Genome-wide detection of predicted non-coding RNAs in Rhizobium etli expressed during free-living and host-associated growth using a high-resolution tiling array
Background Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in we...
        Saved in:
      
    
          | Published in | BMC genomics Vol. 11; no. 1; p. 53 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        20.01.2010
     BioMed Central Ltd BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2164 1471-2164  | 
| DOI | 10.1186/1471-2164-11-53 | 
Cover
| Abstract | Background
Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied γ-proteobacteria but lately in several α-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling α-proteobacterium
Rhizobium etli
.
Results
Expression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the
R. etli
genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other α-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative
cis
-regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes.
Conclusions
Our data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of
R. etli
and, by extension, of α-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions. | 
    
|---|---|
| AbstractList | Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied γ-proteobacteria but lately in several α-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling α-proteobacterium Rhizobium etli. Expression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the R. etli genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other α-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative cis-regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes. Our data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of R. etli and, by extension, of α-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions. Background Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied γ-proteobacteria but lately in several α-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling α-proteobacterium Rhizobium etli . Results Expression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the R. etli genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other α-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative cis -regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes. Conclusions Our data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of R. etli and, by extension, of α-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions. Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied gamma-proteobacteria but lately in several alpha-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling alpha-proteobacterium Rhizobium etli. Expression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the R. etli genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other alpha-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative cis-regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes. Our data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of R. etli and, by extension, of alpha-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions. Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied g-proteobacteria but lately in several a-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling a-proteobacterium Rhizobium etli. Expression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the R. etli genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other a-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative cis-regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes. Our data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of R. etli and, by extension, of a-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions. Abstract Background Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied γ-proteobacteria but lately in several α-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling α-proteobacterium Rhizobium etli. Results Expression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the R. etli genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other α-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative cis-regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes. Conclusions Our data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of R. etli and, by extension, of α-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions. Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied gamma-proteobacteria but lately in several alpha-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling alpha-proteobacterium Rhizobium etli.BACKGROUNDNon-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied gamma-proteobacteria but lately in several alpha-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling alpha-proteobacterium Rhizobium etli.Expression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the R. etli genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other alpha-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative cis-regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes.RESULTSExpression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the R. etli genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other alpha-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative cis-regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes.Our data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of R. etli and, by extension, of alpha-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions.CONCLUSIONSOur data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of R. etli and, by extension, of alpha-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions. Background Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied γ-proteobacteria but lately in several α-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling α-proteobacterium Rhizobium etli. Results Expression of 89 candidate ncRNAs was detected, both on the chromosome and on the six megaplasmids encompassing the R. etli genome. Of these, 11 correspond to functionally well characterized ncRNAs, 12 were previously identified in other α-proteobacteria but are as yet uncharacterized and 66 were computationally predicted earlier but had not been experimentally identified and were therefore classified as novel ncRNAs. The latter comprise 17 putative sRNAs and 49 putative cis-regulatory ncRNAs. A selection of these candidate ncRNAs was validated by RT-qPCR, Northern blotting and 5' RACE, confirming the existence of 4 ncRNAs. Interestingly, individual transcript levels of numerous ncRNAs varied during free-living growth and during interaction with the eukaryotic host plant, pointing to possible ncRNA-dependent regulation of these specialized processes. Conclusions Our data support the practical value of previous ncRNA prediction algorithms and significantly expand the list of candidate ncRNAs encoded in the intergenic regions of R. etli and, by extension, of α-proteobacteria. Moreover, we show high-resolution tiling arrays to be suitable tools for studying intergenic ncRNA transcription profiles across the genome. The differential expression levels of some of these ncRNAs may indicate a role in adaptation to changing environmental conditions.  | 
    
| ArticleNumber | 53 | 
    
| Audience | Academic | 
    
| Author | Michiels, Jan Vercruysse, Maarten Marchal, Kathleen Thijs, Inge M Engelen, Kristof Fauvart, Maarten Cloots, Lore  | 
    
| AuthorAffiliation | 1 Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium | 
    
| AuthorAffiliation_xml | – name: 1 Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium | 
    
| Author_xml | – sequence: 1 givenname: Maarten surname: Vercruysse fullname: Vercruysse, Maarten organization: Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven – sequence: 2 givenname: Maarten surname: Fauvart fullname: Fauvart, Maarten organization: Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven – sequence: 3 givenname: Lore surname: Cloots fullname: Cloots, Lore organization: Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven – sequence: 4 givenname: Kristof surname: Engelen fullname: Engelen, Kristof organization: Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven – sequence: 5 givenname: Inge M surname: Thijs fullname: Thijs, Inge M organization: Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven – sequence: 6 givenname: Kathleen surname: Marchal fullname: Marchal, Kathleen organization: Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven – sequence: 7 givenname: Jan surname: Michiels fullname: Michiels, Jan email: Jan.Michiels@biw.kuleuven.be organization: Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20089193$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkk1v1DAQhiNURD_gzA1F4oA4pPVXYueCVFVQKlUgFThbjj3Jusrai-30g3_DP8XZLVUXAVUOmYyf952JZ_aLHecdFMVLjA4xFs0RZhxXBDeswriq6ZNi7z6z8yDeLfZjvEQIc0HqZ8UuQUi0uKV7xc9TcH4J1bU1UBpIoJP1rvR9uQpgrE5gylyz0t5YN5QXn45jaV15sbA_fGenZQlptCXcZDrGzJopzFwfAKrRXs2xcqZc-JgqFaPXVs2WQ_DXaVFOcQ2UCzssquzgx2ldPtlxfRCCun1ePO3VGOHF3fug-Pbh_deTj9X559Ozk-PzSjeUpIowYJy3rBNccKRaJVTd1oL3LSE5Ym1thCZKM05pI7juDe4BiUZro9uu4_SgONv4Gq8u5SrYpQq30isr1wkfBqlCsnoEyTDvNWGqFT1jwtQCUaJQ36HWiE5xnb3QxmtyK3V7rcbx3hAjOU9OzrOR82zyp6xplrzbSFZTtwSjwaWgxq0-tk-cXcjBX0kiBEZEZIM3dwbBf58gJrm0UcM4Kgd-ipKzhlBCRPM4SSllpEYkk6835KDyb1vX-1xaz7Q8JrhFtKbt3PrhX6j8GFhanRe2tzm_JXi7JchMgps0qClGefblYpt99fBe7i_k9wpnoN4AOvgYA_RS26TmNcpd2PE_F370h-7xEd1NNa7mJYcgL_0UXF7Kf0p-AcJPIno | 
    
| CitedBy_id | crossref_primary_10_1002_mbo3_137 crossref_primary_10_3389_fmicb_2017_01730 crossref_primary_10_1186_1471_2164_15_770 crossref_primary_10_1186_s41544_020_00054_1 crossref_primary_10_3390_ht7020015 crossref_primary_10_1093_nar_gkt1086 crossref_primary_10_1128_mBio_00473_17 crossref_primary_10_3390_microorganisms8030384 crossref_primary_10_4161_rna_9_1_18008 crossref_primary_10_1007_s00203_011_0701_1 crossref_primary_10_1007_s00203_023_03640_7 crossref_primary_10_1186_gb_2011_12_2_r17 crossref_primary_10_3390_genes2040925 crossref_primary_10_1073_pnas_1604514113 crossref_primary_10_1094_MPMI_07_12_0186_CR crossref_primary_10_1111_1462_2920_13757 crossref_primary_10_1111_j_1365_2958_2011_07589_x crossref_primary_10_1186_1471_2164_13_15 crossref_primary_10_1111_j_1365_2958_2012_08117_x crossref_primary_10_1111_nph_13195 crossref_primary_10_2217_fmb_12_13 crossref_primary_10_1007_s13199_015_0345_z crossref_primary_10_4161_rna_29625 crossref_primary_10_1111_2049_632X_12174 crossref_primary_10_1080_15476286_2015_1017206 crossref_primary_10_1099_jmm_0_019703_0 crossref_primary_10_1016_j_plantsci_2019_03_011 crossref_primary_10_1128_mBio_00340_10 crossref_primary_10_4161_rna_28035 crossref_primary_10_4161_rna_29145 crossref_primary_10_1094_MPMI_05_11_0140 crossref_primary_10_1016_j_molcel_2015_05_011 crossref_primary_10_1186_1471_2180_10_276 crossref_primary_10_4161_rna_17212 crossref_primary_10_1111_mmi_13869 crossref_primary_10_1186_1471_2229_11_61  | 
    
| Cites_doi | 10.1093/nar/gkl1096 10.1128/JB.180.7.1729-1740.1998 10.1016/j.plasmid.2005.05.003 10.1016/j.tig.2005.05.008 10.1111/j.1574-6968.2008.01254.x 10.1111/j.1365-2958.2007.05894.x 10.1093/nar/gkl453 10.1128/JB.187.15.5460-5469.2005 10.1093/nar/gkl439 10.1016/j.mib.2007.05.003 10.1073/pnas.0403423101 10.1016/S0092-8674(02)00717-1 10.1016/j.gene.2008.09.024 10.1111/j.1365-2958.2007.05978.x 10.1111/j.1365-2958.2004.04412.x 10.1186/1471-2164-8-467 10.1159/000219378 10.1371/journal.pgen.1000163 10.1016/j.mib.2007.03.005 10.1094/MPMI.2004.17.3.292 10.1093/nar/gki445 10.1073/pnas.78.10.6008 10.1093/nar/gkn898 10.1094/MPMI-19-0363 10.1186/1471-2164-9-416 10.1093/nar/gkg107 10.1016/j.mib.2007.03.007 10.1016/j.cbpa.2005.09.016 10.1371/journal.pone.0003197 10.1128/jb.179.23.7403-7409.1997 10.1093/nar/29.9.e45 10.1111/j.1365-2958.2008.06172.x 10.1021/jf8008926 10.1111/j.1365-2958.2009.06777.x 10.1016/j.tibs.2006.04.007 10.1038/nrmicro1793 10.1093/nar/gkn742 10.1073/pnas.0808802105 10.1038/nature08080 10.1093/nar/gki256 10.1515/BC.2005.140 10.1146/annurev.biochem.74.082803.133136 10.1016/S0167-7012(03)00175-1 10.1016/j.cell.2009.01.043 10.1016/S0960-9822(01)00401-8 10.1093/nar/gkf468 10.1101/gr.362402 10.1016/S0960-9822(01)00270-6 10.1128/jb.179.22.6887-6893.1997 10.1038/newbio229147a0 10.1093/nar/30.4.e15 10.1186/1471-2180-8-219 10.1101/gad.901001 10.1016/S0303-2647(02)00013-8 10.1073/pnas.161168098 10.1007/BF00290243 10.1016/S0092-8674(00)80873-9 10.1093/nar/gkg867 10.1073/pnas.0503838102 10.1016/j.mib.2007.03.012 10.1016/j.tibs.2003.11.004 10.1186/1471-2164-9-364 10.1093/nar/gkm487  | 
    
| ContentType | Journal Article | 
    
| Copyright | Vercruysse et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2010 BioMed Central Ltd. Copyright ©2010 Vercruysse et al; licensee BioMed Central Ltd. 2010 Vercruysse et al; licensee BioMed Central Ltd.  | 
    
| Copyright_xml | – notice: Vercruysse et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2010 BioMed Central Ltd. – notice: Copyright ©2010 Vercruysse et al; licensee BioMed Central Ltd. 2010 Vercruysse et al; licensee BioMed Central Ltd.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 7QL 7T7 7TM 8FD C1K FR3 P64 RC3 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/1471-2164-11-53 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Acceso a contenido Full Text - Doaj  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2164 | 
    
| EndPage | 53 | 
    
| ExternalDocumentID | oai_doaj_org_article_417fc24a98f448d58032a0fb09d8ba7c 10.1186/1471-2164-11-53 PMC2881028 A219035393 20089193 10_1186_1471_2164_11_53  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GeographicLocations | Belgium | 
    
| GeographicLocations_xml | – name: Belgium | 
    
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ AIXEN ALIPV C24 CGR CUY CVF ECM EIF NPM 7X8 7QL 7T7 7TM 8FD C1K FR3 P64 RC3 5PM ADTOC AFFHD UNPAY  | 
    
| ID | FETCH-LOGICAL-c632t-24e47794b87870a9a8a59587f922a59495d8c2ac4733687cfd1fe086ccdc9bb73 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2164 | 
    
| IngestDate | Fri Oct 03 12:53:43 EDT 2025 Wed Oct 29 11:49:35 EDT 2025 Tue Sep 30 16:56:45 EDT 2025 Tue Oct 07 09:50:24 EDT 2025 Fri Sep 05 11:09:54 EDT 2025 Mon Oct 20 21:45:09 EDT 2025 Mon Oct 20 16:39:48 EDT 2025 Thu Oct 16 14:47:41 EDT 2025 Thu Jan 02 22:06:59 EST 2025 Wed Oct 01 03:02:54 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Sat Sep 06 07:28:41 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Tiling Array Signal Recognition Particle Artificial Reference Common Bean Plant Tobacco Acid Pyrophosphatase  | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c632t-24e47794b87870a9a8a59587f922a59495d8c2ac4733687cfd1fe086ccdc9bb73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://link.springer.com/10.1186/1471-2164-11-53 | 
    
| PMID | 20089193 | 
    
| PQID | 733342502 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_417fc24a98f448d58032a0fb09d8ba7c unpaywall_primary_10_1186_1471_2164_11_53 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2881028 proquest_miscellaneous_746232286 proquest_miscellaneous_733342502 gale_infotracmisc_A219035393 gale_infotracacademiconefile_A219035393 gale_incontextgauss_ISR_A219035393 pubmed_primary_20089193 crossref_citationtrail_10_1186_1471_2164_11_53 crossref_primary_10_1186_1471_2164_11_53 springer_journals_10_1186_1471_2164_11_53  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-01-20 | 
    
| PublicationDateYYYYMMDD | 2010-01-20 | 
    
| PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-20 day: 20  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC genomics | 
    
| PublicationTitleAbbrev | BMC Genomics | 
    
| PublicationTitleAlternate | BMC Genomics | 
    
| PublicationYear | 2010 | 
    
| Publisher | BioMed Central BioMed Central Ltd BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC  | 
    
| References | P Stougaard (2647_CR2) 1981; 78 K Braeken (2647_CR28) 2008; 8 YH Yang (2647_CR39) 2002; 30 E Gur (2647_CR53) 2008; 105 S Chen (2647_CR14) 2002; 65 JP Swiercz (2647_CR20) 2008; 36 J Michiels (2647_CR62) 1998; 180 S Gottesman (2647_CR3) 2005; 21 A Sittka (2647_CR21) 2008; 4 KB Arnvig (2647_CR23) 2009; 73 C Valverde (2647_CR45) 2008; 9 D Evans (2647_CR52) 2006; 31 S Spaniolas (2647_CR36) 2008; 56 S Altuvia (2647_CR25) 2007; 10 KM Wassarman (2647_CR16) 2001; 15 VM Ulve (2647_CR42) 2007; 8 J Miranda-Rios (2647_CR55) 1997; 179 KM Wassarman (2647_CR6) 2002; 109 CM Nelson (2647_CR38) 2008; 9 M Regalia (2647_CR50) 2002; 30 R Sorek (2647_CR12) 2008; 6 G Storz (2647_CR4) 2005; 74 L Argaman (2647_CR13) 2001; 11 J Vogel (2647_CR5) 2005; 386 M Kawano (2647_CR60) 2005; 33 J Johansson (2647_CR11) 2009; 16 C Abreu-Goodger (2647_CR46) 2005; 33 J Miranda-Rios (2647_CR56) 2001; 98 J Livny (2647_CR24) 2007; 10 JW Tukey (2647_CR40) 1977 KM Wassarman (2647_CR49) 2007; 65 M Guillier (2647_CR61) 2008; 36 GG Brownlee (2647_CR1) 1971; 229 J Livny (2647_CR44) 2008; 3 AA Bhagwat (2647_CR33) 2003; 55 Z Weinberg (2647_CR43) 2007; 35 A Becker (2647_CR34) 2004; 17 EF Nuwaysir (2647_CR37) 2002; 12 MA Rosenblad (2647_CR51) 2003; 31 LS Waters (2647_CR7) 2009; 136 S Saito (2647_CR17) 2009; 428 E Nudler (2647_CR54) 2004; 29 J Vogel (2647_CR59) 2003; 31 S Brantl (2647_CR8) 2007; 10 J Livny (2647_CR18) 2006; 34 C del Val (2647_CR41) 2007; 66 P Babitzke (2647_CR9) 2007; 10 I D'Hooghe (2647_CR32) 1997; 179 J Izquierdo (2647_CR58) 2005; 54 E Rivas (2647_CR15) 2001; 11 PJ Wilderman (2647_CR64) 2004; 101 C Pichon (2647_CR19) 2005; 102 SG Landt (2647_CR26) 2008; 68 WC Winkler (2647_CR10) 2005; 9 SR MacLellan (2647_CR57) 2005; 55 D Capela (2647_CR35) 2006; 19 A Toledo-Arana (2647_CR27) 2009; 459 I D'Hooghe (2647_CR31) 1995; 249 KM Wassarman (2647_CR48) 2000; 101 MW Pfaffl (2647_CR47) 2001; 29 M Moris (2647_CR30) 2005; 187 M Fauvart (2647_CR29) 2008; 285 P Mandin (2647_CR22) 2007; 35 PR Kulkarni (2647_CR63) 2006; 34 18616593 - FEMS Microbiol Lett. 2008 Aug;285(1):1-9 19494584 - Contrib Microbiol. 2009;16:150-60 16005966 - Plasmid. 2005 Nov;54(3):259-77 18373523 - Mol Microbiol. 2008 May;68(3):600-14 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 6171808 - Proc Natl Acad Sci U S A. 1981 Oct;78(10):6008-12 16336117 - Biol Chem. 2005 Dec;386(12):1219-38 16870723 - Nucleic Acids Res. 2006;34(12):3484-93 18787707 - PLoS One. 2008;3(9):e3197 18725932 - PLoS Genet. 2008;4(8):e1000163 8552028 - Mol Gen Genet. 1995 Nov 1;249(1):117-26 16610739 - Mol Plant Microbe Interact. 2006 Apr;19(4):363-72 19077212 - BMC Microbiol. 2008;8:219 17383222 - Curr Opin Microbiol. 2007 Apr;10(2):96-101 15718303 - Nucleic Acids Res. 2005;33(3):1040-50 18793445 - BMC Genomics. 2008;9:416 16822857 - Nucleic Acids Res. 2006;34(11):3361-9 11842121 - Nucleic Acids Res. 2002 Feb 15;30(4):e15 14529961 - J Microbiol Methods. 2003 Nov;55(2):399-409 15980564 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W690-2 16226486 - Curr Opin Chem Biol. 2005 Dec;9(6):594-602 15659174 - Mol Microbiol. 2005 Jan;55(2):611-23 17971083 - Mol Microbiol. 2007 Dec;66(5):1080-91 17387036 - Curr Opin Microbiol. 2007 Apr;10(2):102-9 11448770 - Curr Biol. 2001 Jun 26;11(12):941-50 15913835 - Trends Genet. 2005 Jul;21(7):399-404 12421762 - Genome Res. 2002 Nov;12(11):1749-55 17383221 - Curr Opin Microbiol. 2007 Apr;10(2):156-63 18852454 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16113-8 18953042 - Nucleic Acids Res. 2008 Dec;36(21):6781-94 19239884 - Cell. 2009 Feb 20;136(4):615-28 18646759 - J Agric Food Chem. 2008 Aug 27;56(16):6886-91 16030240 - J Bacteriol. 2005 Aug;187(15):5460-9 17259222 - Nucleic Acids Res. 2007;35(3):962-74 17621584 - Nucleic Acids Res. 2007;35(14):4809-19 15952886 - Annu Rev Biochem. 2005;74:199-217 12007399 - Cell. 2002 Apr 19;109(2):141-4 4929322 - Nat New Biol. 1971 Feb 3;229(5):147-9 11553332 - Curr Biol. 2001 Sep 4;11(17):1369-73 19555452 - Mol Microbiol. 2009 Aug;73(3):397-408 9537369 - J Bacteriol. 1998 Apr;180(7):1729-40 17553733 - Curr Opin Microbiol. 2007 Jun;10(3):257-61 19448609 - Nature. 2009 Jun 18;459(7249):950-6 9371431 - J Bacteriol. 1997 Nov;179(22):6887-93 19008244 - Nucleic Acids Res. 2008 Dec;36(22):7240-51 14729327 - Trends Biochem Sci. 2004 Jan;29(1):11-7 18948176 - Gene. 2009 Jan 1;428(1-2):2-8 11470904 - Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9736-41 11445539 - Genes Dev. 2001 Jul 1;15(13):1637-51 15000396 - Mol Plant Microbe Interact. 2004 Mar;17(3):292-303 14602901 - Nucleic Acids Res. 2003 Nov 15;31(22):6435-43 15210934 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9792-7 18157154 - Nat Rev Microbiol. 2008 Mar;6(3):181-6 9393705 - J Bacteriol. 1997 Dec;179(23):7403-9 10892648 - Cell. 2000 Jun 9;101(6):613-23 16679018 - Trends Biochem Sci. 2006 Jun;31(6):333-41 18093320 - BMC Genomics. 2007;8:467 16183745 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14249-54 18671858 - BMC Genomics. 2008;9:364 12140321 - Nucleic Acids Res. 2002 Aug 1;30(15):3368-77 12520023 - Nucleic Acids Res. 2003 Jan 1;31(1):363-4 17714443 - Mol Microbiol. 2007 Sep;65(6):1425-31 12069726 - Biosystems. 2002 Mar-May;65(2-3):157-77  | 
    
| References_xml | – volume: 35 start-page: 962 year: 2007 ident: 2647_CR22 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl1096 – volume: 180 start-page: 1729 year: 1998 ident: 2647_CR62 publication-title: J Bacteriol doi: 10.1128/JB.180.7.1729-1740.1998 – volume: 54 start-page: 259 year: 2005 ident: 2647_CR58 publication-title: Plasmid doi: 10.1016/j.plasmid.2005.05.003 – volume: 21 start-page: 399 year: 2005 ident: 2647_CR3 publication-title: Trends Genet doi: 10.1016/j.tig.2005.05.008 – volume: 285 start-page: 1 year: 2008 ident: 2647_CR29 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2008.01254.x – volume: 65 start-page: 1425 year: 2007 ident: 2647_CR49 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2007.05894.x – volume: 34 start-page: 3484 year: 2006 ident: 2647_CR18 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl453 – volume: 187 start-page: 5460 year: 2005 ident: 2647_CR30 publication-title: J Bacteriol doi: 10.1128/JB.187.15.5460-5469.2005 – volume: 34 start-page: 3361 year: 2006 ident: 2647_CR63 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl439 – volume: 10 start-page: 257 year: 2007 ident: 2647_CR25 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2007.05.003 – volume: 101 start-page: 9792 year: 2004 ident: 2647_CR64 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0403423101 – volume: 109 start-page: 141 year: 2002 ident: 2647_CR6 publication-title: Cell doi: 10.1016/S0092-8674(02)00717-1 – volume-title: Exploratory Data Analysis year: 1977 ident: 2647_CR40 – volume: 428 start-page: 2 year: 2009 ident: 2647_CR17 publication-title: Gene doi: 10.1016/j.gene.2008.09.024 – volume: 66 start-page: 1080 year: 2007 ident: 2647_CR41 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2007.05978.x – volume: 55 start-page: 611 year: 2005 ident: 2647_CR57 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04412.x – volume: 8 start-page: 467 year: 2007 ident: 2647_CR42 publication-title: BMC Genomics doi: 10.1186/1471-2164-8-467 – volume: 16 start-page: 150 year: 2009 ident: 2647_CR11 publication-title: Contrib Microbiol doi: 10.1159/000219378 – volume: 4 start-page: e1000163 year: 2008 ident: 2647_CR21 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000163 – volume: 10 start-page: 96 year: 2007 ident: 2647_CR24 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2007.03.005 – volume: 17 start-page: 292 year: 2004 ident: 2647_CR34 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.2004.17.3.292 – volume: 33 start-page: W690 year: 2005 ident: 2647_CR46 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki445 – volume: 78 start-page: 6008 year: 1981 ident: 2647_CR2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.78.10.6008 – volume: 36 start-page: 7240 year: 2008 ident: 2647_CR20 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn898 – volume: 19 start-page: 363 year: 2006 ident: 2647_CR35 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-19-0363 – volume: 9 start-page: 416 year: 2008 ident: 2647_CR45 publication-title: BMC Genomics doi: 10.1186/1471-2164-9-416 – volume: 31 start-page: 363 year: 2003 ident: 2647_CR51 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg107 – volume: 10 start-page: 156 year: 2007 ident: 2647_CR9 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2007.03.007 – volume: 9 start-page: 594 year: 2005 ident: 2647_CR10 publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2005.09.016 – volume: 3 start-page: e3197 year: 2008 ident: 2647_CR44 publication-title: PLoS ONE doi: 10.1371/journal.pone.0003197 – volume: 179 start-page: 7403 year: 1997 ident: 2647_CR32 publication-title: J Bacteriol doi: 10.1128/jb.179.23.7403-7409.1997 – volume: 29 start-page: e45 year: 2001 ident: 2647_CR47 publication-title: Nucleic Acids Res doi: 10.1093/nar/29.9.e45 – volume: 68 start-page: 600 year: 2008 ident: 2647_CR26 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2008.06172.x – volume: 56 start-page: 6886 year: 2008 ident: 2647_CR36 publication-title: J Agric Food Chem doi: 10.1021/jf8008926 – volume: 73 start-page: 397 year: 2009 ident: 2647_CR23 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2009.06777.x – volume: 31 start-page: 333 year: 2006 ident: 2647_CR52 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2006.04.007 – volume: 6 start-page: 181 year: 2008 ident: 2647_CR12 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1793 – volume: 36 start-page: 6781 year: 2008 ident: 2647_CR61 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn742 – volume: 105 start-page: 16113 year: 2008 ident: 2647_CR53 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0808802105 – volume: 459 start-page: 950 year: 2009 ident: 2647_CR27 publication-title: Nature doi: 10.1038/nature08080 – volume: 33 start-page: 1040 year: 2005 ident: 2647_CR60 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki256 – volume: 386 start-page: 1219 year: 2005 ident: 2647_CR5 publication-title: Biol Chem doi: 10.1515/BC.2005.140 – volume: 74 start-page: 199 year: 2005 ident: 2647_CR4 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.74.082803.133136 – volume: 55 start-page: 399 year: 2003 ident: 2647_CR33 publication-title: J Microbiol Methods doi: 10.1016/S0167-7012(03)00175-1 – volume: 136 start-page: 615 year: 2009 ident: 2647_CR7 publication-title: Cell doi: 10.1016/j.cell.2009.01.043 – volume: 11 start-page: 1369 year: 2001 ident: 2647_CR15 publication-title: Curr Biol doi: 10.1016/S0960-9822(01)00401-8 – volume: 30 start-page: 3368 year: 2002 ident: 2647_CR50 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf468 – volume: 12 start-page: 1749 year: 2002 ident: 2647_CR37 publication-title: Genome Res doi: 10.1101/gr.362402 – volume: 11 start-page: 941 year: 2001 ident: 2647_CR13 publication-title: Curr Biol doi: 10.1016/S0960-9822(01)00270-6 – volume: 179 start-page: 6887 year: 1997 ident: 2647_CR55 publication-title: J Bacteriol doi: 10.1128/jb.179.22.6887-6893.1997 – volume: 229 start-page: 147 year: 1971 ident: 2647_CR1 publication-title: Nat New Biol doi: 10.1038/newbio229147a0 – volume: 30 start-page: e15 year: 2002 ident: 2647_CR39 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.4.e15 – volume: 8 start-page: 219 year: 2008 ident: 2647_CR28 publication-title: BMC Microbiol doi: 10.1186/1471-2180-8-219 – volume: 15 start-page: 1637 year: 2001 ident: 2647_CR16 publication-title: Genes Dev doi: 10.1101/gad.901001 – volume: 65 start-page: 157 year: 2002 ident: 2647_CR14 publication-title: Biosystems doi: 10.1016/S0303-2647(02)00013-8 – volume: 98 start-page: 9736 year: 2001 ident: 2647_CR56 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.161168098 – volume: 249 start-page: 117 year: 1995 ident: 2647_CR31 publication-title: Mol Gen Genet doi: 10.1007/BF00290243 – volume: 101 start-page: 613 year: 2000 ident: 2647_CR48 publication-title: Cell doi: 10.1016/S0092-8674(00)80873-9 – volume: 31 start-page: 6435 year: 2003 ident: 2647_CR59 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg867 – volume: 102 start-page: 14249 year: 2005 ident: 2647_CR19 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0503838102 – volume: 10 start-page: 102 year: 2007 ident: 2647_CR8 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2007.03.012 – volume: 29 start-page: 11 year: 2004 ident: 2647_CR54 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2003.11.004 – volume: 9 start-page: 364 year: 2008 ident: 2647_CR38 publication-title: BMC Genomics doi: 10.1186/1471-2164-9-364 – volume: 35 start-page: 4809 year: 2007 ident: 2647_CR43 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm487 – reference: 19077212 - BMC Microbiol. 2008;8:219 – reference: 16226486 - Curr Opin Chem Biol. 2005 Dec;9(6):594-602 – reference: 18093320 - BMC Genomics. 2007;8:467 – reference: 17259222 - Nucleic Acids Res. 2007;35(3):962-74 – reference: 16030240 - J Bacteriol. 2005 Aug;187(15):5460-9 – reference: 17553733 - Curr Opin Microbiol. 2007 Jun;10(3):257-61 – reference: 18852454 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16113-8 – reference: 16183745 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14249-54 – reference: 18157154 - Nat Rev Microbiol. 2008 Mar;6(3):181-6 – reference: 14529961 - J Microbiol Methods. 2003 Nov;55(2):399-409 – reference: 15659174 - Mol Microbiol. 2005 Jan;55(2):611-23 – reference: 14729327 - Trends Biochem Sci. 2004 Jan;29(1):11-7 – reference: 19494584 - Contrib Microbiol. 2009;16:150-60 – reference: 18948176 - Gene. 2009 Jan 1;428(1-2):2-8 – reference: 11445539 - Genes Dev. 2001 Jul 1;15(13):1637-51 – reference: 12140321 - Nucleic Acids Res. 2002 Aug 1;30(15):3368-77 – reference: 15980564 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W690-2 – reference: 16822857 - Nucleic Acids Res. 2006;34(11):3361-9 – reference: 16610739 - Mol Plant Microbe Interact. 2006 Apr;19(4):363-72 – reference: 17714443 - Mol Microbiol. 2007 Sep;65(6):1425-31 – reference: 15718303 - Nucleic Acids Res. 2005;33(3):1040-50 – reference: 16679018 - Trends Biochem Sci. 2006 Jun;31(6):333-41 – reference: 9537369 - J Bacteriol. 1998 Apr;180(7):1729-40 – reference: 18787707 - PLoS One. 2008;3(9):e3197 – reference: 15952886 - Annu Rev Biochem. 2005;74:199-217 – reference: 18616593 - FEMS Microbiol Lett. 2008 Aug;285(1):1-9 – reference: 19239884 - Cell. 2009 Feb 20;136(4):615-28 – reference: 17971083 - Mol Microbiol. 2007 Dec;66(5):1080-91 – reference: 19555452 - Mol Microbiol. 2009 Aug;73(3):397-408 – reference: 17387036 - Curr Opin Microbiol. 2007 Apr;10(2):102-9 – reference: 18373523 - Mol Microbiol. 2008 May;68(3):600-14 – reference: 9393705 - J Bacteriol. 1997 Dec;179(23):7403-9 – reference: 11842121 - Nucleic Acids Res. 2002 Feb 15;30(4):e15 – reference: 16336117 - Biol Chem. 2005 Dec;386(12):1219-38 – reference: 18646759 - J Agric Food Chem. 2008 Aug 27;56(16):6886-91 – reference: 15913835 - Trends Genet. 2005 Jul;21(7):399-404 – reference: 10892648 - Cell. 2000 Jun 9;101(6):613-23 – reference: 14602901 - Nucleic Acids Res. 2003 Nov 15;31(22):6435-43 – reference: 16005966 - Plasmid. 2005 Nov;54(3):259-77 – reference: 11553332 - Curr Biol. 2001 Sep 4;11(17):1369-73 – reference: 12007399 - Cell. 2002 Apr 19;109(2):141-4 – reference: 12520023 - Nucleic Acids Res. 2003 Jan 1;31(1):363-4 – reference: 19448609 - Nature. 2009 Jun 18;459(7249):950-6 – reference: 15000396 - Mol Plant Microbe Interact. 2004 Mar;17(3):292-303 – reference: 15210934 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9792-7 – reference: 18953042 - Nucleic Acids Res. 2008 Dec;36(21):6781-94 – reference: 18793445 - BMC Genomics. 2008;9:416 – reference: 18671858 - BMC Genomics. 2008;9:364 – reference: 18725932 - PLoS Genet. 2008;4(8):e1000163 – reference: 4929322 - Nat New Biol. 1971 Feb 3;229(5):147-9 – reference: 12069726 - Biosystems. 2002 Mar-May;65(2-3):157-77 – reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 – reference: 12421762 - Genome Res. 2002 Nov;12(11):1749-55 – reference: 11470904 - Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9736-41 – reference: 17383222 - Curr Opin Microbiol. 2007 Apr;10(2):96-101 – reference: 19008244 - Nucleic Acids Res. 2008 Dec;36(22):7240-51 – reference: 16870723 - Nucleic Acids Res. 2006;34(12):3484-93 – reference: 17621584 - Nucleic Acids Res. 2007;35(14):4809-19 – reference: 8552028 - Mol Gen Genet. 1995 Nov 1;249(1):117-26 – reference: 6171808 - Proc Natl Acad Sci U S A. 1981 Oct;78(10):6008-12 – reference: 11448770 - Curr Biol. 2001 Jun 26;11(12):941-50 – reference: 9371431 - J Bacteriol. 1997 Nov;179(22):6887-93 – reference: 17383221 - Curr Opin Microbiol. 2007 Apr;10(2):156-63  | 
    
| SSID | ssj0017825 | 
    
| Score | 2.1454766 | 
    
| Snippet | Background
Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to... Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing... Background Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to... Abstract Background Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 53 | 
    
| SubjectTerms | Algorithms Animal Genetics and Genomics Bacterial genetics Biomedical and Life Sciences Computational Biology - methods DNA microarrays Gene Expression Profiling Genetic aspects Genome, Bacterial Life Sciences Microarrays Microbial Genetics and Genomics Oligonucleotide Array Sequence Analysis Physiological aspects Plant Genetics and Genomics Proteomics Research Article Rhizobium Rhizobium etli Rhizobium etli - genetics RNA RNA, Bacterial - genetics RNA, Untranslated - genetics Sequence Analysis, RNA  | 
    
| SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQJAQcEN8rG8hCSLBDmOM4iXMsiDGQ2KEwaTfL8ccWKUuqNtXWP4f_lPeSNGpAYxduafyS1n7f9Xs_E_I2dwjjZkGRvLWBsFwGeYwbjimEC95L8HHYO_z9JDk-Fd_O4rOto76wJqyDB-4W7lCEqTdc6Ex6yCRsLFnENfM5y6zMdWrQ-jKZbZKpfv8A_F7c9hWlYcAhI-hBfUKZHA73sKMsjkb-qIXt_9s4b3mnPysnh-3TB-Teqprr9ZUuyy0PdfSIPOxDSzrtpvSY3HHVE3K3O2xy_ZT8-uKq-tIFV4V11LqmrcGqaO3pfIG7NRB60qquAlOjO6Ozk-mSFhWdYVFeXqwuqWvKgrrrtnIWaLsGR-oXzgVlgf9LUF1Zil0jge6ZDmTnkOc3FxTr64GAIjxyAG_oJZ42RdkOLBZ6_YycHn3--ek46A9oCEwS8SbgwokUFDqXqPY601LHWSxTn3EOV5B7WWm4NgIxF2VqvA29gxzKGGuyPE-j52QHJuZ2CXU2EWEeMxAdJ3RsNEuYF5nOE-tiwdmEfNiwSZkevRwP0ShVm8XIRCFfFfIVPqo4mpD3wwPzDrjjZtKPyPeBDBG32xsgh6qXQ3WbHE7IG5QahZgaFRbtnOvVcqm-_pipKXgFFoEGwDe964l8Db_e6L4HAtYAYbhGlPsjSlB6MxqmG-FUOISVcpWrV0sFSx2BHWb8HyQCYl7OZTIhLzpxHqaO1TBZiO9PR4I-WpvxSFVctKjkXEoMVifkYKMSqjeHy5sX_mDQmduY9PJ_MGmP3O-qP8ACsH2y0yxW7hUElU3-urUfvwEybnDK priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGEAIeEHcKA1kICfaQkTh24jwWxBhI7KEwaW-W40sXqUuqNNXoz-Gfck6SRgswEG9pfOI2Pvf6nM-EvModwrhZUCRvbcAtk0EucMMxhXDBewk-DnuHvxwnRyf886k43SHRthemrXbfbkm2lrpVa5m8jcCMBgyie-wEE_E1cl0glheI8AmbDhsH4PBEj-Dzh4dGzqfF6P_dEl9yRb-WSQ57pbfJzXW51JsLvVhcckeHd8mdPo6k047x98iOK--TG93JkpsH5MdHV1bnLrgorKPWNW3BVUkrT5c1bs1AnEkh8Q9Mhb6Lzo6nK1qUdIYVeHmxPqeuWRTUfW_LZIG262akvnYuWBT4JwTVpaXYIhLonsNANoekvjmjWEwPBBSxkAOYoRdv2hSLdqCu9eYhOTn88O39UdCfxhCYJGZNwLjjKWhvLlHHdaalFpmQqc8YgytItKw0TBuOAIsyNd5G3kHCZIw1WZ6n8SOyCy_mnhDqbMKjXIQgJ45rYXSYhJ5nOk-sE5yFE3KwZZMyPVQ5npixUG3KIhOFfFXIV_ioRDwhb4YHlh1Kx9Wk75DvAxnCa7c3qnquem1VPEq9YVxn0kP6aoUMY6ZDn4eZlblOzYS8RKlRCKBRYoXOXK9XK_Xp60xNwQWEMYg7fNPrnshX8OuN7hseYA0Qc2tEuTeiBA03o2G6FU6FQ1gWV7pqvVKw1DEY3ZD9hYRDgMuYTCbkcSfOw6tj6UsW4fzpSNBHazMeKYuzFoKcSYmR6YTsb1VC9bZvdfXC7w868y8mPf2PeZ-RW11FByh6uEd2m3rtnkOg2OQvWtPwE6p5YY8 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgEwIeuF8KA1kICXhIlzo357EgxkBiQoNJ48nydQtkSZWmGuPf8E85J3GrZTAQEm9t_SWpT8_N9TmfCXmqLNK4GTAkZ0wQG8YDleCGYwbpgnMcYhz2Dr_fSbf34nf7yb6nFMJeGHWkkZz0qNDz8ekG9LLvb8DzE2yzOTOuN3eebk7AvQYMsn7sEEuii2Q9TSAtXyPrezsfpp-77iKP8NQ-v7lqEJU68v5fXfSpGHW2fnK1iXqVXF5UM3lyLMvyVJzauk6-LGfYl6d8HS9aNdbfz5A__hcR3CDXfDZLp7363SQXbHWLXOrPtzy5TX68wSfY4LgwlhrbdmVfFa0dnTW4QQTZLq3qKtA1RlC6uzOd06Kiu1gHqIrFEbVtWVD7rSvWBWzfU0ldY21QFvhXCJWVodioEkivZwA7aOrj9pBiST8AKDIyB3AHb2S0LcpuoGnkyR2yt_X606vtwJ8JEeg0Ym3AYhtn4EMUR08jc8llkic8czlj8AqWe4ZrJnWMNI88085MnIVlm9ZG50pl0V2yBhOz9wm1Jo0nKglBW20sEy3DNHRxLlVqbBKzcETGS50Q2hOm47kdpegWTjwVKHeBcoe3IolG5PnqglnPFXI-9CUq2QqGJN_dB3VzILzPEPEkc5rFMucOFtEm4WHEZOhUmBuuZKZH5AmqqEAajwrrhA7kYj4Xbz_uiikEojACo4MnPfMgV8O319K3XYAMkPlrgNwYIMHP6MEwXVqCwCEszqtsvZgLEHUErj9kf4DEkGYzxtMRudfbzmrqWICTT_D-2cCqBrIZjlTFYUeEzjjH_HhEXiztT3gPPD9f8C9WBvq3H-nBP2Afkit9XQkYYrhB1tpmYR9Butqqx94R_QQKs4_3 priority: 102 providerName: Unpaywall  | 
    
| Title | Genome-wide detection of predicted non-coding RNAs in Rhizobium etli expressed during free-living and host-associated growth using a high-resolution tiling array | 
    
| URI | https://link.springer.com/article/10.1186/1471-2164-11-53 https://www.ncbi.nlm.nih.gov/pubmed/20089193 https://www.proquest.com/docview/733342502 https://www.proquest.com/docview/746232286 https://pubmed.ncbi.nlm.nih.gov/PMC2881028 https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-11-53 https://doaj.org/article/417fc24a98f448d58032a0fb09d8ba7c  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate [EBSCO] customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfYJgQ8IL4pjMpCCNhDRuo4ifOAUDdtDKRVU6HSeIocf3SRsqRLU239c_hPuUvTboGNvVRJfXFr-74c3_2OkHeJQRg3DYJktXa4ZsJJfDxwDMFdsFaAjcPc4cNBcDDi34_948tSpc0ETq_d2mE9qVGZbV-czb-AwH-uBV4En3qgYB0Gfj_miPne-8mZg1Wl8PS1KbGxRjbAckVY2uGQX54ygHX06-yj5vkG-ueaPltWqwb3_1eFX7Fhf8dXrg5ZH5B7s3wi5-cyy67Ysf1H5GHjgNL-gmMekzsmf0LuLkpSzp-S319NXpwa5zzVhmpT1ZFaOS0snZR4pgMOKs2L3FEFGj06HPSnNM3pEEP3knR2Sk2VpdRc1PG1QLtIg6S2NMbJUnx7QWWuKeaWOLJhDSAbl8V5dUIxCh8IKIIoO9BDIxe0SrO6oSzl_BkZ7e_93D1wmjIOjgo8VjmMGx6C2CcClYOMpJB-5IvQRozBFezQtFBMKo7IjCJUVvesgZ2WUlpFSRJ6z8k6DMy8JNTogPcS3wUGM1z6SrqBa3kkk0AbnzO3Q7aXyxSrBuMcS21kcb3XEUGM6xrjusJt7Hsd8nH1wGQB73Ez6Q6u-4oMcbnrL4pyHDdiHvNeaBXjMhIW9r3aF67HpGsTN9IikaHqkLfINTEib-QY2jOWs-k0_vZjGPfBdrgeyAn80oeGyBbw75VsMiVgDhCsq0W52aIE1aBazXTJnDE2YTxdborZNIap9kBbu-w_JBw8Y8ZE0CEvFuy8GjrGzEQ97D9sMXprbtoteXpSY5czIdCl7ZCtpUjES5m_eeK3VjJz2yK9un04r8n9RQQIyLe7SdarcmbegGNZJV2yFh6HXbKxszc4GsLdbrDbrV_SdGu9AZ8jBtcbo8FR_9cf2FJ6vw | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6VIlQ4IN4ECqwQEvTgYq9f62NAlBTaHEIr9bZa7yO15NqR46jk5_BPmbEdqwYK4uZ4x5t4552d-ZaQN6lBGDcNimS1dgLNuJOGuOEYQ7hgLQcfh73Dx9Nochp8OQvPtoi36YVpqt03W5KNpW7UmkfvPTCjDoPoHjvBQv8GuYnoVQiXf8rG_cYBOLywQ_D5w0MD59Ng9P9uia-4ol_LJPu90jtkZ1Us5PpS5vkVd3Rwj9zt4kg6bhl_n2yZ4gG51Z4suX5Ifnw2RXlhnMtMG6pN3RRcFbS0dFHh1gzEmRQSf0eV6LvobDpe0qygM6zAS7PVBTV1nlHzvSmTBdq2m5Hayhgnz_BPCCoLTbFFxJEdh4FsDkl9fU6xmB4IKGIhOzBDJ960zvJmoKrk-hE5Pfh08nHidKcxOCryWe2wwAQxaG_KUcdlIrkMk5DHNmEMriDR0lwxqQIEWOSxstqzBhImpbRK0jT2H5NteDHzlFCjo8BLQxfkxAQyVNKNXBskMo20CQPmjsj-hk1CdVDleGJGLpqUhUcC-SqQr_BRhP6IvOsfWLQoHdeTfkC-92QIr93cKKu56LRVBF5sFQtkwi2krzrkrs-ka1M30TyVsRqR1yg1AgE0CqzQmcvVcikOv83EGFyA64O4wze97YhsCb9eya7hAdYAMbcGlLsDStBwNRimG-EUOIRlcYUpV0sBS-2D0XXZX0gCCHBBUaIRedKKc__qWPqSeDh_PBD0wdoMR4rsvIEgZ5xjZDoiexuVEJ3tW16_8Hu9zvyLSc_-Y95XZGdycnwkjg6nX5-T2211Byi9u0u262plXkDQWKcvGzPxE2gFZHs | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgiK8HxMeAwgALIcEewlLHSZzHMigbHxUqTNqb5fiji9QlVZpq9M_hP-UuSaMFGIi3NL64je_Od65_9zMhL1KLNG4GHMkZ43HDhJeGuOEYQ7rgnIAYh7XDnyfRwRH_cBwet9ic5QbtvtmSbGoakKUpr_YWxjUuLqK9IUypHoNMH6vCwuAyucIhtOEBBvvRfreJAMEvbNl8_vBQLxDVfP2_z8rnwtKvkMlu3_Qmub7KF2p9pubzc6FpfJvcanNKOmqM4A65ZPO75GpzyuT6Hvnx3ubFqfXOMmOpsVUNvspp4eiixG0ayDlpXuSeLjCO0elktKRZTqeIxkuz1Sm11Tyj9nsNmQXZprKRutJab57hHxJU5YZiuYinWm2D2AwW-NUJRWA9CFDkRfagh9bUaZXN64ayVOttcjR-923_wGtPZvB0FLDKY9zyGDw5FejvKlFChUkoYpcwBlew6DJCM6U5ki2KWDszdBYWT1obnaRpHNwnW_Bi9iGh1kR8mIY-2IzlKtTKj3zHE5VGxoac-QPyeqMmqVvacjw9Yy7r5YuIJOpVol7howyDAXnVPbBoGDsuFn2Deu_EkGq7vlGUM9l6ruTD2GnGVSIcLGVNKPyAKd-lfmJEqmI9IM_RaiSSaeSI1pmp1XIpD79O5QjCgR-A6cM3vWyFXAG_Xqu2-AHGAPm3epI7PUnwdt1rphvjlNiEELncFqulhKEOYAL22V9EOCS7jIloQB405ty9OsJgkiH2H_cMvTc2_ZY8O6npyJkQmKUOyO7GJWQ7Dy4vHvjdzmf-paRH_9HvM3Lty9ux_HQ4-fiY3GiAHuDz_g7ZqsqVfQL5Y5U-rWeJn7t5aKE | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgEwIeuF8KA1kICXhIlzo357EgxkBiQoNJ48nydQtkSZWmGuPf8E85J3GrZTAQEm9t_SWpT8_N9TmfCXmqLNK4GTAkZ0wQG8YDleCGYwbpgnMcYhz2Dr_fSbf34nf7yb6nFMJeGHWkkZz0qNDz8ekG9LLvb8DzE2yzOTOuN3eebk7AvQYMsn7sEEuii2Q9TSAtXyPrezsfpp-77iKP8NQ-v7lqEJU68v5fXfSpGHW2fnK1iXqVXF5UM3lyLMvyVJzauk6-LGfYl6d8HS9aNdbfz5A__hcR3CDXfDZLp7363SQXbHWLXOrPtzy5TX68wSfY4LgwlhrbdmVfFa0dnTW4QQTZLq3qKtA1RlC6uzOd06Kiu1gHqIrFEbVtWVD7rSvWBWzfU0ldY21QFvhXCJWVodioEkivZwA7aOrj9pBiST8AKDIyB3AHb2S0LcpuoGnkyR2yt_X606vtwJ8JEeg0Ym3AYhtn4EMUR08jc8llkic8czlj8AqWe4ZrJnWMNI88085MnIVlm9ZG50pl0V2yBhOz9wm1Jo0nKglBW20sEy3DNHRxLlVqbBKzcETGS50Q2hOm47kdpegWTjwVKHeBcoe3IolG5PnqglnPFXI-9CUq2QqGJN_dB3VzILzPEPEkc5rFMucOFtEm4WHEZOhUmBuuZKZH5AmqqEAajwrrhA7kYj4Xbz_uiikEojACo4MnPfMgV8O319K3XYAMkPlrgNwYIMHP6MEwXVqCwCEszqtsvZgLEHUErj9kf4DEkGYzxtMRudfbzmrqWICTT_D-2cCqBrIZjlTFYUeEzjjH_HhEXiztT3gPPD9f8C9WBvq3H-nBP2Afkit9XQkYYrhB1tpmYR9Butqqx94R_QQKs4_3 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+detection+of+predicted+non-coding+RNAs+in+Rhizobium+etli+expressed+during+free-living+and+host-associated+growth+using+a+high-resolution+tiling+array&rft.jtitle=BMC+genomics&rft.au=Vercruysse%2C+Maarten&rft.au=Fauvart%2C+Maarten&rft.au=Cloots%2C+Lore&rft.au=Engelen%2C+Kristof&rft.date=2010-01-20&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=11&rft.spage=53&rft.epage=53&rft_id=info:doi/10.1186%2F1471-2164-11-53&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |