journal Article
LanguageEnglish
Published IEEE 15.10.2025
Subjects
Online AccessGet full text
ISSN2332-7731
2332-7731
DOI10.1109/TCCN.2025.3622130

Cover

Abstract This paper investigates cellular base station (BS)-enabled wireless systems featuring downlink integrated sensing and communications, a critical enabler for the low-altitude economy. To serve a sensing target and multiple communication users simultaneously, a hybrid active-passive reconfigurable intelligent surface (RIS) is employed. A key challenge arises from the inherent downtilt of cellular BS antennas, which often results in high-altitude targets (e.g., unmanned aerial vehicles) being sensed predominantly via antenna sidelobes, thereby substantially constraining sensing performance. To jointly enhance both communication and sensing capabilities, we formulate a radar signal-to-noise ratio maximization problem. This formulation involves the co-optimization of beamforming vectors and RIS phase shifts, subject to constraints on transmit power, hybrid RIS power consumption, discrete RIS phase shifts, and communication user quality of service requirements. Addressing the non-convexity and NP-hardness of this problem, we propose a novel mixture-of-experts (MoE)-based proximal policy optimization (PPO) approach. Specifically, the MoE architecture is integrated within PPO to alleviate the learning complexity and mitigate gradient interference inherent in a single policy network. This is achieved by employing expert networks that specialize in distinct regions of the state space, orchestrated by a gating network that dynamically weights their contributions, thereby promoting accelerated convergence and enhanced optimization efficiency. Numerical results demonstrate that even for a target flying above the cellular BS, the deployment of a hybrid RIS with as few as 4 active elements, each providing an amplitude amplification of 2, yields a remarkable 18.5% improvement in sensing SNR, which translates to substantially enhanced sensing accuracy and reliability for low-altitude targets.
AbstractList This paper investigates cellular base station (BS)-enabled wireless systems featuring downlink integrated sensing and communications, a critical enabler for the low-altitude economy. To serve a sensing target and multiple communication users simultaneously, a hybrid active-passive reconfigurable intelligent surface (RIS) is employed. A key challenge arises from the inherent downtilt of cellular BS antennas, which often results in high-altitude targets (e.g., unmanned aerial vehicles) being sensed predominantly via antenna sidelobes, thereby substantially constraining sensing performance. To jointly enhance both communication and sensing capabilities, we formulate a radar signal-to-noise ratio maximization problem. This formulation involves the co-optimization of beamforming vectors and RIS phase shifts, subject to constraints on transmit power, hybrid RIS power consumption, discrete RIS phase shifts, and communication user quality of service requirements. Addressing the non-convexity and NP-hardness of this problem, we propose a novel mixture-of-experts (MoE)-based proximal policy optimization (PPO) approach. Specifically, the MoE architecture is integrated within PPO to alleviate the learning complexity and mitigate gradient interference inherent in a single policy network. This is achieved by employing expert networks that specialize in distinct regions of the state space, orchestrated by a gating network that dynamically weights their contributions, thereby promoting accelerated convergence and enhanced optimization efficiency. Numerical results demonstrate that even for a target flying above the cellular BS, the deployment of a hybrid RIS with as few as 4 active elements, each providing an amplitude amplification of 2, yields a remarkable 18.5% improvement in sensing SNR, which translates to substantially enhanced sensing accuracy and reliability for low-altitude targets.
Author Fu, Chengwei
Zeng, Linzhou
Lian, Zhuxian
Liang, Yongzhe
Ma, Zhangfeng
Zhu, Qiuming
Zheng, Jiakang
Peng, Yifei
Ai, Bo
Author_xml – sequence: 1
  givenname: Zhangfeng
  orcidid: 0000-0002-9068-4770
  surname: Ma
  fullname: Ma, Zhangfeng
  email: zhangfeng.ma@vip.126.com
  organization: Hunan Provincial Key Laboratory of Rural Informatization Service in Southwestern Hunan, School of Information Science and Engineering, Shaoyang University, Shaoyang, China
– sequence: 2
  givenname: Yongzhe
  surname: Liang
  fullname: Liang, Yongzhe
  email: yongzhe.liang@bjtu.edu.cn
  organization: School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Qiuming
  orcidid: 0000-0002-4995-5970
  surname: Zhu
  fullname: Zhu, Qiuming
  email: zhuqiuming@nuaa.edu.cn
  organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 4
  givenname: Jiakang
  orcidid: 0000-0003-2241-3829
  surname: Zheng
  fullname: Zheng, Jiakang
  email: jiakangzheng@bjtu.edu.cn
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
– sequence: 5
  givenname: Zhuxian
  orcidid: 0000-0002-0865-2615
  surname: Lian
  fullname: Lian, Zhuxian
  email: zhuxianlian@just.edu.cn
  organization: Ocean College, Jiangsu University of Science and Technology, Zhenjiang, China
– sequence: 6
  givenname: Linzhou
  orcidid: 0000-0003-2344-8927
  surname: Zeng
  fullname: Zeng, Linzhou
  email: linzhou.zeng@hnist.edu.cn
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
– sequence: 7
  givenname: Chengwei
  surname: Fu
  fullname: Fu, Chengwei
  email: chengwei_fu25@126.com
  organization: School of Information Science and Engineering, Shaoyang University, Shaoyang, China
– sequence: 8
  givenname: Yifei
  surname: Peng
  fullname: Peng, Yifei
  email: 2190476235@qq.com
  organization: School of Information Science and Engineering, Shaoyang University, Shaoyang, China
– sequence: 9
  givenname: Bo
  orcidid: 0000-0001-6850-0595
  surname: Ai
  fullname: Ai, Bo
  email: boai@bjtu.edu.cn
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
BookMark eNpNkM1OwkAUhScGExF5ABMX8wKD89OZtsumViGpmAC6babtrY6WlswUgSfwtS2BRFfnLs53k_Ndo0HTNoDQLaMTxmh4v4rj-YRTLidCcc4EvUBDLgQnvi_Y4N99hcbOfVJKmeJKBd4Q_UwPuTUlWcyWJHLOuA5KHENdb2tt8WwZxXgO3a61Xw5XrcWv0RtJGp3XfS1tdySqO9NtS8BJ0Tbt-oC_jcYPABu8ANP0RAFraDqcgraNad7xznQf-Nnsu60F0lYk2W_Adu4GXVa6djA-5witHpNVPCXpy9MsjlJSKCEI5LmoeD_SD3ytaFl5rJCe0lzmfhAWvGB-5clQhYHkgYKA-V4oQx2KvBRe6GkxQuz0trCtcxaqbGPNWttDxmh2dJkdXWZHl9nZZc_cnRgDAH99xqkMpBC_rCNxuw
CODEN ITCCG7
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCCN.2025.3622130
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7731
EndPage 1
ExternalDocumentID 10_1109_TCCN_2025_3622130
11205853
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China under Grant 62401371
  grantid: 62401371
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IES
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
AGSQL
CITATION
EJD
M43
O9-
ID FETCH-LOGICAL-c633-ebb3f2362787a60df41c546a25b789c2c17f4596985286e8174959a93bd3494a3
IEDL.DBID RIE
ISSN 2332-7731
IngestDate Sat Oct 25 05:43:23 EDT 2025
Sat Oct 25 03:12:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c633-ebb3f2362787a60df41c546a25b789c2c17f4596985286e8174959a93bd3494a3
ORCID 0000-0003-2241-3829
0000-0001-6850-0595
0000-0002-9068-4770
0000-0002-0865-2615
0000-0003-2344-8927
0000-0002-4995-5970
PageCount 1
ParticipantIDs ieee_primary_11205853
crossref_primary_10_1109_TCCN_2025_3622130
PublicationCentury 2000
PublicationDate 20251015
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 20251015
  day: 15
PublicationDecade 2020
PublicationTitle IEEE transactions on cognitive communications and networking
PublicationTitleAbbrev TCCN
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001626684
Score 2.311217
Snippet This paper investigates cellular base station (BS)-enabled wireless systems featuring downlink integrated sensing and communications, a critical enabler for...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Antennas
Array signal processing
cellular integrated sensing and communication
deep reinforcement learning
hybrid reconfigurable intelligent surface
Integrated sensing and communication
Interference cancellation
Low-altitude economy
mixture of experts
Optimization
Quality of service
Radar antennas
Reconfigurable intelligent surfaces
Signal to noise ratio
Vectors
Title Hybrid-RIS-Assisted Cellular ISAC Networks for UAV-Enabled Low-Altitude Economy via Deep Reinforcement Learning with Mixture-of-Experts
URI https://ieeexplore.ieee.org/document/11205853
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2332-7731
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626684
  issn: 2332-7731
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT_rgdeKdPPgkZDZtkjaPoypTdA86ZW8ll1MZyia6qfMP-LdN0opDEHwrpYFwvqTnkvN9QeiQUZNkQC2RmgJhym1F7TwJMQI0j5ihJtxFcNUT3Vt2MeCDmqweuDAAEJrPoO0fw1m-HZupL5Udu9ggcuFt0kCNNBMVWeunoOJCc5Gx-uSSRvK4n-c9lwHGvO3-0jH1jc5zvmfuMpXgS85WUO97FlULyUN7OtFt8_FLoPHf01xFy3VUiTvVMlhDCzBaR0tzWoMb6LM78-Qscn1-QxwmHl2Lc3h89H2o-Pymk-Ne1RL-gl0gi287d-Q0EKssvhy_kY4n6k4t4IrKPMOvQ4VPAJ7wNQT1VRMKjbgWbL3HvsKLr4bv_oiCjEsSRJUnLy3UPzvt511S38Lg8EoSAlonZewM6Ha2EpEtHbqcCRVznWbSxIamJeNSyIzHmYDMZTiSSyUTbb3yjUo2UXM0HsEWwlEqpeUiK6lJmVFa6SSVlnIVW0Y1p9vo6Bue4qnS2ihCjhLJwmNZeCyLGstt1PKW__mwNvrOH-930aIf7t0O5XuoOXmewr6LJyb6IKyjL_QEyBA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uB_XgLu7m4EnI2LRJ2xyHqszoTA86ireS5VUGZUZ0xu0P-LdN0oqDIHgrpYTwvqRvyfu-IHTIqI5SoIYIRYEwabeisp6E6BgUD5im2t9F0M3j1jU7v-W3NVndc2EAwDefQcM9-rN8M9RjVyo7trFBYMPbaBrNcsYYr-haPyUVG5zHKavPLmkgjntZltscMOQN-58OqWt1nvA-E9epeG9ytoTy73lUTST3jfFINfTHL4nGf090GS3WcSVuVgthBU3BYBUtTKgNrqHP1rujZ5HL9hWxqDh8Dc7g4cF1ouL2VTPDedUU_oxtKIuvmzfk1FOrDO4MX0nTUXXHBnBFZn7HL32JTwAe8SV4_VXtS424lmy9w67Gi7v9N3dIQYYl8bLKo-d11Ds77WUtUt_DYBGLIgJKRWVoDWj3towDU1p8OYtlyFWSCh1qmpSMi1ikPExjSG2OI7iQIlLGad_IaAPNDIYD2EQ4SIQwPE5LqhOmpZIqSoShXIaGUcXpFjr6hqd4rNQ2Cp-lBKJwWBYOy6LGcgutO8v_fFgbffuP9wdortXrdopOO7_YQfNuKOeEKN9FM6OnMezZ6GKk9v2a-gKY_Mtd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid-RIS-Assisted+Cellular+ISAC+Networks+for+UAV-Enabled+Low-Altitude+Economy+via+Deep+Reinforcement+Learning+with+Mixture-of-Experts&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Ma%2C+Zhangfeng&rft.au=Liang%2C+Yongzhe&rft.au=Zhu%2C+Qiuming&rft.au=Zheng%2C+Jiakang&rft.date=2025-10-15&rft.issn=2332-7731&rft.eissn=2332-7731&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCCN.2025.3622130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2025_3622130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon